libnvmm_x86.c revision 1.12 1 1.12 maxv /* $NetBSD: libnvmm_x86.c,v 1.12 2019/01/07 16:30:25 maxv Exp $ */
2 1.1 maxv
3 1.1 maxv /*
4 1.1 maxv * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 1.1 maxv * All rights reserved.
6 1.1 maxv *
7 1.1 maxv * This code is derived from software contributed to The NetBSD Foundation
8 1.1 maxv * by Maxime Villard.
9 1.1 maxv *
10 1.1 maxv * Redistribution and use in source and binary forms, with or without
11 1.1 maxv * modification, are permitted provided that the following conditions
12 1.1 maxv * are met:
13 1.1 maxv * 1. Redistributions of source code must retain the above copyright
14 1.1 maxv * notice, this list of conditions and the following disclaimer.
15 1.1 maxv * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 maxv * notice, this list of conditions and the following disclaimer in the
17 1.1 maxv * documentation and/or other materials provided with the distribution.
18 1.1 maxv *
19 1.1 maxv * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 maxv * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 maxv * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 maxv * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 maxv * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 maxv * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 maxv * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 maxv * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 maxv * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 maxv * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 maxv * POSSIBILITY OF SUCH DAMAGE.
30 1.1 maxv */
31 1.1 maxv
32 1.1 maxv #include <sys/cdefs.h>
33 1.1 maxv
34 1.1 maxv #include <stdio.h>
35 1.1 maxv #include <stdlib.h>
36 1.1 maxv #include <string.h>
37 1.1 maxv #include <unistd.h>
38 1.1 maxv #include <fcntl.h>
39 1.1 maxv #include <errno.h>
40 1.1 maxv #include <sys/ioctl.h>
41 1.1 maxv #include <sys/mman.h>
42 1.1 maxv #include <machine/vmparam.h>
43 1.1 maxv #include <machine/pte.h>
44 1.1 maxv #include <machine/psl.h>
45 1.1 maxv
46 1.1 maxv #include "nvmm.h"
47 1.1 maxv
48 1.10 maxv #define MIN(X, Y) (((X) < (Y)) ? (X) : (Y))
49 1.10 maxv
50 1.1 maxv #include <x86/specialreg.h>
51 1.1 maxv
52 1.6 maxv extern struct nvmm_callbacks __callbacks;
53 1.6 maxv
54 1.6 maxv /* -------------------------------------------------------------------------- */
55 1.6 maxv
56 1.6 maxv /*
57 1.6 maxv * Undocumented debugging function. Helpful.
58 1.6 maxv */
59 1.6 maxv int
60 1.6 maxv nvmm_vcpu_dump(struct nvmm_machine *mach, nvmm_cpuid_t cpuid)
61 1.6 maxv {
62 1.6 maxv struct nvmm_x64_state state;
63 1.6 maxv size_t i;
64 1.6 maxv int ret;
65 1.6 maxv
66 1.6 maxv const char *segnames[] = {
67 1.6 maxv "CS", "DS", "ES", "FS", "GS", "SS", "GDT", "IDT", "LDT", "TR"
68 1.6 maxv };
69 1.6 maxv
70 1.6 maxv ret = nvmm_vcpu_getstate(mach, cpuid, &state, NVMM_X64_STATE_ALL);
71 1.6 maxv if (ret == -1)
72 1.6 maxv return -1;
73 1.6 maxv
74 1.6 maxv printf("+ VCPU id=%d\n", (int)cpuid);
75 1.6 maxv printf("| -> RIP=%p\n", (void *)state.gprs[NVMM_X64_GPR_RIP]);
76 1.6 maxv printf("| -> RSP=%p\n", (void *)state.gprs[NVMM_X64_GPR_RSP]);
77 1.6 maxv printf("| -> RAX=%p\n", (void *)state.gprs[NVMM_X64_GPR_RAX]);
78 1.6 maxv printf("| -> RBX=%p\n", (void *)state.gprs[NVMM_X64_GPR_RBX]);
79 1.6 maxv printf("| -> RCX=%p\n", (void *)state.gprs[NVMM_X64_GPR_RCX]);
80 1.6 maxv for (i = 0; i < NVMM_X64_NSEG; i++) {
81 1.8 maxv printf("| -> %s: sel=0x%lx base=%p, limit=%p, P=%d, D=%d\n",
82 1.6 maxv segnames[i],
83 1.6 maxv state.segs[i].selector,
84 1.6 maxv (void *)state.segs[i].base,
85 1.6 maxv (void *)state.segs[i].limit,
86 1.8 maxv state.segs[i].attrib.p, state.segs[i].attrib.def32);
87 1.6 maxv }
88 1.10 maxv printf("| -> MSR_EFER=%p\n", (void *)state.msrs[NVMM_X64_MSR_EFER]);
89 1.10 maxv printf("| -> CR0=%p\n", (void *)state.crs[NVMM_X64_CR_CR0]);
90 1.10 maxv printf("| -> CR3=%p\n", (void *)state.crs[NVMM_X64_CR_CR3]);
91 1.10 maxv printf("| -> CR4=%p\n", (void *)state.crs[NVMM_X64_CR_CR4]);
92 1.10 maxv printf("| -> CR8=%p\n", (void *)state.crs[NVMM_X64_CR_CR8]);
93 1.8 maxv printf("| -> CPL=%p\n", (void *)state.misc[NVMM_X64_MISC_CPL]);
94 1.6 maxv
95 1.6 maxv return 0;
96 1.6 maxv }
97 1.6 maxv
98 1.1 maxv /* -------------------------------------------------------------------------- */
99 1.1 maxv
100 1.1 maxv #define PTE32_L1_SHIFT 12
101 1.1 maxv #define PTE32_L2_SHIFT 22
102 1.1 maxv
103 1.1 maxv #define PTE32_L2_MASK 0xffc00000
104 1.1 maxv #define PTE32_L1_MASK 0x003ff000
105 1.1 maxv
106 1.1 maxv #define PTE32_L2_FRAME (PTE32_L2_MASK)
107 1.1 maxv #define PTE32_L1_FRAME (PTE32_L2_FRAME|PTE32_L1_MASK)
108 1.1 maxv
109 1.1 maxv #define pte32_l1idx(va) (((va) & PTE32_L1_MASK) >> PTE32_L1_SHIFT)
110 1.1 maxv #define pte32_l2idx(va) (((va) & PTE32_L2_MASK) >> PTE32_L2_SHIFT)
111 1.1 maxv
112 1.1 maxv typedef uint32_t pte_32bit_t;
113 1.1 maxv
114 1.1 maxv static int
115 1.1 maxv x86_gva_to_gpa_32bit(struct nvmm_machine *mach, uint64_t cr3,
116 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, bool has_pse, nvmm_prot_t *prot)
117 1.1 maxv {
118 1.1 maxv gpaddr_t L2gpa, L1gpa;
119 1.1 maxv uintptr_t L2hva, L1hva;
120 1.1 maxv pte_32bit_t *pdir, pte;
121 1.1 maxv
122 1.1 maxv /* We begin with an RWXU access. */
123 1.1 maxv *prot = NVMM_PROT_ALL;
124 1.1 maxv
125 1.1 maxv /* Parse L2. */
126 1.1 maxv L2gpa = (cr3 & PG_FRAME);
127 1.1 maxv if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva) == -1)
128 1.1 maxv return -1;
129 1.1 maxv pdir = (pte_32bit_t *)L2hva;
130 1.1 maxv pte = pdir[pte32_l2idx(gva)];
131 1.1 maxv if ((pte & PG_V) == 0)
132 1.1 maxv return -1;
133 1.1 maxv if ((pte & PG_u) == 0)
134 1.1 maxv *prot &= ~NVMM_PROT_USER;
135 1.1 maxv if ((pte & PG_KW) == 0)
136 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
137 1.1 maxv if ((pte & PG_PS) && !has_pse)
138 1.1 maxv return -1;
139 1.1 maxv if (pte & PG_PS) {
140 1.1 maxv *gpa = (pte & PTE32_L2_FRAME);
141 1.10 maxv *gpa = *gpa + (gva & PTE32_L1_MASK);
142 1.1 maxv return 0;
143 1.1 maxv }
144 1.1 maxv
145 1.1 maxv /* Parse L1. */
146 1.1 maxv L1gpa = (pte & PG_FRAME);
147 1.1 maxv if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva) == -1)
148 1.1 maxv return -1;
149 1.1 maxv pdir = (pte_32bit_t *)L1hva;
150 1.1 maxv pte = pdir[pte32_l1idx(gva)];
151 1.1 maxv if ((pte & PG_V) == 0)
152 1.1 maxv return -1;
153 1.1 maxv if ((pte & PG_u) == 0)
154 1.1 maxv *prot &= ~NVMM_PROT_USER;
155 1.1 maxv if ((pte & PG_KW) == 0)
156 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
157 1.1 maxv if (pte & PG_PS)
158 1.1 maxv return -1;
159 1.1 maxv
160 1.1 maxv *gpa = (pte & PG_FRAME);
161 1.1 maxv return 0;
162 1.1 maxv }
163 1.1 maxv
164 1.1 maxv /* -------------------------------------------------------------------------- */
165 1.1 maxv
166 1.1 maxv #define PTE32_PAE_L1_SHIFT 12
167 1.1 maxv #define PTE32_PAE_L2_SHIFT 21
168 1.1 maxv #define PTE32_PAE_L3_SHIFT 30
169 1.1 maxv
170 1.1 maxv #define PTE32_PAE_L3_MASK 0xc0000000
171 1.1 maxv #define PTE32_PAE_L2_MASK 0x3fe00000
172 1.1 maxv #define PTE32_PAE_L1_MASK 0x001ff000
173 1.1 maxv
174 1.1 maxv #define PTE32_PAE_L3_FRAME (PTE32_PAE_L3_MASK)
175 1.1 maxv #define PTE32_PAE_L2_FRAME (PTE32_PAE_L3_FRAME|PTE32_PAE_L2_MASK)
176 1.1 maxv #define PTE32_PAE_L1_FRAME (PTE32_PAE_L2_FRAME|PTE32_PAE_L1_MASK)
177 1.1 maxv
178 1.1 maxv #define pte32_pae_l1idx(va) (((va) & PTE32_PAE_L1_MASK) >> PTE32_PAE_L1_SHIFT)
179 1.1 maxv #define pte32_pae_l2idx(va) (((va) & PTE32_PAE_L2_MASK) >> PTE32_PAE_L2_SHIFT)
180 1.1 maxv #define pte32_pae_l3idx(va) (((va) & PTE32_PAE_L3_MASK) >> PTE32_PAE_L3_SHIFT)
181 1.1 maxv
182 1.1 maxv typedef uint64_t pte_32bit_pae_t;
183 1.1 maxv
184 1.1 maxv static int
185 1.1 maxv x86_gva_to_gpa_32bit_pae(struct nvmm_machine *mach, uint64_t cr3,
186 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, bool has_pse, nvmm_prot_t *prot)
187 1.1 maxv {
188 1.1 maxv gpaddr_t L3gpa, L2gpa, L1gpa;
189 1.1 maxv uintptr_t L3hva, L2hva, L1hva;
190 1.1 maxv pte_32bit_pae_t *pdir, pte;
191 1.1 maxv
192 1.1 maxv /* We begin with an RWXU access. */
193 1.1 maxv *prot = NVMM_PROT_ALL;
194 1.1 maxv
195 1.1 maxv /* Parse L3. */
196 1.1 maxv L3gpa = (cr3 & PG_FRAME);
197 1.1 maxv if (nvmm_gpa_to_hva(mach, L3gpa, &L3hva) == -1)
198 1.1 maxv return -1;
199 1.1 maxv pdir = (pte_32bit_pae_t *)L3hva;
200 1.1 maxv pte = pdir[pte32_pae_l3idx(gva)];
201 1.1 maxv if ((pte & PG_V) == 0)
202 1.1 maxv return -1;
203 1.1 maxv if (pte & PG_NX)
204 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
205 1.1 maxv if (pte & PG_PS)
206 1.1 maxv return -1;
207 1.1 maxv
208 1.1 maxv /* Parse L2. */
209 1.1 maxv L2gpa = (pte & PG_FRAME);
210 1.1 maxv if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva) == -1)
211 1.1 maxv return -1;
212 1.1 maxv pdir = (pte_32bit_pae_t *)L2hva;
213 1.1 maxv pte = pdir[pte32_pae_l2idx(gva)];
214 1.1 maxv if ((pte & PG_V) == 0)
215 1.1 maxv return -1;
216 1.1 maxv if ((pte & PG_u) == 0)
217 1.1 maxv *prot &= ~NVMM_PROT_USER;
218 1.1 maxv if ((pte & PG_KW) == 0)
219 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
220 1.1 maxv if (pte & PG_NX)
221 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
222 1.1 maxv if ((pte & PG_PS) && !has_pse)
223 1.1 maxv return -1;
224 1.1 maxv if (pte & PG_PS) {
225 1.1 maxv *gpa = (pte & PTE32_PAE_L2_FRAME);
226 1.10 maxv *gpa = *gpa + (gva & PTE32_PAE_L1_MASK);
227 1.1 maxv return 0;
228 1.1 maxv }
229 1.1 maxv
230 1.1 maxv /* Parse L1. */
231 1.1 maxv L1gpa = (pte & PG_FRAME);
232 1.1 maxv if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva) == -1)
233 1.1 maxv return -1;
234 1.1 maxv pdir = (pte_32bit_pae_t *)L1hva;
235 1.1 maxv pte = pdir[pte32_pae_l1idx(gva)];
236 1.1 maxv if ((pte & PG_V) == 0)
237 1.1 maxv return -1;
238 1.1 maxv if ((pte & PG_u) == 0)
239 1.1 maxv *prot &= ~NVMM_PROT_USER;
240 1.1 maxv if ((pte & PG_KW) == 0)
241 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
242 1.1 maxv if (pte & PG_NX)
243 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
244 1.1 maxv if (pte & PG_PS)
245 1.1 maxv return -1;
246 1.1 maxv
247 1.1 maxv *gpa = (pte & PG_FRAME);
248 1.1 maxv return 0;
249 1.1 maxv }
250 1.1 maxv
251 1.1 maxv /* -------------------------------------------------------------------------- */
252 1.1 maxv
253 1.1 maxv #define PTE64_L1_SHIFT 12
254 1.1 maxv #define PTE64_L2_SHIFT 21
255 1.1 maxv #define PTE64_L3_SHIFT 30
256 1.1 maxv #define PTE64_L4_SHIFT 39
257 1.1 maxv
258 1.1 maxv #define PTE64_L4_MASK 0x0000ff8000000000
259 1.1 maxv #define PTE64_L3_MASK 0x0000007fc0000000
260 1.1 maxv #define PTE64_L2_MASK 0x000000003fe00000
261 1.1 maxv #define PTE64_L1_MASK 0x00000000001ff000
262 1.1 maxv
263 1.1 maxv #define PTE64_L4_FRAME PTE64_L4_MASK
264 1.1 maxv #define PTE64_L3_FRAME (PTE64_L4_FRAME|PTE64_L3_MASK)
265 1.1 maxv #define PTE64_L2_FRAME (PTE64_L3_FRAME|PTE64_L2_MASK)
266 1.1 maxv #define PTE64_L1_FRAME (PTE64_L2_FRAME|PTE64_L1_MASK)
267 1.1 maxv
268 1.1 maxv #define pte64_l1idx(va) (((va) & PTE64_L1_MASK) >> PTE64_L1_SHIFT)
269 1.1 maxv #define pte64_l2idx(va) (((va) & PTE64_L2_MASK) >> PTE64_L2_SHIFT)
270 1.1 maxv #define pte64_l3idx(va) (((va) & PTE64_L3_MASK) >> PTE64_L3_SHIFT)
271 1.1 maxv #define pte64_l4idx(va) (((va) & PTE64_L4_MASK) >> PTE64_L4_SHIFT)
272 1.1 maxv
273 1.1 maxv typedef uint64_t pte_64bit_t;
274 1.1 maxv
275 1.1 maxv static inline bool
276 1.1 maxv x86_gva_64bit_canonical(gvaddr_t gva)
277 1.1 maxv {
278 1.1 maxv /* Bits 63:47 must have the same value. */
279 1.1 maxv #define SIGN_EXTEND 0xffff800000000000ULL
280 1.1 maxv return (gva & SIGN_EXTEND) == 0 || (gva & SIGN_EXTEND) == SIGN_EXTEND;
281 1.1 maxv }
282 1.1 maxv
283 1.1 maxv static int
284 1.1 maxv x86_gva_to_gpa_64bit(struct nvmm_machine *mach, uint64_t cr3,
285 1.11 maxv gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
286 1.1 maxv {
287 1.1 maxv gpaddr_t L4gpa, L3gpa, L2gpa, L1gpa;
288 1.1 maxv uintptr_t L4hva, L3hva, L2hva, L1hva;
289 1.1 maxv pte_64bit_t *pdir, pte;
290 1.1 maxv
291 1.1 maxv /* We begin with an RWXU access. */
292 1.1 maxv *prot = NVMM_PROT_ALL;
293 1.1 maxv
294 1.1 maxv if (!x86_gva_64bit_canonical(gva))
295 1.1 maxv return -1;
296 1.1 maxv
297 1.1 maxv /* Parse L4. */
298 1.1 maxv L4gpa = (cr3 & PG_FRAME);
299 1.1 maxv if (nvmm_gpa_to_hva(mach, L4gpa, &L4hva) == -1)
300 1.1 maxv return -1;
301 1.1 maxv pdir = (pte_64bit_t *)L4hva;
302 1.1 maxv pte = pdir[pte64_l4idx(gva)];
303 1.1 maxv if ((pte & PG_V) == 0)
304 1.1 maxv return -1;
305 1.1 maxv if ((pte & PG_u) == 0)
306 1.1 maxv *prot &= ~NVMM_PROT_USER;
307 1.1 maxv if ((pte & PG_KW) == 0)
308 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
309 1.1 maxv if (pte & PG_NX)
310 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
311 1.1 maxv if (pte & PG_PS)
312 1.1 maxv return -1;
313 1.1 maxv
314 1.1 maxv /* Parse L3. */
315 1.1 maxv L3gpa = (pte & PG_FRAME);
316 1.1 maxv if (nvmm_gpa_to_hva(mach, L3gpa, &L3hva) == -1)
317 1.1 maxv return -1;
318 1.1 maxv pdir = (pte_64bit_t *)L3hva;
319 1.1 maxv pte = pdir[pte64_l3idx(gva)];
320 1.1 maxv if ((pte & PG_V) == 0)
321 1.1 maxv return -1;
322 1.1 maxv if ((pte & PG_u) == 0)
323 1.1 maxv *prot &= ~NVMM_PROT_USER;
324 1.1 maxv if ((pte & PG_KW) == 0)
325 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
