trig.h revision 1.4 1 1.4 simonb /* $NetBSD: trig.h,v 1.4 1999/07/02 15:37:37 simonb Exp $ */
2 1.1 ragge /*
3 1.1 ragge * Copyright (c) 1987, 1993
4 1.1 ragge * The Regents of the University of California. All rights reserved.
5 1.1 ragge *
6 1.1 ragge * Redistribution and use in source and binary forms, with or without
7 1.1 ragge * modification, are permitted provided that the following conditions
8 1.1 ragge * are met:
9 1.1 ragge * 1. Redistributions of source code must retain the above copyright
10 1.1 ragge * notice, this list of conditions and the following disclaimer.
11 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright
12 1.1 ragge * notice, this list of conditions and the following disclaimer in the
13 1.1 ragge * documentation and/or other materials provided with the distribution.
14 1.1 ragge * 3. All advertising materials mentioning features or use of this software
15 1.1 ragge * must display the following acknowledgement:
16 1.1 ragge * This product includes software developed by the University of
17 1.1 ragge * California, Berkeley and its contributors.
18 1.1 ragge * 4. Neither the name of the University nor the names of its contributors
19 1.1 ragge * may be used to endorse or promote products derived from this software
20 1.1 ragge * without specific prior written permission.
21 1.1 ragge *
22 1.1 ragge * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 ragge * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 ragge * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 ragge * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 ragge * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 ragge * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 ragge * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 ragge * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 ragge * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 ragge * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 ragge * SUCH DAMAGE.
33 1.1 ragge *
34 1.1 ragge * @(#)trig.h 8.1 (Berkeley) 6/4/93
35 1.1 ragge */
36 1.1 ragge
37 1.1 ragge vc(thresh, 2.6117239648121182150E-1 ,b863,3f85,6ea0,6b02, -1, .85B8636B026EA0)
38 1.1 ragge vc(PIo4, 7.8539816339744830676E-1 ,0fda,4049,68c2,a221, 0, .C90FDAA22168C2)
39 1.1 ragge vc(PIo2, 1.5707963267948966135E0 ,0fda,40c9,68c2,a221, 1, .C90FDAA22168C2)
40 1.1 ragge vc(PI3o4, 2.3561944901923449203E0 ,cbe3,4116,0e92,f999, 2, .96CBE3F9990E92)
41 1.1 ragge vc(PI, 3.1415926535897932270E0 ,0fda,4149,68c2,a221, 2, .C90FDAA22168C2)
42 1.1 ragge vc(PI2, 6.2831853071795864540E0 ,0fda,41c9,68c2,a221, 3, .C90FDAA22168C2)
43 1.1 ragge
44 1.1 ragge ic(thresh, 2.6117239648121182150E-1 , -2, 1.0B70C6D604DD4)
45 1.1 ragge ic(PIo4, 7.8539816339744827900E-1 , -1, 1.921FB54442D18)
46 1.1 ragge ic(PIo2, 1.5707963267948965580E0 , 0, 1.921FB54442D18)
47 1.1 ragge ic(PI3o4, 2.3561944901923448370E0 , 1, 1.2D97C7F3321D2)
48 1.1 ragge ic(PI, 3.1415926535897931160E0 , 1, 1.921FB54442D18)
49 1.1 ragge ic(PI2, 6.2831853071795862320E0 , 2, 1.921FB54442D18)
50 1.1 ragge
51 1.1 ragge #ifdef vccast
52 1.1 ragge #define thresh vccast(thresh)
53 1.1 ragge #define PIo4 vccast(PIo4)
54 1.1 ragge #define PIo2 vccast(PIo2)
55 1.1 ragge #define PI3o4 vccast(PI3o4)
56 1.1 ragge #define PI vccast(PI)
57 1.1 ragge #define PI2 vccast(PI2)
58 1.1 ragge #endif
59 1.1 ragge
60 1.1 ragge #ifdef national
61 1.1 ragge static long fmaxx[] = { 0xffffffff, 0x7fefffff};
62 1.1 ragge #define fmax (*(double*)fmaxx)
63 1.1 ragge #endif /* national */
64 1.1 ragge
65 1.1 ragge static const double
66 1.1 ragge zero = 0,
67 1.1 ragge one = 1,
68 1.1 ragge negone = -1,
69 1.4 simonb half = 1.0/2.0,
70 1.1 ragge small = 1E-10, /* 1+small**2 == 1; better values for small:
71 1.1 ragge * small = 1.5E-9 for VAX D
72 1.1 ragge * = 1.2E-8 for IEEE Double
73 1.1 ragge * = 2.8E-10 for IEEE Extended
74 1.1 ragge */
75 1.1 ragge big = 1E20; /* big := 1/(small**2) */
76 1.1 ragge
77 1.1 ragge /* sin__S(x*x) ... re-implemented as a macro
78 1.1 ragge * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
79 1.4 simonb * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
80 1.4 simonb * CODED IN C BY K.C. NG, 1/21/85;
81 1.1 ragge * REVISED BY K.C. NG on 8/13/85.
