Home | History | Annotate | Line # | Download | only in noieee_src
trig.h revision 1.4
      1 /*	$NetBSD: trig.h,v 1.4 1999/07/02 15:37:37 simonb Exp $	*/
      2 /*
      3  * Copyright (c) 1987, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. All advertising materials mentioning features or use of this software
     15  *    must display the following acknowledgement:
     16  *	This product includes software developed by the University of
     17  *	California, Berkeley and its contributors.
     18  * 4. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  *
     34  *	@(#)trig.h	8.1 (Berkeley) 6/4/93
     35  */
     36 
     37 vc(thresh, 2.6117239648121182150E-1 ,b863,3f85,6ea0,6b02, -1, .85B8636B026EA0)
     38 vc(PIo4,   7.8539816339744830676E-1 ,0fda,4049,68c2,a221,  0, .C90FDAA22168C2)
     39 vc(PIo2,   1.5707963267948966135E0  ,0fda,40c9,68c2,a221,  1, .C90FDAA22168C2)
     40 vc(PI3o4,  2.3561944901923449203E0  ,cbe3,4116,0e92,f999,  2, .96CBE3F9990E92)
     41 vc(PI,     3.1415926535897932270E0  ,0fda,4149,68c2,a221,  2, .C90FDAA22168C2)
     42 vc(PI2,    6.2831853071795864540E0  ,0fda,41c9,68c2,a221,  3, .C90FDAA22168C2)
     43 
     44 ic(thresh, 2.6117239648121182150E-1 , -2, 1.0B70C6D604DD4)
     45 ic(PIo4,   7.8539816339744827900E-1 , -1, 1.921FB54442D18)
     46 ic(PIo2,   1.5707963267948965580E0  ,  0, 1.921FB54442D18)
     47 ic(PI3o4,  2.3561944901923448370E0  ,  1, 1.2D97C7F3321D2)
     48 ic(PI,     3.1415926535897931160E0  ,  1, 1.921FB54442D18)
     49 ic(PI2,    6.2831853071795862320E0  ,  2, 1.921FB54442D18)
     50 
     51 #ifdef vccast
     52 #define	thresh	vccast(thresh)
     53 #define	PIo4	vccast(PIo4)
     54 #define	PIo2	vccast(PIo2)
     55 #define	PI3o4	vccast(PI3o4)
     56 #define	PI	vccast(PI)
     57 #define	PI2	vccast(PI2)
     58 #endif
     59 
     60 #ifdef national
     61 static long fmaxx[]	= { 0xffffffff, 0x7fefffff};
     62 #define   fmax    (*(double*)fmaxx)
     63 #endif	/* national */
     64 
     65 static const double
     66 	zero = 0,
     67 	one = 1,
     68 	negone = -1,
     69 	half = 1.0/2.0,
     70 	small = 1E-10,	/* 1+small**2 == 1; better values for small:
     71 			 *		small	= 1.5E-9 for VAX D
     72 			 *			= 1.2E-8 for IEEE Double
     73 			 *			= 2.8E-10 for IEEE Extended
     74 			 */
     75 	big = 1E20;	/* big := 1/(small**2) */
     76 
     77 /* sin__S(x*x) ... re-implemented as a macro
     78  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
     79  * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
     80  * CODED IN C BY K.C. NG, 1/21/85;
     81  * REVISED BY K.C. NG on 8/13/85.
     82  *
     83  *	    sin(x*k) - x
     84  * RETURN  --------------- on [-PI/4,PI/4] , where k=pi/PI, PI is the rounded
     85  *	            x
     86  * value of pi in machine precision:
     87  *
     88  *	Decimal:
     89  *		pi = 3.141592653589793 23846264338327 .....
     90  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
     91  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
     92  *
     93  *	Hexadecimal:
     94  *		pi = 3.243F6A8885A308D313198A2E....
     95  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18
     96  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2
     97  *
     98  * Method:
     99  *	1. Let z=x*x. Create a polynomial approximation to
    100  *	    (sin(k*x)-x)/x  =  z*(S0 + S1*z^1 + ... + S5*z^5).
    101  *	Then
    102  *      sin__S(x*x) = z*(S0 + S1*z^1 + ... + S5*z^5)
    103  *
    104  *	The coefficient S's are obtained by a special Remez algorithm.
    105  *
    106  * Accuracy:
    107  *	In the absence of rounding error, the approximation has absolute error
    108  *	less than 2**(-61.11) for VAX D FORMAT, 2**(-57.45) for IEEE DOUBLE.
    109  *
    110  * Constants:
    111  * The hexadecimal values are the intended ones for the following constants.
    112  * The decimal values may be used, provided that the compiler will convert
    113  * from decimal to binary accurately enough to produce the hexadecimal values
    114  * shown.