326 1.1 maxv if (pte & PG_NX)
327 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
328 1.1 maxv if (pte & PG_PS) {
329 1.1 maxv *gpa = (pte & PTE64_L3_FRAME);
330 1.10 maxv *gpa = *gpa + (gva & (PTE64_L2_MASK|PTE64_L1_MASK));
331 1.1 maxv return 0;
332 1.1 maxv }
333 1.1 maxv
334 1.1 maxv /* Parse L2. */
335 1.1 maxv L2gpa = (pte & PG_FRAME);
336 1.1 maxv if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva) == -1)
337 1.1 maxv return -1;
338 1.1 maxv pdir = (pte_64bit_t *)L2hva;
339 1.1 maxv pte = pdir[pte64_l2idx(gva)];
340 1.1 maxv if ((pte & PG_V) == 0)
341 1.1 maxv return -1;
342 1.1 maxv if ((pte & PG_u) == 0)
343 1.1 maxv *prot &= ~NVMM_PROT_USER;
344 1.1 maxv if ((pte & PG_KW) == 0)
345 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
346 1.1 maxv if (pte & PG_NX)
347 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
348 1.1 maxv if (pte & PG_PS) {
349 1.1 maxv *gpa = (pte & PTE64_L2_FRAME);
350 1.10 maxv *gpa = *gpa + (gva & PTE64_L1_MASK);
351 1.1 maxv return 0;
352 1.1 maxv }
353 1.1 maxv
354 1.1 maxv /* Parse L1. */
355 1.1 maxv L1gpa = (pte & PG_FRAME);
356 1.1 maxv if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva) == -1)
357 1.1 maxv return -1;
358 1.1 maxv pdir = (pte_64bit_t *)L1hva;
359 1.1 maxv pte = pdir[pte64_l1idx(gva)];
360 1.1 maxv if ((pte & PG_V) == 0)
361 1.1 maxv return -1;
362 1.1 maxv if ((pte & PG_u) == 0)
363 1.1 maxv *prot &= ~NVMM_PROT_USER;
364 1.1 maxv if ((pte & PG_KW) == 0)
365 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
366 1.1 maxv if (pte & PG_NX)
367 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
368 1.1 maxv if (pte & PG_PS)
369 1.1 maxv return -1;
370 1.1 maxv
371 1.1 maxv *gpa = (pte & PG_FRAME);
372 1.1 maxv return 0;
373 1.1 maxv }
374 1.1 maxv
375 1.1 maxv static inline int
376 1.1 maxv x86_gva_to_gpa(struct nvmm_machine *mach, struct nvmm_x64_state *state,
377 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
378 1.1 maxv {
379 1.1 maxv bool is_pae, is_lng, has_pse;
380 1.1 maxv uint64_t cr3;
381 1.6 maxv size_t off;
382 1.1 maxv int ret;
383 1.1 maxv
384 1.1 maxv if ((state->crs[NVMM_X64_CR_CR0] & CR0_PG) == 0) {
385 1.1 maxv /* No paging. */
386 1.4 maxv *prot = NVMM_PROT_ALL;
387 1.1 maxv *gpa = gva;
388 1.1 maxv return 0;
389 1.1 maxv }
390 1.1 maxv
391 1.6 maxv off = (gva & PAGE_MASK);
392 1.6 maxv gva &= ~PAGE_MASK;
393 1.6 maxv
394 1.1 maxv is_pae = (state->crs[NVMM_X64_CR_CR4] & CR4_PAE) != 0;
395 1.1 maxv is_lng = (state->msrs[NVMM_X64_MSR_EFER] & EFER_LME) != 0;
396 1.1 maxv has_pse = (state->crs[NVMM_X64_CR_CR4] & CR4_PSE) != 0;
397 1.1 maxv cr3 = state->crs[NVMM_X64_CR_CR3];
398 1.1 maxv
399 1.1 maxv if (is_pae && is_lng) {
400 1.1 maxv /* 64bit */
401 1.11 maxv ret = x86_gva_to_gpa_64bit(mach, cr3, gva, gpa, prot);
402 1.1 maxv } else if (is_pae && !is_lng) {
403 1.1 maxv /* 32bit PAE */
404 1.1 maxv ret = x86_gva_to_gpa_32bit_pae(mach, cr3, gva, gpa, has_pse,
405 1.1 maxv prot);
406 1.1 maxv } else if (!is_pae && !is_lng) {
407 1.1 maxv /* 32bit */
408 1.1 maxv ret = x86_gva_to_gpa_32bit(mach, cr3, gva, gpa, has_pse, prot);
409 1.1 maxv } else {
410 1.1 maxv ret = -1;
411 1.1 maxv }
412 1.1 maxv
413 1.1 maxv if (ret == -1) {
414 1.1 maxv errno = EFAULT;
415 1.1 maxv }
416 1.1 maxv
417 1.6 maxv *gpa = *gpa + off;
418 1.6 maxv
419 1.1 maxv return ret;
420 1.1 maxv }
421 1.1 maxv
422 1.1 maxv int
423 1.1 maxv nvmm_gva_to_gpa(struct nvmm_machine *mach, nvmm_cpuid_t cpuid,
424 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
425 1.1 maxv {
426 1.1 maxv struct nvmm_x64_state state;
427 1.1 maxv int ret;
428 1.1 maxv
429 1.1 maxv ret = nvmm_vcpu_getstate(mach, cpuid, &state,
430 1.1 maxv NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
431 1.1 maxv if (ret == -1)
432 1.1 maxv return -1;
433 1.1 maxv
434 1.1 maxv return x86_gva_to_gpa(mach, &state, gva, gpa, prot);
435 1.1 maxv }
436 1.1 maxv
437 1.1 maxv /* -------------------------------------------------------------------------- */
438 1.1 maxv
439 1.1 maxv static inline bool
440 1.5 maxv is_64bit(struct nvmm_x64_state *state)
441 1.5 maxv {
442 1.5 maxv return (state->segs[NVMM_X64_SEG_CS].attrib.lng != 0);
443 1.5 maxv }
444 1.5 maxv
445 1.5 maxv static inline bool
446 1.5 maxv is_32bit(struct nvmm_x64_state *state)
447 1.5 maxv {
448 1.5 maxv return (state->segs[NVMM_X64_SEG_CS].attrib.lng == 0) &&
449 1.5 maxv (state->segs[NVMM_X64_SEG_CS].attrib.def32 == 1);
450 1.5 maxv }
451 1.5 maxv
452 1.5 maxv static inline bool
453 1.5 maxv is_16bit(struct nvmm_x64_state *state)
454 1.5 maxv {
455 1.5 maxv return (state->segs[NVMM_X64_SEG_CS].attrib.lng == 0) &&
456 1.5 maxv (state->segs[NVMM_X64_SEG_CS].attrib.def32 == 0);
457 1.5 maxv }
458 1.5 maxv
459 1.5 maxv static inline bool
460 1.1 maxv is_long_mode(struct nvmm_x64_state *state)
461 1.1 maxv {
462 1.1 maxv return (state->msrs[NVMM_X64_MSR_EFER] & EFER_LME) != 0;
463 1.1 maxv }
464 1.1 maxv
465 1.1 maxv static int
466 1.1 maxv segment_apply(struct nvmm_x64_state_seg *seg, gvaddr_t *gva, size_t size)
467 1.1 maxv {
468 1.1 maxv uint64_t limit;
469 1.1 maxv
470 1.1 maxv /*
471 1.1 maxv * This is incomplete. We should check topdown, etc, really that's
472 1.1 maxv * tiring.
473 1.1 maxv */
474 1.1 maxv if (__predict_false(!seg->attrib.p)) {
475 1.1 maxv goto error;
476 1.1 maxv }
477 1.1 maxv
478 1.1 maxv limit = (seg->limit + 1);
479 1.1 maxv if (__predict_true(seg->attrib.gran)) {
480 1.1 maxv limit *= PAGE_SIZE;
481 1.1 maxv }
482 1.1 maxv
483 1.7 maxv if (__predict_false(*gva + size > limit)) {
484 1.1 maxv goto error;
485 1.1 maxv }
486 1.1 maxv
487 1.1 maxv *gva += seg->base;
488 1.1 maxv return 0;
489 1.1 maxv
490 1.1 maxv error:
491 1.1 maxv errno = EFAULT;
492 1.1 maxv return -1;
493 1.1 maxv }
494 1.1 maxv
495 1.6 maxv static uint64_t
496 1.6 maxv mask_from_adsize(size_t adsize)
497 1.6 maxv {
498 1.6 maxv switch (adsize) {
499 1.6 maxv case 8:
500 1.6 maxv return 0xFFFFFFFFFFFFFFFF;
501 1.6 maxv case 4:
502 1.6 maxv return 0x00000000FFFFFFFF;
503 1.6 maxv case 2:
504 1.6 maxv default: /* impossible */
505 1.6 maxv return 0x000000000000FFFF;
506 1.6 maxv }
507 1.6 maxv }
508 1.6 maxv
509 1.6 maxv static uint64_t
510 1.10 maxv rep_get_cnt(struct nvmm_x64_state *state, size_t adsize)
511 1.10 maxv {
512 1.10 maxv uint64_t mask, cnt;
513 1.10 maxv
514 1.10 maxv mask = mask_from_adsize(adsize);
515 1.10 maxv cnt = state->gprs[NVMM_X64_GPR_RCX] & mask;
516 1.10 maxv
517 1.10 maxv return cnt;
518 1.10 maxv }
519 1.10 maxv
520 1.10 maxv static void
521 1.10 maxv rep_set_cnt(struct nvmm_x64_state *state, size_t adsize, uint64_t cnt)
522 1.10 maxv {
523 1.10 maxv uint64_t mask;
524 1.10 maxv
525 1.10 maxv mask = mask_from_adsize(adsize);
526 1.10 maxv state->gprs[NVMM_X64_GPR_RCX] &= ~mask;
527 1.10 maxv state->gprs[NVMM_X64_GPR_RCX] |= cnt;
528 1.10 maxv }
529 1.10 maxv
530 1.10 maxv static uint64_t
531 1.6 maxv rep_dec_apply(struct nvmm_x64_state *state, size_t adsize)
532 1.6 maxv {
533 1.6 maxv uint64_t mask, cnt;
534 1.6 maxv
535 1.6 maxv mask = mask_from_adsize(adsize);
536 1.6 maxv
537 1.10 maxv cnt = state->gprs[NVMM_X64_GPR_RCX] & mask;
538 1.6 maxv cnt -= 1;
539 1.6 maxv cnt &= mask;
540 1.6 maxv
541 1.6 maxv state->gprs[NVMM_X64_GPR_RCX] &= ~mask;
542 1.6 maxv state->gprs[NVMM_X64_GPR_RCX] |= cnt;
543 1.6 maxv
544 1.6 maxv return cnt;
545 1.6 maxv }
546 1.6 maxv
547 1.6 maxv static int
548 1.6 maxv read_guest_memory(struct nvmm_machine *mach, struct nvmm_x64_state *state,
549 1.6 maxv gvaddr_t gva, uint8_t *data, size_t size)
550 1.6 maxv {
551 1.6 maxv struct nvmm_mem mem;
552 1.6 maxv nvmm_prot_t prot;
553 1.6 maxv gpaddr_t gpa;
554 1.6 maxv uintptr_t hva;
555 1.6 maxv bool is_mmio;
556 1.6 maxv int ret, remain;
557 1.6 maxv
558 1.6 maxv ret = x86_gva_to_gpa(mach, state, gva, &gpa, &prot);
559 1.6 maxv if (__predict_false(ret == -1)) {
560 1.6 maxv return -1;
561 1.6 maxv }
562 1.6 maxv if (__predict_false(!(prot & NVMM_PROT_READ))) {
563 1.6 maxv errno = EFAULT;
564 1.6 maxv return -1;
565 1.6 maxv }
566 1.6 maxv
567 1.6 maxv if ((gva & PAGE_MASK) + size > PAGE_SIZE) {
568 1.6 maxv remain = ((gva & PAGE_MASK) + size - PAGE_SIZE);
569 1.6 maxv } else {
570 1.6 maxv remain = 0;
571 1.6 maxv }
572 1.6 maxv size -= remain;
573 1.6 maxv
574 1.6 maxv ret = nvmm_gpa_to_hva(mach, gpa, &hva);
575 1.6 maxv is_mmio = (ret == -1);
576 1.6 maxv
577 1.6 maxv if (is_mmio) {
578 1.11 maxv mem.data = data;
579 1.6 maxv mem.gpa = gpa;
580 1.6 maxv mem.write = false;
581 1.6 maxv mem.size = size;
582 1.6 maxv (*__callbacks.mem)(&mem);
583 1.6 maxv } else {
584 1.6 maxv memcpy(data, (uint8_t *)hva, size);
585 1.6 maxv }
586 1.6 maxv
587 1.6 maxv if (remain > 0) {
588 1.6 maxv ret = read_guest_memory(mach, state, gva + size,
589 1.6 maxv data + size, remain);
590 1.6 maxv } else {
591 1.6 maxv ret = 0;
592 1.6 maxv }
593 1.6 maxv
594 1.6 maxv return ret;
595 1.6 maxv }
596 1.6 maxv
597 1.6 maxv static int
598 1.6 maxv write_guest_memory(struct nvmm_machine *mach, struct nvmm_x64_state *state,
599 1.6 maxv gvaddr_t gva, uint8_t *data, size_t size)
600 1.6 maxv {
601 1.6 maxv struct nvmm_mem mem;
602 1.6 maxv nvmm_prot_t prot;
603 1.6 maxv gpaddr_t gpa;
604 1.6 maxv uintptr_t hva;
605 1.6 maxv bool is_mmio;
606 1.6 maxv int ret, remain;
607 1.6 maxv
608 1.6 maxv ret = x86_gva_to_gpa(mach, state, gva, &gpa, &prot);
609 1.6 maxv if (__predict_false(ret == -1)) {
610 1.6 maxv return -1;
611 1.6 maxv }
612 1.6 maxv if (__predict_false(!(prot & NVMM_PROT_WRITE))) {
613 1.6 maxv errno = EFAULT;
614 1.6 maxv return -1;
615 1.6 maxv }
616 1.6 maxv
617 1.6 maxv if ((gva & PAGE_MASK) + size > PAGE_SIZE) {
618 1.6 maxv remain = ((gva & PAGE_MASK) + size - PAGE_SIZE);
619 1.6 maxv } else {
620 1.6 maxv remain = 0;
621 1.6 maxv }
622 1.6 maxv size -= remain;
623 1.6 maxv
624 1.6 maxv ret = nvmm_gpa_to_hva(mach, gpa, &hva);
625 1.6 maxv is_mmio = (ret == -1);
626 1.6 maxv
627 1.6 maxv if (is_mmio) {
628 1.11 maxv mem.data = data;
629 1.6 maxv mem.gpa = gpa;
630 1.6 maxv mem.write = true;
631 1.6 maxv mem.size = size;
632 1.6 maxv (*__callbacks.mem)(&mem);
633 1.6 maxv } else {
634 1.6 maxv memcpy((uint8_t *)hva, data, size);
635 1.6 maxv }
636 1.6 maxv
637 1.6 maxv if (remain > 0) {
638 1.6 maxv ret = write_guest_memory(mach, state, gva + size,
639 1.6 maxv data + size, remain);
640 1.6 maxv } else {
641 1.6 maxv ret = 0;
642 1.6 maxv }
643 1.6 maxv
644 1.6 maxv return ret;
645 1.6 maxv }
646 1.6 maxv
647 1.6 maxv /* -------------------------------------------------------------------------- */
648 1.6 maxv
649 1.8 maxv static int fetch_segment(struct nvmm_machine *, struct nvmm_x64_state *);
650 1.8 maxv
651 1.10 maxv #define NVMM_IO_BATCH_SIZE 32
652 1.10 maxv
653 1.10 maxv static int
654 1.10 maxv assist_io_batch(struct nvmm_machine *mach, struct nvmm_x64_state *state,
655 1.10 maxv struct nvmm_io *io, gvaddr_t gva, uint64_t cnt)
656 1.10 maxv {
657 1.10 maxv uint8_t iobuf[NVMM_IO_BATCH_SIZE];
658 1.10 maxv size_t i, iosize, iocnt;
659 1.10 maxv int ret;
660 1.10 maxv
661 1.10 maxv cnt = MIN(cnt, NVMM_IO_BATCH_SIZE);
662 1.10 maxv iosize = MIN(io->size * cnt, NVMM_IO_BATCH_SIZE);
663 1.10 maxv iocnt = iosize / io->size;
664 1.10 maxv
665 1.10 maxv io->data = iobuf;
666 1.10 maxv
667 1.10 maxv if (!io->in) {
668 1.10 maxv ret = read_guest_memory(mach, state, gva, iobuf, iosize);
669 1.10 maxv if (ret == -1)
670 1.10 maxv return -1;
671 1.10 maxv }
672 1.10 maxv
673 1.10 maxv for (i = 0; i < iocnt; i++) {
674 1.10 maxv (*__callbacks.io)(io);
675 1.10 maxv io->data += io->size;
676 1.10 maxv }
677 1.10 maxv
678 1.10 maxv if (io->in) {
679 1.10 maxv ret = write_guest_memory(mach, state, gva, iobuf, iosize);
680 1.10 maxv if (ret == -1)
681 1.10 maxv return -1;
682 1.10 maxv }
683 1.10 maxv
684 1.10 maxv return iocnt;
685 1.10 maxv }
686 1.10 maxv
687 1.1 maxv int
688 1.1 maxv nvmm_assist_io(struct nvmm_machine *mach, nvmm_cpuid_t cpuid,
689 1.6 maxv struct nvmm_exit *exit)
690 1.1 maxv {
691 1.1 maxv struct nvmm_x64_state state;
692 1.1 maxv struct nvmm_io io;
693 1.10 maxv uint64_t cnt = 0; /* GCC */
694 1.10 maxv uint8_t iobuf[8];
695 1.10 maxv int iocnt = 1;
696 1.6 maxv gvaddr_t gva;
697 1.5 maxv int reg = 0; /* GCC */
698 1.8 maxv int ret, seg;
699 1.10 maxv bool psld = false;
700 1.1 maxv
701 1.1 maxv if (__predict_false(exit->reason != NVMM_EXIT_IO)) {
702 1.1 maxv errno = EINVAL;
703 1.1 maxv return -1;
704 1.1 maxv }
705 1.1 maxv
706 1.1 maxv io.port = exit->u.io.port;
707 1.1 maxv io.in = (exit->u.io.type == NVMM_EXIT_IO_IN);
708 1.1 maxv io.size = exit->u.io.operand_size;
709 1.10 maxv io.data = iobuf;
710 1.1 maxv
711 1.1 maxv ret = nvmm_vcpu_getstate(mach, cpuid, &state,
712 1.1 maxv NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
713 1.1 maxv NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
714 1.1 maxv if (ret == -1)
715 1.1 maxv return -1;
716 1.1 maxv
717 1.10 maxv if (exit->u.io.rep) {
718 1.10 maxv cnt = rep_get_cnt(&state, exit->u.io.address_size);
719 1.10 maxv if (__predict_false(cnt == 0)) {
720 1.10 maxv return 0;
721 1.10 maxv }
722 1.10 maxv }
723 1.10 maxv
724 1.10 maxv if (__predict_false(state.gprs[NVMM_X64_GPR_RFLAGS] & PSL_D)) {
725 1.10 maxv psld = true;
726 1.10 maxv }
727 1.10 maxv
728 1.6 maxv /*
729 1.6 maxv * Determine GVA.