82 1.1 ragge *
83 1.1 ragge * sin(x*k) - x
84 1.1 ragge * RETURN --------------- on [-PI/4,PI/4] , where k=pi/PI, PI is the rounded
85 1.4 simonb * x
86 1.1 ragge * value of pi in machine precision:
87 1.1 ragge *
88 1.1 ragge * Decimal:
89 1.4 simonb * pi = 3.141592653589793 23846264338327 .....
90 1.1 ragge * 53 bits PI = 3.141592653589793 115997963 ..... ,
91 1.4 simonb * 56 bits PI = 3.141592653589793 227020265 ..... ,
92 1.1 ragge *
93 1.1 ragge * Hexadecimal:
94 1.1 ragge * pi = 3.243F6A8885A308D313198A2E....
95 1.1 ragge * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18
96 1.4 simonb * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2
97 1.1 ragge *
98 1.1 ragge * Method:
99 1.4 simonb * 1. Let z=x*x. Create a polynomial approximation to
100 1.1 ragge * (sin(k*x)-x)/x = z*(S0 + S1*z^1 + ... + S5*z^5).
101 1.1 ragge * Then
102 1.1 ragge * sin__S(x*x) = z*(S0 + S1*z^1 + ... + S5*z^5)
103 1.1 ragge *
104 1.1 ragge * The coefficient S's are obtained by a special Remez algorithm.
105 1.1 ragge *
106 1.1 ragge * Accuracy:
107 1.4 simonb * In the absence of rounding error, the approximation has absolute error
108 1.4 simonb * less than 2**(-61.11) for VAX D FORMAT, 2**(-57.45) for IEEE DOUBLE.
109 1.1 ragge *
110 1.1 ragge * Constants:
111 1.1 ragge * The hexadecimal values are the intended ones for the following constants.
112 1.1 ragge * The decimal values may be used, provided that the compiler will convert
113 1.1 ragge * from decimal to binary accurately enough to produce the hexadecimal values
114 1.1 ragge * shown.
115 1.1 ragge *
116 1.1 ragge */
117 1.1 ragge
118 1.1 ragge vc(S0, -1.6666666666666646660E-1 ,aaaa,bf2a,aa71,aaaa, -2, -.AAAAAAAAAAAA71)
119 1.1 ragge vc(S1, 8.3333333333297230413E-3 ,8888,3d08,477f,8888, -6, .8888888888477F)
120 1.1 ragge vc(S2, -1.9841269838362403710E-4 ,0d00,ba50,1057,cf8a, -12, -.D00D00CF8A1057)
121 1.1 ragge vc(S3, 2.7557318019967078930E-6 ,ef1c,3738,bedc,a326, -18, .B8EF1CA326BEDC)
122 1.1 ragge vc(S4, -2.5051841873876551398E-8 ,3195,b3d7,e1d3,374c, -25, -.D73195374CE1D3)
123 1.1 ragge vc(S5, 1.6028995389845827653E-10 ,3d9c,3030,cccc,6d26, -32, .B03D9C6D26CCCC)
124 1.1 ragge vc(S6, -6.2723499671769283121E-13 ,8d0b,ac30,ea82,7561, -40, -.B08D0B7561EA82)
125 1.1 ragge
126 1.1 ragge ic(S0, -1.6666666666666463126E-1 , -3, -1.555555555550C)
127 1.1 ragge ic(S1, 8.3333333332992771264E-3 , -7, 1.111111110C461)
128 1.1 ragge ic(S2, -1.9841269816180999116E-4 , -13, -1.A01A019746345)
129 1.1 ragge ic(S3, 2.7557309793219876880E-6 , -19, 1.71DE3209CDCD9)
130 1.1 ragge ic(S4, -2.5050225177523807003E-8 , -26, -1.AE5C0E319A4EF)
131 1.1 ragge ic(S5, 1.5868926979889205164E-10 , -33, 1.5CF61DF672B13)
132 1.1 ragge
133 1.1 ragge #ifdef vccast
134 1.1 ragge #define S0 vccast(S0)
135 1.1 ragge #define S1 vccast(S1)
136 1.1 ragge #define S2 vccast(S2)
137 1.1 ragge #define S3 vccast(S3)
138 1.1 ragge #define S4 vccast(S4)
139 1.1 ragge #define S5 vccast(S5)
140 1.1 ragge #define S6 vccast(S6)
141 1.1 ragge #endif
142 1.1 ragge
143 1.2 matt #if defined(__vax__)||defined(tahoe)
144 1.1 ragge # define sin__S(z) (z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*(S5+z*S6)))))))
145 1.2 matt #else /* defined(__vax__)||defined(tahoe) */
146 1.1 ragge # define sin__S(z) (z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*S5))))))
147 1.2 matt #endif /* defined(__vax__)||defined(tahoe) */
148 1.1 ragge
149 1.1 ragge /* cos__C(x*x) ... re-implemented as a macro
150 1.1 ragge * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS)
151 1.4 simonb * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
152 1.4 simonb * CODED IN C BY K.C. NG, 1/21/85;
153 1.1 ragge * REVISED BY K.C. NG on 8/13/85.
