libnvmm_x86.c revision 1.18 1 1.17 pgoyette /* $NetBSD: libnvmm_x86.c,v 1.18 2019/02/01 06:49:58 maxv Exp $ */
2 1.1 maxv
3 1.1 maxv /*
4 1.1 maxv * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 1.1 maxv * All rights reserved.
6 1.1 maxv *
7 1.1 maxv * This code is derived from software contributed to The NetBSD Foundation
8 1.1 maxv * by Maxime Villard.
9 1.1 maxv *
10 1.1 maxv * Redistribution and use in source and binary forms, with or without
11 1.1 maxv * modification, are permitted provided that the following conditions
12 1.1 maxv * are met:
13 1.1 maxv * 1. Redistributions of source code must retain the above copyright
14 1.1 maxv * notice, this list of conditions and the following disclaimer.
15 1.1 maxv * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 maxv * notice, this list of conditions and the following disclaimer in the
17 1.1 maxv * documentation and/or other materials provided with the distribution.
18 1.1 maxv *
19 1.1 maxv * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 maxv * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 maxv * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 maxv * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 maxv * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 maxv * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 maxv * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 maxv * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 maxv * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 maxv * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 maxv * POSSIBILITY OF SUCH DAMAGE.
30 1.1 maxv */
31 1.1 maxv
32 1.1 maxv #include <sys/cdefs.h>
33 1.1 maxv
34 1.1 maxv #include <stdio.h>
35 1.1 maxv #include <stdlib.h>
36 1.1 maxv #include <string.h>
37 1.1 maxv #include <unistd.h>
38 1.1 maxv #include <fcntl.h>
39 1.1 maxv #include <errno.h>
40 1.1 maxv #include <sys/ioctl.h>
41 1.1 maxv #include <sys/mman.h>
42 1.1 maxv #include <machine/vmparam.h>
43 1.1 maxv #include <machine/pte.h>
44 1.1 maxv #include <machine/psl.h>
45 1.1 maxv
46 1.1 maxv #include "nvmm.h"
47 1.1 maxv
48 1.10 maxv #define MIN(X, Y) (((X) < (Y)) ? (X) : (Y))
49 1.10 maxv
50 1.1 maxv #include <x86/specialreg.h>
51 1.1 maxv
52 1.6 maxv extern struct nvmm_callbacks __callbacks;
53 1.6 maxv
54 1.6 maxv /* -------------------------------------------------------------------------- */
55 1.6 maxv
56 1.6 maxv /*
57 1.6 maxv * Undocumented debugging function. Helpful.
58 1.6 maxv */
59 1.6 maxv int
60 1.6 maxv nvmm_vcpu_dump(struct nvmm_machine *mach, nvmm_cpuid_t cpuid)
61 1.6 maxv {
62 1.6 maxv struct nvmm_x64_state state;
63 1.6 maxv size_t i;
64 1.6 maxv int ret;
65 1.6 maxv
66 1.6 maxv const char *segnames[] = {
67 1.6 maxv "CS", "DS", "ES", "FS", "GS", "SS", "GDT", "IDT", "LDT", "TR"
68 1.6 maxv };
69 1.6 maxv
70 1.6 maxv ret = nvmm_vcpu_getstate(mach, cpuid, &state, NVMM_X64_STATE_ALL);
71 1.6 maxv if (ret == -1)
72 1.6 maxv return -1;
73 1.6 maxv
74 1.6 maxv printf("+ VCPU id=%d\n", (int)cpuid);
75 1.6 maxv printf("| -> RIP=%p\n", (void *)state.gprs[NVMM_X64_GPR_RIP]);
76 1.6 maxv printf("| -> RSP=%p\n", (void *)state.gprs[NVMM_X64_GPR_RSP]);
77 1.6 maxv printf("| -> RAX=%p\n", (void *)state.gprs[NVMM_X64_GPR_RAX]);
78 1.6 maxv printf("| -> RBX=%p\n", (void *)state.gprs[NVMM_X64_GPR_RBX]);
79 1.6 maxv printf("| -> RCX=%p\n", (void *)state.gprs[NVMM_X64_GPR_RCX]);
80 1.15 maxv printf("| -> RFLAGS=%p\n", (void *)state.gprs[NVMM_X64_GPR_RFLAGS]);
81 1.6 maxv for (i = 0; i < NVMM_X64_NSEG; i++) {
82 1.15 maxv printf("| -> %s: sel=0x%lx base=%p, limit=%p, P=%d, D=%d L=%d\n",
83 1.6 maxv segnames[i],
84 1.6 maxv state.segs[i].selector,
85 1.6 maxv (void *)state.segs[i].base,
86 1.6 maxv (void *)state.segs[i].limit,
87 1.15 maxv state.segs[i].attrib.p, state.segs[i].attrib.def32,
88 1.15 maxv state.segs[i].attrib.lng);
89 1.6 maxv }
90 1.10 maxv printf("| -> MSR_EFER=%p\n", (void *)state.msrs[NVMM_X64_MSR_EFER]);
91 1.10 maxv printf("| -> CR0=%p\n", (void *)state.crs[NVMM_X64_CR_CR0]);
92 1.10 maxv printf("| -> CR3=%p\n", (void *)state.crs[NVMM_X64_CR_CR3]);
93 1.10 maxv printf("| -> CR4=%p\n", (void *)state.crs[NVMM_X64_CR_CR4]);
94 1.10 maxv printf("| -> CR8=%p\n", (void *)state.crs[NVMM_X64_CR_CR8]);
95 1.8 maxv printf("| -> CPL=%p\n", (void *)state.misc[NVMM_X64_MISC_CPL]);
96 1.6 maxv
97 1.6 maxv return 0;
98 1.6 maxv }
99 1.6 maxv
100 1.1 maxv /* -------------------------------------------------------------------------- */
101 1.1 maxv
102 1.1 maxv #define PTE32_L1_SHIFT 12
103 1.1 maxv #define PTE32_L2_SHIFT 22
104 1.1 maxv
105 1.1 maxv #define PTE32_L2_MASK 0xffc00000
106 1.1 maxv #define PTE32_L1_MASK 0x003ff000
107 1.1 maxv
108 1.1 maxv #define PTE32_L2_FRAME (PTE32_L2_MASK)
109 1.1 maxv #define PTE32_L1_FRAME (PTE32_L2_FRAME|PTE32_L1_MASK)
110 1.1 maxv
111 1.1 maxv #define pte32_l1idx(va) (((va) & PTE32_L1_MASK) >> PTE32_L1_SHIFT)
112 1.1 maxv #define pte32_l2idx(va) (((va) & PTE32_L2_MASK) >> PTE32_L2_SHIFT)
113 1.1 maxv
114 1.1 maxv typedef uint32_t pte_32bit_t;
115 1.1 maxv
116 1.1 maxv static int
117 1.1 maxv x86_gva_to_gpa_32bit(struct nvmm_machine *mach, uint64_t cr3,
118 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, bool has_pse, nvmm_prot_t *prot)
119 1.1 maxv {
120 1.1 maxv gpaddr_t L2gpa, L1gpa;
121 1.1 maxv uintptr_t L2hva, L1hva;
122 1.1 maxv pte_32bit_t *pdir, pte;
123 1.1 maxv
124 1.1 maxv /* We begin with an RWXU access. */
125 1.1 maxv *prot = NVMM_PROT_ALL;
126 1.1 maxv
127 1.1 maxv /* Parse L2. */
128 1.1 maxv L2gpa = (cr3 & PG_FRAME);
129 1.1 maxv if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva) == -1)
130 1.1 maxv return -1;
131 1.1 maxv pdir = (pte_32bit_t *)L2hva;
132 1.1 maxv pte = pdir[pte32_l2idx(gva)];
133 1.1 maxv if ((pte & PG_V) == 0)
134 1.1 maxv return -1;
135 1.1 maxv if ((pte & PG_u) == 0)
136 1.1 maxv *prot &= ~NVMM_PROT_USER;
137 1.1 maxv if ((pte & PG_KW) == 0)
138 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
139 1.1 maxv if ((pte & PG_PS) && !has_pse)
140 1.1 maxv return -1;
141 1.1 maxv if (pte & PG_PS) {
142 1.1 maxv *gpa = (pte & PTE32_L2_FRAME);
143 1.10 maxv *gpa = *gpa + (gva & PTE32_L1_MASK);
144 1.1 maxv return 0;
145 1.1 maxv }
146 1.1 maxv
147 1.1 maxv /* Parse L1. */
148 1.1 maxv L1gpa = (pte & PG_FRAME);
149 1.1 maxv if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva) == -1)
150 1.1 maxv return -1;
151 1.1 maxv pdir = (pte_32bit_t *)L1hva;
152 1.1 maxv pte = pdir[pte32_l1idx(gva)];
153 1.1 maxv if ((pte & PG_V) == 0)
154 1.1 maxv return -1;
155 1.1 maxv if ((pte & PG_u) == 0)
156 1.1 maxv *prot &= ~NVMM_PROT_USER;
157 1.1 maxv if ((pte & PG_KW) == 0)
158 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
159 1.1 maxv if (pte & PG_PS)
160 1.1 maxv return -1;
161 1.1 maxv
162 1.1 maxv *gpa = (pte & PG_FRAME);
163 1.1 maxv return 0;
164 1.1 maxv }
165 1.1 maxv
166 1.1 maxv /* -------------------------------------------------------------------------- */
167 1.1 maxv
168 1.1 maxv #define PTE32_PAE_L1_SHIFT 12
169 1.1 maxv #define PTE32_PAE_L2_SHIFT 21
170 1.1 maxv #define PTE32_PAE_L3_SHIFT 30
171 1.1 maxv
172 1.1 maxv #define PTE32_PAE_L3_MASK 0xc0000000
173 1.1 maxv #define PTE32_PAE_L2_MASK 0x3fe00000
174 1.1 maxv #define PTE32_PAE_L1_MASK 0x001ff000
175 1.1 maxv
176 1.1 maxv #define PTE32_PAE_L3_FRAME (PTE32_PAE_L3_MASK)
177 1.1 maxv #define PTE32_PAE_L2_FRAME (PTE32_PAE_L3_FRAME|PTE32_PAE_L2_MASK)
178 1.1 maxv #define PTE32_PAE_L1_FRAME (PTE32_PAE_L2_FRAME|PTE32_PAE_L1_MASK)
179 1.1 maxv
180 1.1 maxv #define pte32_pae_l1idx(va) (((va) & PTE32_PAE_L1_MASK) >> PTE32_PAE_L1_SHIFT)
181 1.1 maxv #define pte32_pae_l2idx(va) (((va) & PTE32_PAE_L2_MASK) >> PTE32_PAE_L2_SHIFT)
182 1.1 maxv #define pte32_pae_l3idx(va) (((va) & PTE32_PAE_L3_MASK) >> PTE32_PAE_L3_SHIFT)
183 1.1 maxv
184 1.1 maxv typedef uint64_t pte_32bit_pae_t;
185 1.1 maxv
186 1.1 maxv static int
187 1.1 maxv x86_gva_to_gpa_32bit_pae(struct nvmm_machine *mach, uint64_t cr3,
188 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, bool has_pse, nvmm_prot_t *prot)
189 1.1 maxv {
190 1.1 maxv gpaddr_t L3gpa, L2gpa, L1gpa;
191 1.1 maxv uintptr_t L3hva, L2hva, L1hva;
192 1.1 maxv pte_32bit_pae_t *pdir, pte;
193 1.1 maxv
194 1.1 maxv /* We begin with an RWXU access. */
195 1.1 maxv *prot = NVMM_PROT_ALL;
196 1.1 maxv
197 1.1 maxv /* Parse L3. */
198 1.1 maxv L3gpa = (cr3 & PG_FRAME);
199 1.1 maxv if (nvmm_gpa_to_hva(mach, L3gpa, &L3hva) == -1)
200 1.1 maxv return -1;
201 1.1 maxv pdir = (pte_32bit_pae_t *)L3hva;
202 1.1 maxv pte = pdir[pte32_pae_l3idx(gva)];
203 1.1 maxv if ((pte & PG_V) == 0)
204 1.1 maxv return -1;
205 1.1 maxv if (pte & PG_NX)
206 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
207 1.1 maxv if (pte & PG_PS)
208 1.1 maxv return -1;
209 1.1 maxv
210 1.1 maxv /* Parse L2. */
211 1.1 maxv L2gpa = (pte & PG_FRAME);
212 1.1 maxv if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva) == -1)
213 1.1 maxv return -1;
214 1.1 maxv pdir = (pte_32bit_pae_t *)L2hva;
215 1.1 maxv pte = pdir[pte32_pae_l2idx(gva)];
216 1.1 maxv if ((pte & PG_V) == 0)
217 1.1 maxv return -1;
218 1.1 maxv if ((pte & PG_u) == 0)
219 1.1 maxv *prot &= ~NVMM_PROT_USER;
220 1.1 maxv if ((pte & PG_KW) == 0)
221 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
222 1.1 maxv if (pte & PG_NX)
223 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
224 1.1 maxv if ((pte & PG_PS) && !has_pse)
225 1.1 maxv return -1;
226 1.1 maxv if (pte & PG_PS) {
227 1.1 maxv *gpa = (pte & PTE32_PAE_L2_FRAME);
228 1.10 maxv *gpa = *gpa + (gva & PTE32_PAE_L1_MASK);
229 1.1 maxv return 0;
230 1.1 maxv }
231 1.1 maxv
232 1.1 maxv /* Parse L1. */
233 1.1 maxv L1gpa = (pte & PG_FRAME);
234 1.1 maxv if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva) == -1)
235 1.1 maxv return -1;
236 1.1 maxv pdir = (pte_32bit_pae_t *)L1hva;
237 1.1 maxv pte = pdir[pte32_pae_l1idx(gva)];
238 1.1 maxv if ((pte & PG_V) == 0)
239 1.1 maxv return -1;
240 1.1 maxv if ((pte & PG_u) == 0)
241 1.1 maxv *prot &= ~NVMM_PROT_USER;
242 1.1 maxv if ((pte & PG_KW) == 0)
243 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
244 1.1 maxv if (pte & PG_NX)
245 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
246 1.1 maxv if (pte & PG_PS)
247 1.1 maxv return -1;
248 1.1 maxv
249 1.1 maxv *gpa = (pte & PG_FRAME);
250 1.1 maxv return 0;
251 1.1 maxv }
252 1.1 maxv
253 1.1 maxv /* -------------------------------------------------------------------------- */
254 1.1 maxv
255 1.1 maxv #define PTE64_L1_SHIFT 12
256 1.1 maxv #define PTE64_L2_SHIFT 21
257 1.1 maxv #define PTE64_L3_SHIFT 30
258 1.1 maxv #define PTE64_L4_SHIFT 39
259 1.1 maxv
260 1.1 maxv #define PTE64_L4_MASK 0x0000ff8000000000
261 1.1 maxv #define PTE64_L3_MASK 0x0000007fc0000000
262 1.1 maxv #define PTE64_L2_MASK 0x000000003fe00000
263 1.1 maxv #define PTE64_L1_MASK 0x00000000001ff000
264 1.1 maxv
265 1.1 maxv #define PTE64_L4_FRAME PTE64_L4_MASK
266 1.1 maxv #define PTE64_L3_FRAME (PTE64_L4_FRAME|PTE64_L3_MASK)
267 1.1 maxv #define PTE64_L2_FRAME (PTE64_L3_FRAME|PTE64_L2_MASK)
268 1.1 maxv #define PTE64_L1_FRAME (PTE64_L2_FRAME|PTE64_L1_MASK)
269 1.1 maxv
270 1.1 maxv #define pte64_l1idx(va) (((va) & PTE64_L1_MASK) >> PTE64_L1_SHIFT)
271 1.1 maxv #define pte64_l2idx(va) (((va) & PTE64_L2_MASK) >> PTE64_L2_SHIFT)
272 1.1 maxv #define pte64_l3idx(va) (((va) & PTE64_L3_MASK) >> PTE64_L3_SHIFT)
273 1.1 maxv #define pte64_l4idx(va) (((va) & PTE64_L4_MASK) >> PTE64_L4_SHIFT)
274 1.1 maxv
275 1.1 maxv typedef uint64_t pte_64bit_t;
276 1.1 maxv
277 1.1 maxv static inline bool
278 1.1 maxv x86_gva_64bit_canonical(gvaddr_t gva)
279 1.1 maxv {
280 1.1 maxv /* Bits 63:47 must have the same value. */
281 1.1 maxv #define SIGN_EXTEND 0xffff800000000000ULL
282 1.1 maxv return (gva & SIGN_EXTEND) == 0 || (gva & SIGN_EXTEND) == SIGN_EXTEND;
283 1.1 maxv }
284 1.1 maxv
285 1.1 maxv static int
286 1.1 maxv x86_gva_to_gpa_64bit(struct nvmm_machine *mach, uint64_t cr3,
287 1.11 maxv gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
288 1.1 maxv {
289 1.1 maxv gpaddr_t L4gpa, L3gpa, L2gpa, L1gpa;
290 1.1 maxv uintptr_t L4hva, L3hva, L2hva, L1hva;
291 1.1 maxv pte_64bit_t *pdir, pte;
292 1.1 maxv
293 1.1 maxv /* We begin with an RWXU access. */
294 1.1 maxv *prot = NVMM_PROT_ALL;
295 1.1 maxv
296 1.1 maxv if (!x86_gva_64bit_canonical(gva))
297 1.1 maxv return -1;
298 1.1 maxv
299 1.1 maxv /* Parse L4. */
300 1.1 maxv L4gpa = (cr3 & PG_FRAME);
301 1.1 maxv if (nvmm_gpa_to_hva(mach, L4gpa, &L4hva) == -1)
302 1.1 maxv return -1;
303 1.1 maxv pdir = (pte_64bit_t *)L4hva;
304 1.1 maxv pte = pdir[pte64_l4idx(gva)];
305 1.1 maxv if ((pte & PG_V) == 0)
306 1.1 maxv return -1;
307 1.1 maxv if ((pte & PG_u) == 0)
308 1.1 maxv *prot &= ~NVMM_PROT_USER;
309 1.1 maxv if ((pte & PG_KW) == 0)
310 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
311 1.1 maxv if (pte & PG_NX)
312 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
313 1.1 maxv if (pte & PG_PS)
314 1.1 maxv return -1;
315 1.1 maxv
316 1.1 maxv /* Parse L3. */
317 1.1 maxv L3gpa = (pte & PG_FRAME);
318 1.1 maxv if (nvmm_gpa_to_hva(mach, L3gpa, &L3hva) == -1)
319 1.1 maxv return -1;
320 1.1 maxv pdir = (pte_64bit_t *)L3hva;
321 1.1 maxv pte = pdir[pte64_l3idx(gva)];
322 1.1 maxv if ((pte & PG_V) == 0)
323 1.1 maxv return -1;