730 1.6 maxv */
731 1.6 maxv if (exit->u.io.str) {
732 1.5 maxv if (io.in) {
733 1.5 maxv reg = NVMM_X64_GPR_RDI;
734 1.5 maxv } else {
735 1.5 maxv reg = NVMM_X64_GPR_RSI;
736 1.5 maxv }
737 1.1 maxv
738 1.6 maxv gva = state.gprs[reg];
739 1.6 maxv gva &= mask_from_adsize(exit->u.io.address_size);
740 1.1 maxv
741 1.1 maxv if (!is_long_mode(&state)) {
742 1.8 maxv if (exit->u.io.seg != -1) {
743 1.8 maxv seg = exit->u.io.seg;
744 1.8 maxv } else {
745 1.8 maxv if (io.in) {
746 1.8 maxv seg = NVMM_X64_SEG_ES;
747 1.8 maxv } else {
748 1.8 maxv seg = fetch_segment(mach, &state);
749 1.8 maxv if (seg == -1)
750 1.8 maxv return -1;
751 1.8 maxv }
752 1.8 maxv }
753 1.8 maxv
754 1.8 maxv ret = segment_apply(&state.segs[seg], &gva, io.size);
755 1.1 maxv if (ret == -1)
756 1.1 maxv return -1;
757 1.1 maxv }
758 1.10 maxv
759 1.10 maxv if (exit->u.io.rep && !psld) {
760 1.10 maxv iocnt = assist_io_batch(mach, &state, &io, gva, cnt);
761 1.10 maxv if (iocnt == -1)
762 1.10 maxv return -1;
763 1.10 maxv goto done;
764 1.10 maxv }
765 1.6 maxv }
766 1.1 maxv
767 1.6 maxv if (!io.in) {
768 1.6 maxv if (!exit->u.io.str) {
769 1.6 maxv memcpy(io.data, &state.gprs[NVMM_X64_GPR_RAX], io.size);
770 1.6 maxv } else {
771 1.6 maxv ret = read_guest_memory(mach, &state, gva, io.data,
772 1.6 maxv io.size);
773 1.1 maxv if (ret == -1)
774 1.1 maxv return -1;
775 1.1 maxv }
776 1.1 maxv }
777 1.1 maxv
778 1.6 maxv (*__callbacks.io)(&io);
779 1.1 maxv
780 1.1 maxv if (io.in) {
781 1.6 maxv if (!exit->u.io.str) {
782 1.6 maxv memcpy(&state.gprs[NVMM_X64_GPR_RAX], io.data, io.size);
783 1.1 maxv } else {
784 1.6 maxv ret = write_guest_memory(mach, &state, gva, io.data,
785 1.6 maxv io.size);
786 1.6 maxv if (ret == -1)
787 1.6 maxv return -1;
788 1.1 maxv }
789 1.1 maxv }
790 1.1 maxv
791 1.10 maxv done:
792 1.5 maxv if (exit->u.io.str) {
793 1.10 maxv if (__predict_false(psld)) {
794 1.10 maxv state.gprs[reg] -= iocnt * io.size;
795 1.5 maxv } else {
796 1.10 maxv state.gprs[reg] += iocnt * io.size;
797 1.5 maxv }
798 1.5 maxv }
799 1.5 maxv
800 1.1 maxv if (exit->u.io.rep) {
801 1.10 maxv cnt -= iocnt;
802 1.10 maxv rep_set_cnt(&state, exit->u.io.address_size, cnt);
803 1.6 maxv if (cnt == 0) {
804 1.1 maxv state.gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
805 1.1 maxv }
806 1.1 maxv } else {
807 1.1 maxv state.gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
808 1.1 maxv }
809 1.1 maxv
810 1.1 maxv ret = nvmm_vcpu_setstate(mach, cpuid, &state, NVMM_X64_STATE_GPRS);
811 1.1 maxv if (ret == -1)
812 1.1 maxv return -1;
813 1.1 maxv
814 1.1 maxv return 0;
815 1.1 maxv }
816 1.1 maxv
817 1.1 maxv /* -------------------------------------------------------------------------- */
818 1.1 maxv
819 1.5 maxv static void x86_emul_or(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
820 1.5 maxv static void x86_emul_and(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
821 1.5 maxv static void x86_emul_xor(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
822 1.5 maxv static void x86_emul_mov(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
823 1.5 maxv static void x86_emul_stos(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
824 1.5 maxv static void x86_emul_lods(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
825 1.6 maxv static void x86_emul_movs(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
826 1.5 maxv
827 1.5 maxv enum x86_legpref {
828 1.5 maxv /* Group 1 */
829 1.5 maxv LEG_LOCK = 0,
830 1.5 maxv LEG_REPN, /* REPNE/REPNZ */
831 1.5 maxv LEG_REP, /* REP/REPE/REPZ */
832 1.5 maxv /* Group 2 */
833 1.5 maxv LEG_OVR_CS,
834 1.5 maxv LEG_OVR_SS,
835 1.5 maxv LEG_OVR_DS,
836 1.5 maxv LEG_OVR_ES,
837 1.5 maxv LEG_OVR_FS,
838 1.5 maxv LEG_OVR_GS,
839 1.5 maxv LEG_BRN_TAKEN,
840 1.5 maxv LEG_BRN_NTAKEN,
841 1.5 maxv /* Group 3 */
842 1.5 maxv LEG_OPR_OVR,
843 1.5 maxv /* Group 4 */
844 1.5 maxv LEG_ADR_OVR,
845 1.5 maxv
846 1.5 maxv NLEG
847 1.5 maxv };
848 1.5 maxv
849 1.5 maxv struct x86_rexpref {
850 1.5 maxv bool present;
851 1.5 maxv bool w;
852 1.5 maxv bool r;
853 1.5 maxv bool x;
854 1.5 maxv bool b;
855 1.5 maxv };
856 1.5 maxv
857 1.5 maxv struct x86_reg {
858 1.5 maxv int num; /* NVMM GPR state index */
859 1.5 maxv uint64_t mask;
860 1.5 maxv };
861 1.5 maxv
862 1.5 maxv enum x86_disp_type {
863 1.5 maxv DISP_NONE,
864 1.5 maxv DISP_0,
865 1.5 maxv DISP_1,
866 1.5 maxv DISP_4
867 1.5 maxv };
868 1.5 maxv
869 1.5 maxv struct x86_disp {
870 1.5 maxv enum x86_disp_type type;
871 1.11 maxv uint64_t data; /* 4 bytes, but can be sign-extended */
872 1.5 maxv };
873 1.5 maxv
874 1.5 maxv enum REGMODRM__Mod {
875 1.5 maxv MOD_DIS0, /* also, register indirect */
876 1.5 maxv MOD_DIS1,
877 1.5 maxv MOD_DIS4,
878 1.5 maxv MOD_REG
879 1.5 maxv };
880 1.5 maxv
881 1.5 maxv enum REGMODRM__Reg {
882 1.5 maxv REG_000, /* these fields are indexes to the register map */
883 1.5 maxv REG_001,
884 1.5 maxv REG_010,
885 1.5 maxv REG_011,
886 1.5 maxv REG_100,
887 1.5 maxv REG_101,
888 1.5 maxv REG_110,
889 1.5 maxv REG_111
890 1.5 maxv };
891 1.5 maxv
892 1.5 maxv enum REGMODRM__Rm {
893 1.5 maxv RM_000, /* reg */
894 1.5 maxv RM_001, /* reg */
895 1.5 maxv RM_010, /* reg */
896 1.5 maxv RM_011, /* reg */
897 1.5 maxv RM_RSP_SIB, /* reg or SIB, depending on the MOD */
898 1.5 maxv RM_RBP_DISP32, /* reg or displacement-only (= RIP-relative on amd64) */
899 1.5 maxv RM_110,
900 1.5 maxv RM_111
901 1.5 maxv };
902 1.5 maxv
903 1.5 maxv struct x86_regmodrm {
904 1.5 maxv bool present;
905 1.5 maxv enum REGMODRM__Mod mod;
906 1.5 maxv enum REGMODRM__Reg reg;
907 1.5 maxv enum REGMODRM__Rm rm;
908 1.5 maxv };
909 1.5 maxv
910 1.5 maxv struct x86_immediate {
911 1.5 maxv size_t size; /* 1/2/4/8 */
912 1.11 maxv uint64_t data;
913 1.5 maxv };
914 1.5 maxv
915 1.5 maxv struct x86_sib {
916 1.5 maxv uint8_t scale;
917 1.5 maxv const struct x86_reg *idx;
918 1.5 maxv const struct x86_reg *bas;
919 1.5 maxv };
920 1.5 maxv
921 1.5 maxv enum x86_store_type {
922 1.5 maxv STORE_NONE,
923 1.5 maxv STORE_REG,
924 1.5 maxv STORE_IMM,
925 1.5 maxv STORE_SIB,
926 1.5 maxv STORE_DMO
927 1.5 maxv };
928 1.5 maxv
929 1.5 maxv struct x86_store {
930 1.5 maxv enum x86_store_type type;
931 1.5 maxv union {
932 1.5 maxv const struct x86_reg *reg;
933 1.5 maxv struct x86_immediate imm;
934 1.5 maxv struct x86_sib sib;
935 1.5 maxv uint64_t dmo;
936 1.5 maxv } u;
937 1.5 maxv struct x86_disp disp;
938 1.6 maxv int hardseg;
939 1.5 maxv };
940 1.5 maxv
941 1.5 maxv struct x86_instr {
942 1.5 maxv size_t len;
943 1.5 maxv bool legpref[NLEG];
944 1.5 maxv struct x86_rexpref rexpref;
945 1.5 maxv size_t operand_size;
946 1.5 maxv size_t address_size;
947 1.10 maxv uint64_t zeroextend_mask;
948 1.5 maxv
949 1.5 maxv struct x86_regmodrm regmodrm;
950 1.5 maxv
951 1.5 maxv const struct x86_opcode *opcode;
952 1.5 maxv
953 1.5 maxv struct x86_store src;
954 1.5 maxv struct x86_store dst;
955 1.5 maxv
956 1.5 maxv struct x86_store *strm;
957 1.5 maxv
958 1.5 maxv void (*emul)(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
959 1.5 maxv };
960 1.5 maxv
961 1.5 maxv struct x86_decode_fsm {
962 1.5 maxv /* vcpu */
963 1.5 maxv bool is64bit;
964 1.5 maxv bool is32bit;
965 1.5 maxv bool is16bit;
966 1.5 maxv
967 1.5 maxv /* fsm */
968 1.5 maxv int (*fn)(struct x86_decode_fsm *, struct x86_instr *);
969 1.5 maxv uint8_t *buf;
970 1.5 maxv uint8_t *end;
971 1.5 maxv };
972 1.5 maxv
973 1.5 maxv struct x86_opcode {
974 1.5 maxv uint8_t byte;
975 1.5 maxv bool regmodrm;
976 1.5 maxv bool regtorm;
977 1.5 maxv bool dmo;
978 1.5 maxv bool todmo;
979 1.6 maxv bool movs;
980 1.5 maxv bool stos;
981 1.5 maxv bool lods;
982 1.5 maxv bool szoverride;
983 1.5 maxv int defsize;
984 1.5 maxv int allsize;
985 1.11 maxv bool group1;
986 1.5 maxv bool group11;
987 1.5 maxv bool immediate;
988 1.5 maxv int flags;
989 1.5 maxv void (*emul)(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
990 1.5 maxv };
991 1.5 maxv
992 1.5 maxv struct x86_group_entry {
993 1.5 maxv void (*emul)(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
994 1.5 maxv };
995 1.5 maxv
996 1.5 maxv #define OPSIZE_BYTE 0x01
997 1.5 maxv #define OPSIZE_WORD 0x02 /* 2 bytes */
998 1.5 maxv #define OPSIZE_DOUB 0x04 /* 4 bytes */
999 1.5 maxv #define OPSIZE_QUAD 0x08 /* 8 bytes */
1000 1.5 maxv
1001 1.11 maxv #define FLAG_imm8 0x01
1002 1.11 maxv #define FLAG_immz 0x02
1003 1.11 maxv #define FLAG_ze 0x04
1004 1.11 maxv
1005 1.11 maxv static const struct x86_group_entry group1[8] = {
1006 1.11 maxv [1] = { .emul = x86_emul_or },
1007 1.11 maxv [4] = { .emul = x86_emul_and },
1008 1.11 maxv [6] = { .emul = x86_emul_xor }
1009 1.11 maxv };
1010 1.5 maxv
1011 1.5 maxv static const struct x86_group_entry group11[8] = {
1012 1.5 maxv [0] = { .emul = x86_emul_mov }
1013 1.5 maxv };
1014 1.5 maxv
1015 1.5 maxv static const struct x86_opcode primary_opcode_table[] = {
1016 1.5 maxv /*
1017 1.11 maxv * Group1
1018 1.11 maxv */
1019 1.11 maxv {
1020 1.11 maxv /* Ev, Ib */
1021 1.11 maxv .byte = 0x83,
1022 1.11 maxv .regmodrm = true,
1023 1.11 maxv .regtorm = true,
1024 1.11 maxv .szoverride = true,
1025 1.11 maxv .defsize = -1,
1026 1.11 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1027 1.11 maxv .group1 = true,
1028 1.11 maxv .immediate = true,
1029 1.11 maxv .flags = FLAG_imm8,
1030 1.11 maxv .emul = NULL /* group1 */
1031 1.11 maxv },
1032 1.11 maxv
1033 1.11 maxv /*
1034 1.5 maxv * Group11
1035 1.5 maxv */
1036 1.5 maxv {
1037 1.11 maxv /* Eb, Ib */
1038 1.5 maxv .byte = 0xC6,
1039 1.5 maxv .regmodrm = true,
1040 1.5 maxv .regtorm = true,
1041 1.5 maxv .szoverride = false,
1042 1.5 maxv .defsize = OPSIZE_BYTE,
1043 1.5 maxv .allsize = -1,
1044 1.5 maxv .group11 = true,
1045 1.5 maxv .immediate = true,
1046 1.5 maxv .emul = NULL /* group11 */
1047 1.5 maxv },
1048 1.5 maxv {
1049 1.11 maxv /* Ev, Iz */
1050 1.5 maxv .byte = 0xC7,
1051 1.5 maxv .regmodrm = true,
1052 1.5 maxv .regtorm = true,
1053 1.5 maxv .szoverride = true,
1054 1.5 maxv .defsize = -1,
1055 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1056 1.5 maxv .group11 = true,
1057 1.5 maxv .immediate = true,
1058 1.11 maxv .flags = FLAG_immz,
1059 1.5 maxv .emul = NULL /* group11 */
1060 1.5 maxv },
1061 1.5 maxv
1062 1.5 maxv /*
1063 1.5 maxv * OR
1064 1.5 maxv */
1065 1.5 maxv {
1066 1.5 maxv /* Eb, Gb */
1067 1.5 maxv .byte = 0x08,
1068 1.5 maxv .regmodrm = true,
1069 1.5 maxv .regtorm = true,
1070 1.5 maxv .szoverride = false,
1071 1.5 maxv .defsize = OPSIZE_BYTE,
1072 1.5 maxv .allsize = -1,
1073 1.5 maxv .emul = x86_emul_or
1074 1.5 maxv },
1075 1.5 maxv {
1076 1.5 maxv /* Ev, Gv */
1077 1.5 maxv .byte = 0x09,
1078 1.5 maxv .regmodrm = true,
1079 1.5 maxv .regtorm = true,
1080 1.5 maxv .szoverride = true,
1081 1.5 maxv .defsize = -1,
1082 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1083 1.5 maxv .emul = x86_emul_or
1084 1.5 maxv },
1085 1.5 maxv {
1086 1.5 maxv /* Gb, Eb */
1087 1.5 maxv .byte = 0x0A,
