Home | History | Annotate | Line # | Download | only in noieee_src
trig.h revision 1.5
      1  1.5    matt /*	$NetBSD: trig.h,v 1.5 2002/06/15 00:10:18 matt Exp $	*/
      2  1.1   ragge /*
      3  1.1   ragge  * Copyright (c) 1987, 1993
      4  1.1   ragge  *	The Regents of the University of California.  All rights reserved.
      5  1.1   ragge  *
      6  1.1   ragge  * Redistribution and use in source and binary forms, with or without
      7  1.1   ragge  * modification, are permitted provided that the following conditions
      8  1.1   ragge  * are met:
      9  1.1   ragge  * 1. Redistributions of source code must retain the above copyright
     10  1.1   ragge  *    notice, this list of conditions and the following disclaimer.
     11  1.1   ragge  * 2. Redistributions in binary form must reproduce the above copyright
     12  1.1   ragge  *    notice, this list of conditions and the following disclaimer in the
     13  1.1   ragge  *    documentation and/or other materials provided with the distribution.
     14  1.1   ragge  * 3. All advertising materials mentioning features or use of this software
     15  1.1   ragge  *    must display the following acknowledgement:
     16  1.1   ragge  *	This product includes software developed by the University of
     17  1.1   ragge  *	California, Berkeley and its contributors.
     18  1.1   ragge  * 4. Neither the name of the University nor the names of its contributors
     19  1.1   ragge  *    may be used to endorse or promote products derived from this software
     20  1.1   ragge  *    without specific prior written permission.
     21  1.1   ragge  *
     22  1.1   ragge  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  1.1   ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  1.1   ragge  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  1.1   ragge  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  1.1   ragge  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  1.1   ragge  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  1.1   ragge  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  1.1   ragge  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  1.1   ragge  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  1.1   ragge  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  1.1   ragge  * SUCH DAMAGE.
     33  1.1   ragge  *
     34  1.1   ragge  *	@(#)trig.h	8.1 (Berkeley) 6/4/93
     35  1.1   ragge  */
     36  1.1   ragge 
     37  1.1   ragge vc(thresh, 2.6117239648121182150E-1 ,b863,3f85,6ea0,6b02, -1, .85B8636B026EA0)
     38  1.1   ragge vc(PIo4,   7.8539816339744830676E-1 ,0fda,4049,68c2,a221,  0, .C90FDAA22168C2)
     39  1.1   ragge vc(PIo2,   1.5707963267948966135E0  ,0fda,40c9,68c2,a221,  1, .C90FDAA22168C2)
     40  1.1   ragge vc(PI3o4,  2.3561944901923449203E0  ,cbe3,4116,0e92,f999,  2, .96CBE3F9990E92)
     41  1.1   ragge vc(PI,     3.1415926535897932270E0  ,0fda,4149,68c2,a221,  2, .C90FDAA22168C2)
     42  1.1   ragge vc(PI2,    6.2831853071795864540E0  ,0fda,41c9,68c2,a221,  3, .C90FDAA22168C2)
     43  1.1   ragge 
     44  1.1   ragge ic(thresh, 2.6117239648121182150E-1 , -2, 1.0B70C6D604DD4)
     45  1.1   ragge ic(PIo4,   7.8539816339744827900E-1 , -1, 1.921FB54442D18)
     46  1.1   ragge ic(PIo2,   1.5707963267948965580E0  ,  0, 1.921FB54442D18)
     47  1.1   ragge ic(PI3o4,  2.3561944901923448370E0  ,  1, 1.2D97C7F3321D2)
     48  1.1   ragge ic(PI,     3.1415926535897931160E0  ,  1, 1.921FB54442D18)
     49  1.1   ragge ic(PI2,    6.2831853071795862320E0  ,  2, 1.921FB54442D18)
     50  1.1   ragge 
     51  1.1   ragge #ifdef vccast
     52  1.1   ragge #define	thresh	vccast(thresh)