324 1.1 maxv if ((pte & PG_u) == 0)
325 1.1 maxv *prot &= ~NVMM_PROT_USER;
326 1.1 maxv if ((pte & PG_KW) == 0)
327 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
328 1.1 maxv if (pte & PG_NX)
329 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
330 1.1 maxv if (pte & PG_PS) {
331 1.1 maxv *gpa = (pte & PTE64_L3_FRAME);
332 1.10 maxv *gpa = *gpa + (gva & (PTE64_L2_MASK|PTE64_L1_MASK));
333 1.1 maxv return 0;
334 1.1 maxv }
335 1.1 maxv
336 1.1 maxv /* Parse L2. */
337 1.1 maxv L2gpa = (pte & PG_FRAME);
338 1.1 maxv if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva) == -1)
339 1.1 maxv return -1;
340 1.1 maxv pdir = (pte_64bit_t *)L2hva;
341 1.1 maxv pte = pdir[pte64_l2idx(gva)];
342 1.1 maxv if ((pte & PG_V) == 0)
343 1.1 maxv return -1;
344 1.1 maxv if ((pte & PG_u) == 0)
345 1.1 maxv *prot &= ~NVMM_PROT_USER;
346 1.1 maxv if ((pte & PG_KW) == 0)
347 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
348 1.1 maxv if (pte & PG_NX)
349 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
350 1.1 maxv if (pte & PG_PS) {
351 1.1 maxv *gpa = (pte & PTE64_L2_FRAME);
352 1.10 maxv *gpa = *gpa + (gva & PTE64_L1_MASK);
353 1.1 maxv return 0;
354 1.1 maxv }
355 1.1 maxv
356 1.1 maxv /* Parse L1. */
357 1.1 maxv L1gpa = (pte & PG_FRAME);
358 1.1 maxv if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva) == -1)
359 1.1 maxv return -1;
360 1.1 maxv pdir = (pte_64bit_t *)L1hva;
361 1.1 maxv pte = pdir[pte64_l1idx(gva)];
362 1.1 maxv if ((pte & PG_V) == 0)
363 1.1 maxv return -1;
364 1.1 maxv if ((pte & PG_u) == 0)
365 1.1 maxv *prot &= ~NVMM_PROT_USER;
366 1.1 maxv if ((pte & PG_KW) == 0)
367 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
368 1.1 maxv if (pte & PG_NX)
369 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
370 1.1 maxv if (pte & PG_PS)
371 1.1 maxv return -1;
372 1.1 maxv
373 1.1 maxv *gpa = (pte & PG_FRAME);
374 1.1 maxv return 0;
375 1.1 maxv }
376 1.1 maxv
377 1.1 maxv static inline int
378 1.1 maxv x86_gva_to_gpa(struct nvmm_machine *mach, struct nvmm_x64_state *state,
379 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
380 1.1 maxv {
381 1.1 maxv bool is_pae, is_lng, has_pse;
382 1.1 maxv uint64_t cr3;
383 1.6 maxv size_t off;
384 1.1 maxv int ret;
385 1.1 maxv
386 1.1 maxv if ((state->crs[NVMM_X64_CR_CR0] & CR0_PG) == 0) {
387 1.1 maxv /* No paging. */
388 1.4 maxv *prot = NVMM_PROT_ALL;
389 1.1 maxv *gpa = gva;
390 1.1 maxv return 0;
391 1.1 maxv }
392 1.1 maxv
393 1.6 maxv off = (gva & PAGE_MASK);
394 1.6 maxv gva &= ~PAGE_MASK;
395 1.6 maxv
396 1.1 maxv is_pae = (state->crs[NVMM_X64_CR_CR4] & CR4_PAE) != 0;
397 1.15 maxv is_lng = (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) != 0;
398 1.1 maxv has_pse = (state->crs[NVMM_X64_CR_CR4] & CR4_PSE) != 0;
399 1.1 maxv cr3 = state->crs[NVMM_X64_CR_CR3];
400 1.1 maxv
401 1.1 maxv if (is_pae && is_lng) {
402 1.1 maxv /* 64bit */
403 1.11 maxv ret = x86_gva_to_gpa_64bit(mach, cr3, gva, gpa, prot);
404 1.1 maxv } else if (is_pae && !is_lng) {
405 1.1 maxv /* 32bit PAE */
406 1.1 maxv ret = x86_gva_to_gpa_32bit_pae(mach, cr3, gva, gpa, has_pse,
407 1.1 maxv prot);
408 1.1 maxv } else if (!is_pae && !is_lng) {
409 1.1 maxv /* 32bit */
410 1.1 maxv ret = x86_gva_to_gpa_32bit(mach, cr3, gva, gpa, has_pse, prot);
411 1.1 maxv } else {
412 1.1 maxv ret = -1;
413 1.1 maxv }
414 1.1 maxv
415 1.1 maxv if (ret == -1) {
416 1.1 maxv errno = EFAULT;
417 1.1 maxv }
418 1.1 maxv
419 1.6 maxv *gpa = *gpa + off;
420 1.6 maxv
421 1.1 maxv return ret;
422 1.1 maxv }
423 1.1 maxv
424 1.1 maxv int
425 1.1 maxv nvmm_gva_to_gpa(struct nvmm_machine *mach, nvmm_cpuid_t cpuid,
426 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
427 1.1 maxv {
428 1.1 maxv struct nvmm_x64_state state;
429 1.1 maxv int ret;
430 1.1 maxv
431 1.1 maxv ret = nvmm_vcpu_getstate(mach, cpuid, &state,
432 1.1 maxv NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
433 1.1 maxv if (ret == -1)
434 1.1 maxv return -1;
435 1.1 maxv
436 1.1 maxv return x86_gva_to_gpa(mach, &state, gva, gpa, prot);
437 1.1 maxv }
438 1.1 maxv
439 1.1 maxv /* -------------------------------------------------------------------------- */
440 1.1 maxv
441 1.1 maxv static inline bool
442 1.15 maxv is_long_mode(struct nvmm_x64_state *state)
443 1.15 maxv {
444 1.15 maxv return (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) != 0;
445 1.15 maxv }
446 1.15 maxv
447 1.15 maxv static inline bool
448 1.5 maxv is_64bit(struct nvmm_x64_state *state)
449 1.5 maxv {
450 1.5 maxv return (state->segs[NVMM_X64_SEG_CS].attrib.lng != 0);
451 1.5 maxv }
452 1.5 maxv
453 1.5 maxv static inline bool
454 1.5 maxv is_32bit(struct nvmm_x64_state *state)
455 1.5 maxv {
456 1.5 maxv return (state->segs[NVMM_X64_SEG_CS].attrib.lng == 0) &&
457 1.5 maxv (state->segs[NVMM_X64_SEG_CS].attrib.def32 == 1);
458 1.5 maxv }
459 1.5 maxv
460 1.5 maxv static inline bool
461 1.5 maxv is_16bit(struct nvmm_x64_state *state)
462 1.5 maxv {
463 1.5 maxv return (state->segs[NVMM_X64_SEG_CS].attrib.lng == 0) &&
464 1.5 maxv (state->segs[NVMM_X64_SEG_CS].attrib.def32 == 0);
465 1.5 maxv }
466 1.5 maxv
467 1.1 maxv static int
468 1.15 maxv segment_check(struct nvmm_x64_state_seg *seg, gvaddr_t gva, size_t size)
469 1.1 maxv {
470 1.1 maxv uint64_t limit;
471 1.1 maxv
472 1.1 maxv /*
473 1.1 maxv * This is incomplete. We should check topdown, etc, really that's
474 1.1 maxv * tiring.
475 1.1 maxv */
476 1.1 maxv if (__predict_false(!seg->attrib.p)) {
477 1.1 maxv goto error;
478 1.1 maxv }
479 1.1 maxv
480 1.1 maxv limit = (seg->limit + 1);
481 1.1 maxv if (__predict_true(seg->attrib.gran)) {
482 1.1 maxv limit *= PAGE_SIZE;
483 1.1 maxv }
484 1.1 maxv
485 1.15 maxv if (__predict_false(gva + size > limit)) {
486 1.1 maxv goto error;
487 1.1 maxv }
488 1.1 maxv
489 1.1 maxv return 0;
490 1.1 maxv
491 1.1 maxv error:
492 1.1 maxv errno = EFAULT;
493 1.1 maxv return -1;
494 1.1 maxv }
495 1.1 maxv
496 1.15 maxv static inline void
497 1.15 maxv segment_apply(struct nvmm_x64_state_seg *seg, gvaddr_t *gva)
498 1.15 maxv {
499 1.15 maxv *gva += seg->base;
500 1.15 maxv }
501 1.15 maxv
502 1.15 maxv static inline uint64_t
503 1.15 maxv size_to_mask(size_t size)
504 1.6 maxv {
505 1.15 maxv switch (size) {
506 1.15 maxv case 1:
507 1.15 maxv return 0x00000000000000FF;
508 1.15 maxv case 2:
509 1.15 maxv return 0x000000000000FFFF;
510 1.15 maxv case 4:
511 1.15 maxv return 0x00000000FFFFFFFF;
512 1.6 maxv case 8:
513 1.15 maxv default:
514 1.6 maxv return 0xFFFFFFFFFFFFFFFF;
515 1.6 maxv }
516 1.6 maxv }
517 1.6 maxv
518 1.6 maxv static uint64_t
519 1.10 maxv rep_get_cnt(struct nvmm_x64_state *state, size_t adsize)
520 1.10 maxv {
521 1.10 maxv uint64_t mask, cnt;
522 1.10 maxv
523 1.15 maxv mask = size_to_mask(adsize);
524 1.10 maxv cnt = state->gprs[NVMM_X64_GPR_RCX] & mask;
525 1.10 maxv
526 1.10 maxv return cnt;
527 1.10 maxv }
528 1.10 maxv
529 1.10 maxv static void
530 1.10 maxv rep_set_cnt(struct nvmm_x64_state *state, size_t adsize, uint64_t cnt)
531 1.10 maxv {
532 1.10 maxv uint64_t mask;
533 1.10 maxv
534 1.15 maxv /* XXX: should we zero-extend? */
535 1.15 maxv mask = size_to_mask(adsize);
536 1.10 maxv state->gprs[NVMM_X64_GPR_RCX] &= ~mask;
537 1.10 maxv state->gprs[NVMM_X64_GPR_RCX] |= cnt;
538 1.10 maxv }
539 1.10 maxv
540 1.6 maxv static int
541 1.6 maxv read_guest_memory(struct nvmm_machine *mach, struct nvmm_x64_state *state,
542 1.6 maxv gvaddr_t gva, uint8_t *data, size_t size)
543 1.6 maxv {
544 1.6 maxv struct nvmm_mem mem;
545 1.6 maxv nvmm_prot_t prot;
546 1.6 maxv gpaddr_t gpa;
547 1.6 maxv uintptr_t hva;
548 1.6 maxv bool is_mmio;
549 1.6 maxv int ret, remain;
550 1.6 maxv
551 1.6 maxv ret = x86_gva_to_gpa(mach, state, gva, &gpa, &prot);
552 1.6 maxv if (__predict_false(ret == -1)) {
553 1.6 maxv return -1;
554 1.6 maxv }
555 1.6 maxv if (__predict_false(!(prot & NVMM_PROT_READ))) {
556 1.6 maxv errno = EFAULT;
557 1.6 maxv return -1;
558 1.6 maxv }
559 1.6 maxv
560 1.6 maxv if ((gva & PAGE_MASK) + size > PAGE_SIZE) {
561 1.6 maxv remain = ((gva & PAGE_MASK) + size - PAGE_SIZE);
562 1.6 maxv } else {
563 1.6 maxv remain = 0;
564 1.6 maxv }
565 1.6 maxv size -= remain;
566 1.6 maxv
567 1.6 maxv ret = nvmm_gpa_to_hva(mach, gpa, &hva);
568 1.6 maxv is_mmio = (ret == -1);
569 1.6 maxv
570 1.6 maxv if (is_mmio) {
571 1.11 maxv mem.data = data;
572 1.6 maxv mem.gpa = gpa;
573 1.6 maxv mem.write = false;
574 1.6 maxv mem.size = size;
575 1.6 maxv (*__callbacks.mem)(&mem);
576 1.6 maxv } else {
577 1.6 maxv memcpy(data, (uint8_t *)hva, size);
578 1.6 maxv }
579 1.6 maxv
580 1.6 maxv if (remain > 0) {
581 1.6 maxv ret = read_guest_memory(mach, state, gva + size,
582 1.6 maxv data + size, remain);
583 1.6 maxv } else {
584 1.6 maxv ret = 0;
585 1.6 maxv }
586 1.6 maxv
587 1.6 maxv return ret;
588 1.6 maxv }
589 1.6 maxv
590 1.6 maxv static int
591 1.6 maxv write_guest_memory(struct nvmm_machine *mach, struct nvmm_x64_state *state,
592 1.6 maxv gvaddr_t gva, uint8_t *data, size_t size)
593 1.6 maxv {
594 1.6 maxv struct nvmm_mem mem;
595 1.6 maxv nvmm_prot_t prot;
596 1.6 maxv gpaddr_t gpa;
597 1.6 maxv uintptr_t hva;
598 1.6 maxv bool is_mmio;
599 1.6 maxv int ret, remain;
600 1.6 maxv
601 1.6 maxv ret = x86_gva_to_gpa(mach, state, gva, &gpa, &prot);
602 1.6 maxv if (__predict_false(ret == -1)) {
603 1.6 maxv return -1;
604 1.6 maxv }
605 1.6 maxv if (__predict_false(!(prot & NVMM_PROT_WRITE))) {
606 1.6 maxv errno = EFAULT;
607 1.6 maxv return -1;
608 1.6 maxv }
609 1.6 maxv
610 1.6 maxv if ((gva & PAGE_MASK) + size > PAGE_SIZE) {
611 1.6 maxv remain = ((gva & PAGE_MASK) + size - PAGE_SIZE);
612 1.6 maxv } else {
613 1.6 maxv remain = 0;
614 1.6 maxv }
615 1.6 maxv size -= remain;
616 1.6 maxv
617 1.6 maxv ret = nvmm_gpa_to_hva(mach, gpa, &hva);
618 1.6 maxv is_mmio = (ret == -1);
619 1.6 maxv
620 1.6 maxv if (is_mmio) {
621 1.11 maxv mem.data = data;
622 1.6 maxv mem.gpa = gpa;
623 1.6 maxv mem.write = true;
624 1.6 maxv mem.size = size;
625 1.6 maxv (*__callbacks.mem)(&mem);
626 1.6 maxv } else {
627 1.6 maxv memcpy((uint8_t *)hva, data, size);
628 1.6 maxv }
629 1.6 maxv
630 1.6 maxv if (remain > 0) {
631 1.6 maxv ret = write_guest_memory(mach, state, gva + size,
632 1.6 maxv data + size, remain);
633 1.6 maxv } else {
634 1.6 maxv ret = 0;
635 1.6 maxv }
636 1.6 maxv
637 1.6 maxv return ret;
638 1.6 maxv }
639 1.6 maxv
640 1.6 maxv /* -------------------------------------------------------------------------- */
641 1.6 maxv
642 1.8 maxv static int fetch_segment(struct nvmm_machine *, struct nvmm_x64_state *);
643 1.8 maxv
644 1.10 maxv #define NVMM_IO_BATCH_SIZE 32
645 1.10 maxv
646 1.10 maxv static int
647 1.10 maxv assist_io_batch(struct nvmm_machine *mach, struct nvmm_x64_state *state,
648 1.10 maxv struct nvmm_io *io, gvaddr_t gva, uint64_t cnt)
649 1.10 maxv {
650 1.10 maxv uint8_t iobuf[NVMM_IO_BATCH_SIZE];
651 1.10 maxv size_t i, iosize, iocnt;
652 1.10 maxv int ret;
653 1.10 maxv
654 1.10 maxv cnt = MIN(cnt, NVMM_IO_BATCH_SIZE);
655 1.10 maxv iosize = MIN(io->size * cnt, NVMM_IO_BATCH_SIZE);
656 1.10 maxv iocnt = iosize / io->size;
657 1.10 maxv
658 1.10 maxv io->data = iobuf;
659 1.10 maxv
660 1.10 maxv if (!io->in) {
661 1.10 maxv ret = read_guest_memory(mach, state, gva, iobuf, iosize);
662 1.10 maxv if (ret == -1)
663 1.10 maxv return -1;
664 1.10 maxv }
665 1.10 maxv
666 1.10 maxv for (i = 0; i < iocnt; i++) {
667 1.10 maxv (*__callbacks.io)(io);
668 1.10 maxv io->data += io->size;
669 1.10 maxv }
670 1.10 maxv
671 1.10 maxv if (io->in) {
672 1.10 maxv ret = write_guest_memory(mach, state, gva, iobuf, iosize);
673 1.10 maxv if (ret == -1)
674 1.10 maxv return -1;
675 1.10 maxv }
676 1.10 maxv
677 1.10 maxv return iocnt;
678 1.10 maxv }
679 1.10 maxv
680 1.1 maxv int
681 1.1 maxv nvmm_assist_io(struct nvmm_machine *mach, nvmm_cpuid_t cpuid,
682 1.6 maxv struct nvmm_exit *exit)
683 1.1 maxv {
684 1.1 maxv struct nvmm_x64_state state;
685 1.1 maxv struct nvmm_io io;
686 1.10 maxv uint64_t cnt = 0; /* GCC */
687 1.10 maxv uint8_t iobuf[8];
688 1.10 maxv int iocnt = 1;
689 1.15 maxv gvaddr_t gva = 0; /* GCC */
690 1.5 maxv int reg = 0; /* GCC */
691 1.8 maxv int ret, seg;
692 1.10 maxv bool psld = false;
693 1.1 maxv
694 1.1 maxv if (__predict_false(exit->reason != NVMM_EXIT_IO)) {
695 1.1 maxv errno = EINVAL;
696 1.1 maxv return -1;
697 1.1 maxv }
698 1.1 maxv
699 1.1 maxv io.port = exit->u.io.port;
700 1.1 maxv io.in = (exit->u.io.type == NVMM_EXIT_IO_IN);
701 1.1 maxv io.size = exit->u.io.operand_size;
702 1.10 maxv io.data = iobuf;
703 1.1 maxv
704 1.1 maxv ret = nvmm_vcpu_getstate(mach, cpuid, &state,
705 1.1 maxv NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
706 1.1 maxv NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
707 1.1 maxv if (ret == -1)
708 1.1 maxv return -1;
709 1.1 maxv
710 1.10 maxv if (exit->u.io.rep) {
711 1.10 maxv cnt = rep_get_cnt(&state, exit->u.io.address_size);
712 1.10 maxv if (__predict_false(cnt == 0)) {
713 1.15 maxv state.gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
714 1.15 maxv goto out;
715 1.10 maxv }
716 1.10 maxv }
717 1.10 maxv
718 1.10 maxv if (__predict_false(state.gprs[NVMM_X64_GPR_RFLAGS] & PSL_D)) {
719 1.10 maxv psld = true;
720 1.10 maxv }
721 1.10 maxv
722 1.6 maxv /*
723 1.6 maxv * Determine GVA.