1088 1.5 maxv .regmodrm = true,
1089 1.5 maxv .regtorm = false,
1090 1.5 maxv .szoverride = false,
1091 1.5 maxv .defsize = OPSIZE_BYTE,
1092 1.5 maxv .allsize = -1,
1093 1.5 maxv .emul = x86_emul_or
1094 1.5 maxv },
1095 1.5 maxv {
1096 1.5 maxv /* Gv, Ev */
1097 1.5 maxv .byte = 0x0B,
1098 1.5 maxv .regmodrm = true,
1099 1.5 maxv .regtorm = false,
1100 1.5 maxv .szoverride = true,
1101 1.5 maxv .defsize = -1,
1102 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1103 1.5 maxv .emul = x86_emul_or
1104 1.5 maxv },
1105 1.5 maxv
1106 1.5 maxv /*
1107 1.5 maxv * AND
1108 1.5 maxv */
1109 1.5 maxv {
1110 1.5 maxv /* Eb, Gb */
1111 1.5 maxv .byte = 0x20,
1112 1.5 maxv .regmodrm = true,
1113 1.5 maxv .regtorm = true,
1114 1.5 maxv .szoverride = false,
1115 1.5 maxv .defsize = OPSIZE_BYTE,
1116 1.5 maxv .allsize = -1,
1117 1.5 maxv .emul = x86_emul_and
1118 1.5 maxv },
1119 1.5 maxv {
1120 1.5 maxv /* Ev, Gv */
1121 1.5 maxv .byte = 0x21,
1122 1.5 maxv .regmodrm = true,
1123 1.5 maxv .regtorm = true,
1124 1.5 maxv .szoverride = true,
1125 1.5 maxv .defsize = -1,
1126 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1127 1.5 maxv .emul = x86_emul_and
1128 1.5 maxv },
1129 1.5 maxv {
1130 1.5 maxv /* Gb, Eb */
1131 1.5 maxv .byte = 0x22,
1132 1.5 maxv .regmodrm = true,
1133 1.5 maxv .regtorm = false,
1134 1.5 maxv .szoverride = false,
1135 1.5 maxv .defsize = OPSIZE_BYTE,
1136 1.5 maxv .allsize = -1,
1137 1.5 maxv .emul = x86_emul_and
1138 1.5 maxv },
1139 1.5 maxv {
1140 1.5 maxv /* Gv, Ev */
1141 1.5 maxv .byte = 0x23,
1142 1.5 maxv .regmodrm = true,
1143 1.5 maxv .regtorm = false,
1144 1.5 maxv .szoverride = true,
1145 1.5 maxv .defsize = -1,
1146 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1147 1.5 maxv .emul = x86_emul_and
1148 1.5 maxv },
1149 1.5 maxv
1150 1.5 maxv /*
1151 1.5 maxv * XOR
1152 1.5 maxv */
1153 1.5 maxv {
1154 1.5 maxv /* Eb, Gb */
1155 1.5 maxv .byte = 0x30,
1156 1.5 maxv .regmodrm = true,
1157 1.5 maxv .regtorm = true,
1158 1.5 maxv .szoverride = false,
1159 1.5 maxv .defsize = OPSIZE_BYTE,
1160 1.5 maxv .allsize = -1,
1161 1.5 maxv .emul = x86_emul_xor
1162 1.5 maxv },
1163 1.5 maxv {
1164 1.5 maxv /* Ev, Gv */
1165 1.5 maxv .byte = 0x31,
1166 1.5 maxv .regmodrm = true,
1167 1.5 maxv .regtorm = true,
1168 1.5 maxv .szoverride = true,
1169 1.5 maxv .defsize = -1,
1170 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1171 1.5 maxv .emul = x86_emul_xor
1172 1.5 maxv },
1173 1.5 maxv {
1174 1.5 maxv /* Gb, Eb */
1175 1.5 maxv .byte = 0x32,
1176 1.5 maxv .regmodrm = true,
1177 1.5 maxv .regtorm = false,
1178 1.5 maxv .szoverride = false,
1179 1.5 maxv .defsize = OPSIZE_BYTE,
1180 1.5 maxv .allsize = -1,
1181 1.5 maxv .emul = x86_emul_xor
1182 1.5 maxv },
1183 1.5 maxv {
1184 1.5 maxv /* Gv, Ev */
1185 1.5 maxv .byte = 0x33,
1186 1.5 maxv .regmodrm = true,
1187 1.5 maxv .regtorm = false,
1188 1.5 maxv .szoverride = true,
1189 1.5 maxv .defsize = -1,
1190 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1191 1.5 maxv .emul = x86_emul_xor
1192 1.5 maxv },
1193 1.5 maxv
1194 1.5 maxv /*
1195 1.5 maxv * MOV
1196 1.5 maxv */
1197 1.5 maxv {
1198 1.5 maxv /* Eb, Gb */
1199 1.5 maxv .byte = 0x88,
1200 1.5 maxv .regmodrm = true,
1201 1.5 maxv .regtorm = true,
1202 1.5 maxv .szoverride = false,
1203 1.5 maxv .defsize = OPSIZE_BYTE,
1204 1.5 maxv .allsize = -1,
1205 1.5 maxv .emul = x86_emul_mov
1206 1.5 maxv },
1207 1.5 maxv {
1208 1.5 maxv /* Ev, Gv */
1209 1.5 maxv .byte = 0x89,
1210 1.5 maxv .regmodrm = true,
1211 1.5 maxv .regtorm = true,
1212 1.5 maxv .szoverride = true,
1213 1.5 maxv .defsize = -1,
1214 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1215 1.5 maxv .emul = x86_emul_mov
1216 1.5 maxv },
1217 1.5 maxv {
1218 1.5 maxv /* Gb, Eb */
1219 1.5 maxv .byte = 0x8A,
1220 1.5 maxv .regmodrm = true,
1221 1.5 maxv .regtorm = false,
1222 1.5 maxv .szoverride = false,
1223 1.5 maxv .defsize = OPSIZE_BYTE,
1224 1.5 maxv .allsize = -1,
1225 1.5 maxv .emul = x86_emul_mov
1226 1.5 maxv },
1227 1.5 maxv {
1228 1.5 maxv /* Gv, Ev */
1229 1.5 maxv .byte = 0x8B,
1230 1.5 maxv .regmodrm = true,
1231 1.5 maxv .regtorm = false,
1232 1.5 maxv .szoverride = true,
1233 1.5 maxv .defsize = -1,
1234 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1235 1.5 maxv .emul = x86_emul_mov
1236 1.5 maxv },
1237 1.5 maxv {
1238 1.5 maxv /* AL, Ob */
1239 1.5 maxv .byte = 0xA0,
1240 1.5 maxv .dmo = true,
1241 1.5 maxv .todmo = false,
1242 1.5 maxv .szoverride = false,
1243 1.5 maxv .defsize = OPSIZE_BYTE,
1244 1.5 maxv .allsize = -1,
1245 1.5 maxv .emul = x86_emul_mov
1246 1.5 maxv },
1247 1.5 maxv {
1248 1.5 maxv /* rAX, Ov */
1249 1.5 maxv .byte = 0xA1,
1250 1.5 maxv .dmo = true,
1251 1.5 maxv .todmo = false,
1252 1.5 maxv .szoverride = true,
1253 1.5 maxv .defsize = -1,
1254 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1255 1.5 maxv .emul = x86_emul_mov
1256 1.5 maxv },
1257 1.5 maxv {
1258 1.5 maxv /* Ob, AL */
1259 1.5 maxv .byte = 0xA2,
1260 1.5 maxv .dmo = true,
1261 1.5 maxv .todmo = true,
1262 1.5 maxv .szoverride = false,
1263 1.5 maxv .defsize = OPSIZE_BYTE,
1264 1.5 maxv .allsize = -1,
1265 1.5 maxv .emul = x86_emul_mov
1266 1.5 maxv },
1267 1.5 maxv {
1268 1.5 maxv /* Ov, rAX */
1269 1.5 maxv .byte = 0xA3,
1270 1.5 maxv .dmo = true,
1271 1.5 maxv .todmo = true,
1272 1.5 maxv .szoverride = true,
1273 1.5 maxv .defsize = -1,
1274 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1275 1.5 maxv .emul = x86_emul_mov
1276 1.5 maxv },
1277 1.5 maxv
1278 1.5 maxv /*
1279 1.6 maxv * MOVS
1280 1.6 maxv */
1281 1.6 maxv {
1282 1.6 maxv /* Yb, Xb */
1283 1.6 maxv .byte = 0xA4,
1284 1.6 maxv .movs = true,
1285 1.6 maxv .szoverride = false,
1286 1.6 maxv .defsize = OPSIZE_BYTE,
1287 1.6 maxv .allsize = -1,
1288 1.6 maxv .emul = x86_emul_movs
1289 1.6 maxv },
1290 1.6 maxv {
1291 1.6 maxv /* Yv, Xv */
1292 1.6 maxv .byte = 0xA5,
1293 1.6 maxv .movs = true,
1294 1.6 maxv .szoverride = true,
1295 1.6 maxv .defsize = -1,
1296 1.6 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1297 1.6 maxv .emul = x86_emul_movs
1298 1.6 maxv },
1299 1.6 maxv
1300 1.6 maxv /*
1301 1.5 maxv * STOS
1302 1.5 maxv */
1303 1.5 maxv {
1304 1.5 maxv /* Yb, AL */
1305 1.5 maxv .byte = 0xAA,
1306 1.5 maxv .stos = true,
1307 1.5 maxv .szoverride = false,
1308 1.5 maxv .defsize = OPSIZE_BYTE,
1309 1.5 maxv .allsize = -1,
1310 1.5 maxv .emul = x86_emul_stos
1311 1.5 maxv },
1312 1.5 maxv {
1313 1.5 maxv /* Yv, rAX */
1314 1.5 maxv .byte = 0xAB,
1315 1.5 maxv .stos = true,
1316 1.5 maxv .szoverride = true,
1317 1.5 maxv .defsize = -1,
1318 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1319 1.5 maxv .emul = x86_emul_stos
1320 1.5 maxv },
1321 1.5 maxv
1322 1.5 maxv /*
1323 1.5 maxv * LODS
1324 1.5 maxv */
1325 1.5 maxv {
1326 1.5 maxv /* AL, Xb */
1327 1.5 maxv .byte = 0xAC,
1328 1.5 maxv .lods = true,
1329 1.5 maxv .szoverride = false,
1330 1.5 maxv .defsize = OPSIZE_BYTE,
1331 1.5 maxv .allsize = -1,
1332 1.5 maxv .emul = x86_emul_lods
1333 1.5 maxv },
1334 1.5 maxv {
1335 1.5 maxv /* rAX, Xv */
1336 1.5 maxv .byte = 0xAD,
1337 1.5 maxv .lods = true,
1338 1.5 maxv .szoverride = true,
1339 1.5 maxv .defsize = -1,
1340 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1341 1.5 maxv .emul = x86_emul_lods
1342 1.5 maxv },
1343 1.5 maxv };
1344 1.5 maxv
1345 1.10 maxv static const struct x86_opcode secondary_opcode_table[] = {
1346 1.10 maxv /*
1347 1.10 maxv * MOVZX
1348 1.10 maxv */
1349 1.10 maxv {
1350 1.10 maxv /* Gv, Eb */
1351 1.10 maxv .byte = 0xB6,
1352 1.10 maxv .regmodrm = true,
1353 1.10 maxv .regtorm = false,
1354 1.10 maxv .szoverride = true,
1355 1.10 maxv .defsize = OPSIZE_BYTE,
1356 1.10 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1357 1.11 maxv .flags = FLAG_ze,
1358 1.10 maxv .emul = x86_emul_mov
1359 1.10 maxv },
1360 1.10 maxv {
1361 1.10 maxv /* Gv, Ew */
1362 1.10 maxv .byte = 0xB7,
1363 1.10 maxv .regmodrm = true,
1364 1.10 maxv .regtorm = false,
1365 1.10 maxv .szoverride = true,
1366 1.10 maxv .defsize = OPSIZE_WORD,
1367 1.10 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1368 1.11 maxv .flags = FLAG_ze,
1369 1.10 maxv .emul = x86_emul_mov
1370 1.10 maxv },
1371 1.10 maxv };
1372 1.10 maxv
1373 1.5 maxv static const struct x86_reg gpr_map__rip = { NVMM_X64_GPR_RIP, 0xFFFFFFFFFFFFFFFF };
1374 1.5 maxv
1375 1.5 maxv /* [REX-present][enc][opsize] */
1376 1.5 maxv static const struct x86_reg gpr_map__special[2][4][8] = {
1377 1.5 maxv [false] = {
1378 1.5 maxv /* No REX prefix. */
1379 1.5 maxv [0b00] = {
1380 1.5 maxv [0] = { NVMM_X64_GPR_RAX, 0x000000000000FF00 }, /* AH */
1381 1.5 maxv [1] = { NVMM_X64_GPR_RSP, 0x000000000000FFFF }, /* SP */
1382 1.5 maxv [2] = { -1, 0 },
1383 1.5 maxv [3] = { NVMM_X64_GPR_RSP, 0x00000000FFFFFFFF }, /* ESP */
1384 1.5 maxv [4] = { -1, 0 },
1385 1.5 maxv [5] = { -1, 0 },
1386 1.5 maxv [6] = { -1, 0 },
1387 1.5 maxv [7] = { -1, 0 },
1388 1.5 maxv },
1389 1.5 maxv [0b01] = {
1390 1.5 maxv [0] = { NVMM_X64_GPR_RCX, 0x000000000000FF00 }, /* CH */
1391 1.5 maxv [1] = { NVMM_X64_GPR_RBP, 0x000000000000FFFF }, /* BP */
1392 1.5 maxv [2] = { -1, 0 },
1393 1.5 maxv [3] = { NVMM_X64_GPR_RBP, 0x00000000FFFFFFFF }, /* EBP */
1394 1.5 maxv [4] = { -1, 0 },
1395 1.5 maxv [5] = { -1, 0 },
1396 1.5 maxv [6] = { -1, 0 },
1397 1.5 maxv [7] = { -1, 0 },
1398 1.5 maxv },
1399 1.5 maxv [0b10] = {
1400 1.5 maxv [0] = { NVMM_X64_GPR_RDX, 0x000000000000FF00 }, /* DH */
1401 1.5 maxv [1] = { NVMM_X64_GPR_RSI, 0x000000000000FFFF }, /* SI */
1402 1.5 maxv [2] = { -1, 0 },
1403 1.5 maxv [3] = { NVMM_X64_GPR_RSI, 0x00000000FFFFFFFF }, /* ESI */
1404 1.5 maxv [4] = { -1, 0 },
1405 1.5 maxv [5] = { -1, 0 },
1406 1.5 maxv [6] = { -1, 0 },
1407 1.5 maxv [7] = { -1, 0 },
1408 1.5 maxv },
1409 1.5 maxv [0b11] = {
1410 1.5 maxv [0] = { NVMM_X64_GPR_RBX, 0x000000000000FF00 }, /* BH */
1411 1.5 maxv [1] = { NVMM_X64_GPR_RDI, 0x000000000000FFFF }, /* DI */
1412 1.5 maxv [2] = { -1, 0 },
1413 1.5 maxv [3] = { NVMM_X64_GPR_RDI, 0x00000000FFFFFFFF }, /* EDI */
1414 1.5 maxv [4] = { -1, 0 },
1415 1.5 maxv [5] = { -1, 0 },
1416 1.5 maxv [6] = { -1, 0 },
1417 1.5 maxv [7] = { -1, 0 },
1418 1.5 maxv }
1419 1.5 maxv },
1420 1.5 maxv [true] = {
1421 1.5 maxv /* Has REX prefix. */
1422 1.5 maxv [0b00] = {
1423 1.5 maxv [0] = { NVMM_X64_GPR_RSP, 0x00000000000000FF }, /* SPL */
1424 1.5 maxv [1] = { NVMM_X64_GPR_RSP, 0x000000000000FFFF }, /* SP */
1425 1.5 maxv [2] = { -1, 0 },
1426 1.5 maxv [3] = { NVMM_X64_GPR_RSP, 0x00000000FFFFFFFF }, /* ESP */
1427 1.5 maxv [4] = { -1, 0 },
1428 1.5 maxv [5] = { -1, 0 },
1429 1.5 maxv [6] = { -1, 0 },
1430 1.5 maxv [7] = { NVMM_X64_GPR_RSP, 0xFFFFFFFFFFFFFFFF }, /* RSP */
1431 1.5 maxv },
1432 1.5 maxv [0b01] = {
1433 1.5 maxv [0] = { NVMM_X64_GPR_RBP, 0x00000000000000FF }, /* BPL */
1434 1.5 maxv [1] = { NVMM_X64_GPR_RBP, 0x000000000000FFFF }, /* BP */
1435 1.5 maxv [2] = { -1, 0 },
1436 1.5 maxv [3] = { NVMM_X64_GPR_RBP, 0x00000000FFFFFFFF }, /* EBP */
