trig.h revision 1.4 1 /* $NetBSD: trig.h,v 1.4 1999/07/02 15:37:37 simonb Exp $ */
2 /*
3 * Copyright (c) 1987, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by the University of
17 * California, Berkeley and its contributors.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)trig.h 8.1 (Berkeley) 6/4/93
35 */
36
37 vc(thresh, 2.6117239648121182150E-1 ,b863,3f85,6ea0,6b02, -1, .85B8636B026EA0)
38 vc(PIo4, 7.8539816339744830676E-1 ,0fda,4049,68c2,a221, 0, .C90FDAA22168C2)
39 vc(PIo2, 1.5707963267948966135E0 ,0fda,40c9,68c2,a221, 1, .C90FDAA22168C2)
40 vc(PI3o4, 2.3561944901923449203E0 ,cbe3,4116,0e92,f999, 2, .96CBE3F9990E92)
41 vc(PI, 3.1415926535897932270E0 ,0fda,4149,68c2,a221, 2, .C90FDAA22168C2)
42 vc(PI2, 6.2831853071795864540E0 ,0fda,41c9,68c2,a221, 3, .C90FDAA22168C2)
43
44 ic(thresh, 2.6117239648121182150E-1 , -2, 1.0B70C6D604DD4)
45 ic(PIo4, 7.8539816339744827900E-1 , -1, 1.921FB54442D18)
46 ic(PIo2, 1.5707963267948965580E0 , 0, 1.921FB54442D18)
47 ic(PI3o4, 2.3561944901923448370E0 , 1, 1.2D97C7F3321D2)
48 ic(PI, 3.1415926535897931160E0 , 1, 1.921FB54442D18)
49 ic(PI2, 6.2831853071795862320E0 , 2, 1.921FB54442D18)
50
51 #ifdef vccast
52 #define thresh vccast(thresh)
53 #define PIo4 vccast(PIo4)
54 #define PIo2 vccast(PIo2)
55 #define PI3o4 vccast(PI3o4)
56 #define PI vccast(PI)
57 #define PI2 vccast(PI2)
58 #endif
59
60 #ifdef national
61 static long fmaxx[] = { 0xffffffff, 0x7fefffff};
62 #define fmax (*(double*)fmaxx)
63 #endif /* national */
64
65 static const double
66 zero = 0,
67 one = 1,
68 negone = -1,
69 half = 1.0/2.0,
70 small = 1E-10, /* 1+small**2 == 1; better values for small:
71 * small = 1.5E-9 for VAX D
72 * = 1.2E-8 for IEEE Double
73 * = 2.8E-10 for IEEE Extended
74 */
75 big = 1E20; /* big := 1/(small**2) */
76
77 /* sin__S(x*x) ... re-implemented as a macro
78 * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
79 * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
80 * CODED IN C BY K.C. NG, 1/21/85;
81 * REVISED BY K.C. NG on 8/13/85.
82 *
83 * sin(x*k) - x
84 * RETURN --------------- on [-PI/4,PI/4] , where k=pi/PI, PI is the rounded
85 * x
86 * value of pi in machine precision:
87 *
88 * Decimal:
89 * pi = 3.141592653589793 23846264338327 .....
90 * 53 bits PI = 3.141592653589793 115997963 ..... ,
91 * 56 bits PI = 3.141592653589793 227020265 ..... ,
92 *
93 * Hexadecimal:
94 * pi = 3.243F6A8885A308D313198A2E....
95 * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18
96 * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2
97 *
98 * Method:
99 * 1. Let z=x*x. Create a polynomial approximation to
100 * (sin(k*x)-x)/x = z*(S0 + S1*z^1 + ... + S5*z^5).
101 * Then
102 * sin__S(x*x) = z*(S0 + S1*z^1 + ... + S5*z^5)
103 *
104 * The coefficient S's are obtained by a special Remez algorithm.
105 *
106 * Accuracy:
107 * In the absence of rounding error, the approximation has absolute error
108 * less than 2**(-61.11) for VAX D FORMAT, 2**(-57.45) for IEEE DOUBLE.
109 *
110 * Constants:
111 * The hexadecimal values are the intended ones for the following constants.
112 * The decimal values may be used, provided that the compiler will convert
113 * from decimal to binary accurately enough to produce the hexadecimal values
114 * shown.
