Home | History | Annotate | Line # | Download | only in noieee_src
trig.h revision 1.2
      1 /*
      2  * Copyright (c) 1987, 1993
      3  *	The Regents of the University of California.  All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  * 3. All advertising materials mentioning features or use of this software
     14  *    must display the following acknowledgement:
     15  *	This product includes software developed by the University of
     16  *	California, Berkeley and its contributors.
     17  * 4. Neither the name of the University nor the names of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written permission.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  * SUCH DAMAGE.
     32  *
     33  *	@(#)trig.h	8.1 (Berkeley) 6/4/93
     34  */
     35 
     36 vc(thresh, 2.6117239648121182150E-1 ,b863,3f85,6ea0,6b02, -1, .85B8636B026EA0)
     37 vc(PIo4,   7.8539816339744830676E-1 ,0fda,4049,68c2,a221,  0, .C90FDAA22168C2)
     38 vc(PIo2,   1.5707963267948966135E0  ,0fda,40c9,68c2,a221,  1, .C90FDAA22168C2)
     39 vc(PI3o4,  2.3561944901923449203E0  ,cbe3,4116,0e92,f999,  2, .96CBE3F9990E92)
     40 vc(PI,     3.1415926535897932270E0  ,0fda,4149,68c2,a221,  2, .C90FDAA22168C2)
     41 vc(PI2,    6.2831853071795864540E0  ,0fda,41c9,68c2,a221,  3, .C90FDAA22168C2)
     42 
     43 ic(thresh, 2.6117239648121182150E-1 , -2, 1.0B70C6D604DD4)
     44 ic(PIo4,   7.8539816339744827900E-1 , -1, 1.921FB54442D18)
     45 ic(PIo2,   1.5707963267948965580E0  ,  0, 1.921FB54442D18)
     46 ic(PI3o4,  2.3561944901923448370E0  ,  1, 1.2D97C7F3321D2)
     47 ic(PI,     3.1415926535897931160E0  ,  1, 1.921FB54442D18)
     48 ic(PI2,    6.2831853071795862320E0  ,  2, 1.921FB54442D18)
     49 
     50 #ifdef vccast
     51 #define	thresh	vccast(thresh)
     52 #define	PIo4	vccast(PIo4)
     53 #define	PIo2	vccast(PIo2)
     54 #define	PI3o4	vccast(PI3o4)
     55 #define	PI	vccast(PI)
     56 #define	PI2	vccast(PI2)
     57 #endif
     58 
     59 #ifdef national
     60 static long fmaxx[]	= { 0xffffffff, 0x7fefffff};
     61 #define   fmax    (*(double*)fmaxx)
     62 #endif	/* national */
     63 
     64 static const double
     65 	zero = 0,
     66 	one = 1,
     67 	negone = -1,
     68 	half = 1.0/2.0,
     69 	small = 1E-10,	/* 1+small**2 == 1; better values for small:
     70 			 *		small	= 1.5E-9 for VAX D
     71 			 *			= 1.2E-8 for IEEE Double
     72 			 *			= 2.8E-10 for IEEE Extended
     73 			 */
     74 	big = 1E20;	/* big := 1/(small**2) */
     75 
     76 /* sin__S(x*x) ... re-implemented as a macro
     77  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
     78  * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
     79  * CODED IN C BY K.C. NG, 1/21/85;
     80  * REVISED BY K.C. NG on 8/13/85.
     81  *
     82  *	    sin(x*k) - x
     83  * RETURN  --------------- on [-PI/4,PI/4] , where k=pi/PI, PI is the rounded
     84  *	            x
     85  * value of pi in machine precision:
     86  *
     87  *	Decimal:
     88  *		pi = 3.141592653589793 23846264338327 .....
     89  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
     90  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
     91  *
     92  *	Hexadecimal:
     93  *		pi = 3.243F6A8885A308D313198A2E....
     94  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18
     95  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2
     96  *
     97  * Method:
     98  *	1. Let z=x*x. Create a polynomial approximation to
     99  *	    (sin(k*x)-x)/x  =  z*(S0 + S1*z^1 + ... + S5*z^5).
    100  *	Then
    101  *      sin__S(x*x) = z*(S0 + S1*z^1 + ... + S5*z^5)
    102  *
    103  *	The coefficient S's are obtained by a special Remez algorithm.
    104  *
    105  * Accuracy:
    106  *	In the absence of rounding error, the approximation has absolute error
    107  *	less than 2**(-61.11) for VAX D FORMAT, 2**(-57.45) for IEEE DOUBLE.
    108  *
    109  * Constants:
    110  * The hexadecimal values are the intended ones for the following constants.
    111  * The decimal values may be used, provided that the compiler will convert
    112  * from decimal to binary accurately enough to produce the hexadecimal values
    113  * shown.