1437 1.5 maxv [4] = { -1, 0 },
1438 1.5 maxv [5] = { -1, 0 },
1439 1.5 maxv [6] = { -1, 0 },
1440 1.5 maxv [7] = { NVMM_X64_GPR_RBP, 0xFFFFFFFFFFFFFFFF }, /* RBP */
1441 1.5 maxv },
1442 1.5 maxv [0b10] = {
1443 1.5 maxv [0] = { NVMM_X64_GPR_RSI, 0x00000000000000FF }, /* SIL */
1444 1.5 maxv [1] = { NVMM_X64_GPR_RSI, 0x000000000000FFFF }, /* SI */
1445 1.5 maxv [2] = { -1, 0 },
1446 1.5 maxv [3] = { NVMM_X64_GPR_RSI, 0x00000000FFFFFFFF }, /* ESI */
1447 1.5 maxv [4] = { -1, 0 },
1448 1.5 maxv [5] = { -1, 0 },
1449 1.5 maxv [6] = { -1, 0 },
1450 1.5 maxv [7] = { NVMM_X64_GPR_RSI, 0xFFFFFFFFFFFFFFFF }, /* RSI */
1451 1.5 maxv },
1452 1.5 maxv [0b11] = {
1453 1.5 maxv [0] = { NVMM_X64_GPR_RDI, 0x00000000000000FF }, /* DIL */
1454 1.5 maxv [1] = { NVMM_X64_GPR_RDI, 0x000000000000FFFF }, /* DI */
1455 1.5 maxv [2] = { -1, 0 },
1456 1.5 maxv [3] = { NVMM_X64_GPR_RDI, 0x00000000FFFFFFFF }, /* EDI */
1457 1.5 maxv [4] = { -1, 0 },
1458 1.5 maxv [5] = { -1, 0 },
1459 1.5 maxv [6] = { -1, 0 },
1460 1.5 maxv [7] = { NVMM_X64_GPR_RDI, 0xFFFFFFFFFFFFFFFF }, /* RDI */
1461 1.5 maxv }
1462 1.5 maxv }
1463 1.5 maxv };
1464 1.5 maxv
1465 1.5 maxv /* [depends][enc][size] */
1466 1.5 maxv static const struct x86_reg gpr_map[2][8][8] = {
1467 1.5 maxv [false] = {
1468 1.5 maxv /* Not extended. */
1469 1.5 maxv [0b000] = {
1470 1.5 maxv [0] = { NVMM_X64_GPR_RAX, 0x00000000000000FF }, /* AL */
1471 1.5 maxv [1] = { NVMM_X64_GPR_RAX, 0x000000000000FFFF }, /* AX */
1472 1.5 maxv [2] = { -1, 0 },
1473 1.5 maxv [3] = { NVMM_X64_GPR_RAX, 0x00000000FFFFFFFF }, /* EAX */
1474 1.5 maxv [4] = { -1, 0 },
1475 1.5 maxv [5] = { -1, 0 },
1476 1.5 maxv [6] = { -1, 0 },
1477 1.5 maxv [7] = { NVMM_X64_GPR_RAX, 0x00000000FFFFFFFF }, /* RAX */
1478 1.5 maxv },
1479 1.5 maxv [0b001] = {
1480 1.5 maxv [0] = { NVMM_X64_GPR_RCX, 0x00000000000000FF }, /* CL */
1481 1.5 maxv [1] = { NVMM_X64_GPR_RCX, 0x000000000000FFFF }, /* CX */
1482 1.5 maxv [2] = { -1, 0 },
1483 1.5 maxv [3] = { NVMM_X64_GPR_RCX, 0x00000000FFFFFFFF }, /* ECX */
1484 1.5 maxv [4] = { -1, 0 },
1485 1.5 maxv [5] = { -1, 0 },
1486 1.5 maxv [6] = { -1, 0 },
1487 1.5 maxv [7] = { NVMM_X64_GPR_RCX, 0x00000000FFFFFFFF }, /* RCX */
1488 1.5 maxv },
1489 1.5 maxv [0b010] = {
1490 1.5 maxv [0] = { NVMM_X64_GPR_RDX, 0x00000000000000FF }, /* DL */
1491 1.5 maxv [1] = { NVMM_X64_GPR_RDX, 0x000000000000FFFF }, /* DX */
1492 1.5 maxv [2] = { -1, 0 },
1493 1.5 maxv [3] = { NVMM_X64_GPR_RDX, 0x00000000FFFFFFFF }, /* EDX */
1494 1.5 maxv [4] = { -1, 0 },
1495 1.5 maxv [5] = { -1, 0 },
1496 1.5 maxv [6] = { -1, 0 },
1497 1.5 maxv [7] = { NVMM_X64_GPR_RDX, 0x00000000FFFFFFFF }, /* RDX */
1498 1.5 maxv },
1499 1.5 maxv [0b011] = {
1500 1.5 maxv [0] = { NVMM_X64_GPR_RBX, 0x00000000000000FF }, /* BL */
1501 1.5 maxv [1] = { NVMM_X64_GPR_RBX, 0x000000000000FFFF }, /* BX */
1502 1.5 maxv [2] = { -1, 0 },
1503 1.5 maxv [3] = { NVMM_X64_GPR_RBX, 0x00000000FFFFFFFF }, /* EBX */
1504 1.5 maxv [4] = { -1, 0 },
1505 1.5 maxv [5] = { -1, 0 },
1506 1.5 maxv [6] = { -1, 0 },
1507 1.5 maxv [7] = { NVMM_X64_GPR_RBX, 0x00000000FFFFFFFF }, /* RBX */
1508 1.5 maxv },
1509 1.5 maxv [0b100] = {
1510 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1511 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1512 1.5 maxv [2] = { -1, 0 },
1513 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1514 1.5 maxv [4] = { -1, 0 },
1515 1.5 maxv [5] = { -1, 0 },
1516 1.5 maxv [6] = { -1, 0 },
1517 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1518 1.5 maxv },
1519 1.5 maxv [0b101] = {
1520 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1521 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1522 1.5 maxv [2] = { -1, 0 },
1523 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1524 1.5 maxv [4] = { -1, 0 },
1525 1.5 maxv [5] = { -1, 0 },
1526 1.5 maxv [6] = { -1, 0 },
1527 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1528 1.5 maxv },
1529 1.5 maxv [0b110] = {
1530 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1531 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1532 1.5 maxv [2] = { -1, 0 },
1533 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1534 1.5 maxv [4] = { -1, 0 },
1535 1.5 maxv [5] = { -1, 0 },
1536 1.5 maxv [6] = { -1, 0 },
1537 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1538 1.5 maxv },
1539 1.5 maxv [0b111] = {
1540 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1541 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1542 1.5 maxv [2] = { -1, 0 },
1543 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1544 1.5 maxv [4] = { -1, 0 },
1545 1.5 maxv [5] = { -1, 0 },
1546 1.5 maxv [6] = { -1, 0 },
1547 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1548 1.5 maxv },
1549 1.5 maxv },
1550 1.5 maxv [true] = {
1551 1.5 maxv /* Extended. */
1552 1.5 maxv [0b000] = {
1553 1.5 maxv [0] = { NVMM_X64_GPR_R8, 0x00000000000000FF }, /* R8B */
1554 1.5 maxv [1] = { NVMM_X64_GPR_R8, 0x000000000000FFFF }, /* R8W */
1555 1.5 maxv [2] = { -1, 0 },
1556 1.5 maxv [3] = { NVMM_X64_GPR_R8, 0x00000000FFFFFFFF }, /* R8D */
1557 1.5 maxv [4] = { -1, 0 },
1558 1.5 maxv [5] = { -1, 0 },
1559 1.5 maxv [6] = { -1, 0 },
1560 1.5 maxv [7] = { NVMM_X64_GPR_R8, 0x00000000FFFFFFFF }, /* R8 */
1561 1.5 maxv },
1562 1.5 maxv [0b001] = {
1563 1.5 maxv [0] = { NVMM_X64_GPR_R9, 0x00000000000000FF }, /* R9B */
1564 1.5 maxv [1] = { NVMM_X64_GPR_R9, 0x000000000000FFFF }, /* R9W */
1565 1.5 maxv [2] = { -1, 0 },
1566 1.5 maxv [3] = { NVMM_X64_GPR_R9, 0x00000000FFFFFFFF }, /* R9D */
1567 1.5 maxv [4] = { -1, 0 },
1568 1.5 maxv [5] = { -1, 0 },
1569 1.5 maxv [6] = { -1, 0 },
1570 1.5 maxv [7] = { NVMM_X64_GPR_R9, 0x00000000FFFFFFFF }, /* R9 */
1571 1.5 maxv },
1572 1.5 maxv [0b010] = {
1573 1.5 maxv [0] = { NVMM_X64_GPR_R10, 0x00000000000000FF }, /* R10B */
1574 1.5 maxv [1] = { NVMM_X64_GPR_R10, 0x000000000000FFFF }, /* R10W */
1575 1.5 maxv [2] = { -1, 0 },
1576 1.5 maxv [3] = { NVMM_X64_GPR_R10, 0x00000000FFFFFFFF }, /* R10D */
1577 1.5 maxv [4] = { -1, 0 },
1578 1.5 maxv [5] = { -1, 0 },
1579 1.5 maxv [6] = { -1, 0 },
1580 1.5 maxv [7] = { NVMM_X64_GPR_R10, 0x00000000FFFFFFFF }, /* R10 */
1581 1.5 maxv },
1582 1.5 maxv [0b011] = {
1583 1.5 maxv [0] = { NVMM_X64_GPR_R11, 0x00000000000000FF }, /* R11B */
1584 1.5 maxv [1] = { NVMM_X64_GPR_R11, 0x000000000000FFFF }, /* R11W */
1585 1.5 maxv [2] = { -1, 0 },
1586 1.5 maxv [3] = { NVMM_X64_GPR_R11, 0x00000000FFFFFFFF }, /* R11D */
1587 1.5 maxv [4] = { -1, 0 },
1588 1.5 maxv [5] = { -1, 0 },
1589 1.5 maxv [6] = { -1, 0 },
1590 1.5 maxv [7] = { NVMM_X64_GPR_R11, 0x00000000FFFFFFFF }, /* R11 */
1591 1.5 maxv },
1592 1.5 maxv [0b100] = {
1593 1.5 maxv [0] = { NVMM_X64_GPR_R12, 0x00000000000000FF }, /* R12B */
1594 1.5 maxv [1] = { NVMM_X64_GPR_R12, 0x000000000000FFFF }, /* R12W */
1595 1.5 maxv [2] = { -1, 0 },
1596 1.5 maxv [3] = { NVMM_X64_GPR_R12, 0x00000000FFFFFFFF }, /* R12D */
1597 1.5 maxv [4] = { -1, 0 },
1598 1.5 maxv [5] = { -1, 0 },
1599 1.5 maxv [6] = { -1, 0 },
1600 1.5 maxv [7] = { NVMM_X64_GPR_R12, 0x00000000FFFFFFFF }, /* R12 */
1601 1.5 maxv },
1602 1.5 maxv [0b101] = {
1603 1.5 maxv [0] = { NVMM_X64_GPR_R13, 0x00000000000000FF }, /* R13B */
1604 1.5 maxv [1] = { NVMM_X64_GPR_R13, 0x000000000000FFFF }, /* R13W */
1605 1.5 maxv [2] = { -1, 0 },
1606 1.5 maxv [3] = { NVMM_X64_GPR_R13, 0x00000000FFFFFFFF }, /* R13D */
1607 1.5 maxv [4] = { -1, 0 },
1608 1.5 maxv [5] = { -1, 0 },
1609 1.5 maxv [6] = { -1, 0 },
1610 1.5 maxv [7] = { NVMM_X64_GPR_R13, 0x00000000FFFFFFFF }, /* R13 */
1611 1.5 maxv },
1612 1.5 maxv [0b110] = {
1613 1.5 maxv [0] = { NVMM_X64_GPR_R14, 0x00000000000000FF }, /* R14B */
1614 1.5 maxv [1] = { NVMM_X64_GPR_R14, 0x000000000000FFFF }, /* R14W */
1615 1.5 maxv [2] = { -1, 0 },
1616 1.5 maxv [3] = { NVMM_X64_GPR_R14, 0x00000000FFFFFFFF }, /* R14D */
1617 1.5 maxv [4] = { -1, 0 },
1618 1.5 maxv [5] = { -1, 0 },
1619 1.5 maxv [6] = { -1, 0 },
1620 1.5 maxv [7] = { NVMM_X64_GPR_R14, 0x00000000FFFFFFFF }, /* R14 */
1621 1.5 maxv },
1622 1.5 maxv [0b111] = {
1623 1.5 maxv [0] = { NVMM_X64_GPR_R15, 0x00000000000000FF }, /* R15B */
1624 1.5 maxv [1] = { NVMM_X64_GPR_R15, 0x000000000000FFFF }, /* R15W */
1625 1.5 maxv [2] = { -1, 0 },
1626 1.5 maxv [3] = { NVMM_X64_GPR_R15, 0x00000000FFFFFFFF }, /* R15D */
1627 1.5 maxv [4] = { -1, 0 },
1628 1.5 maxv [5] = { -1, 0 },
1629 1.5 maxv [6] = { -1, 0 },
1630 1.5 maxv [7] = { NVMM_X64_GPR_R15, 0x00000000FFFFFFFF }, /* R15 */
1631 1.5 maxv },
1632 1.5 maxv }
1633 1.5 maxv };
1634 1.5 maxv
1635 1.5 maxv static int
1636 1.5 maxv node_overflow(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1637 1.5 maxv {
1638 1.5 maxv fsm->fn = NULL;
1639 1.5 maxv return -1;
1640 1.5 maxv }
1641 1.5 maxv
1642 1.5 maxv static int
1643 1.5 maxv fsm_read(struct x86_decode_fsm *fsm, uint8_t *bytes, size_t n)
1644 1.5 maxv {
1645 1.5 maxv if (fsm->buf + n > fsm->end) {
1646 1.5 maxv return -1;
1647 1.5 maxv }
1648 1.5 maxv memcpy(bytes, fsm->buf, n);
1649 1.5 maxv return 0;
1650 1.5 maxv }
1651 1.5 maxv
1652 1.5 maxv static void
1653 1.5 maxv fsm_advance(struct x86_decode_fsm *fsm, size_t n,
1654 1.5 maxv int (*fn)(struct x86_decode_fsm *, struct x86_instr *))
1655 1.5 maxv {
1656 1.5 maxv fsm->buf += n;
1657 1.5 maxv if (fsm->buf > fsm->end) {
1658 1.5 maxv fsm->fn = node_overflow;
1659 1.5 maxv } else {
1660 1.5 maxv fsm->fn = fn;
1661 1.5 maxv }
1662 1.5 maxv }
1663 1.5 maxv
1664 1.5 maxv static const struct x86_reg *
1665 1.5 maxv resolve_special_register(struct x86_instr *instr, uint8_t enc, size_t regsize)
1666 1.5 maxv {
1667 1.5 maxv enc &= 0b11;
1668 1.5 maxv if (regsize == 8) {
1669 1.5 maxv /* May be 64bit without REX */
1670 1.5 maxv return &gpr_map__special[1][enc][regsize-1];
1671 1.5 maxv }
1672 1.5 maxv return &gpr_map__special[instr->rexpref.present][enc][regsize-1];
1673 1.5 maxv }
1674 1.5 maxv
1675 1.5 maxv /*
1676 1.6 maxv * Special node, for MOVS. Fake two displacements of zero on the source and
1677 1.6 maxv * destination registers.
1678 1.6 maxv */
1679 1.6 maxv static int
1680 1.6 maxv node_movs(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1681 1.6 maxv {
1682 1.6 maxv size_t adrsize;
1683 1.6 maxv
1684 1.6 maxv adrsize = instr->address_size;
1685 1.6 maxv
1686 1.6 maxv /* DS:RSI */
1687 1.6 maxv instr->src.type = STORE_REG;
1688 1.6 maxv instr->src.u.reg = &gpr_map__special[1][2][adrsize-1];
1689 1.6 maxv instr->src.disp.type = DISP_0;
1690 1.6 maxv
1691 1.6 maxv /* ES:RDI, force ES */
1692 1.6 maxv instr->dst.type = STORE_REG;
1693 1.6 maxv instr->dst.u.reg = &gpr_map__special[1][3][adrsize-1];
1694 1.6 maxv instr->dst.disp.type = DISP_0;
1695 1.6 maxv instr->dst.hardseg = NVMM_X64_SEG_ES;
1696 1.6 maxv
1697 1.6 maxv fsm_advance(fsm, 0, NULL);
1698 1.6 maxv
1699 1.6 maxv return 0;
1700 1.6 maxv }
1701 1.6 maxv
1702 1.6 maxv /*
1703 1.5 maxv * Special node, for STOS and LODS. Fake a displacement of zero on the
1704 1.5 maxv * destination register.