724 1.6 maxv */
725 1.6 maxv if (exit->u.io.str) {
726 1.5 maxv if (io.in) {
727 1.5 maxv reg = NVMM_X64_GPR_RDI;
728 1.5 maxv } else {
729 1.5 maxv reg = NVMM_X64_GPR_RSI;
730 1.5 maxv }
731 1.1 maxv
732 1.6 maxv gva = state.gprs[reg];
733 1.15 maxv gva &= size_to_mask(exit->u.io.address_size);
734 1.1 maxv
735 1.15 maxv if (exit->u.io.seg != -1) {
736 1.15 maxv seg = exit->u.io.seg;
737 1.15 maxv } else {
738 1.15 maxv if (io.in) {
739 1.15 maxv seg = NVMM_X64_SEG_ES;
740 1.8 maxv } else {
741 1.15 maxv seg = fetch_segment(mach, &state);
742 1.15 maxv if (seg == -1)
743 1.15 maxv return -1;
744 1.8 maxv }
745 1.15 maxv }
746 1.8 maxv
747 1.15 maxv if (__predict_true(is_long_mode(&state))) {
748 1.15 maxv if (seg == NVMM_X64_SEG_GS || seg == NVMM_X64_SEG_FS) {
749 1.15 maxv segment_apply(&state.segs[seg], &gva);
750 1.15 maxv }
751 1.15 maxv } else {
752 1.15 maxv ret = segment_check(&state.segs[seg], gva, io.size);
753 1.1 maxv if (ret == -1)
754 1.1 maxv return -1;
755 1.15 maxv segment_apply(&state.segs[seg], &gva);
756 1.1 maxv }
757 1.10 maxv
758 1.10 maxv if (exit->u.io.rep && !psld) {
759 1.10 maxv iocnt = assist_io_batch(mach, &state, &io, gva, cnt);
760 1.10 maxv if (iocnt == -1)
761 1.10 maxv return -1;
762 1.10 maxv goto done;
763 1.10 maxv }
764 1.6 maxv }
765 1.1 maxv
766 1.6 maxv if (!io.in) {
767 1.6 maxv if (!exit->u.io.str) {
768 1.6 maxv memcpy(io.data, &state.gprs[NVMM_X64_GPR_RAX], io.size);
769 1.6 maxv } else {
770 1.6 maxv ret = read_guest_memory(mach, &state, gva, io.data,
771 1.6 maxv io.size);
772 1.1 maxv if (ret == -1)
773 1.1 maxv return -1;
774 1.1 maxv }
775 1.1 maxv }
776 1.1 maxv
777 1.6 maxv (*__callbacks.io)(&io);
778 1.1 maxv
779 1.1 maxv if (io.in) {
780 1.6 maxv if (!exit->u.io.str) {
781 1.6 maxv memcpy(&state.gprs[NVMM_X64_GPR_RAX], io.data, io.size);
782 1.15 maxv if (io.size == 4) {
783 1.15 maxv /* Zero-extend to 64 bits. */
784 1.15 maxv state.gprs[NVMM_X64_GPR_RAX] &= size_to_mask(4);
785 1.15 maxv }
786 1.1 maxv } else {
787 1.6 maxv ret = write_guest_memory(mach, &state, gva, io.data,
788 1.6 maxv io.size);
789 1.6 maxv if (ret == -1)
790 1.6 maxv return -1;
791 1.1 maxv }
792 1.1 maxv }
793 1.1 maxv
794 1.10 maxv done:
795 1.5 maxv if (exit->u.io.str) {
796 1.10 maxv if (__predict_false(psld)) {
797 1.10 maxv state.gprs[reg] -= iocnt * io.size;
798 1.5 maxv } else {
799 1.10 maxv state.gprs[reg] += iocnt * io.size;
800 1.5 maxv }
801 1.5 maxv }
802 1.5 maxv
803 1.1 maxv if (exit->u.io.rep) {
804 1.10 maxv cnt -= iocnt;
805 1.10 maxv rep_set_cnt(&state, exit->u.io.address_size, cnt);
806 1.6 maxv if (cnt == 0) {
807 1.1 maxv state.gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
808 1.1 maxv }
809 1.1 maxv } else {
810 1.1 maxv state.gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
811 1.1 maxv }
812 1.1 maxv
813 1.15 maxv out:
814 1.1 maxv ret = nvmm_vcpu_setstate(mach, cpuid, &state, NVMM_X64_STATE_GPRS);
815 1.1 maxv if (ret == -1)
816 1.1 maxv return -1;
817 1.1 maxv
818 1.1 maxv return 0;
819 1.1 maxv }
820 1.1 maxv
821 1.1 maxv /* -------------------------------------------------------------------------- */
822 1.1 maxv
823 1.5 maxv static void x86_emul_or(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
824 1.5 maxv static void x86_emul_and(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
825 1.5 maxv static void x86_emul_xor(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
826 1.5 maxv static void x86_emul_mov(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
827 1.5 maxv static void x86_emul_stos(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
828 1.5 maxv static void x86_emul_lods(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
829 1.6 maxv static void x86_emul_movs(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
830 1.5 maxv
831 1.13 maxv /* Legacy prefixes. */
832 1.13 maxv #define LEG_LOCK 0xF0
833 1.13 maxv #define LEG_REPN 0xF2
834 1.13 maxv #define LEG_REP 0xF3
835 1.13 maxv #define LEG_OVR_CS 0x2E
836 1.13 maxv #define LEG_OVR_SS 0x36
837 1.13 maxv #define LEG_OVR_DS 0x3E
838 1.13 maxv #define LEG_OVR_ES 0x26
839 1.13 maxv #define LEG_OVR_FS 0x64
840 1.13 maxv #define LEG_OVR_GS 0x65
841 1.13 maxv #define LEG_OPR_OVR 0x66
842 1.13 maxv #define LEG_ADR_OVR 0x67
843 1.13 maxv
844 1.13 maxv struct x86_legpref {
845 1.13 maxv bool opr_ovr:1;
846 1.13 maxv bool adr_ovr:1;
847 1.13 maxv bool rep:1;
848 1.13 maxv bool repn:1;
849 1.13 maxv int seg;
850 1.5 maxv };
851 1.5 maxv
852 1.5 maxv struct x86_rexpref {
853 1.5 maxv bool present;
854 1.5 maxv bool w;
855 1.5 maxv bool r;
856 1.5 maxv bool x;
857 1.5 maxv bool b;
858 1.5 maxv };
859 1.5 maxv
860 1.5 maxv struct x86_reg {
861 1.5 maxv int num; /* NVMM GPR state index */
862 1.5 maxv uint64_t mask;
863 1.5 maxv };
864 1.5 maxv
865 1.5 maxv enum x86_disp_type {
866 1.5 maxv DISP_NONE,
867 1.5 maxv DISP_0,
868 1.5 maxv DISP_1,
869 1.5 maxv DISP_4
870 1.5 maxv };
871 1.5 maxv
872 1.5 maxv struct x86_disp {
873 1.5 maxv enum x86_disp_type type;
874 1.11 maxv uint64_t data; /* 4 bytes, but can be sign-extended */
875 1.5 maxv };
876 1.5 maxv
877 1.5 maxv enum REGMODRM__Mod {
878 1.5 maxv MOD_DIS0, /* also, register indirect */
879 1.5 maxv MOD_DIS1,
880 1.5 maxv MOD_DIS4,
881 1.5 maxv MOD_REG
882 1.5 maxv };
883 1.5 maxv
884 1.5 maxv enum REGMODRM__Reg {
885 1.5 maxv REG_000, /* these fields are indexes to the register map */
886 1.5 maxv REG_001,
887 1.5 maxv REG_010,
888 1.5 maxv REG_011,
889 1.5 maxv REG_100,
890 1.5 maxv REG_101,
891 1.5 maxv REG_110,
892 1.5 maxv REG_111
893 1.5 maxv };
894 1.5 maxv
895 1.5 maxv enum REGMODRM__Rm {
896 1.5 maxv RM_000, /* reg */
897 1.5 maxv RM_001, /* reg */
898 1.5 maxv RM_010, /* reg */
899 1.5 maxv RM_011, /* reg */
900 1.5 maxv RM_RSP_SIB, /* reg or SIB, depending on the MOD */
901 1.5 maxv RM_RBP_DISP32, /* reg or displacement-only (= RIP-relative on amd64) */
902 1.5 maxv RM_110,
903 1.5 maxv RM_111
904 1.5 maxv };
905 1.5 maxv
906 1.5 maxv struct x86_regmodrm {
907 1.5 maxv bool present;
908 1.5 maxv enum REGMODRM__Mod mod;
909 1.5 maxv enum REGMODRM__Reg reg;
910 1.5 maxv enum REGMODRM__Rm rm;
911 1.5 maxv };
912 1.5 maxv
913 1.5 maxv struct x86_immediate {
914 1.11 maxv uint64_t data;
915 1.5 maxv };
916 1.5 maxv
917 1.5 maxv struct x86_sib {
918 1.5 maxv uint8_t scale;
919 1.5 maxv const struct x86_reg *idx;
920 1.5 maxv const struct x86_reg *bas;
921 1.5 maxv };
922 1.5 maxv
923 1.5 maxv enum x86_store_type {
924 1.5 maxv STORE_NONE,
925 1.5 maxv STORE_REG,
926 1.5 maxv STORE_IMM,
927 1.5 maxv STORE_SIB,
928 1.5 maxv STORE_DMO
929 1.5 maxv };
930 1.5 maxv
931 1.5 maxv struct x86_store {
932 1.5 maxv enum x86_store_type type;
933 1.5 maxv union {
934 1.5 maxv const struct x86_reg *reg;
935 1.5 maxv struct x86_immediate imm;
936 1.5 maxv struct x86_sib sib;
937 1.5 maxv uint64_t dmo;
938 1.5 maxv } u;
939 1.5 maxv struct x86_disp disp;
940 1.6 maxv int hardseg;
941 1.5 maxv };
942 1.5 maxv
943 1.5 maxv struct x86_instr {
944 1.5 maxv size_t len;
945 1.13 maxv struct x86_legpref legpref;
946 1.5 maxv struct x86_rexpref rexpref;
947 1.5 maxv size_t operand_size;
948 1.5 maxv size_t address_size;
949 1.10 maxv uint64_t zeroextend_mask;
950 1.5 maxv
951 1.5 maxv struct x86_regmodrm regmodrm;
952 1.5 maxv
953 1.5 maxv const struct x86_opcode *opcode;
954 1.5 maxv
955 1.5 maxv struct x86_store src;
956 1.5 maxv struct x86_store dst;
957 1.5 maxv
958 1.5 maxv struct x86_store *strm;
959 1.5 maxv
960 1.5 maxv void (*emul)(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
961 1.5 maxv };
962 1.5 maxv
963 1.5 maxv struct x86_decode_fsm {
964 1.5 maxv /* vcpu */
965 1.5 maxv bool is64bit;
966 1.5 maxv bool is32bit;
967 1.5 maxv bool is16bit;
968 1.5 maxv
969 1.5 maxv /* fsm */
970 1.5 maxv int (*fn)(struct x86_decode_fsm *, struct x86_instr *);
971 1.5 maxv uint8_t *buf;
972 1.5 maxv uint8_t *end;
973 1.5 maxv };
974 1.5 maxv
975 1.5 maxv struct x86_opcode {
976 1.5 maxv uint8_t byte;
977 1.5 maxv bool regmodrm;
978 1.5 maxv bool regtorm;
979 1.5 maxv bool dmo;
980 1.5 maxv bool todmo;
981 1.6 maxv bool movs;
982 1.5 maxv bool stos;
983 1.5 maxv bool lods;
984 1.5 maxv bool szoverride;
985 1.5 maxv int defsize;
986 1.5 maxv int allsize;
987 1.11 maxv bool group1;
988 1.5 maxv bool group11;
989 1.5 maxv bool immediate;
990 1.5 maxv int flags;
991 1.5 maxv void (*emul)(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
992 1.5 maxv };
993 1.5 maxv
994 1.5 maxv struct x86_group_entry {
995 1.5 maxv void (*emul)(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
996 1.5 maxv };
997 1.5 maxv
998 1.5 maxv #define OPSIZE_BYTE 0x01
999 1.5 maxv #define OPSIZE_WORD 0x02 /* 2 bytes */
1000 1.5 maxv #define OPSIZE_DOUB 0x04 /* 4 bytes */
1001 1.5 maxv #define OPSIZE_QUAD 0x08 /* 8 bytes */
1002 1.5 maxv
1003 1.11 maxv #define FLAG_imm8 0x01
1004 1.11 maxv #define FLAG_immz 0x02
1005 1.11 maxv #define FLAG_ze 0x04
1006 1.11 maxv
1007 1.11 maxv static const struct x86_group_entry group1[8] = {
1008 1.11 maxv [1] = { .emul = x86_emul_or },
1009 1.11 maxv [4] = { .emul = x86_emul_and },
1010 1.11 maxv [6] = { .emul = x86_emul_xor }
1011 1.11 maxv };
1012 1.5 maxv
1013 1.5 maxv static const struct x86_group_entry group11[8] = {
1014 1.5 maxv [0] = { .emul = x86_emul_mov }
1015 1.5 maxv };
1016 1.5 maxv
1017 1.5 maxv static const struct x86_opcode primary_opcode_table[] = {
1018 1.5 maxv /*
1019 1.11 maxv * Group1
1020 1.11 maxv */
1021 1.11 maxv {
1022 1.15 maxv /* Ev, Iz */
1023 1.15 maxv .byte = 0x81,
1024 1.15 maxv .regmodrm = true,
1025 1.15 maxv .regtorm = true,
1026 1.15 maxv .szoverride = true,
1027 1.15 maxv .defsize = -1,
1028 1.15 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1029 1.15 maxv .group1 = true,
1030 1.15 maxv .immediate = true,
1031 1.15 maxv .flags = FLAG_immz,
1032 1.15 maxv .emul = NULL /* group1 */
1033 1.15 maxv },
1034 1.15 maxv {
1035 1.11 maxv /* Ev, Ib */
1036 1.11 maxv .byte = 0x83,
1037 1.11 maxv .regmodrm = true,
1038 1.11 maxv .regtorm = true,
1039 1.11 maxv .szoverride = true,
1040 1.11 maxv .defsize = -1,
1041 1.11 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1042 1.11 maxv .group1 = true,
1043 1.11 maxv .immediate = true,
1044 1.11 maxv .flags = FLAG_imm8,
1045 1.11 maxv .emul = NULL /* group1 */
1046 1.11 maxv },
1047 1.11 maxv
1048 1.11 maxv /*
1049 1.5 maxv * Group11
1050 1.5 maxv */
1051 1.5 maxv {
1052 1.11 maxv /* Eb, Ib */
1053 1.5 maxv .byte = 0xC6,
1054 1.5 maxv .regmodrm = true,
1055 1.5 maxv .regtorm = true,
1056 1.5 maxv .szoverride = false,
1057 1.5 maxv .defsize = OPSIZE_BYTE,
1058 1.5 maxv .allsize = -1,
1059 1.5 maxv .group11 = true,
1060 1.5 maxv .immediate = true,
1061 1.5 maxv .emul = NULL /* group11 */
1062 1.5 maxv },
1063 1.5 maxv {
1064 1.11 maxv /* Ev, Iz */
1065 1.5 maxv .byte = 0xC7,
1066 1.5 maxv .regmodrm = true,
1067 1.5 maxv .regtorm = true,
1068 1.5 maxv .szoverride = true,
1069 1.5 maxv .defsize = -1,
1070 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1071 1.5 maxv .group11 = true,
1072 1.5 maxv .immediate = true,
1073 1.11 maxv .flags = FLAG_immz,
1074 1.5 maxv .emul = NULL /* group11 */
1075 1.5 maxv },
1076 1.5 maxv
1077 1.5 maxv /*
1078 1.5 maxv * OR
1079 1.5 maxv */
1080 1.5 maxv {
1081 1.5 maxv /* Eb, Gb */
1082 1.5 maxv .byte = 0x08,