154 1.1 ragge *
155 1.4 simonb * x*x
156 1.1 ragge * RETURN cos(k*x) - 1 + ----- on [-PI/4,PI/4], where k = pi/PI,
157 1.4 simonb * 2
158 1.1 ragge * PI is the rounded value of pi in machine precision :
159 1.1 ragge *
160 1.1 ragge * Decimal:
161 1.4 simonb * pi = 3.141592653589793 23846264338327 .....
162 1.1 ragge * 53 bits PI = 3.141592653589793 115997963 ..... ,
163 1.4 simonb * 56 bits PI = 3.141592653589793 227020265 ..... ,
164 1.1 ragge *
165 1.1 ragge * Hexadecimal:
166 1.1 ragge * pi = 3.243F6A8885A308D313198A2E....
167 1.1 ragge * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18
168 1.4 simonb * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2
169 1.1 ragge *
170 1.1 ragge *
171 1.1 ragge * Method:
172 1.4 simonb * 1. Let z=x*x. Create a polynomial approximation to
173 1.1 ragge * cos(k*x)-1+z/2 = z*z*(C0 + C1*z^1 + ... + C5*z^5)
174 1.1 ragge * then
175 1.1 ragge * cos__C(z) = z*z*(C0 + C1*z^1 + ... + C5*z^5)
176 1.1 ragge *
177 1.1 ragge * The coefficient C's are obtained by a special Remez algorithm.
178 1.1 ragge *
179 1.1 ragge * Accuracy:
180 1.4 simonb * In the absence of rounding error, the approximation has absolute error
181 1.4 simonb * less than 2**(-64) for VAX D FORMAT, 2**(-58.3) for IEEE DOUBLE.
182 1.4 simonb *
183 1.1 ragge *
184 1.1 ragge * Constants:
185 1.1 ragge * The hexadecimal values are the intended ones for the following constants.
186 1.1 ragge * The decimal values may be used, provided that the compiler will convert
187 1.1 ragge * from decimal to binary accurately enough to produce the hexadecimal values
188 1.1 ragge * shown.
189 1.1 ragge */
190 1.1 ragge
191 1.1 ragge vc(C0, 4.1666666666666504759E-2 ,aaaa,3e2a,a9f0,aaaa, -4, .AAAAAAAAAAA9F0)
192 1.1 ragge vc(C1, -1.3888888888865302059E-3 ,0b60,bbb6,0cca,b60a, -9, -.B60B60B60A0CCA)
193 1.1 ragge vc(C2, 2.4801587285601038265E-5 ,0d00,38d0,098f,cdcd, -15, .D00D00CDCD098F)
194 1.1 ragge vc(C3, -2.7557313470902390219E-7 ,f27b,b593,e805,b593, -21, -.93F27BB593E805)
195 1.1 ragge vc(C4, 2.0875623401082232009E-9 ,74c8,320f,3ff0,fa1e, -28, .8F74C8FA1E3FF0)
196 1.1 ragge vc(C5, -1.1355178117642986178E-11 ,c32d,ae47,5a63,0a5c, -36, -.C7C32D0A5C5A63)
197 1.1 ragge
198 1.1 ragge ic(C0, 4.1666666666666504759E-2 , -5, 1.555555555553E)
199 1.1 ragge ic(C1, -1.3888888888865301516E-3 , -10, -1.6C16C16C14199)
200 1.1 ragge ic(C2, 2.4801587269650015769E-5 , -16, 1.A01A01971CAEB)
201 1.1 ragge ic(C3, -2.7557304623183959811E-7 , -22, -1.27E4F1314AD1A)
202 1.1 ragge ic(C4, 2.0873958177697780076E-9 , -29, 1.1EE3B60DDDC8C)
203 1.1 ragge ic(C5, -1.1250289076471311557E-11 , -37, -1.8BD5986B2A52E)
204 1.1 ragge
205 1.1 ragge #ifdef vccast
206 1.1 ragge #define C0 vccast(C0)
207 1.1 ragge #define C1 vccast(C1)
208 1.1 ragge #define C2 vccast(C2)
209 1.1 ragge #define C3 vccast(C3)
210 1.1 ragge #define C4 vccast(C4)
211 1.1 ragge #define C5 vccast(C5)
212 1.1 ragge #endif
213 1.1 ragge
214 1.1 ragge #define cos__C(z) (z*z*(C0+z*(C1+z*(C2+z*(C3+z*(C4+z*C5))))))
215