1705 1.5 maxv */
1706 1.5 maxv static int
1707 1.5 maxv node_stlo(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1708 1.5 maxv {
1709 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1710 1.5 maxv struct x86_store *stlo, *streg;
1711 1.5 maxv size_t adrsize, regsize;
1712 1.5 maxv
1713 1.5 maxv adrsize = instr->address_size;
1714 1.5 maxv regsize = instr->operand_size;
1715 1.5 maxv
1716 1.5 maxv if (opcode->stos) {
1717 1.5 maxv streg = &instr->src;
1718 1.5 maxv stlo = &instr->dst;
1719 1.5 maxv } else {
1720 1.5 maxv streg = &instr->dst;
1721 1.5 maxv stlo = &instr->src;
1722 1.5 maxv }
1723 1.5 maxv
1724 1.5 maxv streg->type = STORE_REG;
1725 1.5 maxv streg->u.reg = &gpr_map[0][0][regsize-1]; /* ?AX */
1726 1.5 maxv
1727 1.5 maxv stlo->type = STORE_REG;
1728 1.5 maxv if (opcode->stos) {
1729 1.5 maxv /* ES:RDI, force ES */
1730 1.5 maxv stlo->u.reg = &gpr_map__special[1][3][adrsize-1];
1731 1.6 maxv stlo->hardseg = NVMM_X64_SEG_ES;
1732 1.5 maxv } else {
1733 1.5 maxv /* DS:RSI */
1734 1.5 maxv stlo->u.reg = &gpr_map__special[1][2][adrsize-1];
1735 1.5 maxv }
1736 1.5 maxv stlo->disp.type = DISP_0;
1737 1.5 maxv
1738 1.5 maxv fsm_advance(fsm, 0, NULL);
1739 1.5 maxv
1740 1.5 maxv return 0;
1741 1.5 maxv }
1742 1.5 maxv
1743 1.5 maxv static int
1744 1.5 maxv node_dmo(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1745 1.5 maxv {
1746 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1747 1.5 maxv struct x86_store *stdmo, *streg;
1748 1.5 maxv size_t adrsize, regsize;
1749 1.5 maxv
1750 1.5 maxv adrsize = instr->address_size;
1751 1.5 maxv regsize = instr->operand_size;
1752 1.5 maxv
1753 1.5 maxv if (opcode->todmo) {
1754 1.5 maxv streg = &instr->src;
1755 1.5 maxv stdmo = &instr->dst;
1756 1.5 maxv } else {
1757 1.5 maxv streg = &instr->dst;
1758 1.5 maxv stdmo = &instr->src;
1759 1.5 maxv }
1760 1.5 maxv
1761 1.5 maxv streg->type = STORE_REG;
1762 1.5 maxv streg->u.reg = &gpr_map[0][0][regsize-1]; /* ?AX */
1763 1.5 maxv
1764 1.5 maxv stdmo->type = STORE_DMO;
1765 1.5 maxv if (fsm_read(fsm, (uint8_t *)&stdmo->u.dmo, adrsize) == -1) {
1766 1.5 maxv return -1;
1767 1.5 maxv }
1768 1.5 maxv fsm_advance(fsm, adrsize, NULL);
1769 1.5 maxv
1770 1.5 maxv return 0;
1771 1.5 maxv }
1772 1.5 maxv
1773 1.11 maxv static uint64_t
1774 1.11 maxv sign_extend(uint64_t val, int size)
1775 1.11 maxv {
1776 1.11 maxv if (size == 1) {
1777 1.11 maxv if (val & __BIT(7))
1778 1.11 maxv val |= 0xFFFFFFFFFFFFFF00;
1779 1.11 maxv } else if (size == 2) {
1780 1.11 maxv if (val & __BIT(15))
1781 1.11 maxv val |= 0xFFFFFFFFFFFF0000;
1782 1.11 maxv } else if (size == 4) {
1783 1.11 maxv if (val & __BIT(31))
1784 1.11 maxv val |= 0xFFFFFFFF00000000;
1785 1.11 maxv }
1786 1.11 maxv return val;
1787 1.11 maxv }
1788 1.11 maxv
1789 1.5 maxv static int
1790 1.5 maxv node_immediate(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1791 1.5 maxv {
1792 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1793 1.5 maxv struct x86_store *store;
1794 1.5 maxv uint8_t immsize;
1795 1.11 maxv size_t sesize = 0;
1796 1.5 maxv
1797 1.5 maxv /* The immediate is the source */
1798 1.5 maxv store = &instr->src;
1799 1.5 maxv immsize = instr->operand_size;
1800 1.5 maxv
1801 1.11 maxv if (opcode->flags & FLAG_imm8) {
1802 1.11 maxv sesize = immsize;
1803 1.11 maxv immsize = 1;
1804 1.11 maxv } else if ((opcode->flags & FLAG_immz) && (immsize == 8)) {
1805 1.11 maxv sesize = immsize;
1806 1.5 maxv immsize = 4;
1807 1.5 maxv }
1808 1.5 maxv
1809 1.5 maxv store->type = STORE_IMM;
1810 1.5 maxv store->u.imm.size = immsize;
1811 1.11 maxv if (fsm_read(fsm, (uint8_t *)&store->u.imm.data, immsize) == -1) {
1812 1.5 maxv return -1;
1813 1.5 maxv }
1814 1.11 maxv fsm_advance(fsm, store->u.imm.size, NULL);
1815 1.5 maxv
1816 1.11 maxv if (sesize != 0) {
1817 1.11 maxv store->u.imm.data = sign_extend(store->u.imm.data, sesize);
1818 1.11 maxv store->u.imm.size = sesize;
1819 1.11 maxv }
1820 1.5 maxv
1821 1.5 maxv return 0;
1822 1.5 maxv }
1823 1.5 maxv
1824 1.5 maxv static int
1825 1.5 maxv node_disp(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1826 1.5 maxv {
1827 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1828 1.11 maxv uint64_t data = 0;
1829 1.5 maxv size_t n;
1830 1.5 maxv
1831 1.5 maxv if (instr->strm->disp.type == DISP_1) {
1832 1.5 maxv n = 1;
1833 1.5 maxv } else { /* DISP4 */
1834 1.5 maxv n = 4;
1835 1.5 maxv }
1836 1.5 maxv
1837 1.11 maxv if (fsm_read(fsm, (uint8_t *)&data, n) == -1) {
1838 1.5 maxv return -1;
1839 1.5 maxv }
1840 1.5 maxv
1841 1.11 maxv if (__predict_true(fsm->is64bit)) {
1842 1.11 maxv data = sign_extend(data, n);
1843 1.11 maxv }
1844 1.11 maxv
1845 1.11 maxv instr->strm->disp.data = data;
1846 1.11 maxv
1847 1.5 maxv if (opcode->immediate) {
1848 1.5 maxv fsm_advance(fsm, n, node_immediate);
1849 1.5 maxv } else {
1850 1.5 maxv fsm_advance(fsm, n, NULL);
1851 1.5 maxv }
1852 1.5 maxv
1853 1.5 maxv return 0;
1854 1.5 maxv }
1855 1.5 maxv
1856 1.5 maxv static const struct x86_reg *
1857 1.5 maxv get_register_idx(struct x86_instr *instr, uint8_t index)
1858 1.5 maxv {
1859 1.5 maxv uint8_t enc = index;
1860 1.5 maxv const struct x86_reg *reg;
1861 1.5 maxv size_t regsize;
1862 1.5 maxv
1863 1.5 maxv regsize = instr->address_size;
1864 1.5 maxv reg = &gpr_map[instr->rexpref.x][enc][regsize-1];
1865 1.5 maxv
1866 1.5 maxv if (reg->num == -1) {
1867 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
1868 1.5 maxv }
1869 1.5 maxv
1870 1.5 maxv return reg;
1871 1.5 maxv }
1872 1.5 maxv
1873 1.5 maxv static const struct x86_reg *
1874 1.5 maxv get_register_bas(struct x86_instr *instr, uint8_t base)
1875 1.5 maxv {
1876 1.5 maxv uint8_t enc = base;
1877 1.5 maxv const struct x86_reg *reg;
1878 1.5 maxv size_t regsize;
1879 1.5 maxv
1880 1.5 maxv regsize = instr->address_size;
1881 1.5 maxv reg = &gpr_map[instr->rexpref.b][enc][regsize-1];
1882 1.5 maxv if (reg->num == -1) {
1883 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
1884 1.5 maxv }
1885 1.5 maxv
1886 1.5 maxv return reg;
1887 1.5 maxv }
1888 1.5 maxv
1889 1.5 maxv static int
1890 1.5 maxv node_sib(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1891 1.5 maxv {
1892 1.5 maxv const struct x86_opcode *opcode;
1893 1.5 maxv uint8_t scale, index, base;
1894 1.5 maxv bool noindex, nobase;
1895 1.5 maxv uint8_t byte;
1896 1.5 maxv
1897 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
1898 1.5 maxv return -1;
1899 1.5 maxv }
1900 1.5 maxv
1901 1.5 maxv scale = ((byte & 0b11000000) >> 6);
1902 1.5 maxv index = ((byte & 0b00111000) >> 3);
1903 1.5 maxv base = ((byte & 0b00000111) >> 0);
1904 1.5 maxv
1905 1.5 maxv opcode = instr->opcode;
1906 1.5 maxv
1907 1.5 maxv noindex = false;
1908 1.5 maxv nobase = false;
1909 1.5 maxv
1910 1.5 maxv if (index == 0b100 && !instr->rexpref.x) {
1911 1.5 maxv /* Special case: the index is null */
1912 1.5 maxv noindex = true;
1913 1.5 maxv }
1914 1.5 maxv
1915 1.5 maxv if (instr->regmodrm.mod == 0b00 && base == 0b101) {
1916 1.5 maxv /* Special case: the base is null + disp32 */
1917 1.5 maxv instr->strm->disp.type = DISP_4;
1918 1.5 maxv nobase = true;
1919 1.5 maxv }
1920 1.5 maxv
1921 1.5 maxv instr->strm->type = STORE_SIB;
1922 1.5 maxv instr->strm->u.sib.scale = (1 << scale);
1923 1.5 maxv if (!noindex)
1924 1.5 maxv instr->strm->u.sib.idx = get_register_idx(instr, index);
1925 1.5 maxv if (!nobase)
1926 1.5 maxv instr->strm->u.sib.bas = get_register_bas(instr, base);
1927 1.5 maxv
1928 1.5 maxv /* May have a displacement, or an immediate */
1929 1.5 maxv if (instr->strm->disp.type == DISP_1 || instr->strm->disp.type == DISP_4) {
1930 1.5 maxv fsm_advance(fsm, 1, node_disp);
1931 1.5 maxv } else if (opcode->immediate) {
1932 1.5 maxv fsm_advance(fsm, 1, node_immediate);
1933 1.5 maxv } else {
1934 1.5 maxv fsm_advance(fsm, 1, NULL);
1935 1.5 maxv }
1936 1.5 maxv
1937 1.5 maxv return 0;
1938 1.5 maxv }
1939 1.5 maxv
1940 1.5 maxv static const struct x86_reg *
1941 1.5 maxv get_register_reg(struct x86_instr *instr, const struct x86_opcode *opcode)
1942 1.5 maxv {
1943 1.5 maxv uint8_t enc = instr->regmodrm.reg;
1944 1.5 maxv const struct x86_reg *reg;
1945 1.5 maxv size_t regsize;
1946 1.5 maxv
1947 1.11 maxv regsize = instr->operand_size;
1948 1.5 maxv
1949 1.5 maxv reg = &gpr_map[instr->rexpref.r][enc][regsize-1];
1950 1.5 maxv if (reg->num == -1) {
1951 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
1952 1.5 maxv }
1953 1.5 maxv
1954 1.5 maxv return reg;
1955 1.5 maxv }
1956 1.5 maxv
1957 1.5 maxv static const struct x86_reg *
1958 1.5 maxv get_register_rm(struct x86_instr *instr, const struct x86_opcode *opcode)
1959 1.5 maxv {
1960 1.5 maxv uint8_t enc = instr->regmodrm.rm;
1961 1.5 maxv const struct x86_reg *reg;
1962 1.5 maxv size_t regsize;
1963 1.5 maxv
1964 1.5 maxv if (instr->strm->disp.type == DISP_NONE) {
1965 1.11 maxv regsize = instr->operand_size;
1966 1.5 maxv } else {
1967 1.5 maxv /* Indirect access, the size is that of the address. */
1968 1.5 maxv regsize = instr->address_size;
1969 1.5 maxv }
1970 1.5 maxv
1971 1.5 maxv reg = &gpr_map[instr->rexpref.b][enc][regsize-1];
1972 1.5 maxv if (reg->num == -1) {
1973 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
1974 1.5 maxv }
1975 1.5 maxv
1976 1.5 maxv return reg;
1977 1.5 maxv }
1978 1.5 maxv
1979 1.5 maxv static inline bool
1980 1.5 maxv has_sib(struct x86_instr *instr)
1981 1.5 maxv {
1982 1.5 maxv return (instr->regmodrm.mod != 3 && instr->regmodrm.rm == 4);
1983 1.5 maxv }
1984 1.5 maxv
1985 1.5 maxv static inline bool
1986 1.9 maxv is_rip_relative(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1987 1.5 maxv {
1988 1.9 maxv return (fsm->is64bit && instr->strm->disp.type == DISP_0 &&
1989 1.9 maxv instr->regmodrm.rm == RM_RBP_DISP32);
1990 1.9 maxv }
1991 1.9 maxv
1992 1.9 maxv static inline bool
1993 1.9 maxv is_disp32_only(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1994 1.9 maxv {
1995 1.9 maxv return (!fsm->is64bit && instr->strm->disp.type == DISP_0 &&
1996 1.5 maxv instr->regmodrm.rm == RM_RBP_DISP32);
1997 1.5 maxv }
1998 1.5 maxv
1999 1.5 maxv static enum x86_disp_type
2000 1.5 maxv get_disp_type(struct x86_instr *instr)
2001 1.5 maxv {
2002 1.5 maxv switch (instr->regmodrm.mod) {
2003 1.5 maxv case MOD_DIS0: /* indirect */
2004 1.5 maxv return DISP_0;
2005 1.5 maxv case MOD_DIS1: /* indirect+1 */
2006 1.5 maxv return DISP_1;
2007 1.5 maxv case MOD_DIS4: /* indirect+4 */
2008 1.5 maxv return DISP_4;
2009 1.5 maxv case MOD_REG: /* direct */
2010 1.5 maxv default: /* gcc */
2011 1.5 maxv return DISP_NONE;
2012 1.5 maxv }
2013 1.5 maxv }
2014 1.5 maxv
2015 1.5 maxv static int
2016 1.5 maxv node_regmodrm(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2017 1.5 maxv {
2018 1.5 maxv struct x86_store *strg, *strm;
2019 1.5 maxv const struct x86_opcode *opcode;
2020 1.5 maxv const struct x86_reg *reg;
2021 1.5 maxv uint8_t byte;
2022 1.5 maxv
2023 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2024 1.5 maxv return -1;
2025 1.5 maxv }
2026 1.5 maxv
2027 1.5 maxv opcode = instr->opcode;
2028 1.5 maxv
2029 1.5 maxv instr->regmodrm.present = true;
2030 1.5 maxv instr->regmodrm.mod = ((byte & 0b11000000) >> 6);
2031 1.5 maxv instr->regmodrm.reg = ((byte & 0b00111000) >> 3);
2032 1.5 maxv instr->regmodrm.rm = ((byte & 0b00000111) >> 0);
2033 1.5 maxv
2034 1.5 maxv if (opcode->regtorm) {
2035 1.5 maxv strg = &instr->src;
2036 1.5 maxv strm = &instr->dst;
2037 1.5 maxv } else { /* RM to REG */
2038 1.5 maxv strm = &instr->src;
2039 1.5 maxv strg = &instr->dst;
2040 1.5 maxv }
2041 1.5 maxv
2042 1.5 maxv /* Save for later use. */
2043 1.5 maxv instr->strm = strm;
2044 1.5 maxv
2045 1.5 maxv /*
2046 1.5 maxv * Special cases: Groups. The REG field of REGMODRM is the index in
2047 1.5 maxv * the group. op1 gets overwritten in the Immediate node, if any.
2048 1.5 maxv */
2049 1.11 maxv if (opcode->group1) {
2050 1.11 maxv if (group1[instr->regmodrm.reg].emul == NULL) {
2051 1.11 maxv return -1;
2052 1.11 maxv }
2053 1.11 maxv instr->emul = group1[instr->regmodrm.reg].emul;
2054 1.11 maxv } else if (opcode->group11) {
2055 1.5 maxv if (group11[instr->regmodrm.reg].emul == NULL) {
2056 1.5 maxv return -1;
2057 1.5 maxv }
2058 1.5 maxv instr->emul = group11[instr->regmodrm.reg].emul;
2059 1.5 maxv }
2060 1.5 maxv
2061 1.5 maxv reg = get_register_reg(instr, opcode);
2062 1.5 maxv if (reg == NULL) {
2063 1.5 maxv return -1;
2064 1.5 maxv }
2065 1.5 maxv strg->type = STORE_REG;
2066 1.5 maxv strg->u.reg = reg;
2067 1.5 maxv
2068 1.5 maxv if (has_sib(instr)) {
2069 1.5 maxv /* Overwrites RM */
2070 1.5 maxv fsm_advance(fsm, 1, node_sib);
2071 1.5 maxv return 0;
2072 1.5 maxv }
2073 1.5 maxv
2074 1.5 maxv /* The displacement applies to RM. */
2075 1.5 maxv strm->disp.type = get_disp_type(instr);
2076 1.5 maxv
2077 1.9 maxv if (is_rip_relative(fsm, instr)) {
2078 1.5 maxv /* Overwrites RM */
2079 1.5 maxv strm->type = STORE_REG;
2080 1.5 maxv strm->u.reg = &gpr_map__rip;
2081 1.5 maxv strm->disp.type = DISP_4;
2082 1.5 maxv fsm_advance(fsm, 1, node_disp);
2083 1.5 maxv return 0;
2084 1.5 maxv }
2085 1.5 maxv
2086 1.9 maxv if (is_disp32_only(fsm, instr)) {
2087 1.9 maxv /* Overwrites RM */
2088 1.9 maxv strm->type = STORE_REG;
2089 1.9 maxv strm->u.reg = NULL;
2090 1.9 maxv strm->disp.type = DISP_4;
2091 1.9 maxv fsm_advance(fsm, 1, node_disp);
2092 1.9 maxv return 0;
2093 1.9 maxv }
2094 1.9 maxv
2095 1.5 maxv reg = get_register_rm(instr, opcode);
2096 1.5 maxv if (reg == NULL) {
2097 1.5 maxv return -1;
2098 1.5 maxv }
2099 1.5 maxv strm->type = STORE_REG;
2100 1.5 maxv strm->u.reg = reg;
2101 1.5 maxv
2102 1.5 maxv if (strm->disp.type == DISP_NONE) {
2103 1.5 maxv /* Direct register addressing mode */
2104 1.5 maxv if (opcode->immediate) {
2105 1.5 maxv fsm_advance(fsm, 1, node_immediate);
2106 1.5 maxv } else {
2107 1.5 maxv fsm_advance(fsm, 1, NULL);
2108 1.5 maxv }
2109 1.5 maxv } else if (strm->disp.type == DISP_0) {
2110 1.5 maxv /* Indirect register addressing mode */
2111 1.5 maxv if (opcode->immediate) {
2112 1.5 maxv fsm_advance(fsm, 1, node_immediate);
2113 1.5 maxv } else {
2114 1.5 maxv fsm_advance(fsm, 1, NULL);
2115 1.5 maxv }
2116 1.5 maxv } else {
2117 1.5 maxv fsm_advance(fsm, 1, node_disp);
2118 1.5 maxv }
2119 1.5 maxv
2120 1.5 maxv return 0;
2121 1.5 maxv }
2122 1.5 maxv
2123 1.5 maxv static size_t
2124 1.5 maxv get_operand_size(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2125 1.5 maxv {
2126 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
2127 1.5 maxv int opsize;
2128 1.5 maxv
2129 1.5 maxv /* Get the opsize */
2130 1.5 maxv if (!opcode->szoverride) {
2131 1.5 maxv opsize = opcode->defsize;
2132 1.5 maxv } else if (instr->rexpref.present && instr->rexpref.w) {
2133 1.5 maxv opsize = 8;
2134 1.5 maxv } else {
2135 1.5 maxv if (!fsm->is16bit) {
2136 1.5 maxv if (instr->legpref[LEG_OPR_OVR]) {
2137 1.5 maxv opsize = 2;
2138 1.5 maxv } else {
2139 1.5 maxv opsize = 4;
2140 1.5 maxv }
2141 1.5 maxv } else { /* 16bit */
2142 1.5 maxv if (instr->legpref[LEG_OPR_OVR]) {
2143 1.5 maxv opsize = 4;
2144 1.5 maxv } else {
2145 1.5 maxv opsize = 2;
2146 1.5 maxv }
2147 1.5 maxv }
2148 1.5 maxv }
2149 1.5 maxv
2150 1.5 maxv /* See if available */
2151 1.5 maxv if ((opcode->allsize & opsize) == 0) {
2152 1.5 maxv // XXX do we care?