     53  1.1   ragge #define	PIo4	vccast(PIo4)
     54  1.1   ragge #define	PIo2	vccast(PIo2)
     55  1.1   ragge #define	PI3o4	vccast(PI3o4)
     56  1.1   ragge #define	PI	vccast(PI)
     57  1.1   ragge #define	PI2	vccast(PI2)
     58  1.1   ragge #endif
     59  1.1   ragge 
     60  1.1   ragge #ifdef national
     61  1.1   ragge static long fmaxx[]	= { 0xffffffff, 0x7fefffff};
     62  1.1   ragge #define   fmax    (*(double*)fmaxx)
     63  1.1   ragge #endif	/* national */
     64  1.1   ragge 
     65  1.5    matt #ifdef _LIBM_DECLARE
     66  1.5    matt const double
     67  1.5    matt 	__zero = 0,
     68  1.5    matt 	__one = 1,
     69  1.5    matt 	__negone = -1,
     70  1.5    matt 	__half = 1.0/2.0,
     71  1.5    matt #ifdef __vax__
     72  1.5    matt 	__small = 1E-9, /* 1+small**2 == 1; better values for small:
     73  1.5    matt 			  *		small	= 1.5E-9 for VAX D
     74  1.5    matt 			  *			= 1.2E-8 for IEEE Double
     75  1.5    matt 			  *			= 2.8E-10 for IEEE Extended
     76  1.5    matt 			  */
     77  1.5    matt 	__big = 1E18;	/* big := 1/(small**2) */
     78  1.5    matt #else
     79  1.5    matt 	__small = 1E-10, /* 1+small**2 == 1; better values for small:
     80  1.5    matt 			  *		small	= 1.5E-9 for VAX D
     81  1.5    matt 			  *			= 1.2E-8 for IEEE Double
     82  1.5    matt 			  *			= 2.8E-10 for IEEE Extended
     83  1.5    matt 			  */
     84  1.5    matt 	__big = 1E20;	/* big := 1/(small**2) */
     85  1.5    matt #endif
     86  1.5    matt #else
     87  1.5    matt extern const double __zero, __one, __negone, __half, __small, __big;
     88  1.5    matt #endif
     89  1.1   ragge 
     90  1.1   ragge /* sin__S(x*x) ... re-implemented as a macro
     91  1.1   ragge  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
     92  1.4  simonb  * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
     93  1.4  simonb  * CODED IN C BY K.C. NG, 1/21/85;
     94  1.1   ragge  * REVISED BY K.C. NG on 8/13/85.
     95  1.1   ragge  *
     96  1.1   ragge  *	    sin(x*k) - x
     97  1.1   ragge  * RETURN  --------------- on [-PI/4,PI/4] , where k=pi/PI, PI is the rounded
     98  1.4  simonb  *	            x
     99  1.1   ragge  * value of pi in machine precision:
    100  1.1   ragge  *
    101  1.1   ragge  *	Decimal:
    102  1.4  simonb  *		pi = 3.141592653589793 23846264338327 .....
    103  1.1   ragge  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
    104  1.4  simonb  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
    105  1.1   ragge  *
    106  1.1   ragge  *	Hexadecimal:
    107  1.1   ragge  *		pi = 3.243F6A8885A308D313198A2E....
    108  1.1   ragge  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18
    109  1.4  simonb  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2
    110  1.1   ragge  *
    111  1.1   ragge  * Method:
    112  1.4  simonb  *	1. Let z=x*x. Create a polynomial approximation to
    113  1.1   ragge  *	    (sin(k*x)-x)/x  =  z*(S0 + S1*z^1 + ... + S5*z^5).
    114  1.1   ragge  *	Then
    115  1.1   ragge  *      sin__S(x*x) = z*(S0 + S1*z^1 + ... + S5*z^5)
    116  1.1   ragge  *
    117  1.1   ragge  *	The coefficient S's are obtained by a special Remez algorithm.
    118  1.1   ragge  *
    119  1.1   ragge  * Accuracy:
    120  1.4  simonb  *	In the absence of rounding error, the approximation has absolute error
    121  1.4  simonb  *	less than 2**(-61.11) for VAX D FORMAT, 2**(-57.45) for IEEE DOUBLE.
    122  1.1   ragge  *
    123  1.1   ragge  * Constants:
    124  1.1   ragge  * The hexadecimal values are the intended ones for the following constants.