1083 1.5 maxv .regmodrm = true,
1084 1.5 maxv .regtorm = true,
1085 1.5 maxv .szoverride = false,
1086 1.5 maxv .defsize = OPSIZE_BYTE,
1087 1.5 maxv .allsize = -1,
1088 1.5 maxv .emul = x86_emul_or
1089 1.5 maxv },
1090 1.5 maxv {
1091 1.5 maxv /* Ev, Gv */
1092 1.5 maxv .byte = 0x09,
1093 1.5 maxv .regmodrm = true,
1094 1.5 maxv .regtorm = true,
1095 1.5 maxv .szoverride = true,
1096 1.5 maxv .defsize = -1,
1097 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1098 1.5 maxv .emul = x86_emul_or
1099 1.5 maxv },
1100 1.5 maxv {
1101 1.5 maxv /* Gb, Eb */
1102 1.5 maxv .byte = 0x0A,
1103 1.5 maxv .regmodrm = true,
1104 1.5 maxv .regtorm = false,
1105 1.5 maxv .szoverride = false,
1106 1.5 maxv .defsize = OPSIZE_BYTE,
1107 1.5 maxv .allsize = -1,
1108 1.5 maxv .emul = x86_emul_or
1109 1.5 maxv },
1110 1.5 maxv {
1111 1.5 maxv /* Gv, Ev */
1112 1.5 maxv .byte = 0x0B,
1113 1.5 maxv .regmodrm = true,
1114 1.5 maxv .regtorm = false,
1115 1.5 maxv .szoverride = true,
1116 1.5 maxv .defsize = -1,
1117 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1118 1.5 maxv .emul = x86_emul_or
1119 1.5 maxv },
1120 1.5 maxv
1121 1.5 maxv /*
1122 1.5 maxv * AND
1123 1.5 maxv */
1124 1.5 maxv {
1125 1.5 maxv /* Eb, Gb */
1126 1.5 maxv .byte = 0x20,
1127 1.5 maxv .regmodrm = true,
1128 1.5 maxv .regtorm = true,
1129 1.5 maxv .szoverride = false,
1130 1.5 maxv .defsize = OPSIZE_BYTE,
1131 1.5 maxv .allsize = -1,
1132 1.5 maxv .emul = x86_emul_and
1133 1.5 maxv },
1134 1.5 maxv {
1135 1.5 maxv /* Ev, Gv */
1136 1.5 maxv .byte = 0x21,
1137 1.5 maxv .regmodrm = true,
1138 1.5 maxv .regtorm = true,
1139 1.5 maxv .szoverride = true,
1140 1.5 maxv .defsize = -1,
1141 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1142 1.5 maxv .emul = x86_emul_and
1143 1.5 maxv },
1144 1.5 maxv {
1145 1.5 maxv /* Gb, Eb */
1146 1.5 maxv .byte = 0x22,
1147 1.5 maxv .regmodrm = true,
1148 1.5 maxv .regtorm = false,
1149 1.5 maxv .szoverride = false,
1150 1.5 maxv .defsize = OPSIZE_BYTE,
1151 1.5 maxv .allsize = -1,
1152 1.5 maxv .emul = x86_emul_and
1153 1.5 maxv },
1154 1.5 maxv {
1155 1.5 maxv /* Gv, Ev */
1156 1.5 maxv .byte = 0x23,
1157 1.5 maxv .regmodrm = true,
1158 1.5 maxv .regtorm = false,
1159 1.5 maxv .szoverride = true,
1160 1.5 maxv .defsize = -1,
1161 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1162 1.5 maxv .emul = x86_emul_and
1163 1.5 maxv },
1164 1.5 maxv
1165 1.5 maxv /*
1166 1.5 maxv * XOR
1167 1.5 maxv */
1168 1.5 maxv {
1169 1.5 maxv /* Eb, Gb */
1170 1.5 maxv .byte = 0x30,
1171 1.5 maxv .regmodrm = true,
1172 1.5 maxv .regtorm = true,
1173 1.5 maxv .szoverride = false,
1174 1.5 maxv .defsize = OPSIZE_BYTE,
1175 1.5 maxv .allsize = -1,
1176 1.5 maxv .emul = x86_emul_xor
1177 1.5 maxv },
1178 1.5 maxv {
1179 1.5 maxv /* Ev, Gv */
1180 1.5 maxv .byte = 0x31,
1181 1.5 maxv .regmodrm = true,
1182 1.5 maxv .regtorm = true,
1183 1.5 maxv .szoverride = true,
1184 1.5 maxv .defsize = -1,
1185 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1186 1.5 maxv .emul = x86_emul_xor
1187 1.5 maxv },
1188 1.5 maxv {
1189 1.5 maxv /* Gb, Eb */
1190 1.5 maxv .byte = 0x32,
1191 1.5 maxv .regmodrm = true,
1192 1.5 maxv .regtorm = false,
1193 1.5 maxv .szoverride = false,
1194 1.5 maxv .defsize = OPSIZE_BYTE,
1195 1.5 maxv .allsize = -1,
1196 1.5 maxv .emul = x86_emul_xor
1197 1.5 maxv },
1198 1.5 maxv {
1199 1.5 maxv /* Gv, Ev */
1200 1.5 maxv .byte = 0x33,
1201 1.5 maxv .regmodrm = true,
1202 1.5 maxv .regtorm = false,
1203 1.5 maxv .szoverride = true,
1204 1.5 maxv .defsize = -1,
1205 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1206 1.5 maxv .emul = x86_emul_xor
1207 1.5 maxv },
1208 1.5 maxv
1209 1.5 maxv /*
1210 1.5 maxv * MOV
1211 1.5 maxv */
1212 1.5 maxv {
1213 1.5 maxv /* Eb, Gb */
1214 1.5 maxv .byte = 0x88,
1215 1.5 maxv .regmodrm = true,
1216 1.5 maxv .regtorm = true,
1217 1.5 maxv .szoverride = false,
1218 1.5 maxv .defsize = OPSIZE_BYTE,
1219 1.5 maxv .allsize = -1,
1220 1.5 maxv .emul = x86_emul_mov
1221 1.5 maxv },
1222 1.5 maxv {
1223 1.5 maxv /* Ev, Gv */
1224 1.5 maxv .byte = 0x89,
1225 1.5 maxv .regmodrm = true,
1226 1.5 maxv .regtorm = true,
1227 1.5 maxv .szoverride = true,
1228 1.5 maxv .defsize = -1,
1229 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1230 1.5 maxv .emul = x86_emul_mov
1231 1.5 maxv },
1232 1.5 maxv {
1233 1.5 maxv /* Gb, Eb */
1234 1.5 maxv .byte = 0x8A,
1235 1.5 maxv .regmodrm = true,
1236 1.5 maxv .regtorm = false,
1237 1.5 maxv .szoverride = false,
1238 1.5 maxv .defsize = OPSIZE_BYTE,
1239 1.5 maxv .allsize = -1,
1240 1.5 maxv .emul = x86_emul_mov
1241 1.5 maxv },
1242 1.5 maxv {
1243 1.5 maxv /* Gv, Ev */
1244 1.5 maxv .byte = 0x8B,
1245 1.5 maxv .regmodrm = true,
1246 1.5 maxv .regtorm = false,
1247 1.5 maxv .szoverride = true,
1248 1.5 maxv .defsize = -1,
1249 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1250 1.5 maxv .emul = x86_emul_mov
1251 1.5 maxv },
1252 1.5 maxv {
1253 1.5 maxv /* AL, Ob */
1254 1.5 maxv .byte = 0xA0,
1255 1.5 maxv .dmo = true,
1256 1.5 maxv .todmo = false,
1257 1.5 maxv .szoverride = false,
1258 1.5 maxv .defsize = OPSIZE_BYTE,
1259 1.5 maxv .allsize = -1,
1260 1.5 maxv .emul = x86_emul_mov
1261 1.5 maxv },
1262 1.5 maxv {
1263 1.5 maxv /* rAX, Ov */
1264 1.5 maxv .byte = 0xA1,
1265 1.5 maxv .dmo = true,
1266 1.5 maxv .todmo = false,
1267 1.5 maxv .szoverride = true,
1268 1.5 maxv .defsize = -1,
1269 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1270 1.5 maxv .emul = x86_emul_mov
1271 1.5 maxv },
1272 1.5 maxv {
1273 1.5 maxv /* Ob, AL */
1274 1.5 maxv .byte = 0xA2,
1275 1.5 maxv .dmo = true,
1276 1.5 maxv .todmo = true,
1277 1.5 maxv .szoverride = false,
1278 1.5 maxv .defsize = OPSIZE_BYTE,
1279 1.5 maxv .allsize = -1,
1280 1.5 maxv .emul = x86_emul_mov
1281 1.5 maxv },
1282 1.5 maxv {
1283 1.5 maxv /* Ov, rAX */
1284 1.5 maxv .byte = 0xA3,
1285 1.5 maxv .dmo = true,
1286 1.5 maxv .todmo = true,
1287 1.5 maxv .szoverride = true,
1288 1.5 maxv .defsize = -1,
1289 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1290 1.5 maxv .emul = x86_emul_mov
1291 1.5 maxv },
1292 1.5 maxv
1293 1.5 maxv /*
1294 1.6 maxv * MOVS
1295 1.6 maxv */
1296 1.6 maxv {
1297 1.6 maxv /* Yb, Xb */
1298 1.6 maxv .byte = 0xA4,
1299 1.6 maxv .movs = true,
1300 1.6 maxv .szoverride = false,
1301 1.6 maxv .defsize = OPSIZE_BYTE,
1302 1.6 maxv .allsize = -1,
1303 1.6 maxv .emul = x86_emul_movs
1304 1.6 maxv },
1305 1.6 maxv {
1306 1.6 maxv /* Yv, Xv */
1307 1.6 maxv .byte = 0xA5,
1308 1.6 maxv .movs = true,
1309 1.6 maxv .szoverride = true,
1310 1.6 maxv .defsize = -1,
1311 1.6 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1312 1.6 maxv .emul = x86_emul_movs
1313 1.6 maxv },
1314 1.6 maxv
1315 1.6 maxv /*
1316 1.5 maxv * STOS
1317 1.5 maxv */
1318 1.5 maxv {
1319 1.5 maxv /* Yb, AL */
1320 1.5 maxv .byte = 0xAA,
1321 1.5 maxv .stos = true,
1322 1.5 maxv .szoverride = false,
1323 1.5 maxv .defsize = OPSIZE_BYTE,
1324 1.5 maxv .allsize = -1,
1325 1.5 maxv .emul = x86_emul_stos
1326 1.5 maxv },
1327 1.5 maxv {
1328 1.5 maxv /* Yv, rAX */
1329 1.5 maxv .byte = 0xAB,
1330 1.5 maxv .stos = true,
1331 1.5 maxv .szoverride = true,
1332 1.5 maxv .defsize = -1,
1333 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1334 1.5 maxv .emul = x86_emul_stos
1335 1.5 maxv },
1336 1.5 maxv
1337 1.5 maxv /*
1338 1.5 maxv * LODS
1339 1.5 maxv */
1340 1.5 maxv {
1341 1.5 maxv /* AL, Xb */
1342 1.5 maxv .byte = 0xAC,
1343 1.5 maxv .lods = true,
1344 1.5 maxv .szoverride = false,
1345 1.5 maxv .defsize = OPSIZE_BYTE,
1346 1.5 maxv .allsize = -1,
1347 1.5 maxv .emul = x86_emul_lods
1348 1.5 maxv },
1349 1.5 maxv {
1350 1.5 maxv /* rAX, Xv */
1351 1.5 maxv .byte = 0xAD,
1352 1.5 maxv .lods = true,
1353 1.5 maxv .szoverride = true,
1354 1.5 maxv .defsize = -1,
1355 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1356 1.5 maxv .emul = x86_emul_lods
1357 1.5 maxv },
1358 1.5 maxv };
1359 1.5 maxv
1360 1.10 maxv static const struct x86_opcode secondary_opcode_table[] = {
1361 1.10 maxv /*
1362 1.10 maxv * MOVZX
1363 1.10 maxv */
1364 1.10 maxv {
1365 1.10 maxv /* Gv, Eb */
1366 1.10 maxv .byte = 0xB6,
1367 1.10 maxv .regmodrm = true,
1368 1.10 maxv .regtorm = false,
1369 1.10 maxv .szoverride = true,
1370 1.10 maxv .defsize = OPSIZE_BYTE,
1371 1.10 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1372 1.11 maxv .flags = FLAG_ze,
1373 1.10 maxv .emul = x86_emul_mov
1374 1.10 maxv },
1375 1.10 maxv {
1376 1.10 maxv /* Gv, Ew */
1377 1.10 maxv .byte = 0xB7,
1378 1.10 maxv .regmodrm = true,
1379 1.10 maxv .regtorm = false,
1380 1.10 maxv .szoverride = true,
1381 1.10 maxv .defsize = OPSIZE_WORD,
1382 1.10 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1383 1.11 maxv .flags = FLAG_ze,
1384 1.10 maxv .emul = x86_emul_mov
1385 1.10 maxv },
1386 1.10 maxv };
1387 1.10 maxv
1388 1.5 maxv static const struct x86_reg gpr_map__rip = { NVMM_X64_GPR_RIP, 0xFFFFFFFFFFFFFFFF };
1389 1.5 maxv
1390 1.5 maxv /* [REX-present][enc][opsize] */
1391 1.5 maxv static const struct x86_reg gpr_map__special[2][4][8] = {
1392 1.5 maxv [false] = {
1393 1.5 maxv /* No REX prefix. */
1394 1.5 maxv [0b00] = {
1395 1.5 maxv [0] = { NVMM_X64_GPR_RAX, 0x000000000000FF00 }, /* AH */
1396 1.5 maxv [1] = { NVMM_X64_GPR_RSP, 0x000000000000FFFF }, /* SP */
1397 1.5 maxv [2] = { -1, 0 },
1398 1.5 maxv [3] = { NVMM_X64_GPR_RSP, 0x00000000FFFFFFFF }, /* ESP */
1399 1.5 maxv [4] = { -1, 0 },
1400 1.5 maxv [5] = { -1, 0 },
1401 1.5 maxv [6] = { -1, 0 },
1402 1.5 maxv [7] = { -1, 0 },
1403 1.5 maxv },
1404 1.5 maxv [0b01] = {
1405 1.5 maxv [0] = { NVMM_X64_GPR_RCX, 0x000000000000FF00 }, /* CH */
1406 1.5 maxv [1] = { NVMM_X64_GPR_RBP, 0x000000000000FFFF }, /* BP */
1407 1.5 maxv [2] = { -1, 0 },
1408 1.5 maxv [3] = { NVMM_X64_GPR_RBP, 0x00000000FFFFFFFF }, /* EBP */
1409 1.5 maxv [4] = { -1, 0 },
1410 1.5 maxv [5] = { -1, 0 },
1411 1.5 maxv [6] = { -1, 0 },
1412 1.5 maxv [7] = { -1, 0 },
1413 1.5 maxv },
1414 1.5 maxv [0b10] = {
1415 1.5 maxv [0] = { NVMM_X64_GPR_RDX, 0x000000000000FF00 }, /* DH */
1416 1.5 maxv [1] = { NVMM_X64_GPR_RSI, 0x000000000000FFFF }, /* SI */
1417 1.5 maxv [2] = { -1, 0 },
1418 1.5 maxv [3] = { NVMM_X64_GPR_RSI, 0x00000000FFFFFFFF }, /* ESI */
1419 1.5 maxv [4] = { -1, 0 },
1420 1.5 maxv [5] = { -1, 0 },
1421 1.5 maxv [6] = { -1, 0 },
1422 1.5 maxv [7] = { -1, 0 },
1423 1.5 maxv },
1424 1.5 maxv [0b11] = {
1425 1.5 maxv [0] = { NVMM_X64_GPR_RBX, 0x000000000000FF00 }, /* BH */
1426 1.5 maxv [1] = { NVMM_X64_GPR_RDI, 0x000000000000FFFF }, /* DI */
1427 1.5 maxv [2] = { -1, 0 },
1428 1.5 maxv [3] = { NVMM_X64_GPR_RDI, 0x00000000FFFFFFFF }, /* EDI */
1429 1.5 maxv [4] = { -1, 0 },
1430 1.5 maxv [5] = { -1, 0 },
1431 1.5 maxv [6] = { -1, 0 },
1432 1.5 maxv [7] = { -1, 0 },
1433 1.5 maxv }
1434 1.5 maxv },
1435 1.5 maxv [true] = {
1436 1.5 maxv /* Has REX prefix. */
1437 1.5 maxv [0b00] = {
1438 1.5 maxv [0] = { NVMM_X64_GPR_RSP, 0x00000000000000FF }, /* SPL */
1439 1.5 maxv [1] = { NVMM_X64_GPR_RSP, 0x000000000000FFFF }, /* SP */
1440 1.5 maxv [2] = { -1, 0 },
1441 1.5 maxv [3] = { NVMM_X64_GPR_RSP, 0x00000000FFFFFFFF }, /* ESP */
1442 1.5 maxv [4] = { -1, 0 },
1443 1.5 maxv [5] = { -1, 0 },
1444 1.5 maxv [6] = { -1, 0 },
1445 1.5 maxv [7] = { NVMM_X64_GPR_RSP, 0xFFFFFFFFFFFFFFFF }, /* RSP */