2153 1.5 maxv }
2154 1.5 maxv
2155 1.5 maxv return opsize;
2156 1.5 maxv }
2157 1.5 maxv
2158 1.5 maxv static size_t
2159 1.5 maxv get_address_size(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2160 1.5 maxv {
2161 1.5 maxv if (fsm->is64bit) {
2162 1.5 maxv if (__predict_false(instr->legpref[LEG_ADR_OVR])) {
2163 1.5 maxv return 4;
2164 1.5 maxv }
2165 1.5 maxv return 8;
2166 1.5 maxv }
2167 1.5 maxv
2168 1.5 maxv if (fsm->is32bit) {
2169 1.5 maxv if (__predict_false(instr->legpref[LEG_ADR_OVR])) {
2170 1.5 maxv return 2;
2171 1.5 maxv }
2172 1.5 maxv return 4;
2173 1.5 maxv }
2174 1.5 maxv
2175 1.5 maxv /* 16bit. */
2176 1.5 maxv if (__predict_false(instr->legpref[LEG_ADR_OVR])) {
2177 1.5 maxv return 4;
2178 1.5 maxv }
2179 1.5 maxv return 2;
2180 1.5 maxv }
2181 1.5 maxv
2182 1.5 maxv static int
2183 1.5 maxv node_primary_opcode(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2184 1.1 maxv {
2185 1.5 maxv const struct x86_opcode *opcode;
2186 1.5 maxv uint8_t byte;
2187 1.5 maxv size_t i, n;
2188 1.5 maxv
2189 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2190 1.5 maxv return -1;
2191 1.5 maxv }
2192 1.5 maxv
2193 1.5 maxv n = sizeof(primary_opcode_table) / sizeof(primary_opcode_table[0]);
2194 1.5 maxv for (i = 0; i < n; i++) {
2195 1.5 maxv if (primary_opcode_table[i].byte == byte)
2196 1.5 maxv break;
2197 1.5 maxv }
2198 1.5 maxv if (i == n) {
2199 1.1 maxv return -1;
2200 1.1 maxv }
2201 1.5 maxv opcode = &primary_opcode_table[i];
2202 1.1 maxv
2203 1.5 maxv instr->opcode = opcode;
2204 1.5 maxv instr->emul = opcode->emul;
2205 1.5 maxv instr->operand_size = get_operand_size(fsm, instr);
2206 1.5 maxv instr->address_size = get_address_size(fsm, instr);
2207 1.5 maxv
2208 1.5 maxv if (opcode->regmodrm) {
2209 1.5 maxv fsm_advance(fsm, 1, node_regmodrm);
2210 1.5 maxv } else if (opcode->dmo) {
2211 1.5 maxv /* Direct-Memory Offsets */
2212 1.5 maxv fsm_advance(fsm, 1, node_dmo);
2213 1.5 maxv } else if (opcode->stos || opcode->lods) {
2214 1.5 maxv fsm_advance(fsm, 1, node_stlo);
2215 1.6 maxv } else if (opcode->movs) {
2216 1.6 maxv fsm_advance(fsm, 1, node_movs);
2217 1.5 maxv } else {
2218 1.5 maxv return -1;
2219 1.5 maxv }
2220 1.5 maxv
2221 1.5 maxv return 0;
2222 1.5 maxv }
2223 1.5 maxv
2224 1.10 maxv static uint64_t
2225 1.10 maxv size_to_mask(size_t size)
2226 1.10 maxv {
2227 1.10 maxv switch (size) {
2228 1.10 maxv case 1:
2229 1.10 maxv return 0x00000000000000FF;
2230 1.10 maxv case 2:
2231 1.10 maxv return 0x000000000000FFFF;
2232 1.10 maxv case 4:
2233 1.10 maxv return 0x00000000FFFFFFFF;
2234 1.10 maxv case 8:
2235 1.10 maxv default:
2236 1.10 maxv return 0xFFFFFFFFFFFFFFFF;
2237 1.10 maxv }
2238 1.10 maxv }
2239 1.10 maxv
2240 1.10 maxv static int
2241 1.10 maxv node_secondary_opcode(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2242 1.10 maxv {
2243 1.10 maxv const struct x86_opcode *opcode;
2244 1.10 maxv uint8_t byte;
2245 1.10 maxv size_t i, n;
2246 1.10 maxv
2247 1.10 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2248 1.10 maxv return -1;
2249 1.10 maxv }
2250 1.10 maxv
2251 1.10 maxv n = sizeof(secondary_opcode_table) / sizeof(secondary_opcode_table[0]);
2252 1.10 maxv for (i = 0; i < n; i++) {
2253 1.10 maxv if (secondary_opcode_table[i].byte == byte)
2254 1.10 maxv break;
2255 1.10 maxv }
2256 1.10 maxv if (i == n) {
2257 1.10 maxv return -1;
2258 1.10 maxv }
2259 1.10 maxv opcode = &secondary_opcode_table[i];
2260 1.10 maxv
2261 1.10 maxv instr->opcode = opcode;
2262 1.10 maxv instr->emul = opcode->emul;
2263 1.10 maxv instr->operand_size = get_operand_size(fsm, instr);
2264 1.10 maxv instr->address_size = get_address_size(fsm, instr);
2265 1.10 maxv
2266 1.11 maxv if (opcode->flags & FLAG_ze) {
2267 1.10 maxv /*
2268 1.10 maxv * Compute the mask for zero-extend. Update the operand size,
2269 1.10 maxv * we move fewer bytes.
2270 1.10 maxv */
2271 1.10 maxv instr->zeroextend_mask = size_to_mask(instr->operand_size);
2272 1.10 maxv instr->zeroextend_mask &= ~size_to_mask(opcode->defsize);
2273 1.10 maxv instr->operand_size = opcode->defsize;
2274 1.10 maxv }
2275 1.10 maxv
2276 1.10 maxv if (opcode->regmodrm) {
2277 1.10 maxv fsm_advance(fsm, 1, node_regmodrm);
2278 1.10 maxv } else {
2279 1.10 maxv return -1;
2280 1.10 maxv }
2281 1.10 maxv
2282 1.10 maxv return 0;
2283 1.10 maxv }
2284 1.10 maxv
2285 1.5 maxv static int
2286 1.5 maxv node_main(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2287 1.5 maxv {
2288 1.5 maxv uint8_t byte;
2289 1.5 maxv
2290 1.5 maxv #define ESCAPE 0x0F
2291 1.5 maxv #define VEX_1 0xC5
2292 1.5 maxv #define VEX_2 0xC4
2293 1.5 maxv #define XOP 0x8F
2294 1.5 maxv
2295 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2296 1.5 maxv return -1;
2297 1.5 maxv }
2298 1.5 maxv
2299 1.5 maxv /*
2300 1.5 maxv * We don't take XOP. It is AMD-specific, and it was removed shortly
2301 1.5 maxv * after being introduced.
2302 1.5 maxv */
2303 1.5 maxv if (byte == ESCAPE) {
2304 1.10 maxv fsm_advance(fsm, 1, node_secondary_opcode);
2305 1.5 maxv } else if (!instr->rexpref.present) {
2306 1.5 maxv if (byte == VEX_1) {
2307 1.5 maxv return -1;
2308 1.5 maxv } else if (byte == VEX_2) {
2309 1.5 maxv return -1;
2310 1.5 maxv } else {
2311 1.5 maxv fsm->fn = node_primary_opcode;
2312 1.5 maxv }
2313 1.5 maxv } else {
2314 1.5 maxv fsm->fn = node_primary_opcode;
2315 1.5 maxv }
2316 1.5 maxv
2317 1.5 maxv return 0;
2318 1.5 maxv }
2319 1.5 maxv
2320 1.5 maxv static int
2321 1.5 maxv node_rex_prefix(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2322 1.5 maxv {
2323 1.5 maxv struct x86_rexpref *rexpref = &instr->rexpref;
2324 1.5 maxv uint8_t byte;
2325 1.5 maxv size_t n = 0;
2326 1.5 maxv
2327 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2328 1.5 maxv return -1;
2329 1.5 maxv }
2330 1.5 maxv
2331 1.5 maxv if (byte >= 0x40 && byte <= 0x4F) {
2332 1.5 maxv if (__predict_false(!fsm->is64bit)) {
2333 1.5 maxv return -1;
2334 1.5 maxv }
2335 1.5 maxv rexpref->present = true;
2336 1.5 maxv rexpref->w = ((byte & 0x8) != 0);
2337 1.5 maxv rexpref->r = ((byte & 0x4) != 0);
2338 1.5 maxv rexpref->x = ((byte & 0x2) != 0);
2339 1.5 maxv rexpref->b = ((byte & 0x1) != 0);
2340 1.5 maxv n = 1;
2341 1.5 maxv }
2342 1.5 maxv
2343 1.5 maxv fsm_advance(fsm, n, node_main);
2344 1.5 maxv return 0;
2345 1.5 maxv }
2346 1.5 maxv
2347 1.8 maxv static const struct {
2348 1.8 maxv uint8_t byte;
2349 1.8 maxv int seg;
2350 1.8 maxv } legpref_table[NLEG] = {
2351 1.5 maxv /* Group 1 */
2352 1.8 maxv [LEG_LOCK] = { 0xF0, -1 },
2353 1.8 maxv [LEG_REPN] = { 0xF2, -1 },
2354 1.8 maxv [LEG_REP] = { 0xF3, -1 },
2355 1.5 maxv /* Group 2 */
2356 1.8 maxv [LEG_OVR_CS] = { 0x2E, NVMM_X64_SEG_CS },
2357 1.8 maxv [LEG_OVR_SS] = { 0x36, NVMM_X64_SEG_SS },
2358 1.8 maxv [LEG_OVR_DS] = { 0x3E, NVMM_X64_SEG_DS },
2359 1.8 maxv [LEG_OVR_ES] = { 0x26, NVMM_X64_SEG_ES },
2360 1.8 maxv [LEG_OVR_FS] = { 0x64, NVMM_X64_SEG_FS },
2361 1.8 maxv [LEG_OVR_GS] = { 0x65, NVMM_X64_SEG_GS },
2362 1.8 maxv [LEG_BRN_TAKEN] = { 0x2E, -1 },
2363 1.8 maxv [LEG_BRN_NTAKEN] = { 0x3E, -1 },
2364 1.5 maxv /* Group 3 */
2365 1.8 maxv [LEG_OPR_OVR] = { 0x66, -1 },
2366 1.5 maxv /* Group 4 */
2367 1.8 maxv [LEG_ADR_OVR] = { 0x67, -1 },
2368 1.5 maxv };
2369 1.5 maxv
2370 1.5 maxv static int
2371 1.5 maxv node_legacy_prefix(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2372 1.5 maxv {
2373 1.5 maxv uint8_t byte;
2374 1.5 maxv size_t i;
2375 1.5 maxv
2376 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2377 1.5 maxv return -1;
2378 1.5 maxv }
2379 1.5 maxv
2380 1.5 maxv for (i = 0; i < NLEG; i++) {
2381 1.8 maxv if (byte == legpref_table[i].byte)
2382 1.5 maxv break;
2383 1.5 maxv }
2384 1.5 maxv
2385 1.5 maxv if (i == NLEG) {
2386 1.5 maxv fsm->fn = node_rex_prefix;
2387 1.5 maxv } else {
2388 1.5 maxv instr->legpref[i] = true;
2389 1.5 maxv fsm_advance(fsm, 1, node_legacy_prefix);
2390 1.5 maxv }
2391 1.5 maxv
2392 1.5 maxv return 0;
2393 1.5 maxv }
2394 1.5 maxv
2395 1.5 maxv static int
2396 1.5 maxv x86_decode(uint8_t *inst_bytes, size_t inst_len, struct x86_instr *instr,
2397 1.5 maxv struct nvmm_x64_state *state)
2398 1.5 maxv {
2399 1.5 maxv struct x86_decode_fsm fsm;
2400 1.5 maxv int ret;
2401 1.5 maxv
2402 1.5 maxv memset(instr, 0, sizeof(*instr));
2403 1.5 maxv
2404 1.5 maxv fsm.is64bit = is_64bit(state);
2405 1.5 maxv fsm.is32bit = is_32bit(state);
2406 1.5 maxv fsm.is16bit = is_16bit(state);
2407 1.5 maxv
2408 1.5 maxv fsm.fn = node_legacy_prefix;
2409 1.5 maxv fsm.buf = inst_bytes;
2410 1.5 maxv fsm.end = inst_bytes + inst_len;
2411 1.5 maxv
2412 1.5 maxv while (fsm.fn != NULL) {
2413 1.5 maxv ret = (*fsm.fn)(&fsm, instr);
2414 1.5 maxv if (ret == -1)
2415 1.5 maxv return -1;
2416 1.5 maxv }
2417 1.5 maxv
2418 1.5 maxv instr->len = fsm.buf - inst_bytes;
2419 1.5 maxv
2420 1.5 maxv return 0;
2421 1.5 maxv }
2422 1.5 maxv
2423 1.5 maxv /* -------------------------------------------------------------------------- */
2424 1.5 maxv
2425 1.5 maxv static inline uint8_t
2426 1.5 maxv compute_parity(uint8_t *data)
2427 1.5 maxv {
2428 1.5 maxv uint64_t *ptr = (uint64_t *)data;
2429 1.5 maxv uint64_t val = *ptr;
2430 1.5 maxv
2431 1.5 maxv val ^= val >> 32;
2432 1.5 maxv val ^= val >> 16;
2433 1.5 maxv val ^= val >> 8;
2434 1.5 maxv val ^= val >> 4;
2435 1.5 maxv val ^= val >> 2;
2436 1.5 maxv val ^= val >> 1;
2437 1.5 maxv return (~val) & 1;
2438 1.5 maxv }
2439 1.5 maxv
2440 1.5 maxv static void
2441 1.5 maxv x86_emul_or(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2442 1.5 maxv uint64_t *gprs)
2443 1.5 maxv {
2444 1.5 maxv const bool write = mem->write;
2445 1.5 maxv uint64_t fl = gprs[NVMM_X64_GPR_RFLAGS];
2446 1.5 maxv uint8_t data[8];
2447 1.5 maxv size_t i;
2448 1.5 maxv
2449 1.5 maxv fl &= ~(PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF);
2450 1.5 maxv
2451 1.5 maxv memcpy(data, mem->data, sizeof(data));
2452 1.5 maxv
2453 1.5 maxv /* Fetch the value to be OR'ed. */
2454 1.5 maxv mem->write = false;
2455 1.5 maxv (*cb)(mem);
2456 1.5 maxv
2457 1.5 maxv /* Perform the OR. */
2458 1.5 maxv for (i = 0; i < mem->size; i++) {
2459 1.5 maxv mem->data[i] |= data[i];
2460 1.5 maxv if (mem->data[i] != 0)
2461 1.5 maxv fl |= PSL_Z;
2462 1.5 maxv }
2463 1.5 maxv if (mem->data[mem->size-1] & __BIT(7))
2464 1.5 maxv fl |= PSL_N;
2465 1.5 maxv if (compute_parity(mem->data))
2466 1.5 maxv fl |= PSL_PF;
2467 1.5 maxv
2468 1.5 maxv if (write) {
2469 1.5 maxv /* Write back the result. */
2470 1.5 maxv mem->write = true;
2471 1.5 maxv (*cb)(mem);
2472 1.5 maxv }
2473 1.5 maxv
2474 1.5 maxv gprs[NVMM_X64_GPR_RFLAGS] = fl;
2475 1.5 maxv }
2476 1.5 maxv
2477 1.5 maxv static void
2478 1.5 maxv x86_emul_and(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2479 1.5 maxv uint64_t *gprs)
2480 1.5 maxv {
2481 1.5 maxv const bool write = mem->write;
2482 1.5 maxv uint64_t fl = gprs[NVMM_X64_GPR_RFLAGS];
2483 1.5 maxv uint8_t data[8];
2484 1.5 maxv size_t i;
2485 1.5 maxv
2486 1.5 maxv fl &= ~(PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF);
2487 1.5 maxv
2488 1.5 maxv memcpy(data, mem->data, sizeof(data));
2489 1.5 maxv
2490 1.5 maxv /* Fetch the value to be AND'ed. */
2491 1.5 maxv mem->write = false;
2492 1.5 maxv (*cb)(mem);
2493 1.5 maxv
2494 1.5 maxv /* Perform the AND. */
2495 1.5 maxv for (i = 0; i < mem->size; i++) {
2496 1.5 maxv mem->data[i] &= data[i];
2497 1.5 maxv if (mem->data[i] != 0)
2498 1.5 maxv fl |= PSL_Z;
2499 1.5 maxv }
2500 1.5 maxv if (mem->data[mem->size-1] & __BIT(7))
2501 1.5 maxv fl |= PSL_N;
2502 1.5 maxv if (compute_parity(mem->data))
2503 1.5 maxv fl |= PSL_PF;
2504 1.5 maxv
2505 1.5 maxv if (write) {
2506 1.5 maxv /* Write back the result. */
2507 1.5 maxv mem->write = true;
2508 1.5 maxv (*cb)(mem);
2509 1.5 maxv }
2510 1.5 maxv
2511 1.5 maxv gprs[NVMM_X64_GPR_RFLAGS] = fl;
2512 1.5 maxv }
2513 1.5 maxv
2514 1.5 maxv static void
2515 1.5 maxv x86_emul_xor(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2516 1.5 maxv uint64_t *gprs)
2517 1.5 maxv {
2518 1.5 maxv const bool write = mem->write;
2519 1.5 maxv uint64_t fl = gprs[NVMM_X64_GPR_RFLAGS];
2520 1.5 maxv uint8_t data[8];
2521 1.5 maxv size_t i;
2522 1.5 maxv
2523 1.5 maxv fl &= ~(PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF);
2524 1.5 maxv
2525 1.5 maxv memcpy(data, mem->data, sizeof(data));
2526 1.5 maxv
2527 1.5 maxv /* Fetch the value to be XOR'ed. */
2528 1.5 maxv mem->write = false;
2529 1.5 maxv (*cb)(mem);
2530 1.5 maxv
2531 1.5 maxv /* Perform the XOR. */
2532 1.5 maxv for (i = 0; i < mem->size; i++) {
2533 1.5 maxv mem->data[i] ^= data[i];
2534 1.5 maxv if (mem->data[i] != 0)
2535 1.5 maxv fl |= PSL_Z;
2536 1.5 maxv }
2537 1.5 maxv if (mem->data[mem->size-1] & __BIT(7))
2538 1.5 maxv fl |= PSL_N;
2539 1.5 maxv if (compute_parity(mem->data))
2540 1.5 maxv fl |= PSL_PF;
2541 1.5 maxv
2542 1.5 maxv if (write) {
2543 1.5 maxv /* Write back the result. */
2544 1.5 maxv mem->write = true;
2545 1.5 maxv (*cb)(mem);
2546 1.5 maxv }
2547 1.5 maxv
2548 1.5 maxv gprs[NVMM_X64_GPR_RFLAGS] = fl;
2549 1.5 maxv }
2550 1.5 maxv
2551 1.5 maxv static void
2552 1.5 maxv x86_emul_mov(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2553 1.5 maxv uint64_t *gprs)
2554 1.5 maxv {
2555 1.5 maxv /*
2556 1.5 maxv * Nothing special, just move without emulation.
2557 1.5 maxv */
2558 1.5 maxv (*cb)(mem);
2559 1.5 maxv }
2560 1.5 maxv
2561 1.5 maxv static void
2562 1.5 maxv x86_emul_stos(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2563 1.5 maxv uint64_t *gprs)
2564 1.5 maxv {
2565 1.5 maxv /*
2566 1.5 maxv * Just move, and update RDI.
