trig.h revision 1.5 1 /* $NetBSD: trig.h,v 1.5 2002/06/15 00:10:18 matt Exp $ */
2 /*
3 * Copyright (c) 1987, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by the University of
17 * California, Berkeley and its contributors.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)trig.h 8.1 (Berkeley) 6/4/93
35 */
36
37 vc(thresh, 2.6117239648121182150E-1 ,b863,3f85,6ea0,6b02, -1, .85B8636B026EA0)
38 vc(PIo4, 7.8539816339744830676E-1 ,0fda,4049,68c2,a221, 0, .C90FDAA22168C2)
39 vc(PIo2, 1.5707963267948966135E0 ,0fda,40c9,68c2,a221, 1, .C90FDAA22168C2)
40 vc(PI3o4, 2.3561944901923449203E0 ,cbe3,4116,0e92,f999, 2, .96CBE3F9990E92)
41 vc(PI, 3.1415926535897932270E0 ,0fda,4149,68c2,a221, 2, .C90FDAA22168C2)
42 vc(PI2, 6.2831853071795864540E0 ,0fda,41c9,68c2,a221, 3, .C90FDAA22168C2)
43
44 ic(thresh, 2.6117239648121182150E-1 , -2, 1.0B70C6D604DD4)
45 ic(PIo4, 7.8539816339744827900E-1 , -1, 1.921FB54442D18)
46 ic(PIo2, 1.5707963267948965580E0 , 0, 1.921FB54442D18)
47 ic(PI3o4, 2.3561944901923448370E0 , 1, 1.2D97C7F3321D2)
48 ic(PI, 3.1415926535897931160E0 , 1, 1.921FB54442D18)
49 ic(PI2, 6.2831853071795862320E0 , 2, 1.921FB54442D18)
50
51 #ifdef vccast
52 #define thresh vccast(thresh)
53 #define PIo4 vccast(PIo4)
54 #define PIo2 vccast(PIo2)
55 #define PI3o4 vccast(PI3o4)
56 #define PI vccast(PI)
57 #define PI2 vccast(PI2)
58 #endif
59
60 #ifdef national
61 static long fmaxx[] = { 0xffffffff, 0x7fefffff};
62 #define fmax (*(double*)fmaxx)
63 #endif /* national */
64
65 #ifdef _LIBM_DECLARE
66 const double
67 __zero = 0,
68 __one = 1,
69 __negone = -1,
70 __half = 1.0/2.0,
71 #ifdef __vax__
72 __small = 1E-9, /* 1+small**2 == 1; better values for small:
73 * small = 1.5E-9 for VAX D
74 * = 1.2E-8 for IEEE Double
75 * = 2.8E-10 for IEEE Extended
76 */
77 __big = 1E18; /* big := 1/(small**2) */
78 #else
79 __small = 1E-10, /* 1+small**2 == 1; better values for small:
80 * small = 1.5E-9 for VAX D
81 * = 1.2E-8 for IEEE Double
82 * = 2.8E-10 for IEEE Extended
83 */
84 __big = 1E20; /* big := 1/(small**2) */
85 #endif
86 #else
87 extern const double __zero, __one, __negone, __half, __small, __big;
88 #endif
89
90 /* sin__S(x*x) ... re-implemented as a macro
91 * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
92 * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
93 * CODED IN C BY K.C. NG, 1/21/85;
94 * REVISED BY K.C. NG on 8/13/85.
95 *
96 * sin(x*k) - x
97 * RETURN --------------- on [-PI/4,PI/4] , where k=pi/PI, PI is the rounded
98 * x
99 * value of pi in machine precision:
100 *
101 * Decimal:
102 * pi = 3.141592653589793 23846264338327 .....
103 * 53 bits PI = 3.141592653589793 115997963 ..... ,
104 * 56 bits PI = 3.141592653589793 227020265 ..... ,
105 *
106 * Hexadecimal:
107 * pi = 3.243F6A8885A308D313198A2E....
108 * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18
109 * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2
110 *
111 * Method:
112 * 1. Let z=x*x. Create a polynomial approximation to
113 * (sin(k*x)-x)/x = z*(S0 + S1*z^1 + ... + S5*z^5).
114 * Then
115 * sin__S(x*x) = z*(S0 + S1*z^1 + ... + S5*z^5)
116 *
117 * The coefficient S's are obtained by a special Remez algorithm.
118 *
119 * Accuracy:
120 * In the absence of rounding error, the approximation has absolute error
121 * less than 2**(-61.11) for VAX D FORMAT, 2**(-57.45) for IEEE DOUBLE.
122 *
123 * Constants:
124 * The hexadecimal values are the intended ones for the following constants.
125 * The decimal values may be used, provided that the compiler will convert
126 * from decimal to binary accurately enough to produce the hexadecimal values
127 * shown.