    114  *
    115  */
    116 
    117 vc(S0, -1.6666666666666646660E-1  ,aaaa,bf2a,aa71,aaaa,  -2, -.AAAAAAAAAAAA71)
    118 vc(S1,  8.3333333333297230413E-3  ,8888,3d08,477f,8888,  -6,  .8888888888477F)
    119 vc(S2, -1.9841269838362403710E-4  ,0d00,ba50,1057,cf8a, -12, -.D00D00CF8A1057)
    120 vc(S3,  2.7557318019967078930E-6  ,ef1c,3738,bedc,a326, -18,  .B8EF1CA326BEDC)
    121 vc(S4, -2.5051841873876551398E-8  ,3195,b3d7,e1d3,374c, -25, -.D73195374CE1D3)
    122 vc(S5,  1.6028995389845827653E-10 ,3d9c,3030,cccc,6d26, -32,  .B03D9C6D26CCCC)
    123 vc(S6, -6.2723499671769283121E-13 ,8d0b,ac30,ea82,7561, -40, -.B08D0B7561EA82)
    124 
    125 ic(S0, -1.6666666666666463126E-1  ,  -3, -1.555555555550C)
    126 ic(S1,  8.3333333332992771264E-3  ,  -7,  1.111111110C461)
    127 ic(S2, -1.9841269816180999116E-4  , -13, -1.A01A019746345)
    128 ic(S3,  2.7557309793219876880E-6  , -19,  1.71DE3209CDCD9)
    129 ic(S4, -2.5050225177523807003E-8  , -26, -1.AE5C0E319A4EF)
    130 ic(S5,  1.5868926979889205164E-10 , -33,  1.5CF61DF672B13)
    131 
    132 #ifdef vccast
    133 #define	S0	vccast(S0)
    134 #define	S1	vccast(S1)
    135 #define	S2	vccast(S2)
    136 #define	S3	vccast(S3)
    137 #define	S4	vccast(S4)
    138 #define	S5	vccast(S5)
    139 #define	S6	vccast(S6)
    140 #endif
    141 
    142 #if defined(__vax__)||defined(tahoe)
    143 #  define	sin__S(z)	(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*(S5+z*S6)))))))
    144 #else 	/* defined(__vax__)||defined(tahoe) */
    145 #  define	sin__S(z)	(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*S5))))))
    146 #endif 	/* defined(__vax__)||defined(tahoe) */
    147 
    148 /* cos__C(x*x) ... re-implemented as a macro
    149  * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS)
    150  * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
    151  * CODED IN C BY K.C. NG, 1/21/85;
    152  * REVISED BY K.C. NG on 8/13/85.
    153  *
    154  *	   		    x*x
    155  * RETURN   cos(k*x) - 1 + ----- on [-PI/4,PI/4],  where k = pi/PI,
    156  *	  		     2
    157  * PI is the rounded value of pi in machine precision :
    158  *
    159  *	Decimal:
    160  *		pi = 3.141592653589793 23846264338327 .....
    161  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
    162  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
    163  *
    164  *	Hexadecimal:
    165  *		pi = 3.243F6A8885A308D313198A2E....
    166  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18
    167  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2
    168  *
    169  *
    170  * Method:
    171  *	1. Let z=x*x. Create a polynomial approximation to
    172  *	    cos(k*x)-1+z/2  =  z*z*(C0 + C1*z^1 + ... + C5*z^5)
    173  *	then
    174  *      cos__C(z) =  z*z*(C0 + C1*z^1 + ... + C5*z^5)
    175  *
    176  *	The coefficient C's are obtained by a special Remez algorithm.
    177  *
    178  * Accuracy:
    179  *	In the absence of rounding error, the approximation has absolute error
    180  *	less than 2**(-64) for VAX D FORMAT, 2**(-58.3) for IEEE DOUBLE.
    181  *
    182  *
    183  * Constants:
    184  * The hexadecimal values are the intended ones for the following constants.
    185  * The decimal values may be used, provided that the compiler will convert
    186  * from decimal to binary accurately enough to produce the hexadecimal values
    187  * shown.
    188  */
    189 
    190 vc(C0,  4.1666666666666504759E-2  ,aaaa,3e2a,a9f0,aaaa,  -4,  .AAAAAAAAAAA9F0)
    191 vc(C1, -1.3888888888865302059E-3  ,0b60,bbb6,0cca,b60a,  -9, -.B60B60B60A0CCA)
    192 vc(C2,  2.4801587285601038265E-5  ,0d00,38d0,098f,cdcd, -15,  .D00D00CDCD098F)
    193 vc(C3, -2.7557313470902390219E-7  ,f27b,b593,e805,b593, -21, -.93F27BB593E805)
    194 vc(C4,  2.0875623401082232009E-9  ,74c8,320f,3ff0,fa1e, -28,  .8F74C8FA1E3FF0)
    195 vc(C5, -1.1355178117642986178E-11 ,c32d,ae47,5a63,0a5c, -36, -.C7C32D0A5C5A63)
    196 
    197 ic(C0,  4.1666666666666504759E-2  ,  -5,  1.555555555553E)
    198 ic(C1, -1.3888888888865301516E-3  , -10, -1.6C16C16C14199)
    199 ic(C2,  2.4801587269650015769E-5  , -16,  1.A01A01971CAEB)
    200 ic(C3, -2.7557304623183959811E-7  , -22, -1.27E4F1314AD1A)
    201 ic(C4,  2.0873958177697780076E-9  , -29,  1.1EE3B60DDDC8C)
    202 ic(C5, -1.1250289076471311557E-11 , -37, -1.8BD5986B2A52E)
    203 
    204 #ifdef vccast
    205 #define	C0	vccast(C0)
    206 #define	C1	vccast(C1)
    207 #define	C2	vccast(C2)
    208 #define	C3	vccast(C3)
    209 #define	C4	vccast(C4)
    210 #define	C5	vccast(C5)
    211 #endif
    212 
    213 #define cos__C(z)	(z*z*(C0+z*(C1+z*(C2+z*(C3+z*(C4+z*C5))))))
    214