2567 1.5 maxv */
2568 1.5 maxv (*cb)(mem);
2569 1.5 maxv
2570 1.5 maxv if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
2571 1.5 maxv gprs[NVMM_X64_GPR_RDI] -= mem->size;
2572 1.5 maxv } else {
2573 1.5 maxv gprs[NVMM_X64_GPR_RDI] += mem->size;
2574 1.5 maxv }
2575 1.5 maxv }
2576 1.5 maxv
2577 1.5 maxv static void
2578 1.5 maxv x86_emul_lods(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2579 1.5 maxv uint64_t *gprs)
2580 1.5 maxv {
2581 1.5 maxv /*
2582 1.5 maxv * Just move, and update RSI.
2583 1.5 maxv */
2584 1.5 maxv (*cb)(mem);
2585 1.5 maxv
2586 1.5 maxv if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
2587 1.5 maxv gprs[NVMM_X64_GPR_RSI] -= mem->size;
2588 1.5 maxv } else {
2589 1.5 maxv gprs[NVMM_X64_GPR_RSI] += mem->size;
2590 1.5 maxv }
2591 1.5 maxv }
2592 1.5 maxv
2593 1.6 maxv static void
2594 1.6 maxv x86_emul_movs(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2595 1.6 maxv uint64_t *gprs)
2596 1.6 maxv {
2597 1.6 maxv /*
2598 1.6 maxv * Special instruction: double memory operand. Don't call the cb,
2599 1.6 maxv * because the storage has already been performed earlier.
2600 1.6 maxv */
2601 1.6 maxv
2602 1.6 maxv if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
2603 1.6 maxv gprs[NVMM_X64_GPR_RSI] -= mem->size;
2604 1.6 maxv gprs[NVMM_X64_GPR_RDI] -= mem->size;
2605 1.6 maxv } else {
2606 1.6 maxv gprs[NVMM_X64_GPR_RSI] += mem->size;
2607 1.6 maxv gprs[NVMM_X64_GPR_RDI] += mem->size;
2608 1.6 maxv }
2609 1.6 maxv }
2610 1.6 maxv
2611 1.5 maxv /* -------------------------------------------------------------------------- */
2612 1.5 maxv
2613 1.5 maxv static inline uint64_t
2614 1.5 maxv gpr_read_address(struct x86_instr *instr, struct nvmm_x64_state *state, int gpr)
2615 1.5 maxv {
2616 1.5 maxv uint64_t val;
2617 1.5 maxv
2618 1.5 maxv val = state->gprs[gpr];
2619 1.5 maxv if (__predict_false(instr->address_size == 4)) {
2620 1.5 maxv val &= 0x00000000FFFFFFFF;
2621 1.5 maxv } else if (__predict_false(instr->address_size == 2)) {
2622 1.5 maxv val &= 0x000000000000FFFF;
2623 1.5 maxv }
2624 1.5 maxv
2625 1.5 maxv return val;
2626 1.5 maxv }
2627 1.5 maxv
2628 1.5 maxv static int
2629 1.6 maxv store_to_gva(struct nvmm_x64_state *state, struct x86_instr *instr,
2630 1.6 maxv struct x86_store *store, gvaddr_t *gvap, size_t size)
2631 1.5 maxv {
2632 1.5 maxv struct x86_sib *sib;
2633 1.6 maxv gvaddr_t gva = 0;
2634 1.5 maxv uint64_t reg;
2635 1.5 maxv int ret, seg;
2636 1.5 maxv
2637 1.5 maxv if (store->type == STORE_SIB) {
2638 1.5 maxv sib = &store->u.sib;
2639 1.5 maxv if (sib->bas != NULL)
2640 1.5 maxv gva += gpr_read_address(instr, state, sib->bas->num);
2641 1.5 maxv if (sib->idx != NULL) {
2642 1.5 maxv reg = gpr_read_address(instr, state, sib->idx->num);
2643 1.5 maxv gva += sib->scale * reg;
2644 1.5 maxv }
2645 1.5 maxv } else if (store->type == STORE_REG) {
2646 1.9 maxv if (store->u.reg == NULL) {
2647 1.9 maxv /* The base is null. Happens with disp32-only. */
2648 1.9 maxv } else {
2649 1.9 maxv gva = gpr_read_address(instr, state, store->u.reg->num);
2650 1.9 maxv }
2651 1.5 maxv } else {
2652 1.5 maxv gva = store->u.dmo;
2653 1.5 maxv }
2654 1.5 maxv
2655 1.5 maxv if (store->disp.type != DISP_NONE) {
2656 1.11 maxv gva += store->disp.data;
2657 1.5 maxv }
2658 1.5 maxv
2659 1.5 maxv if (!is_long_mode(state)) {
2660 1.6 maxv if (store->hardseg != 0) {
2661 1.6 maxv seg = store->hardseg;
2662 1.5 maxv } else {
2663 1.6 maxv if (instr->legpref[LEG_OVR_CS]) {
2664 1.6 maxv seg = NVMM_X64_SEG_CS;
2665 1.6 maxv } else if (instr->legpref[LEG_OVR_SS]) {
2666 1.6 maxv seg = NVMM_X64_SEG_SS;
2667 1.6 maxv } else if (instr->legpref[LEG_OVR_ES]) {
2668 1.6 maxv seg = NVMM_X64_SEG_ES;
2669 1.6 maxv } else if (instr->legpref[LEG_OVR_FS]) {
2670 1.6 maxv seg = NVMM_X64_SEG_FS;
2671 1.6 maxv } else if (instr->legpref[LEG_OVR_GS]) {
2672 1.6 maxv seg = NVMM_X64_SEG_GS;
2673 1.6 maxv } else {
2674 1.6 maxv seg = NVMM_X64_SEG_DS;
2675 1.6 maxv }
2676 1.5 maxv }
2677 1.5 maxv
2678 1.6 maxv ret = segment_apply(&state->segs[seg], &gva, size);
2679 1.5 maxv if (ret == -1)
2680 1.5 maxv return -1;
2681 1.5 maxv }
2682 1.5 maxv
2683 1.6 maxv *gvap = gva;
2684 1.6 maxv return 0;
2685 1.6 maxv }
2686 1.6 maxv
2687 1.6 maxv static int
2688 1.8 maxv fetch_segment(struct nvmm_machine *mach, struct nvmm_x64_state *state)
2689 1.8 maxv {
2690 1.8 maxv uint8_t inst_bytes[15], byte;
2691 1.8 maxv size_t i, n, fetchsize;
2692 1.8 maxv gvaddr_t gva;
2693 1.8 maxv int ret, seg;
2694 1.8 maxv
2695 1.8 maxv fetchsize = sizeof(inst_bytes);
2696 1.8 maxv
2697 1.8 maxv gva = state->gprs[NVMM_X64_GPR_RIP];
2698 1.8 maxv if (!is_long_mode(state)) {
2699 1.8 maxv ret = segment_apply(&state->segs[NVMM_X64_SEG_CS], &gva,
2700 1.8 maxv fetchsize);
2701 1.8 maxv if (ret == -1)
2702 1.8 maxv return -1;
2703 1.8 maxv }
2704 1.8 maxv
2705 1.8 maxv ret = read_guest_memory(mach, state, gva, inst_bytes, fetchsize);
2706 1.8 maxv if (ret == -1)
2707 1.8 maxv return -1;
2708 1.8 maxv
2709 1.8 maxv seg = NVMM_X64_SEG_DS;
2710 1.8 maxv for (n = 0; n < fetchsize; n++) {
2711 1.8 maxv byte = inst_bytes[n];
2712 1.8 maxv for (i = 0; i < NLEG; i++) {
2713 1.8 maxv if (byte != legpref_table[i].byte)
2714 1.8 maxv continue;
2715 1.8 maxv if (i >= LEG_OVR_CS && i <= LEG_OVR_GS)
2716 1.8 maxv seg = legpref_table[i].seg;
2717 1.8 maxv break;
2718 1.8 maxv }
2719 1.8 maxv if (i == NLEG) {
2720 1.8 maxv break;
2721 1.8 maxv }
2722 1.8 maxv }
2723 1.8 maxv
2724 1.8 maxv return seg;
2725 1.8 maxv }
2726 1.8 maxv
2727 1.8 maxv static int
2728 1.5 maxv fetch_instruction(struct nvmm_machine *mach, struct nvmm_x64_state *state,
2729 1.5 maxv struct nvmm_exit *exit)
2730 1.5 maxv {
2731 1.6 maxv size_t fetchsize;
2732 1.6 maxv gvaddr_t gva;
2733 1.5 maxv int ret;
2734 1.5 maxv
2735 1.5 maxv fetchsize = sizeof(exit->u.mem.inst_bytes);
2736 1.5 maxv
2737 1.5 maxv gva = state->gprs[NVMM_X64_GPR_RIP];
2738 1.5 maxv if (!is_long_mode(state)) {
2739 1.5 maxv ret = segment_apply(&state->segs[NVMM_X64_SEG_CS], &gva,
2740 1.5 maxv fetchsize);
2741 1.5 maxv if (ret == -1)
2742 1.5 maxv return -1;
2743 1.5 maxv }
2744 1.5 maxv
2745 1.6 maxv ret = read_guest_memory(mach, state, gva, exit->u.mem.inst_bytes,
2746 1.6 maxv fetchsize);
2747 1.6 maxv if (ret == -1)
2748 1.6 maxv return -1;
2749 1.6 maxv
2750 1.6 maxv exit->u.mem.inst_len = fetchsize;
2751 1.6 maxv
2752 1.6 maxv return 0;
2753 1.6 maxv }
2754 1.6 maxv
2755 1.6 maxv static int
2756 1.6 maxv assist_mem_double(struct nvmm_machine *mach, struct nvmm_x64_state *state,
2757 1.6 maxv struct x86_instr *instr)
2758 1.6 maxv {
2759 1.6 maxv struct nvmm_mem mem;
2760 1.6 maxv uint8_t data[8];
2761 1.6 maxv gvaddr_t gva;
2762 1.6 maxv size_t size;
2763 1.6 maxv int ret;
2764 1.6 maxv
2765 1.6 maxv size = instr->operand_size;
2766 1.5 maxv
2767 1.6 maxv /* Source. */
2768 1.6 maxv ret = store_to_gva(state, instr, &instr->src, &gva, size);
2769 1.5 maxv if (ret == -1)
2770 1.5 maxv return -1;
2771 1.6 maxv ret = read_guest_memory(mach, state, gva, data, size);
2772 1.6 maxv if (ret == -1)
2773 1.5 maxv return -1;
2774 1.5 maxv
2775 1.6 maxv /* Destination. */
2776 1.6 maxv ret = store_to_gva(state, instr, &instr->dst, &gva, size);
2777 1.6 maxv if (ret == -1)
2778 1.6 maxv return -1;
2779 1.6 maxv ret = write_guest_memory(mach, state, gva, data, size);
2780 1.5 maxv if (ret == -1)
2781 1.5 maxv return -1;
2782 1.5 maxv
2783 1.6 maxv mem.size = size;
2784 1.6 maxv (*instr->emul)(&mem, NULL, state->gprs);
2785 1.5 maxv
2786 1.5 maxv return 0;
2787 1.5 maxv }
2788 1.5 maxv
2789 1.5 maxv #define DISASSEMBLER_BUG() \
2790 1.5 maxv do { \
2791 1.5 maxv errno = EINVAL; \
2792 1.5 maxv return -1; \
2793 1.5 maxv } while (0);
2794 1.5 maxv
2795 1.6 maxv static int
2796 1.6 maxv assist_mem_single(struct nvmm_machine *mach, struct nvmm_x64_state *state,
2797 1.12 maxv struct x86_instr *instr, struct nvmm_exit *exit)
2798 1.5 maxv {
2799 1.5 maxv struct nvmm_mem mem;
2800 1.10 maxv uint8_t membuf[8];
2801 1.5 maxv uint64_t val;
2802 1.5 maxv
2803 1.11 maxv memset(membuf, 0, sizeof(membuf));
2804 1.12 maxv
2805 1.12 maxv mem.gpa = exit->u.mem.gpa;
2806 1.12 maxv mem.size = instr->operand_size;
2807 1.10 maxv mem.data = membuf;
2808 1.5 maxv
2809 1.12 maxv /* Determine the direction. */
2810 1.6 maxv switch (instr->src.type) {
2811 1.5 maxv case STORE_REG:
2812 1.6 maxv if (instr->src.disp.type != DISP_NONE) {
2813 1.5 maxv /* Indirect access. */
2814 1.5 maxv mem.write = false;
2815 1.5 maxv } else {
2816 1.5 maxv /* Direct access. */
2817 1.5 maxv mem.write = true;
2818 1.5 maxv }
2819 1.5 maxv break;
2820 1.5 maxv case STORE_IMM:
2821 1.5 maxv mem.write = true;
2822 1.5 maxv break;
2823 1.5 maxv case STORE_SIB:
2824 1.5 maxv mem.write = false;
2825 1.5 maxv break;
2826 1.5 maxv case STORE_DMO:
2827 1.5 maxv mem.write = false;
2828 1.5 maxv break;
2829 1.5 maxv default:
2830 1.12 maxv DISASSEMBLER_BUG();
2831 1.5 maxv }
2832 1.5 maxv
2833 1.12 maxv if (mem.write) {
2834 1.12 maxv switch (instr->src.type) {
2835 1.12 maxv case STORE_REG:
2836 1.12 maxv if (instr->src.disp.type != DISP_NONE) {
2837 1.5 maxv DISASSEMBLER_BUG();
2838 1.5 maxv }
2839 1.12 maxv val = state->gprs[instr->src.u.reg->num];
2840 1.12 maxv val = __SHIFTOUT(val, instr->src.u.reg->mask);
2841 1.12 maxv memcpy(mem.data, &val, mem.size);
2842 1.12 maxv break;
2843 1.12 maxv case STORE_IMM:
2844 1.12 maxv memcpy(mem.data, &instr->src.u.imm.data, mem.size);
2845 1.12 maxv break;
2846 1.12 maxv default:
2847 1.5 maxv DISASSEMBLER_BUG();
2848 1.5 maxv }
2849 1.5 maxv }
2850 1.5 maxv
2851 1.6 maxv (*instr->emul)(&mem, __callbacks.mem, state->gprs);
2852 1.5 maxv
2853 1.5 maxv if (!mem.write) {
2854 1.12 maxv if (instr->dst.type != STORE_REG) {
2855 1.12 maxv DISASSEMBLER_BUG();
2856 1.12 maxv }
2857 1.5 maxv memcpy(&val, mem.data, sizeof(uint64_t));
2858 1.6 maxv val = __SHIFTIN(val, instr->dst.u.reg->mask);
2859 1.6 maxv state->gprs[instr->dst.u.reg->num] &= ~instr->dst.u.reg->mask;
2860 1.6 maxv state->gprs[instr->dst.u.reg->num] |= val;
2861 1.10 maxv state->gprs[instr->dst.u.reg->num] &= ~instr->zeroextend_mask;
2862 1.6 maxv }
2863 1.6 maxv
2864 1.6 maxv return 0;
2865 1.6 maxv }
2866 1.6 maxv
2867 1.6 maxv int
2868 1.6 maxv nvmm_assist_mem(struct nvmm_machine *mach, nvmm_cpuid_t cpuid,
2869 1.6 maxv struct nvmm_exit *exit)
2870 1.6 maxv {
2871 1.6 maxv struct nvmm_x64_state state;
2872 1.6 maxv struct x86_instr instr;
2873 1.6 maxv uint64_t cnt;
2874 1.6 maxv int ret;
2875 1.6 maxv
2876 1.6 maxv if (__predict_false(exit->reason != NVMM_EXIT_MEMORY)) {
2877 1.6 maxv errno = EINVAL;
2878 1.6 maxv return -1;
2879 1.6 maxv }
2880 1.6 maxv
2881 1.6 maxv ret = nvmm_vcpu_getstate(mach, cpuid, &state,
2882 1.6 maxv NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS | NVMM_X64_STATE_CRS |
2883 1.6 maxv NVMM_X64_STATE_MSRS);
2884 1.6 maxv if (ret == -1)
2885 1.6 maxv return -1;
2886 1.6 maxv
2887 1.6 maxv if (exit->u.mem.inst_len == 0) {
2888 1.6 maxv /*
2889 1.6 maxv * The instruction was not fetched from the kernel. Fetch
2890 1.6 maxv * it ourselves.
2891 1.6 maxv */
2892 1.6 maxv ret = fetch_instruction(mach, &state, exit);
2893 1.6 maxv if (ret == -1)
2894 1.6 maxv return -1;
2895 1.6 maxv }
2896 1.6 maxv
2897 1.6 maxv ret = x86_decode(exit->u.mem.inst_bytes, exit->u.mem.inst_len,
2898 1.6 maxv &instr, &state);
2899 1.6 maxv if (ret == -1) {
2900 1.6 maxv errno = ENODEV;
2901 1.6 maxv return -1;
2902 1.6 maxv }
2903 1.6 maxv
2904 1.6 maxv if (__predict_false(instr.legpref[LEG_REPN])) {
2905 1.6 maxv errno = ENODEV;
2906 1.6 maxv return -1;
2907 1.6 maxv }
2908 1.6 maxv
2909 1.6 maxv if (instr.opcode->movs) {
2910 1.6 maxv ret = assist_mem_double(mach, &state, &instr);
2911 1.6 maxv } else {
2912 1.12 maxv ret = assist_mem_single(mach, &state, &instr, exit);
2913 1.6 maxv }
2914 1.6 maxv if (ret == -1) {
2915 1.6 maxv errno = ENODEV;
2916 1.6 maxv return -1;
2917 1.5 maxv }
2918 1.5 maxv
2919 1.5 maxv if (instr.legpref[LEG_REP]) {
2920 1.6 maxv cnt = rep_dec_apply(&state, instr.address_size);
2921 1.6 maxv if (cnt == 0) {
2922 1.5 maxv state.gprs[NVMM_X64_GPR_RIP] += instr.len;
2923 1.5 maxv }
2924 1.5 maxv } else {
2925 1.5 maxv state.gprs[NVMM_X64_GPR_RIP] += instr.len;
2926 1.5 maxv }
2927 1.5 maxv
2928 1.5 maxv ret = nvmm_vcpu_setstate(mach, cpuid, &state, NVMM_X64_STATE_GPRS);
2929 1.5 maxv if (ret == -1)
2930 1.5 maxv return -1;
2931 1.5 maxv
2932 1.5 maxv return 0;
2933 1.1 maxv }
2934