    125  1.1   ragge  * The decimal values may be used, provided that the compiler will convert
    126  1.1   ragge  * from decimal to binary accurately enough to produce the hexadecimal values
    127  1.1   ragge  * shown.
    128  1.1   ragge  *
    129  1.1   ragge  */
    130  1.1   ragge 
    131  1.1   ragge vc(S0, -1.6666666666666646660E-1  ,aaaa,bf2a,aa71,aaaa,  -2, -.AAAAAAAAAAAA71)
    132  1.1   ragge vc(S1,  8.3333333333297230413E-3  ,8888,3d08,477f,8888,  -6,  .8888888888477F)
    133  1.1   ragge vc(S2, -1.9841269838362403710E-4  ,0d00,ba50,1057,cf8a, -12, -.D00D00CF8A1057)
    134  1.1   ragge vc(S3,  2.7557318019967078930E-6  ,ef1c,3738,bedc,a326, -18,  .B8EF1CA326BEDC)
    135  1.1   ragge vc(S4, -2.5051841873876551398E-8  ,3195,b3d7,e1d3,374c, -25, -.D73195374CE1D3)
    136  1.1   ragge vc(S5,  1.6028995389845827653E-10 ,3d9c,3030,cccc,6d26, -32,  .B03D9C6D26CCCC)
    137  1.1   ragge vc(S6, -6.2723499671769283121E-13 ,8d0b,ac30,ea82,7561, -40, -.B08D0B7561EA82)
    138  1.1   ragge 
    139  1.1   ragge ic(S0, -1.6666666666666463126E-1  ,  -3, -1.555555555550C)
    140  1.1   ragge ic(S1,  8.3333333332992771264E-3  ,  -7,  1.111111110C461)
    141  1.1   ragge ic(S2, -1.9841269816180999116E-4  , -13, -1.A01A019746345)
    142  1.1   ragge ic(S3,  2.7557309793219876880E-6  , -19,  1.71DE3209CDCD9)
    143  1.1   ragge ic(S4, -2.5050225177523807003E-8  , -26, -1.AE5C0E319A4EF)
    144  1.1   ragge ic(S5,  1.5868926979889205164E-10 , -33,  1.5CF61DF672B13)
    145  1.1   ragge 
    146  1.1   ragge #ifdef vccast
    147  1.1   ragge #define	S0	vccast(S0)
    148  1.1   ragge #define	S1	vccast(S1)
    149  1.1   ragge #define	S2	vccast(S2)
    150  1.1   ragge #define	S3	vccast(S3)
    151  1.1   ragge #define	S4	vccast(S4)
    152  1.1   ragge #define	S5	vccast(S5)
    153  1.1   ragge #define	S6	vccast(S6)
    154  1.1   ragge #endif
    155  1.1   ragge 
    156  1.2    matt #if defined(__vax__)||defined(tahoe)
    157  1.1   ragge #  define	sin__S(z)	(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*(S5+z*S6)))))))
    158  1.2    matt #else 	/* defined(__vax__)||defined(tahoe) */
    159  1.1   ragge #  define	sin__S(z)	(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*S5))))))
    160  1.2    matt #endif 	/* defined(__vax__)||defined(tahoe) */
    161  1.1   ragge 
    162  1.1   ragge /* cos__C(x*x) ... re-implemented as a macro
    163  1.1   ragge  * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS)
    164  1.4  simonb  * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
    165  1.4  simonb  * CODED IN C BY K.C. NG, 1/21/85;
    166  1.1   ragge  * REVISED BY K.C. NG on 8/13/85.
    167  1.1   ragge  *
    168  1.4  simonb  *	   		    x*x
    169  1.1   ragge  * RETURN   cos(k*x) - 1 + ----- on [-PI/4,PI/4],  where k = pi/PI,
    170  1.4  simonb  *	  		     2
    171  1.1   ragge  * PI is the rounded value of pi in machine precision :
    172  1.1   ragge  *
    173  1.1   ragge  *	Decimal:
    174  1.4  simonb  *		pi = 3.141592653589793 23846264338327 .....