115 *
116 */
117
118 vc(S0, -1.6666666666666646660E-1 ,aaaa,bf2a,aa71,aaaa, -2, -.AAAAAAAAAAAA71)
119 vc(S1, 8.3333333333297230413E-3 ,8888,3d08,477f,8888, -6, .8888888888477F)
120 vc(S2, -1.9841269838362403710E-4 ,0d00,ba50,1057,cf8a, -12, -.D00D00CF8A1057)
121 vc(S3, 2.7557318019967078930E-6 ,ef1c,3738,bedc,a326, -18, .B8EF1CA326BEDC)
122 vc(S4, -2.5051841873876551398E-8 ,3195,b3d7,e1d3,374c, -25, -.D73195374CE1D3)
123 vc(S5, 1.6028995389845827653E-10 ,3d9c,3030,cccc,6d26, -32, .B03D9C6D26CCCC)
124 vc(S6, -6.2723499671769283121E-13 ,8d0b,ac30,ea82,7561, -40, -.B08D0B7561EA82)
125
126 ic(S0, -1.6666666666666463126E-1 , -3, -1.555555555550C)
127 ic(S1, 8.3333333332992771264E-3 , -7, 1.111111110C461)
128 ic(S2, -1.9841269816180999116E-4 , -13, -1.A01A019746345)
129 ic(S3, 2.7557309793219876880E-6 , -19, 1.71DE3209CDCD9)
130 ic(S4, -2.5050225177523807003E-8 , -26, -1.AE5C0E319A4EF)
131 ic(S5, 1.5868926979889205164E-10 , -33, 1.5CF61DF672B13)
132
133 #ifdef vccast
134 #define S0 vccast(S0)
135 #define S1 vccast(S1)
136 #define S2 vccast(S2)
137 #define S3 vccast(S3)
138 #define S4 vccast(S4)
139 #define S5 vccast(S5)
140 #define S6 vccast(S6)
141 #endif
142
143 #if defined(__vax__)||defined(tahoe)
144 # define sin__S(z) (z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*(S5+z*S6)))))))
145 #else /* defined(__vax__)||defined(tahoe) */
146 # define sin__S(z) (z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*S5))))))
147 #endif /* defined(__vax__)||defined(tahoe) */
148
149 /* cos__C(x*x) ... re-implemented as a macro
150 * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS)
151 * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
152 * CODED IN C BY K.C. NG, 1/21/85;
153 * REVISED BY K.C. NG on 8/13/85.
154 *
155 * x*x
156 * RETURN cos(k*x) - 1 + ----- on [-PI/4,PI/4], where k = pi/PI,
157 * 2
158 * PI is the rounded value of pi in machine precision :
159 *
160 * Decimal:
161 * pi = 3.141592653589793 23846264338327 .....
162 * 53 bits PI = 3.141592653589793 115997963 ..... ,
163 * 56 bits PI = 3.141592653589793 227020265 ..... ,
164 *
165 * Hexadecimal:
166 * pi = 3.243F6A8885A308D313198A2E....
167 * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18
168 * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2
169 *
170 *
171 * Method:
172 * 1. Let z=x*x. Create a polynomial approximation to
173 * cos(k*x)-1+z/2 = z*z*(C0 + C1*z^1 + ... + C5*z^5)
174 * then
175 * cos__C(z) = z*z*(C0 + C1*z^1 + ... + C5*z^5)
176 *
177 * The coefficient C's are obtained by a special Remez algorithm.
178 *
179 * Accuracy:
180 * In the absence of rounding error, the approximation has absolute error
181 * less than 2**(-64) for VAX D FORMAT, 2**(-58.3) for IEEE DOUBLE.
182 *
183 *
184 * Constants:
185 * The hexadecimal values are the intended ones for the following constants.
186 * The decimal values may be used, provided that the compiler will convert
187 * from decimal to binary accurately enough to produce the hexadecimal values
188 * shown.
189 */
190
191 vc(C0, 4.1666666666666504759E-2 ,aaaa,3e2a,a9f0,aaaa, -4, .AAAAAAAAAAA9F0)
192 vc(C1, -1.3888888888865302059E-3 ,0b60,bbb6,0cca,b60a, -9, -.B60B60B60A0CCA)
193 vc(C2, 2.4801587285601038265E-5 ,0d00,38d0,098f,cdcd, -15, .D00D00CDCD098F)
194 vc(C3, -2.7557313470902390219E-7 ,f27b,b593,e805,b593, -21, -.93F27BB593E805)
195 vc(C4, 2.0875623401082232009E-9 ,74c8,320f,3ff0,fa1e, -28, .8F74C8FA1E3FF0)
196 vc(C5, -1.1355178117642986178E-11 ,c32d,ae47,5a63,0a5c, -36, -.C7C32D0A5C5A63)
197
198 ic(C0, 4.1666666666666504759E-2 , -5, 1.555555555553E)
199 ic(C1, -1.3888888888865301516E-3 , -10, -1.6C16C16C14199)
200 ic(C2, 2.4801587269650015769E-5 , -16, 1.A01A01971CAEB)
201 ic(C3, -2.7557304623183959811E-7 , -22, -1.27E4F1314AD1A)
202 ic(C4, 2.0873958177697780076E-9 , -29, 1.1EE3B60DDDC8C)
203 ic(C5, -1.1250289076471311557E-11 , -37, -1.8BD5986B2A52E)
204
205 #ifdef vccast
206 #define C0 vccast(C0)
207 #define C1 vccast(C1)
208 #define C2 vccast(C2)
209 #define C3 vccast(C3)
210 #define C4 vccast(C4)
211 #define C5 vccast(C5)
212 #endif
213
214 #define cos__C(z) (z*z*(C0+z*(C1+z*(C2+z*(C3+z*(C4+z*C5))))))
215