1446 1.5 maxv },
1447 1.5 maxv [0b01] = {
1448 1.5 maxv [0] = { NVMM_X64_GPR_RBP, 0x00000000000000FF }, /* BPL */
1449 1.5 maxv [1] = { NVMM_X64_GPR_RBP, 0x000000000000FFFF }, /* BP */
1450 1.5 maxv [2] = { -1, 0 },
1451 1.5 maxv [3] = { NVMM_X64_GPR_RBP, 0x00000000FFFFFFFF }, /* EBP */
1452 1.5 maxv [4] = { -1, 0 },
1453 1.5 maxv [5] = { -1, 0 },
1454 1.5 maxv [6] = { -1, 0 },
1455 1.5 maxv [7] = { NVMM_X64_GPR_RBP, 0xFFFFFFFFFFFFFFFF }, /* RBP */
1456 1.5 maxv },
1457 1.5 maxv [0b10] = {
1458 1.5 maxv [0] = { NVMM_X64_GPR_RSI, 0x00000000000000FF }, /* SIL */
1459 1.5 maxv [1] = { NVMM_X64_GPR_RSI, 0x000000000000FFFF }, /* SI */
1460 1.5 maxv [2] = { -1, 0 },
1461 1.5 maxv [3] = { NVMM_X64_GPR_RSI, 0x00000000FFFFFFFF }, /* ESI */
1462 1.5 maxv [4] = { -1, 0 },
1463 1.5 maxv [5] = { -1, 0 },
1464 1.5 maxv [6] = { -1, 0 },
1465 1.5 maxv [7] = { NVMM_X64_GPR_RSI, 0xFFFFFFFFFFFFFFFF }, /* RSI */
1466 1.5 maxv },
1467 1.5 maxv [0b11] = {
1468 1.5 maxv [0] = { NVMM_X64_GPR_RDI, 0x00000000000000FF }, /* DIL */
1469 1.5 maxv [1] = { NVMM_X64_GPR_RDI, 0x000000000000FFFF }, /* DI */
1470 1.5 maxv [2] = { -1, 0 },
1471 1.5 maxv [3] = { NVMM_X64_GPR_RDI, 0x00000000FFFFFFFF }, /* EDI */
1472 1.5 maxv [4] = { -1, 0 },
1473 1.5 maxv [5] = { -1, 0 },
1474 1.5 maxv [6] = { -1, 0 },
1475 1.5 maxv [7] = { NVMM_X64_GPR_RDI, 0xFFFFFFFFFFFFFFFF }, /* RDI */
1476 1.5 maxv }
1477 1.5 maxv }
1478 1.5 maxv };
1479 1.5 maxv
1480 1.5 maxv /* [depends][enc][size] */
1481 1.5 maxv static const struct x86_reg gpr_map[2][8][8] = {
1482 1.5 maxv [false] = {
1483 1.5 maxv /* Not extended. */
1484 1.5 maxv [0b000] = {
1485 1.5 maxv [0] = { NVMM_X64_GPR_RAX, 0x00000000000000FF }, /* AL */
1486 1.5 maxv [1] = { NVMM_X64_GPR_RAX, 0x000000000000FFFF }, /* AX */
1487 1.5 maxv [2] = { -1, 0 },
1488 1.5 maxv [3] = { NVMM_X64_GPR_RAX, 0x00000000FFFFFFFF }, /* EAX */
1489 1.5 maxv [4] = { -1, 0 },
1490 1.5 maxv [5] = { -1, 0 },
1491 1.5 maxv [6] = { -1, 0 },
1492 1.18 maxv [7] = { NVMM_X64_GPR_RAX, 0xFFFFFFFFFFFFFFFF }, /* RAX */
1493 1.5 maxv },
1494 1.5 maxv [0b001] = {
1495 1.5 maxv [0] = { NVMM_X64_GPR_RCX, 0x00000000000000FF }, /* CL */
1496 1.5 maxv [1] = { NVMM_X64_GPR_RCX, 0x000000000000FFFF }, /* CX */
1497 1.5 maxv [2] = { -1, 0 },
1498 1.5 maxv [3] = { NVMM_X64_GPR_RCX, 0x00000000FFFFFFFF }, /* ECX */
1499 1.5 maxv [4] = { -1, 0 },
1500 1.5 maxv [5] = { -1, 0 },
1501 1.5 maxv [6] = { -1, 0 },
1502 1.18 maxv [7] = { NVMM_X64_GPR_RCX, 0xFFFFFFFFFFFFFFFF }, /* RCX */
1503 1.5 maxv },
1504 1.5 maxv [0b010] = {
1505 1.5 maxv [0] = { NVMM_X64_GPR_RDX, 0x00000000000000FF }, /* DL */
1506 1.5 maxv [1] = { NVMM_X64_GPR_RDX, 0x000000000000FFFF }, /* DX */
1507 1.5 maxv [2] = { -1, 0 },
1508 1.5 maxv [3] = { NVMM_X64_GPR_RDX, 0x00000000FFFFFFFF }, /* EDX */
1509 1.5 maxv [4] = { -1, 0 },
1510 1.5 maxv [5] = { -1, 0 },
1511 1.5 maxv [6] = { -1, 0 },
1512 1.18 maxv [7] = { NVMM_X64_GPR_RDX, 0xFFFFFFFFFFFFFFFF }, /* RDX */
1513 1.5 maxv },
1514 1.5 maxv [0b011] = {
1515 1.5 maxv [0] = { NVMM_X64_GPR_RBX, 0x00000000000000FF }, /* BL */
1516 1.5 maxv [1] = { NVMM_X64_GPR_RBX, 0x000000000000FFFF }, /* BX */
1517 1.5 maxv [2] = { -1, 0 },
1518 1.5 maxv [3] = { NVMM_X64_GPR_RBX, 0x00000000FFFFFFFF }, /* EBX */
1519 1.5 maxv [4] = { -1, 0 },
1520 1.5 maxv [5] = { -1, 0 },
1521 1.5 maxv [6] = { -1, 0 },
1522 1.18 maxv [7] = { NVMM_X64_GPR_RBX, 0xFFFFFFFFFFFFFFFF }, /* RBX */
1523 1.5 maxv },
1524 1.5 maxv [0b100] = {
1525 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1526 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1527 1.5 maxv [2] = { -1, 0 },
1528 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1529 1.5 maxv [4] = { -1, 0 },
1530 1.5 maxv [5] = { -1, 0 },
1531 1.5 maxv [6] = { -1, 0 },
1532 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1533 1.5 maxv },
1534 1.5 maxv [0b101] = {
1535 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1536 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1537 1.5 maxv [2] = { -1, 0 },
1538 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1539 1.5 maxv [4] = { -1, 0 },
1540 1.5 maxv [5] = { -1, 0 },
1541 1.5 maxv [6] = { -1, 0 },
1542 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1543 1.5 maxv },
1544 1.5 maxv [0b110] = {
1545 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1546 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1547 1.5 maxv [2] = { -1, 0 },
1548 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1549 1.5 maxv [4] = { -1, 0 },
1550 1.5 maxv [5] = { -1, 0 },
1551 1.5 maxv [6] = { -1, 0 },
1552 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1553 1.5 maxv },
1554 1.5 maxv [0b111] = {
1555 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1556 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1557 1.5 maxv [2] = { -1, 0 },
1558 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1559 1.5 maxv [4] = { -1, 0 },
1560 1.5 maxv [5] = { -1, 0 },
1561 1.5 maxv [6] = { -1, 0 },
1562 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1563 1.5 maxv },
1564 1.5 maxv },
1565 1.5 maxv [true] = {
1566 1.5 maxv /* Extended. */
1567 1.5 maxv [0b000] = {
1568 1.5 maxv [0] = { NVMM_X64_GPR_R8, 0x00000000000000FF }, /* R8B */
1569 1.5 maxv [1] = { NVMM_X64_GPR_R8, 0x000000000000FFFF }, /* R8W */
1570 1.5 maxv [2] = { -1, 0 },
1571 1.5 maxv [3] = { NVMM_X64_GPR_R8, 0x00000000FFFFFFFF }, /* R8D */
1572 1.5 maxv [4] = { -1, 0 },
1573 1.5 maxv [5] = { -1, 0 },
1574 1.5 maxv [6] = { -1, 0 },
1575 1.18 maxv [7] = { NVMM_X64_GPR_R8, 0xFFFFFFFFFFFFFFFF }, /* R8 */
1576 1.5 maxv },
1577 1.5 maxv [0b001] = {
1578 1.5 maxv [0] = { NVMM_X64_GPR_R9, 0x00000000000000FF }, /* R9B */
1579 1.5 maxv [1] = { NVMM_X64_GPR_R9, 0x000000000000FFFF }, /* R9W */
1580 1.5 maxv [2] = { -1, 0 },
1581 1.5 maxv [3] = { NVMM_X64_GPR_R9, 0x00000000FFFFFFFF }, /* R9D */
1582 1.5 maxv [4] = { -1, 0 },
1583 1.5 maxv [5] = { -1, 0 },
1584 1.5 maxv [6] = { -1, 0 },
1585 1.18 maxv [7] = { NVMM_X64_GPR_R9, 0xFFFFFFFFFFFFFFFF }, /* R9 */
1586 1.5 maxv },
1587 1.5 maxv [0b010] = {
1588 1.5 maxv [0] = { NVMM_X64_GPR_R10, 0x00000000000000FF }, /* R10B */
1589 1.5 maxv [1] = { NVMM_X64_GPR_R10, 0x000000000000FFFF }, /* R10W */
1590 1.5 maxv [2] = { -1, 0 },
1591 1.5 maxv [3] = { NVMM_X64_GPR_R10, 0x00000000FFFFFFFF }, /* R10D */
1592 1.5 maxv [4] = { -1, 0 },
1593 1.5 maxv [5] = { -1, 0 },
1594 1.5 maxv [6] = { -1, 0 },
1595 1.18 maxv [7] = { NVMM_X64_GPR_R10, 0xFFFFFFFFFFFFFFFF }, /* R10 */
1596 1.5 maxv },
1597 1.5 maxv [0b011] = {
1598 1.5 maxv [0] = { NVMM_X64_GPR_R11, 0x00000000000000FF }, /* R11B */
1599 1.5 maxv [1] = { NVMM_X64_GPR_R11, 0x000000000000FFFF }, /* R11W */
1600 1.5 maxv [2] = { -1, 0 },
1601 1.5 maxv [3] = { NVMM_X64_GPR_R11, 0x00000000FFFFFFFF }, /* R11D */
1602 1.5 maxv [4] = { -1, 0 },
1603 1.5 maxv [5] = { -1, 0 },
1604 1.5 maxv [6] = { -1, 0 },
1605 1.18 maxv [7] = { NVMM_X64_GPR_R11, 0xFFFFFFFFFFFFFFFF }, /* R11 */
1606 1.5 maxv },
1607 1.5 maxv [0b100] = {
1608 1.5 maxv [0] = { NVMM_X64_GPR_R12, 0x00000000000000FF }, /* R12B */
1609 1.5 maxv [1] = { NVMM_X64_GPR_R12, 0x000000000000FFFF }, /* R12W */
1610 1.5 maxv [2] = { -1, 0 },
1611 1.5 maxv [3] = { NVMM_X64_GPR_R12, 0x00000000FFFFFFFF }, /* R12D */
1612 1.5 maxv [4] = { -1, 0 },
1613 1.5 maxv [5] = { -1, 0 },
1614 1.5 maxv [6] = { -1, 0 },
1615 1.18 maxv [7] = { NVMM_X64_GPR_R12, 0xFFFFFFFFFFFFFFFF }, /* R12 */
1616 1.5 maxv },
1617 1.5 maxv [0b101] = {
1618 1.5 maxv [0] = { NVMM_X64_GPR_R13, 0x00000000000000FF }, /* R13B */
1619 1.5 maxv [1] = { NVMM_X64_GPR_R13, 0x000000000000FFFF }, /* R13W */
1620 1.5 maxv [2] = { -1, 0 },
1621 1.5 maxv [3] = { NVMM_X64_GPR_R13, 0x00000000FFFFFFFF }, /* R13D */
1622 1.5 maxv [4] = { -1, 0 },
1623 1.5 maxv [5] = { -1, 0 },
1624 1.5 maxv [6] = { -1, 0 },
1625 1.18 maxv [7] = { NVMM_X64_GPR_R13, 0xFFFFFFFFFFFFFFFF }, /* R13 */
1626 1.5 maxv },
1627 1.5 maxv [0b110] = {
1628 1.5 maxv [0] = { NVMM_X64_GPR_R14, 0x00000000000000FF }, /* R14B */
1629 1.5 maxv [1] = { NVMM_X64_GPR_R14, 0x000000000000FFFF }, /* R14W */
1630 1.5 maxv [2] = { -1, 0 },
1631 1.5 maxv [3] = { NVMM_X64_GPR_R14, 0x00000000FFFFFFFF }, /* R14D */
1632 1.5 maxv [4] = { -1, 0 },
1633 1.5 maxv [5] = { -1, 0 },
1634 1.5 maxv [6] = { -1, 0 },
1635 1.18 maxv [7] = { NVMM_X64_GPR_R14, 0xFFFFFFFFFFFFFFFF }, /* R14 */
1636 1.5 maxv },
1637 1.5 maxv [0b111] = {
1638 1.5 maxv [0] = { NVMM_X64_GPR_R15, 0x00000000000000FF }, /* R15B */
1639 1.5 maxv [1] = { NVMM_X64_GPR_R15, 0x000000000000FFFF }, /* R15W */
1640 1.5 maxv [2] = { -1, 0 },
1641 1.5 maxv [3] = { NVMM_X64_GPR_R15, 0x00000000FFFFFFFF }, /* R15D */
1642 1.5 maxv [4] = { -1, 0 },
1643 1.5 maxv [5] = { -1, 0 },
1644 1.5 maxv [6] = { -1, 0 },
1645 1.18 maxv [7] = { NVMM_X64_GPR_R15, 0xFFFFFFFFFFFFFFFF }, /* R15 */
1646 1.5 maxv },
1647 1.5 maxv }
1648 1.5 maxv };
1649 1.5 maxv
1650 1.5 maxv static int
1651 1.5 maxv node_overflow(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1652 1.5 maxv {
1653 1.5 maxv fsm->fn = NULL;
1654 1.5 maxv return -1;
1655 1.5 maxv }
1656 1.5 maxv
1657 1.5 maxv static int
1658 1.5 maxv fsm_read(struct x86_decode_fsm *fsm, uint8_t *bytes, size_t n)
1659 1.5 maxv {
1660 1.5 maxv if (fsm->buf + n > fsm->end) {
1661 1.5 maxv return -1;
1662 1.5 maxv }
1663 1.5 maxv memcpy(bytes, fsm->buf, n);
1664 1.5 maxv return 0;
1665 1.5 maxv }
1666 1.5 maxv
1667 1.5 maxv static void
1668 1.5 maxv fsm_advance(struct x86_decode_fsm *fsm, size_t n,
1669 1.5 maxv int (*fn)(struct x86_decode_fsm *, struct x86_instr *))
1670 1.5 maxv {
1671 1.5 maxv fsm->buf += n;
1672 1.5 maxv if (fsm->buf > fsm->end) {
1673 1.5 maxv fsm->fn = node_overflow;
1674 1.5 maxv } else {
1675 1.5 maxv fsm->fn = fn;
1676 1.5 maxv }
1677 1.5 maxv }
1678 1.5 maxv
1679 1.5 maxv static const struct x86_reg *
1680 1.5 maxv resolve_special_register(struct x86_instr *instr, uint8_t enc, size_t regsize)
1681 1.5 maxv {
1682 1.5 maxv enc &= 0b11;
1683 1.5 maxv if (regsize == 8) {
1684 1.5 maxv /* May be 64bit without REX */
1685 1.5 maxv return &gpr_map__special[1][enc][regsize-1];
1686 1.5 maxv }
1687 1.5 maxv return &gpr_map__special[instr->rexpref.present][enc][regsize-1];
1688 1.5 maxv }
1689 1.5 maxv
1690 1.5 maxv /*
1691 1.6 maxv * Special node, for MOVS. Fake two displacements of zero on the source and
1692 1.6 maxv * destination registers.
1693 1.6 maxv */
1694 1.6 maxv static int
1695 1.6 maxv node_movs(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1696 1.6 maxv {
1697 1.6 maxv size_t adrsize;
1698 1.6 maxv
1699 1.6 maxv adrsize = instr->address_size;
1700 1.6 maxv
1701 1.6 maxv /* DS:RSI */
1702 1.6 maxv instr->src.type = STORE_REG;
1703 1.6 maxv instr->src.u.reg = &gpr_map__special[1][2][adrsize-1];
1704 1.6 maxv instr->src.disp.type = DISP_0;
1705 1.6 maxv
1706 1.6 maxv /* ES:RDI, force ES */
1707 1.6 maxv instr->dst.type = STORE_REG;
1708 1.6 maxv instr->dst.u.reg = &gpr_map__special[1][3][adrsize-1];
1709 1.6 maxv instr->dst.disp.type = DISP_0;
1710 1.6 maxv instr->dst.hardseg = NVMM_X64_SEG_ES;
1711 1.6 maxv
1712 1.6 maxv fsm_advance(fsm, 0, NULL);
1713 1.6 maxv
1714 1.6 maxv return 0;
1715 1.6 maxv }
1716 1.6 maxv
1717 1.6 maxv /*
1718 1.5 maxv * Special node, for STOS and LODS. Fake a displacement of zero on the
1719 1.5 maxv * destination register.