128 *
129 */
130
131 vc(S0, -1.6666666666666646660E-1 ,aaaa,bf2a,aa71,aaaa, -2, -.AAAAAAAAAAAA71)
132 vc(S1, 8.3333333333297230413E-3 ,8888,3d08,477f,8888, -6, .8888888888477F)
133 vc(S2, -1.9841269838362403710E-4 ,0d00,ba50,1057,cf8a, -12, -.D00D00CF8A1057)
134 vc(S3, 2.7557318019967078930E-6 ,ef1c,3738,bedc,a326, -18, .B8EF1CA326BEDC)
135 vc(S4, -2.5051841873876551398E-8 ,3195,b3d7,e1d3,374c, -25, -.D73195374CE1D3)
136 vc(S5, 1.6028995389845827653E-10 ,3d9c,3030,cccc,6d26, -32, .B03D9C6D26CCCC)
137 vc(S6, -6.2723499671769283121E-13 ,8d0b,ac30,ea82,7561, -40, -.B08D0B7561EA82)
138
139 ic(S0, -1.6666666666666463126E-1 , -3, -1.555555555550C)
140 ic(S1, 8.3333333332992771264E-3 , -7, 1.111111110C461)
141 ic(S2, -1.9841269816180999116E-4 , -13, -1.A01A019746345)
142 ic(S3, 2.7557309793219876880E-6 , -19, 1.71DE3209CDCD9)
143 ic(S4, -2.5050225177523807003E-8 , -26, -1.AE5C0E319A4EF)
144 ic(S5, 1.5868926979889205164E-10 , -33, 1.5CF61DF672B13)
145
146 #ifdef vccast
147 #define S0 vccast(S0)
148 #define S1 vccast(S1)
149 #define S2 vccast(S2)
150 #define S3 vccast(S3)
151 #define S4 vccast(S4)
152 #define S5 vccast(S5)
153 #define S6 vccast(S6)
154 #endif
155
156 #if defined(__vax__)||defined(tahoe)
157 # define sin__S(z) (z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*(S5+z*S6)))))))
158 #else /* defined(__vax__)||defined(tahoe) */
159 # define sin__S(z) (z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*S5))))))
160 #endif /* defined(__vax__)||defined(tahoe) */
161
162 /* cos__C(x*x) ... re-implemented as a macro
163 * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS)
164 * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
165 * CODED IN C BY K.C. NG, 1/21/85;
166 * REVISED BY K.C. NG on 8/13/85.
167 *
168 * x*x
169 * RETURN cos(k*x) - 1 + ----- on [-PI/4,PI/4], where k = pi/PI,
170 * 2
171 * PI is the rounded value of pi in machine precision :
172 *
173 * Decimal:
174 * pi = 3.141592653589793 23846264338327 .....
175 * 53 bits PI = 3.141592653589793 115997963 ..... ,
176 * 56 bits PI = 3.141592653589793 227020265 ..... ,
177 *
178 * Hexadecimal:
179 * pi = 3.243F6A8885A308D313198A2E....
180 * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18
181 * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2
182 *
183 *
184 * Method:
185 * 1. Let z=x*x. Create a polynomial approximation to
186 * cos(k*x)-1+z/2 = z*z*(C0 + C1*z^1 + ... + C5*z^5)
187 * then
188 * cos__C(z) = z*z*(C0 + C1*z^1 + ... + C5*z^5)
189 *
190 * The coefficient C's are obtained by a special Remez algorithm.
191 *
192 * Accuracy:
193 * In the absence of rounding error, the approximation has absolute error
194 * less than 2**(-64) for VAX D FORMAT, 2**(-58.3) for IEEE DOUBLE.
195 *
196 *
197 * Constants:
198 * The hexadecimal values are the intended ones for the following constants.
199 * The decimal values may be used, provided that the compiler will convert
200 * from decimal to binary accurately enough to produce the hexadecimal values
201 * shown.
202 */
203
204 vc(C0, 4.1666666666666504759E-2 ,aaaa,3e2a,a9f0,aaaa, -4, .AAAAAAAAAAA9F0)
205 vc(C1, -1.3888888888865302059E-3 ,0b60,bbb6,0cca,b60a, -9, -.B60B60B60A0CCA)
206 vc(C2, 2.4801587285601038265E-5 ,0d00,38d0,098f,cdcd, -15, .D00D00CDCD098F)
207 vc(C3, -2.7557313470902390219E-7 ,f27b,b593,e805,b593, -21, -.93F27BB593E805)
208 vc(C4, 2.0875623401082232009E-9 ,74c8,320f,3ff0,fa1e, -28, .8F74C8FA1E3FF0)
209 vc(C5, -1.1355178117642986178E-11 ,c32d,ae47,5a63,0a5c, -36, -.C7C32D0A5C5A63)
210
211 ic(C0, 4.1666666666666504759E-2 , -5, 1.555555555553E)
212 ic(C1, -1.3888888888865301516E-3 , -10, -1.6C16C16C14199)
213 ic(C2, 2.4801587269650015769E-5 , -16, 1.A01A01971CAEB)
214 ic(C3, -2.7557304623183959811E-7 , -22, -1.27E4F1314AD1A)
215 ic(C4, 2.0873958177697780076E-9 , -29, 1.1EE3B60DDDC8C)
216 ic(C5, -1.1250289076471311557E-11 , -37, -1.8BD5986B2A52E)
217
218 #ifdef vccast
219 #define C0 vccast(C0)
220 #define C1 vccast(C1)
221 #define C2 vccast(C2)
222 #define C3 vccast(C3)
223 #define C4 vccast(C4)
224 #define C5 vccast(C5)
225 #endif
226
227 #define cos__C(z) (z*z*(C0+z*(C1+z*(C2+z*(C3+z*(C4+z*C5))))))
228