    175  1.1   ragge  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
    176  1.4  simonb  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
    177  1.1   ragge  *
    178  1.1   ragge  *	Hexadecimal:
    179  1.1   ragge  *		pi = 3.243F6A8885A308D313198A2E....
    180  1.1   ragge  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18
    181  1.4  simonb  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2
    182  1.1   ragge  *
    183  1.1   ragge  *
    184  1.1   ragge  * Method:
    185  1.4  simonb  *	1. Let z=x*x. Create a polynomial approximation to
    186  1.1   ragge  *	    cos(k*x)-1+z/2  =  z*z*(C0 + C1*z^1 + ... + C5*z^5)
    187  1.1   ragge  *	then
    188  1.1   ragge  *      cos__C(z) =  z*z*(C0 + C1*z^1 + ... + C5*z^5)
    189  1.1   ragge  *
    190  1.1   ragge  *	The coefficient C's are obtained by a special Remez algorithm.
    191  1.1   ragge  *
    192  1.1   ragge  * Accuracy:
    193  1.4  simonb  *	In the absence of rounding error, the approximation has absolute error
    194  1.4  simonb  *	less than 2**(-64) for VAX D FORMAT, 2**(-58.3) for IEEE DOUBLE.
    195  1.4  simonb  *
    196  1.1   ragge  *
    197  1.1   ragge  * Constants:
    198  1.1   ragge  * The hexadecimal values are the intended ones for the following constants.
    199  1.1   ragge  * The decimal values may be used, provided that the compiler will convert
    200  1.1   ragge  * from decimal to binary accurately enough to produce the hexadecimal values
    201  1.1   ragge  * shown.
    202  1.1   ragge  */
    203  1.1   ragge 
    204  1.1   ragge vc(C0,  4.1666666666666504759E-2  ,aaaa,3e2a,a9f0,aaaa,  -4,  .AAAAAAAAAAA9F0)
    205  1.1   ragge vc(C1, -1.3888888888865302059E-3  ,0b60,bbb6,0cca,b60a,  -9, -.B60B60B60A0CCA)
    206  1.1   ragge vc(C2,  2.4801587285601038265E-5  ,0d00,38d0,098f,cdcd, -15,  .D00D00CDCD098F)
    207  1.1   ragge vc(C3, -2.7557313470902390219E-7  ,f27b,b593,e805,b593, -21, -.93F27BB593E805)
    208  1.1   ragge vc(C4,  2.0875623401082232009E-9  ,74c8,320f,3ff0,fa1e, -28,  .8F74C8FA1E3FF0)
    209  1.1   ragge vc(C5, -1.1355178117642986178E-11 ,c32d,ae47,5a63,0a5c, -36, -.C7C32D0A5C5A63)
    210  1.1   ragge 
    211  1.1   ragge ic(C0,  4.1666666666666504759E-2  ,  -5,  1.555555555553E)
    212  1.1   ragge ic(C1, -1.3888888888865301516E-3  , -10, -1.6C16C16C14199)
    213  1.1   ragge ic(C2,  2.4801587269650015769E-5  , -16,  1.A01A01971CAEB)
    214  1.1   ragge ic(C3, -2.7557304623183959811E-7  , -22, -1.27E4F1314AD1A)
    215  1.1   ragge ic(C4,  2.0873958177697780076E-9  , -29,  1.1EE3B60DDDC8C)
    216  1.1   ragge ic(C5, -1.1250289076471311557E-11 , -37, -1.8BD5986B2A52E)
    217  1.1   ragge 
    218  1.1   ragge #ifdef vccast
    219  1.1   ragge #define	C0	vccast(C0)
    220  1.1   ragge #define	C1	vccast(C1)
    221  1.1   ragge #define	C2	vccast(C2)
    222  1.1   ragge #define	C3	vccast(C3)
    223  1.1   ragge #define	C4	vccast(C4)
    224  1.1   ragge #define	C5	vccast(C5)
    225  1.1   ragge #endif
    226  1.1   ragge 
    227  1.1   ragge #define cos__C(z)	(z*z*(C0+z*(C1+z*(C2+z*(C3+z*(C4+z*C5))))))
    228