1720 1.5 maxv */
1721 1.5 maxv static int
1722 1.5 maxv node_stlo(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1723 1.5 maxv {
1724 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1725 1.5 maxv struct x86_store *stlo, *streg;
1726 1.5 maxv size_t adrsize, regsize;
1727 1.5 maxv
1728 1.5 maxv adrsize = instr->address_size;
1729 1.5 maxv regsize = instr->operand_size;
1730 1.5 maxv
1731 1.5 maxv if (opcode->stos) {
1732 1.5 maxv streg = &instr->src;
1733 1.5 maxv stlo = &instr->dst;
1734 1.5 maxv } else {
1735 1.5 maxv streg = &instr->dst;
1736 1.5 maxv stlo = &instr->src;
1737 1.5 maxv }
1738 1.5 maxv
1739 1.5 maxv streg->type = STORE_REG;
1740 1.5 maxv streg->u.reg = &gpr_map[0][0][regsize-1]; /* ?AX */
1741 1.5 maxv
1742 1.5 maxv stlo->type = STORE_REG;
1743 1.5 maxv if (opcode->stos) {
1744 1.5 maxv /* ES:RDI, force ES */
1745 1.5 maxv stlo->u.reg = &gpr_map__special[1][3][adrsize-1];
1746 1.6 maxv stlo->hardseg = NVMM_X64_SEG_ES;
1747 1.5 maxv } else {
1748 1.5 maxv /* DS:RSI */
1749 1.5 maxv stlo->u.reg = &gpr_map__special[1][2][adrsize-1];
1750 1.5 maxv }
1751 1.5 maxv stlo->disp.type = DISP_0;
1752 1.5 maxv
1753 1.5 maxv fsm_advance(fsm, 0, NULL);
1754 1.5 maxv
1755 1.5 maxv return 0;
1756 1.5 maxv }
1757 1.5 maxv
1758 1.5 maxv static int
1759 1.5 maxv node_dmo(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1760 1.5 maxv {
1761 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1762 1.5 maxv struct x86_store *stdmo, *streg;
1763 1.5 maxv size_t adrsize, regsize;
1764 1.5 maxv
1765 1.5 maxv adrsize = instr->address_size;
1766 1.5 maxv regsize = instr->operand_size;
1767 1.5 maxv
1768 1.5 maxv if (opcode->todmo) {
1769 1.5 maxv streg = &instr->src;
1770 1.5 maxv stdmo = &instr->dst;
1771 1.5 maxv } else {
1772 1.5 maxv streg = &instr->dst;
1773 1.5 maxv stdmo = &instr->src;
1774 1.5 maxv }
1775 1.5 maxv
1776 1.5 maxv streg->type = STORE_REG;
1777 1.5 maxv streg->u.reg = &gpr_map[0][0][regsize-1]; /* ?AX */
1778 1.5 maxv
1779 1.5 maxv stdmo->type = STORE_DMO;
1780 1.5 maxv if (fsm_read(fsm, (uint8_t *)&stdmo->u.dmo, adrsize) == -1) {
1781 1.5 maxv return -1;
1782 1.5 maxv }
1783 1.5 maxv fsm_advance(fsm, adrsize, NULL);
1784 1.5 maxv
1785 1.5 maxv return 0;
1786 1.5 maxv }
1787 1.5 maxv
1788 1.15 maxv static inline uint64_t
1789 1.11 maxv sign_extend(uint64_t val, int size)
1790 1.11 maxv {
1791 1.11 maxv if (size == 1) {
1792 1.11 maxv if (val & __BIT(7))
1793 1.11 maxv val |= 0xFFFFFFFFFFFFFF00;
1794 1.11 maxv } else if (size == 2) {
1795 1.11 maxv if (val & __BIT(15))
1796 1.11 maxv val |= 0xFFFFFFFFFFFF0000;
1797 1.11 maxv } else if (size == 4) {
1798 1.11 maxv if (val & __BIT(31))
1799 1.11 maxv val |= 0xFFFFFFFF00000000;
1800 1.11 maxv }
1801 1.11 maxv return val;
1802 1.11 maxv }
1803 1.11 maxv
1804 1.5 maxv static int
1805 1.5 maxv node_immediate(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1806 1.5 maxv {
1807 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1808 1.5 maxv struct x86_store *store;
1809 1.5 maxv uint8_t immsize;
1810 1.11 maxv size_t sesize = 0;
1811 1.5 maxv
1812 1.5 maxv /* The immediate is the source */
1813 1.5 maxv store = &instr->src;
1814 1.5 maxv immsize = instr->operand_size;
1815 1.5 maxv
1816 1.11 maxv if (opcode->flags & FLAG_imm8) {
1817 1.11 maxv sesize = immsize;
1818 1.11 maxv immsize = 1;
1819 1.11 maxv } else if ((opcode->flags & FLAG_immz) && (immsize == 8)) {
1820 1.11 maxv sesize = immsize;
1821 1.5 maxv immsize = 4;
1822 1.5 maxv }
1823 1.5 maxv
1824 1.5 maxv store->type = STORE_IMM;
1825 1.11 maxv if (fsm_read(fsm, (uint8_t *)&store->u.imm.data, immsize) == -1) {
1826 1.5 maxv return -1;
1827 1.5 maxv }
1828 1.15 maxv fsm_advance(fsm, immsize, NULL);
1829 1.5 maxv
1830 1.11 maxv if (sesize != 0) {
1831 1.11 maxv store->u.imm.data = sign_extend(store->u.imm.data, sesize);
1832 1.11 maxv }
1833 1.5 maxv
1834 1.5 maxv return 0;
1835 1.5 maxv }
1836 1.5 maxv
1837 1.5 maxv static int
1838 1.5 maxv node_disp(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1839 1.5 maxv {
1840 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1841 1.11 maxv uint64_t data = 0;
1842 1.5 maxv size_t n;
1843 1.5 maxv
1844 1.5 maxv if (instr->strm->disp.type == DISP_1) {
1845 1.5 maxv n = 1;
1846 1.5 maxv } else { /* DISP4 */
1847 1.5 maxv n = 4;
1848 1.5 maxv }
1849 1.5 maxv
1850 1.11 maxv if (fsm_read(fsm, (uint8_t *)&data, n) == -1) {
1851 1.5 maxv return -1;
1852 1.5 maxv }
1853 1.5 maxv
1854 1.11 maxv if (__predict_true(fsm->is64bit)) {
1855 1.11 maxv data = sign_extend(data, n);
1856 1.11 maxv }
1857 1.11 maxv
1858 1.11 maxv instr->strm->disp.data = data;
1859 1.11 maxv
1860 1.5 maxv if (opcode->immediate) {
1861 1.5 maxv fsm_advance(fsm, n, node_immediate);
1862 1.5 maxv } else {
1863 1.5 maxv fsm_advance(fsm, n, NULL);
1864 1.5 maxv }
1865 1.5 maxv
1866 1.5 maxv return 0;
1867 1.5 maxv }
1868 1.5 maxv
1869 1.5 maxv static const struct x86_reg *
1870 1.5 maxv get_register_idx(struct x86_instr *instr, uint8_t index)
1871 1.5 maxv {
1872 1.5 maxv uint8_t enc = index;
1873 1.5 maxv const struct x86_reg *reg;
1874 1.5 maxv size_t regsize;
1875 1.5 maxv
1876 1.5 maxv regsize = instr->address_size;
1877 1.5 maxv reg = &gpr_map[instr->rexpref.x][enc][regsize-1];
1878 1.5 maxv
1879 1.5 maxv if (reg->num == -1) {
1880 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
1881 1.5 maxv }
1882 1.5 maxv
1883 1.5 maxv return reg;
1884 1.5 maxv }
1885 1.5 maxv
1886 1.5 maxv static const struct x86_reg *
1887 1.5 maxv get_register_bas(struct x86_instr *instr, uint8_t base)
1888 1.5 maxv {
1889 1.5 maxv uint8_t enc = base;
1890 1.5 maxv const struct x86_reg *reg;
1891 1.5 maxv size_t regsize;
1892 1.5 maxv
1893 1.5 maxv regsize = instr->address_size;
1894 1.5 maxv reg = &gpr_map[instr->rexpref.b][enc][regsize-1];
1895 1.5 maxv if (reg->num == -1) {
1896 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
1897 1.5 maxv }
1898 1.5 maxv
1899 1.5 maxv return reg;
1900 1.5 maxv }
1901 1.5 maxv
1902 1.5 maxv static int
1903 1.5 maxv node_sib(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1904 1.5 maxv {
1905 1.5 maxv const struct x86_opcode *opcode;
1906 1.5 maxv uint8_t scale, index, base;
1907 1.5 maxv bool noindex, nobase;
1908 1.5 maxv uint8_t byte;
1909 1.5 maxv
1910 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
1911 1.5 maxv return -1;
1912 1.5 maxv }
1913 1.5 maxv
1914 1.5 maxv scale = ((byte & 0b11000000) >> 6);
1915 1.5 maxv index = ((byte & 0b00111000) >> 3);
1916 1.5 maxv base = ((byte & 0b00000111) >> 0);
1917 1.5 maxv
1918 1.5 maxv opcode = instr->opcode;
1919 1.5 maxv
1920 1.5 maxv noindex = false;
1921 1.5 maxv nobase = false;
1922 1.5 maxv
1923 1.5 maxv if (index == 0b100 && !instr->rexpref.x) {
1924 1.5 maxv /* Special case: the index is null */
1925 1.5 maxv noindex = true;
1926 1.5 maxv }
1927 1.5 maxv
1928 1.5 maxv if (instr->regmodrm.mod == 0b00 && base == 0b101) {
1929 1.5 maxv /* Special case: the base is null + disp32 */
1930 1.5 maxv instr->strm->disp.type = DISP_4;
1931 1.5 maxv nobase = true;
1932 1.5 maxv }
1933 1.5 maxv
1934 1.5 maxv instr->strm->type = STORE_SIB;
1935 1.5 maxv instr->strm->u.sib.scale = (1 << scale);
1936 1.5 maxv if (!noindex)
1937 1.5 maxv instr->strm->u.sib.idx = get_register_idx(instr, index);
1938 1.5 maxv if (!nobase)
1939 1.5 maxv instr->strm->u.sib.bas = get_register_bas(instr, base);
1940 1.5 maxv
1941 1.5 maxv /* May have a displacement, or an immediate */
1942 1.5 maxv if (instr->strm->disp.type == DISP_1 || instr->strm->disp.type == DISP_4) {
1943 1.5 maxv fsm_advance(fsm, 1, node_disp);
1944 1.5 maxv } else if (opcode->immediate) {
1945 1.5 maxv fsm_advance(fsm, 1, node_immediate);
1946 1.5 maxv } else {
1947 1.5 maxv fsm_advance(fsm, 1, NULL);
1948 1.5 maxv }
1949 1.5 maxv
1950 1.5 maxv return 0;
1951 1.5 maxv }
1952 1.5 maxv
1953 1.5 maxv static const struct x86_reg *
1954 1.5 maxv get_register_reg(struct x86_instr *instr, const struct x86_opcode *opcode)
1955 1.5 maxv {
1956 1.5 maxv uint8_t enc = instr->regmodrm.reg;
1957 1.5 maxv const struct x86_reg *reg;
1958 1.5 maxv size_t regsize;
1959 1.5 maxv
1960 1.11 maxv regsize = instr->operand_size;
1961 1.5 maxv
1962 1.5 maxv reg = &gpr_map[instr->rexpref.r][enc][regsize-1];
1963 1.5 maxv if (reg->num == -1) {
1964 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
1965 1.5 maxv }
1966 1.5 maxv
1967 1.5 maxv return reg;
1968 1.5 maxv }
1969 1.5 maxv
1970 1.5 maxv static const struct x86_reg *
1971 1.5 maxv get_register_rm(struct x86_instr *instr, const struct x86_opcode *opcode)
1972 1.5 maxv {
1973 1.5 maxv uint8_t enc = instr->regmodrm.rm;
1974 1.5 maxv const struct x86_reg *reg;
1975 1.5 maxv size_t regsize;
1976 1.5 maxv
1977 1.5 maxv if (instr->strm->disp.type == DISP_NONE) {
1978 1.11 maxv regsize = instr->operand_size;
1979 1.5 maxv } else {
1980 1.5 maxv /* Indirect access, the size is that of the address. */
1981 1.5 maxv regsize = instr->address_size;
1982 1.5 maxv }
1983 1.5 maxv
1984 1.5 maxv reg = &gpr_map[instr->rexpref.b][enc][regsize-1];
1985 1.5 maxv if (reg->num == -1) {
1986 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
1987 1.5 maxv }
1988 1.5 maxv
1989 1.5 maxv return reg;
1990 1.5 maxv }
1991 1.5 maxv
1992 1.5 maxv static inline bool
1993 1.5 maxv has_sib(struct x86_instr *instr)
1994 1.5 maxv {
1995 1.5 maxv return (instr->regmodrm.mod != 3 && instr->regmodrm.rm == 4);
1996 1.5 maxv }
1997 1.5 maxv
1998 1.5 maxv static inline bool
1999 1.9 maxv is_rip_relative(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2000 1.5 maxv {
2001 1.9 maxv return (fsm->is64bit && instr->strm->disp.type == DISP_0 &&
2002 1.9 maxv instr->regmodrm.rm == RM_RBP_DISP32);
2003 1.9 maxv }
2004 1.9 maxv
2005 1.9 maxv static inline bool
2006 1.9 maxv is_disp32_only(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2007 1.9 maxv {
2008 1.9 maxv return (!fsm->is64bit && instr->strm->disp.type == DISP_0 &&
2009 1.5 maxv instr->regmodrm.rm == RM_RBP_DISP32);
2010 1.5 maxv }
2011 1.5 maxv
2012 1.5 maxv static enum x86_disp_type
2013 1.5 maxv get_disp_type(struct x86_instr *instr)
2014 1.5 maxv {
2015 1.5 maxv switch (instr->regmodrm.mod) {
2016 1.5 maxv case MOD_DIS0: /* indirect */
2017 1.5 maxv return DISP_0;
2018 1.5 maxv case MOD_DIS1: /* indirect+1 */
2019 1.5 maxv return DISP_1;
2020 1.5 maxv case MOD_DIS4: /* indirect+4 */
2021 1.5 maxv return DISP_4;
2022 1.5 maxv case MOD_REG: /* direct */
2023 1.5 maxv default: /* gcc */
2024 1.5 maxv return DISP_NONE;
2025 1.5 maxv }
2026 1.5 maxv }
2027 1.5 maxv
2028 1.5 maxv static int
2029 1.5 maxv node_regmodrm(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2030 1.5 maxv {
2031 1.5 maxv struct x86_store *strg, *strm;
2032 1.5 maxv const struct x86_opcode *opcode;
2033 1.5 maxv const struct x86_reg *reg;
2034 1.5 maxv uint8_t byte;
2035 1.5 maxv
2036 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2037 1.5 maxv return -1;
2038 1.5 maxv }
2039 1.5 maxv
2040 1.5 maxv opcode = instr->opcode;
2041 1.5 maxv
2042 1.5 maxv instr->regmodrm.present = true;
2043 1.5 maxv instr->regmodrm.mod = ((byte & 0b11000000) >> 6);
2044 1.5 maxv instr->regmodrm.reg = ((byte & 0b00111000) >> 3);
2045 1.5 maxv instr->regmodrm.rm = ((byte & 0b00000111) >> 0);
2046 1.5 maxv
2047 1.5 maxv if (opcode->regtorm) {
2048 1.5 maxv strg = &instr->src;
2049 1.5 maxv strm = &instr->dst;
2050 1.5 maxv } else { /* RM to REG */
2051 1.5 maxv strm = &instr->src;
2052 1.5 maxv strg = &instr->dst;
2053 1.5 maxv }
2054 1.5 maxv
2055 1.5 maxv /* Save for later use. */
2056 1.5 maxv instr->strm = strm;
2057 1.5 maxv
2058 1.5 maxv /*
2059 1.5 maxv * Special cases: Groups. The REG field of REGMODRM is the index in
2060 1.5 maxv * the group. op1 gets overwritten in the Immediate node, if any.
2061 1.5 maxv */
2062 1.11 maxv if (opcode->group1) {
2063 1.11 maxv if (group1[instr->regmodrm.reg].emul == NULL) {
2064 1.11 maxv return -1;
2065 1.11 maxv }
2066 1.11 maxv instr->emul = group1[instr->regmodrm.reg].emul;
2067 1.11 maxv } else if (opcode->group11) {
2068 1.5 maxv if (group11[instr->regmodrm.reg].emul == NULL) {
2069 1.5 maxv return -1;
2070 1.5 maxv }
2071 1.5 maxv instr->emul = group11[instr->regmodrm.reg].emul;
2072 1.5 maxv }
2073 1.5 maxv
2074 1.16 maxv if (!opcode->immediate) {
2075 1.16 maxv reg = get_register_reg(instr, opcode);
2076 1.16 maxv if (reg == NULL) {
2077 1.16 maxv return -1;
2078 1.16 maxv }
2079 1.16 maxv strg->type = STORE_REG;
2080 1.16 maxv strg->u.reg = reg;
2081 1.5 maxv }
2082 1.5 maxv
2083 1.5 maxv if (has_sib(instr)) {
2084 1.5 maxv /* Overwrites RM */
2085 1.5 maxv fsm_advance(fsm, 1, node_sib);
2086 1.5 maxv return 0;
2087 1.5 maxv }
2088 1.5 maxv
2089 1.5 maxv /* The displacement applies to RM. */
2090 1.5 maxv strm->disp.type = get_disp_type(instr);
2091 1.5 maxv
2092 1.9 maxv if (is_rip_relative(fsm, instr)) {
2093 1.5 maxv /* Overwrites RM */
2094 1.5 maxv strm->type = STORE_REG;
2095 1.5 maxv strm->u.reg = &gpr_map__rip;
2096 1.5 maxv strm->disp.type = DISP_4;
2097 1.5 maxv fsm_advance(fsm, 1, node_disp);
2098 1.5 maxv return 0;
2099 1.5 maxv }
2100 1.5 maxv
2101 1.9 maxv if (is_disp32_only(fsm, instr)) {
2102 1.9 maxv /* Overwrites RM */
2103 1.9 maxv strm->type = STORE_REG;
2104 1.9 maxv strm->u.reg = NULL;
2105 1.9 maxv strm->disp.type = DISP_4;
2106 1.9 maxv fsm_advance(fsm, 1, node_disp);
2107 1.9 maxv return 0;
2108 1.9 maxv }
2109 1.9 maxv
2110 1.5 maxv reg = get_register_rm(instr, opcode);
2111 1.5 maxv if (reg == NULL) {
2112 1.5 maxv return -1;
2113 1.5 maxv }
2114 1.5 maxv strm->type = STORE_REG;
2115 1.5 maxv strm->u.reg = reg;
2116 1.5 maxv
2117 1.5 maxv if (strm->disp.type == DISP_NONE) {
2118 1.5 maxv /* Direct register addressing mode */
2119 1.5 maxv if (opcode->immediate) {
2120 1.5 maxv fsm_advance(fsm, 1, node_immediate);
2121 1.5 maxv } else {
2122 1.5 maxv fsm_advance(fsm, 1, NULL);
2123 1.5 maxv }
2124 1.5 maxv } else if (strm->disp.type == DISP_0) {
2125 1.5 maxv /* Indirect register addressing mode */
2126 1.5 maxv if (opcode->immediate) {
2127 1.5 maxv fsm_advance(fsm, 1, node_immediate);
2128 1.5 maxv } else {
2129 1.5 maxv fsm_advance(fsm, 1, NULL);
2130 1.5 maxv }
2131 1.5 maxv } else {
2132 1.5 maxv fsm_advance(fsm, 1, node_disp);
2133 1.5 maxv }
2134 1.5 maxv
2135 1.5 maxv return 0;
2136 1.5 maxv }
2137 1.5 maxv
2138 1.5 maxv static size_t
2139 1.5 maxv get_operand_size(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2140 1.5 maxv {
2141 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
2142 1.5 maxv int opsize;
2143 1.5 maxv
2144 1.5 maxv /* Get the opsize */
2145 1.5 maxv if (!opcode->szoverride) {
2146 1.5 maxv opsize = opcode->defsize;
2147 1.5 maxv } else if (instr->rexpref.present && instr->rexpref.w) {
2148 1.5 maxv opsize = 8;
2149 1.5 maxv } else {
2150 1.5 maxv if (!fsm->is16bit) {
2151 1.13 maxv if (instr->legpref.opr_ovr) {
2152 1.5 maxv opsize = 2;
2153 1.5 maxv } else {
2154 1.5 maxv opsize = 4;
2155 1.5 maxv }
2156 1.5 maxv } else { /* 16bit */
2157 1.13 maxv if (instr->legpref.opr_ovr) {
2158 1.5 maxv opsize = 4;
2159 1.5 maxv } else {
2160 1.5 maxv opsize = 2;
2161 1.5 maxv }
2162 1.5 maxv }
2163 1.5 maxv }
2164 1.5 maxv
2165 1.5 maxv /* See if available */
2166 1.5 maxv if ((opcode->allsize & opsize) == 0) {
2167 1.5 maxv // XXX do we care?