    115  *
    116  */
    117 
    118 vc(S0, -1.6666666666666646660E-1  ,aaaa,bf2a,aa71,aaaa,  -2, -.AAAAAAAAAAAA71)
    119 vc(S1,  8.3333333333297230413E-3  ,8888,3d08,477f,8888,  -6,  .8888888888477F)
    120 vc(S2, -1.9841269838362403710E-4  ,0d00,ba50,1057,cf8a, -12, -.D00D00CF8A1057)
    121 vc(S3,  2.7557318019967078930E-6  ,ef1c,3738,bedc,a326, -18,  .B8EF1CA326BEDC)
    122 vc(S4, -2.5051841873876551398E-8  ,3195,b3d7,e1d3,374c, -25, -.D73195374CE1D3)
    123 vc(S5,  1.6028995389845827653E-10 ,3d9c,3030,cccc,6d26, -32,  .B03D9C6D26CCCC)
    124 vc(S6, -6.2723499671769283121E-13 ,8d0b,ac30,ea82,7561, -40, -.B08D0B7561EA82)
    125 
    126 ic(S0, -1.6666666666666463126E-1  ,  -3, -1.555555555550C)
    127 ic(S1,  8.3333333332992771264E-3  ,  -7,  1.111111110C461)
    128 ic(S2, -1.9841269816180999116E-4  , -13, -1.A01A019746345)
    129 ic(S3,  2.7557309793219876880E-6  , -19,  1.71DE3209CDCD9)
    130 ic(S4, -2.5050225177523807003E-8  , -26, -1.AE5C0E319A4EF)
    131 ic(S5,  1.5868926979889205164E-10 , -33,  1.5CF61DF672B13)
    132 
    133 #ifdef vccast
    134 #define	S0	vccast(S0)
    135 #define	S1	vccast(S1)
    136 #define	S2	vccast(S2)
    137 #define	S3	vccast(S3)
    138 #define	S4	vccast(S4)
    139 #define	S5	vccast(S5)
    140 #define	S6	vccast(S6)
    141 #endif
    142 
    143 #if defined(__vax__)||defined(tahoe)
    144 #  define	sin__S(z)	(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*(S5+z*S6)))))))
    145 #else 	/* defined(__vax__)||defined(tahoe) */
    146 #  define	sin__S(z)	(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*S5))))))
    147 #endif 	/* defined(__vax__)||defined(tahoe) */
    148 
    149 /* cos__C(x*x) ... re-implemented as a macro
    150  * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS)
    151  * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
    152  * CODED IN C BY K.C. NG, 1/21/85;
    153  * REVISED BY K.C. NG on 8/13/85.
    154  *
    155  *	   		    x*x
    156  * RETURN   cos(k*x) - 1 + ----- on [-PI/4,PI/4],  where k = pi/PI,
    157  *	  		     2
    158  * PI is the rounded value of pi in machine precision :
    159  *
    160  *	Decimal:
    161  *		pi = 3.141592653589793 23846264338327 .....
    162  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
    163  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
    164  *
    165  *	Hexadecimal:
    166  *		pi = 3.243F6A8885A308D313198A2E....
    167  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18
    168  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2
    169  *
    170  *
    171  * Method:
    172  *	1. Let z=x*x. Create a polynomial approximation to
    173  *	    cos(k*x)-1+z/2  =  z*z*(C0 + C1*z^1 + ... + C5*z^5)
    174  *	then
    175  *      cos__C(z) =  z*z*(C0 + C1*z^1 + ... + C5*z^5)
    176  *
    177  *	The coefficient C's are obtained by a special Remez algorithm.
    178  *
    179  * Accuracy:
    180  *	In the absence of rounding error, the approximation has absolute error
    181  *	less than 2**(-64) for VAX D FORMAT, 2**(-58.3) for IEEE DOUBLE.
    182  *
    183  *
    184  * Constants:
    185  * The hexadecimal values are the intended ones for the following constants.
    186  * The decimal values may be used, provided that the compiler will convert
    187  * from decimal to binary accurately enough to produce the hexadecimal values
    188  * shown.
    189  */
    190 
    191 vc(C0,  4.1666666666666504759E-2  ,aaaa,3e2a,a9f0,aaaa,  -4,  .AAAAAAAAAAA9F0)
    192 vc(C1, -1.3888888888865302059E-3  ,0b60,bbb6,0cca,b60a,  -9, -.B60B60B60A0CCA)
    193 vc(C2,  2.4801587285601038265E-5  ,0d00,38d0,098f,cdcd, -15,  .D00D00CDCD098F)
    194 vc(C3, -2.7557313470902390219E-7  ,f27b,b593,e805,b593, -21, -.93F27BB593E805)
    195 vc(C4,  2.0875623401082232009E-9  ,74c8,320f,3ff0,fa1e, -28,  .8F74C8FA1E3FF0)
    196 vc(C5, -1.1355178117642986178E-11 ,c32d,ae47,5a63,0a5c, -36, -.C7C32D0A5C5A63)
    197 
    198 ic(C0,  4.1666666666666504759E-2  ,  -5,  1.555555555553E)
    199 ic(C1, -1.3888888888865301516E-3  , -10, -1.6C16C16C14199)
    200 ic(C2,  2.4801587269650015769E-5  , -16,  1.A01A01971CAEB)
    201 ic(C3, -2.7557304623183959811E-7  , -22, -1.27E4F1314AD1A)
    202 ic(C4,  2.0873958177697780076E-9  , -29,  1.1EE3B60DDDC8C)
    203 ic(C5, -1.1250289076471311557E-11 , -37, -1.8BD5986B2A52E)
    204 
    205 #ifdef vccast
    206 #define	C0	vccast(C0)
    207 #define	C1	vccast(C1)
    208 #define	C2	vccast(C2)
    209 #define	C3	vccast(C3)
    210 #define	C4	vccast(C4)
    211 #define	C5	vccast(C5)
    212 #endif
    213 
    214 #define cos__C(z)	(z*z*(C0+z*(C1+z*(C2+z*(C3+z*(C4+z*C5))))))
    215