2168 1.5 maxv }
2169 1.5 maxv
2170 1.5 maxv return opsize;
2171 1.5 maxv }
2172 1.5 maxv
2173 1.5 maxv static size_t
2174 1.5 maxv get_address_size(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2175 1.5 maxv {
2176 1.5 maxv if (fsm->is64bit) {
2177 1.13 maxv if (__predict_false(instr->legpref.adr_ovr)) {
2178 1.5 maxv return 4;
2179 1.5 maxv }
2180 1.5 maxv return 8;
2181 1.5 maxv }
2182 1.5 maxv
2183 1.5 maxv if (fsm->is32bit) {
2184 1.13 maxv if (__predict_false(instr->legpref.adr_ovr)) {
2185 1.5 maxv return 2;
2186 1.5 maxv }
2187 1.5 maxv return 4;
2188 1.5 maxv }
2189 1.5 maxv
2190 1.5 maxv /* 16bit. */
2191 1.13 maxv if (__predict_false(instr->legpref.adr_ovr)) {
2192 1.5 maxv return 4;
2193 1.5 maxv }
2194 1.5 maxv return 2;
2195 1.5 maxv }
2196 1.5 maxv
2197 1.5 maxv static int
2198 1.5 maxv node_primary_opcode(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2199 1.1 maxv {
2200 1.5 maxv const struct x86_opcode *opcode;
2201 1.5 maxv uint8_t byte;
2202 1.5 maxv size_t i, n;
2203 1.5 maxv
2204 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2205 1.5 maxv return -1;
2206 1.5 maxv }
2207 1.5 maxv
2208 1.5 maxv n = sizeof(primary_opcode_table) / sizeof(primary_opcode_table[0]);
2209 1.5 maxv for (i = 0; i < n; i++) {
2210 1.5 maxv if (primary_opcode_table[i].byte == byte)
2211 1.5 maxv break;
2212 1.5 maxv }
2213 1.5 maxv if (i == n) {
2214 1.1 maxv return -1;
2215 1.1 maxv }
2216 1.5 maxv opcode = &primary_opcode_table[i];
2217 1.1 maxv
2218 1.5 maxv instr->opcode = opcode;
2219 1.5 maxv instr->emul = opcode->emul;
2220 1.5 maxv instr->operand_size = get_operand_size(fsm, instr);
2221 1.5 maxv instr->address_size = get_address_size(fsm, instr);
2222 1.5 maxv
2223 1.15 maxv if (fsm->is64bit && (instr->operand_size == 4)) {
2224 1.15 maxv /* Zero-extend to 64 bits. */
2225 1.15 maxv instr->zeroextend_mask = ~size_to_mask(4);
2226 1.15 maxv }
2227 1.15 maxv
2228 1.5 maxv if (opcode->regmodrm) {
2229 1.5 maxv fsm_advance(fsm, 1, node_regmodrm);
2230 1.5 maxv } else if (opcode->dmo) {
2231 1.5 maxv /* Direct-Memory Offsets */
2232 1.5 maxv fsm_advance(fsm, 1, node_dmo);
2233 1.5 maxv } else if (opcode->stos || opcode->lods) {
2234 1.5 maxv fsm_advance(fsm, 1, node_stlo);
2235 1.6 maxv } else if (opcode->movs) {
2236 1.6 maxv fsm_advance(fsm, 1, node_movs);
2237 1.5 maxv } else {
2238 1.5 maxv return -1;
2239 1.5 maxv }
2240 1.5 maxv
2241 1.5 maxv return 0;
2242 1.5 maxv }
2243 1.5 maxv
2244 1.10 maxv static int
2245 1.10 maxv node_secondary_opcode(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2246 1.10 maxv {
2247 1.10 maxv const struct x86_opcode *opcode;
2248 1.10 maxv uint8_t byte;
2249 1.10 maxv size_t i, n;
2250 1.10 maxv
2251 1.10 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2252 1.10 maxv return -1;
2253 1.10 maxv }
2254 1.10 maxv
2255 1.10 maxv n = sizeof(secondary_opcode_table) / sizeof(secondary_opcode_table[0]);
2256 1.10 maxv for (i = 0; i < n; i++) {
2257 1.10 maxv if (secondary_opcode_table[i].byte == byte)
2258 1.10 maxv break;
2259 1.10 maxv }
2260 1.10 maxv if (i == n) {
2261 1.10 maxv return -1;
2262 1.10 maxv }
2263 1.10 maxv opcode = &secondary_opcode_table[i];
2264 1.10 maxv
2265 1.10 maxv instr->opcode = opcode;
2266 1.10 maxv instr->emul = opcode->emul;
2267 1.10 maxv instr->operand_size = get_operand_size(fsm, instr);
2268 1.10 maxv instr->address_size = get_address_size(fsm, instr);
2269 1.10 maxv
2270 1.18 maxv if (fsm->is64bit && (instr->operand_size == 4)) {
2271 1.18 maxv /* Zero-extend to 64 bits. */
2272 1.18 maxv instr->zeroextend_mask = ~size_to_mask(4);
2273 1.18 maxv }
2274 1.18 maxv
2275 1.11 maxv if (opcode->flags & FLAG_ze) {
2276 1.10 maxv /*
2277 1.10 maxv * Compute the mask for zero-extend. Update the operand size,
2278 1.10 maxv * we move fewer bytes.
2279 1.10 maxv */
2280 1.18 maxv instr->zeroextend_mask |= size_to_mask(instr->operand_size);
2281 1.10 maxv instr->zeroextend_mask &= ~size_to_mask(opcode->defsize);
2282 1.10 maxv instr->operand_size = opcode->defsize;
2283 1.10 maxv }
2284 1.10 maxv
2285 1.10 maxv if (opcode->regmodrm) {
2286 1.10 maxv fsm_advance(fsm, 1, node_regmodrm);
2287 1.10 maxv } else {
2288 1.10 maxv return -1;
2289 1.10 maxv }
2290 1.10 maxv
2291 1.10 maxv return 0;
2292 1.10 maxv }
2293 1.10 maxv
2294 1.5 maxv static int
2295 1.5 maxv node_main(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2296 1.5 maxv {
2297 1.5 maxv uint8_t byte;
2298 1.5 maxv
2299 1.5 maxv #define ESCAPE 0x0F
2300 1.5 maxv #define VEX_1 0xC5
2301 1.5 maxv #define VEX_2 0xC4
2302 1.5 maxv #define XOP 0x8F
2303 1.5 maxv
2304 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2305 1.5 maxv return -1;
2306 1.5 maxv }
2307 1.5 maxv
2308 1.5 maxv /*
2309 1.5 maxv * We don't take XOP. It is AMD-specific, and it was removed shortly
2310 1.5 maxv * after being introduced.
2311 1.5 maxv */
2312 1.5 maxv if (byte == ESCAPE) {
2313 1.10 maxv fsm_advance(fsm, 1, node_secondary_opcode);
2314 1.5 maxv } else if (!instr->rexpref.present) {
2315 1.5 maxv if (byte == VEX_1) {
2316 1.5 maxv return -1;
2317 1.5 maxv } else if (byte == VEX_2) {
2318 1.5 maxv return -1;
2319 1.5 maxv } else {
2320 1.5 maxv fsm->fn = node_primary_opcode;
2321 1.5 maxv }
2322 1.5 maxv } else {
2323 1.5 maxv fsm->fn = node_primary_opcode;
2324 1.5 maxv }
2325 1.5 maxv
2326 1.5 maxv return 0;
2327 1.5 maxv }
2328 1.5 maxv
2329 1.5 maxv static int
2330 1.5 maxv node_rex_prefix(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2331 1.5 maxv {
2332 1.5 maxv struct x86_rexpref *rexpref = &instr->rexpref;
2333 1.5 maxv uint8_t byte;
2334 1.5 maxv size_t n = 0;
2335 1.5 maxv
2336 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2337 1.5 maxv return -1;
2338 1.5 maxv }
2339 1.5 maxv
2340 1.5 maxv if (byte >= 0x40 && byte <= 0x4F) {
2341 1.5 maxv if (__predict_false(!fsm->is64bit)) {
2342 1.5 maxv return -1;
2343 1.5 maxv }
2344 1.5 maxv rexpref->present = true;
2345 1.5 maxv rexpref->w = ((byte & 0x8) != 0);
2346 1.5 maxv rexpref->r = ((byte & 0x4) != 0);
2347 1.5 maxv rexpref->x = ((byte & 0x2) != 0);
2348 1.5 maxv rexpref->b = ((byte & 0x1) != 0);
2349 1.5 maxv n = 1;
2350 1.5 maxv }
2351 1.5 maxv
2352 1.5 maxv fsm_advance(fsm, n, node_main);
2353 1.5 maxv return 0;
2354 1.5 maxv }
2355 1.5 maxv
2356 1.5 maxv static int
2357 1.5 maxv node_legacy_prefix(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2358 1.5 maxv {
2359 1.5 maxv uint8_t byte;
2360 1.5 maxv
2361 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2362 1.5 maxv return -1;
2363 1.5 maxv }
2364 1.5 maxv
2365 1.13 maxv if (byte == LEG_OPR_OVR) {
2366 1.13 maxv instr->legpref.opr_ovr = 1;
2367 1.13 maxv } else if (byte == LEG_OVR_DS) {
2368 1.13 maxv instr->legpref.seg = NVMM_X64_SEG_DS;
2369 1.13 maxv } else if (byte == LEG_OVR_ES) {
2370 1.13 maxv instr->legpref.seg = NVMM_X64_SEG_ES;
2371 1.13 maxv } else if (byte == LEG_REP) {
2372 1.13 maxv instr->legpref.rep = 1;
2373 1.13 maxv } else if (byte == LEG_OVR_GS) {
2374 1.13 maxv instr->legpref.seg = NVMM_X64_SEG_GS;
2375 1.13 maxv } else if (byte == LEG_OVR_FS) {
2376 1.13 maxv instr->legpref.seg = NVMM_X64_SEG_FS;
2377 1.13 maxv } else if (byte == LEG_ADR_OVR) {
2378 1.13 maxv instr->legpref.adr_ovr = 1;
2379 1.13 maxv } else if (byte == LEG_OVR_CS) {
2380 1.13 maxv instr->legpref.seg = NVMM_X64_SEG_CS;
2381 1.13 maxv } else if (byte == LEG_OVR_SS) {
2382 1.13 maxv instr->legpref.seg = NVMM_X64_SEG_SS;
2383 1.13 maxv } else if (byte == LEG_REPN) {
2384 1.13 maxv instr->legpref.repn = 1;
2385 1.13 maxv } else if (byte == LEG_LOCK) {
2386 1.13 maxv /* ignore */
2387 1.5 maxv } else {
2388 1.13 maxv /* not a legacy prefix */
2389 1.13 maxv fsm_advance(fsm, 0, node_rex_prefix);
2390 1.13 maxv return 0;
2391 1.5 maxv }
2392 1.5 maxv
2393 1.13 maxv fsm_advance(fsm, 1, node_legacy_prefix);
2394 1.5 maxv return 0;
2395 1.5 maxv }
2396 1.5 maxv
2397 1.5 maxv static int
2398 1.5 maxv x86_decode(uint8_t *inst_bytes, size_t inst_len, struct x86_instr *instr,
2399 1.5 maxv struct nvmm_x64_state *state)
2400 1.5 maxv {
2401 1.5 maxv struct x86_decode_fsm fsm;
2402 1.5 maxv int ret;
2403 1.5 maxv
2404 1.5 maxv memset(instr, 0, sizeof(*instr));
2405 1.13 maxv instr->legpref.seg = -1;
2406 1.5 maxv
2407 1.5 maxv fsm.is64bit = is_64bit(state);
2408 1.5 maxv fsm.is32bit = is_32bit(state);
2409 1.5 maxv fsm.is16bit = is_16bit(state);
2410 1.5 maxv
2411 1.5 maxv fsm.fn = node_legacy_prefix;
2412 1.5 maxv fsm.buf = inst_bytes;
2413 1.5 maxv fsm.end = inst_bytes + inst_len;
2414 1.5 maxv
2415 1.5 maxv while (fsm.fn != NULL) {
2416 1.5 maxv ret = (*fsm.fn)(&fsm, instr);
2417 1.5 maxv if (ret == -1)
2418 1.5 maxv return -1;
2419 1.5 maxv }
2420 1.5 maxv
2421 1.5 maxv instr->len = fsm.buf - inst_bytes;
2422 1.5 maxv
2423 1.5 maxv return 0;
2424 1.5 maxv }
2425 1.5 maxv
2426 1.5 maxv /* -------------------------------------------------------------------------- */
2427 1.5 maxv
2428 1.5 maxv static inline uint8_t
2429 1.5 maxv compute_parity(uint8_t *data)
2430 1.5 maxv {
2431 1.5 maxv uint64_t *ptr = (uint64_t *)data;
2432 1.5 maxv uint64_t val = *ptr;
2433 1.5 maxv
2434 1.5 maxv val ^= val >> 32;
2435 1.5 maxv val ^= val >> 16;
2436 1.5 maxv val ^= val >> 8;
2437 1.5 maxv val ^= val >> 4;
2438 1.5 maxv val ^= val >> 2;
2439 1.5 maxv val ^= val >> 1;
2440 1.5 maxv return (~val) & 1;
2441 1.5 maxv }
2442 1.5 maxv
2443 1.5 maxv static void
2444 1.5 maxv x86_emul_or(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2445 1.5 maxv uint64_t *gprs)
2446 1.5 maxv {
2447 1.5 maxv const bool write = mem->write;
2448 1.5 maxv uint64_t fl = gprs[NVMM_X64_GPR_RFLAGS];
2449 1.5 maxv uint8_t data[8];
2450 1.5 maxv size_t i;
2451 1.5 maxv
2452 1.5 maxv fl &= ~(PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF);
2453 1.5 maxv
2454 1.5 maxv memcpy(data, mem->data, sizeof(data));
2455 1.5 maxv
2456 1.5 maxv /* Fetch the value to be OR'ed. */
2457 1.5 maxv mem->write = false;
2458 1.5 maxv (*cb)(mem);
2459 1.5 maxv
2460 1.5 maxv /* Perform the OR. */
2461 1.5 maxv for (i = 0; i < mem->size; i++) {
2462 1.5 maxv mem->data[i] |= data[i];
2463 1.5 maxv if (mem->data[i] != 0)
2464 1.5 maxv fl |= PSL_Z;
2465 1.5 maxv }
2466 1.5 maxv if (mem->data[mem->size-1] & __BIT(7))
2467 1.5 maxv fl |= PSL_N;
2468 1.5 maxv if (compute_parity(mem->data))
2469 1.5 maxv fl |= PSL_PF;
2470 1.5 maxv
2471 1.5 maxv if (write) {
2472 1.5 maxv /* Write back the result. */
2473 1.5 maxv mem->write = true;
2474 1.5 maxv (*cb)(mem);
2475 1.5 maxv }
2476 1.5 maxv
2477 1.5 maxv gprs[NVMM_X64_GPR_RFLAGS] = fl;
2478 1.5 maxv }
2479 1.5 maxv
2480 1.5 maxv static void
2481 1.5 maxv x86_emul_and(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2482 1.5 maxv uint64_t *gprs)
2483 1.5 maxv {
2484 1.5 maxv const bool write = mem->write;
2485 1.5 maxv uint64_t fl = gprs[NVMM_X64_GPR_RFLAGS];
2486 1.5 maxv uint8_t data[8];
2487 1.5 maxv size_t i;
2488 1.5 maxv
2489 1.5 maxv fl &= ~(PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF);
2490 1.5 maxv
2491 1.5 maxv memcpy(data, mem->data, sizeof(data));
2492 1.5 maxv
2493 1.5 maxv /* Fetch the value to be AND'ed. */
2494 1.5 maxv mem->write = false;
2495 1.5 maxv (*cb)(mem);
2496 1.5 maxv
2497 1.5 maxv /* Perform the AND. */
2498 1.5 maxv for (i = 0; i < mem->size; i++) {
2499 1.5 maxv mem->data[i] &= data[i];
2500 1.5 maxv if (mem->data[i] != 0)
2501 1.5 maxv fl |= PSL_Z;
2502 1.5 maxv }
2503 1.5 maxv if (mem->data[mem->size-1] & __BIT(7))
2504 1.5 maxv fl |= PSL_N;
2505 1.5 maxv if (compute_parity(mem->data))
2506 1.5 maxv fl |= PSL_PF;
2507 1.5 maxv
2508 1.5 maxv if (write) {
2509 1.5 maxv /* Write back the result. */
2510 1.5 maxv mem->write = true;
2511 1.5 maxv (*cb)(mem);
2512 1.5 maxv }
2513 1.5 maxv
2514 1.5 maxv gprs[NVMM_X64_GPR_RFLAGS] = fl;
2515 1.5 maxv }
2516 1.5 maxv
2517 1.5 maxv static void
2518 1.5 maxv x86_emul_xor(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2519 1.5 maxv uint64_t *gprs)
2520 1.5 maxv {
2521 1.5 maxv const bool write = mem->write;
2522 1.5 maxv uint64_t fl = gprs[NVMM_X64_GPR_RFLAGS];
2523 1.5 maxv uint8_t data[8];
2524 1.5 maxv size_t i;
2525 1.5 maxv
2526 1.5 maxv fl &= ~(PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF);
2527 1.5 maxv
2528 1.5 maxv memcpy(data, mem->data, sizeof(data));
2529 1.5 maxv
2530 1.5 maxv /* Fetch the value to be XOR'ed. */
2531 1.5 maxv mem->write = false;
2532 1.5 maxv (*cb)(mem);
2533 1.5 maxv
2534 1.5 maxv /* Perform the XOR. */
2535 1.5 maxv for (i = 0; i < mem->size; i++) {
2536 1.5 maxv mem->data[i] ^= data[i];
2537 1.5 maxv if (mem->data[i] != 0)
2538 1.5 maxv fl |= PSL_Z;
2539 1.5 maxv }
2540 1.5 maxv if (mem->data[mem->size-1] & __BIT(7))
2541 1.5 maxv fl |= PSL_N;
2542 1.5 maxv if (compute_parity(mem->data))
2543 1.5 maxv fl |= PSL_PF;
2544 1.5 maxv
2545 1.5 maxv if (write) {
2546 1.5 maxv /* Write back the result. */
2547 1.5 maxv mem->write = true;
2548 1.5 maxv (*cb)(mem);
2549 1.5 maxv }
2550 1.5 maxv
2551 1.5 maxv gprs[NVMM_X64_GPR_RFLAGS] = fl;
2552 1.5 maxv }
2553 1.5 maxv
2554 1.5 maxv static void
2555 1.5 maxv x86_emul_mov(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2556 1.5 maxv uint64_t *gprs)
2557 1.5 maxv {
2558 1.5 maxv /*
2559 1.5 maxv * Nothing special, just move without emulation.
2560 1.5 maxv */
2561 1.5 maxv (*cb)(mem);
2562 1.5 maxv }
2563 1.5 maxv
2564 1.5 maxv static void
2565 1.5 maxv x86_emul_stos(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2566 1.5 maxv uint64_t *gprs)
2567 1.5 maxv {
2568 1.5 maxv /*
2569 1.5 maxv * Just move, and update RDI.
2570 1.5 maxv */
2571 1.5 maxv (*cb)(mem);
2572 1.5 maxv
2573 1.5 maxv if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
2574 1.5 maxv gprs[NVMM_X64_GPR_RDI] -= mem->size;
2575 1.5 maxv } else {
2576 1.5 maxv gprs[NVMM_X64_GPR_RDI] += mem->size;
2577 1.5 maxv }
2578 1.5 maxv }
2579 1.5 maxv
2580 1.5 maxv static void
2581 1.5 maxv x86_emul_lods(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2582 1.5 maxv uint64_t *gprs)
2583 1.5 maxv {
2584 1.5 maxv /*
2585 1.5 maxv * Just move, and update RSI.
2586 1.5 maxv */
2587 1.5 maxv (*cb)(mem);
2588 1.5 maxv
2589 1.5 maxv if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
2590 1.5 maxv gprs[NVMM_X64_GPR_RSI] -= mem->size;
2591 1.5 maxv } else {
2592 1.5 maxv gprs[NVMM_X64_GPR_RSI] += mem->size;
2593 1.5 maxv }
2594 1.5 maxv }
2595 1.5 maxv
2596 1.6 maxv static void
2597 1.6 maxv x86_emul_movs(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2598 1.6 maxv uint64_t *gprs)
2599 1.6 maxv {
2600 1.6 maxv /*
2601 1.6 maxv * Special instruction: double memory operand. Don't call the cb,
2602 1.6 maxv * because the storage has already been performed earlier.
2603 1.6 maxv */
2604 1.6 maxv
2605 1.6 maxv if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
2606 1.6 maxv gprs[NVMM_X64_GPR_RSI] -= mem->size;
2607 1.6 maxv gprs[NVMM_X64_GPR_RDI] -= mem->size;
2608 1.6 maxv } else {
2609 1.6 maxv gprs[NVMM_X64_GPR_RSI] += mem->size;
2610 1.6 maxv gprs[NVMM_X64_GPR_RDI] += mem->size;
2611 1.6 maxv }
2612 1.6 maxv }
2613 1.6 maxv
2614 1.5 maxv /* -------------------------------------------------------------------------- */
2615 1.5 maxv
2616 1.5 maxv static inline uint64_t
2617 1.5 maxv gpr_read_address(struct x86_instr *instr, struct nvmm_x64_state *state, int gpr)
2618 1.5 maxv {
2619 1.5 maxv uint64_t val;
2620 1.5 maxv
2621 1.5 maxv val = state->gprs[gpr];
2622 1.15 maxv val &= size_to_mask(instr->address_size);
2623 1.5 maxv
2624 1.5 maxv return val;
2625 1.5 maxv }
2626 1.5 maxv
2627 1.5 maxv static int
2628 1.6 maxv store_to_gva(struct nvmm_x64_state *state, struct x86_instr *instr,
2629 1.6 maxv struct x86_store *store, gvaddr_t *gvap, size_t size)
2630 1.5 maxv {
2631 1.5 maxv struct x86_sib *sib;
2632 1.6 maxv gvaddr_t gva = 0;
2633 1.5 maxv uint64_t reg;
2634 1.5 maxv int ret, seg;
2635 1.5 maxv
2636 1.5 maxv if (store->type == STORE_SIB) {
2637 1.5 maxv sib = &store->u.sib;
2638 1.5 maxv if (sib->bas != NULL)
2639 1.5 maxv gva += gpr_read_address(instr, state, sib->bas->num);
2640 1.5 maxv if (sib->idx != NULL) {
2641 1.5 maxv reg = gpr_read_address(instr, state, sib->idx->num);
2642 1.5 maxv gva += sib->scale * reg;
2643 1.5 maxv }
2644 1.5 maxv } else if (store->type == STORE_REG) {
2645 1.9 maxv if (store->u.reg == NULL) {
2646 1.9 maxv /* The base is null. Happens with disp32-only. */
2647 1.9 maxv } else {
2648 1.9 maxv gva = gpr_read_address(instr, state, store->u.reg->num);
2649 1.9 maxv }
2650 1.5 maxv } else {
2651 1.5 maxv gva = store->u.dmo;
2652 1.5 maxv }
2653 1.5 maxv
2654 1.5 maxv if (store->disp.type != DISP_NONE) {
2655 1.11 maxv gva += store->disp.data;
2656 1.5 maxv }
2657 1.5 maxv
2658 1.15 maxv if (store->hardseg != 0) {
2659 1.15 maxv seg = store->hardseg;
2660 1.15 maxv } else {
2661 1.15 maxv if (__predict_false(instr->legpref.seg != -1)) {
2662 1.15 maxv seg = instr->legpref.seg;
2663 1.5 maxv } else {
2664 1.15 maxv seg = NVMM_X64_SEG_DS;
2665 1.5 maxv }
2666 1.15 maxv }
2667 1.5 maxv
2668 1.15 maxv if (__predict_true(is_long_mode(state))) {
2669 1.15 maxv if (seg == NVMM_X64_SEG_GS || seg == NVMM_X64_SEG_FS) {
2670 1.15 maxv segment_apply(&state->segs[seg], &gva);
2671 1.15 maxv }
2672 1.15 maxv } else {
2673 1.15 maxv ret = segment_check(&state->segs[seg], gva, size);
2674 1.5 maxv if (ret == -1)
2675 1.5 maxv return -1;
2676 1.15 maxv segment_apply(&state->segs[seg], &gva);
2677 1.5 maxv }
2678 1.5 maxv
2679 1.6 maxv *gvap = gva;
2680 1.6 maxv return 0;
2681 1.6 maxv }
2682 1.6 maxv
2683 1.6 maxv static int
2684 1.8 maxv fetch_segment(struct nvmm_machine *mach, struct nvmm_x64_state *state)
2685 1.8 maxv {
2686 1.8 maxv uint8_t inst_bytes[15], byte;
2687 1.13 maxv size_t i, fetchsize;
2688 1.8 maxv gvaddr_t gva;
2689 1.8 maxv int ret, seg;
2690 1.8 maxv
2691 1.8 maxv fetchsize = sizeof(inst_bytes);
2692 1.8 maxv
2693 1.8 maxv gva = state->gprs[NVMM_X64_GPR_RIP];
2694 1.15 maxv if (__predict_false(!is_long_mode(state))) {
2695 1.15 maxv ret = segment_check(&state->segs[NVMM_X64_SEG_CS], gva,
2696 1.8 maxv fetchsize);
2697 1.8 maxv if (ret == -1)
2698 1.8 maxv return -1;
2699 1.15 maxv segment_apply(&state->segs[NVMM_X64_SEG_CS], &gva);
2700 1.8 maxv }
2701 1.8 maxv
2702 1.8 maxv ret = read_guest_memory(mach, state, gva, inst_bytes, fetchsize);
2703 1.8 maxv if (ret == -1)
2704 1.8 maxv return -1;
2705 1.8 maxv
2706 1.8 maxv seg = NVMM_X64_SEG_DS;
2707 1.13 maxv for (i = 0; i < fetchsize; i++) {
2708 1.13 maxv byte = inst_bytes[i];
2709 1.13 maxv
2710 1.13 maxv if (byte == LEG_OVR_DS) {
2711 1.13 maxv seg = NVMM_X64_SEG_DS;
2712 1.13 maxv } else if (byte == LEG_OVR_ES) {
2713 1.13 maxv seg = NVMM_X64_SEG_ES;
2714 1.13 maxv } else if (byte == LEG_OVR_GS) {
2715 1.13 maxv seg = NVMM_X64_SEG_GS;
2716 1.13 maxv } else if (byte == LEG_OVR_FS) {
2717 1.13 maxv seg = NVMM_X64_SEG_FS;
2718 1.13 maxv } else if (byte == LEG_OVR_CS) {
2719 1.13 maxv seg = NVMM_X64_SEG_CS;
2720 1.13 maxv } else if (byte == LEG_OVR_SS) {
2721 1.13 maxv seg = NVMM_X64_SEG_SS;
2722 1.13 maxv } else if (byte == LEG_OPR_OVR) {
2723 1.13 maxv /* nothing */
2724 1.13 maxv } else if (byte == LEG_ADR_OVR) {
2725 1.13 maxv /* nothing */
2726 1.13 maxv } else if (byte == LEG_REP) {
2727 1.13 maxv /* nothing */
2728 1.13 maxv } else if (byte == LEG_REPN) {
2729 1.13 maxv /* nothing */
2730 1.13 maxv } else if (byte == LEG_LOCK) {
2731 1.13 maxv /* nothing */
2732 1.13 maxv } else {
2733 1.13 maxv return seg;
2734 1.8 maxv }
2735 1.8 maxv }
2736 1.8 maxv
2737 1.8 maxv return seg;
2738 1.8 maxv }
2739 1.8 maxv
2740 1.8 maxv static int
2741 1.5 maxv fetch_instruction(struct nvmm_machine *mach, struct nvmm_x64_state *state,
2742 1.5 maxv struct nvmm_exit *exit)
2743 1.5 maxv {
2744 1.6 maxv size_t fetchsize;
2745 1.6 maxv gvaddr_t gva;
2746 1.5 maxv int ret;
2747 1.5 maxv
2748 1.5 maxv fetchsize = sizeof(exit->u.mem.inst_bytes);
2749 1.5 maxv
2750 1.5 maxv gva = state->gprs[NVMM_X64_GPR_RIP];
2751 1.15 maxv if (__predict_false(!is_long_mode(state))) {
2752 1.15 maxv ret = segment_check(&state->segs[NVMM_X64_SEG_CS], gva,
2753 1.5 maxv fetchsize);
2754 1.5 maxv if (ret == -1)
2755 1.5 maxv return -1;
2756 1.15 maxv segment_apply(&state->segs[NVMM_X64_SEG_CS], &gva);
2757 1.5 maxv }
2758 1.5 maxv
2759 1.6 maxv ret = read_guest_memory(mach, state, gva, exit->u.mem.inst_bytes,
2760 1.6 maxv fetchsize);
2761 1.6 maxv if (ret == -1)
2762 1.6 maxv return -1;
2763 1.6 maxv
2764 1.6 maxv exit->u.mem.inst_len = fetchsize;
2765 1.6 maxv
2766 1.6 maxv return 0;
2767 1.6 maxv }
2768 1.6 maxv
2769 1.6 maxv static int
2770 1.6 maxv assist_mem_double(struct nvmm_machine *mach, struct nvmm_x64_state *state,
2771 1.6 maxv struct x86_instr *instr)
2772 1.6 maxv {
2773 1.6 maxv struct nvmm_mem mem;
2774 1.6 maxv uint8_t data[8];
2775 1.6 maxv gvaddr_t gva;
2776 1.6 maxv size_t size;
2777 1.6 maxv int ret;
2778 1.6 maxv
2779 1.6 maxv size = instr->operand_size;
2780 1.5 maxv
2781 1.6 maxv /* Source. */
2782 1.6 maxv ret = store_to_gva(state, instr, &instr->src, &gva, size);
2783 1.5 maxv if (ret == -1)
2784 1.5 maxv return -1;
2785 1.6 maxv ret = read_guest_memory(mach, state, gva, data, size);
2786 1.6 maxv if (ret == -1)
2787 1.5 maxv return -1;
2788 1.5 maxv
2789 1.6 maxv /* Destination. */
2790 1.6 maxv ret = store_to_gva(state, instr, &instr->dst, &gva, size);
2791 1.6 maxv if (ret == -1)
2792 1.6 maxv return -1;
2793 1.6 maxv ret = write_guest_memory(mach, state, gva, data, size);
2794 1.5 maxv if (ret == -1)
2795 1.5 maxv return -1;
2796 1.5 maxv
2797 1.6 maxv mem.size = size;
2798 1.6 maxv (*instr->emul)(&mem, NULL, state->gprs);
2799 1.5 maxv
2800 1.5 maxv return 0;
2801 1.5 maxv }
2802 1.5 maxv
2803 1.5 maxv #define DISASSEMBLER_BUG() \
2804 1.5 maxv do { \
2805 1.5 maxv errno = EINVAL; \
2806 1.5 maxv return -1; \
2807 1.5 maxv } while (0);
2808 1.5 maxv
2809 1.6 maxv static int
2810 1.6 maxv assist_mem_single(struct nvmm_machine *mach, struct nvmm_x64_state *state,
2811 1.12 maxv struct x86_instr *instr, struct nvmm_exit *exit)
2812 1.5 maxv {
2813 1.5 maxv struct nvmm_mem mem;
2814 1.10 maxv uint8_t membuf[8];
2815 1.5 maxv uint64_t val;
2816 1.5 maxv
2817 1.11 maxv memset(membuf, 0, sizeof(membuf));
2818 1.12 maxv
2819 1.12 maxv mem.gpa = exit->u.mem.gpa;
2820 1.12 maxv mem.size = instr->operand_size;
2821 1.10 maxv mem.data = membuf;
2822 1.5 maxv
2823 1.12 maxv /* Determine the direction. */
2824 1.6 maxv switch (instr->src.type) {
2825 1.5 maxv case STORE_REG:
2826 1.6 maxv if (instr->src.disp.type != DISP_NONE) {
2827 1.5 maxv /* Indirect access. */
2828 1.5 maxv mem.write = false;
2829 1.5 maxv } else {
2830 1.5 maxv /* Direct access. */
2831 1.5 maxv mem.write = true;
2832 1.5 maxv }
2833 1.5 maxv break;
2834 1.5 maxv case STORE_IMM:
2835 1.5 maxv mem.write = true;
2836 1.5 maxv break;
2837 1.5 maxv case STORE_SIB:
2838 1.5 maxv mem.write = false;
2839 1.5 maxv break;
2840 1.5 maxv case STORE_DMO:
2841 1.5 maxv mem.write = false;
2842 1.5 maxv break;
2843 1.5 maxv default:
2844 1.12 maxv DISASSEMBLER_BUG();
2845 1.5 maxv }
2846 1.5 maxv
2847 1.12 maxv if (mem.write) {
2848 1.12 maxv switch (instr->src.type) {
2849 1.12 maxv case STORE_REG:
2850 1.12 maxv if (instr->src.disp.type != DISP_NONE) {
2851 1.5 maxv DISASSEMBLER_BUG();
2852 1.5 maxv }
2853 1.12 maxv val = state->gprs[instr->src.u.reg->num];
2854 1.12 maxv val = __SHIFTOUT(val, instr->src.u.reg->mask);
2855 1.12 maxv memcpy(mem.data, &val, mem.size);
2856 1.12 maxv break;
2857 1.12 maxv case STORE_IMM:
2858 1.12 maxv memcpy(mem.data, &instr->src.u.imm.data, mem.size);
2859 1.12 maxv break;
2860 1.12 maxv default:
2861 1.5 maxv DISASSEMBLER_BUG();
2862 1.5 maxv }
2863 1.5 maxv }
2864 1.5 maxv
2865 1.6 maxv (*instr->emul)(&mem, __callbacks.mem, state->gprs);
2866 1.5 maxv
2867 1.5 maxv if (!mem.write) {
2868 1.12 maxv if (instr->dst.type != STORE_REG) {
2869 1.12 maxv DISASSEMBLER_BUG();
2870 1.12 maxv }
2871 1.5 maxv memcpy(&val, mem.data, sizeof(uint64_t));
2872 1.6 maxv val = __SHIFTIN(val, instr->dst.u.reg->mask);
2873 1.6 maxv state->gprs[instr->dst.u.reg->num] &= ~instr->dst.u.reg->mask;
2874 1.6 maxv state->gprs[instr->dst.u.reg->num] |= val;
2875 1.10 maxv state->gprs[instr->dst.u.reg->num] &= ~instr->zeroextend_mask;
2876 1.6 maxv }
2877 1.6 maxv
2878 1.6 maxv return 0;
2879 1.6 maxv }
2880 1.6 maxv
2881 1.6 maxv int
2882 1.6 maxv nvmm_assist_mem(struct nvmm_machine *mach, nvmm_cpuid_t cpuid,
2883 1.6 maxv struct nvmm_exit *exit)
2884 1.6 maxv {
2885 1.6 maxv struct nvmm_x64_state state;
2886 1.6 maxv struct x86_instr instr;
2887 1.15 maxv uint64_t cnt = 0; /* GCC */
2888 1.6 maxv int ret;
2889 1.6 maxv
2890 1.6 maxv if (__predict_false(exit->reason != NVMM_EXIT_MEMORY)) {
2891 1.6 maxv errno = EINVAL;
2892 1.6 maxv return -1;
2893 1.6 maxv }
2894 1.6 maxv
2895 1.6 maxv ret = nvmm_vcpu_getstate(mach, cpuid, &state,
2896 1.15 maxv NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
2897 1.15 maxv NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
2898 1.6 maxv if (ret == -1)
2899 1.6 maxv return -1;
2900 1.6 maxv
2901 1.6 maxv if (exit->u.mem.inst_len == 0) {
2902 1.6 maxv /*
2903 1.6 maxv * The instruction was not fetched from the kernel. Fetch
2904 1.6 maxv * it ourselves.
2905 1.6 maxv */
2906 1.6 maxv ret = fetch_instruction(mach, &state, exit);
2907 1.6 maxv if (ret == -1)
2908 1.6 maxv return -1;
2909 1.6 maxv }
2910 1.6 maxv
2911 1.6 maxv ret = x86_decode(exit->u.mem.inst_bytes, exit->u.mem.inst_len,
2912 1.6 maxv &instr, &state);
2913 1.6 maxv if (ret == -1) {
2914 1.6 maxv errno = ENODEV;
2915 1.6 maxv return -1;
2916 1.6 maxv }
2917 1.6 maxv
2918 1.15 maxv if (instr.legpref.rep || instr.legpref.repn) {
2919 1.15 maxv cnt = rep_get_cnt(&state, instr.address_size);
2920 1.15 maxv if (__predict_false(cnt == 0)) {
2921 1.15 maxv state.gprs[NVMM_X64_GPR_RIP] += instr.len;
2922 1.15 maxv goto out;
2923 1.15 maxv }
2924 1.15 maxv }
2925 1.15 maxv
2926 1.6 maxv if (instr.opcode->movs) {
2927 1.6 maxv ret = assist_mem_double(mach, &state, &instr);
2928 1.6 maxv } else {
2929 1.12 maxv ret = assist_mem_single(mach, &state, &instr, exit);
2930 1.6 maxv }
2931 1.6 maxv if (ret == -1) {
2932 1.6 maxv errno = ENODEV;
2933 1.6 maxv return -1;
2934 1.5 maxv }
2935 1.5 maxv
2936 1.14 maxv if (instr.legpref.rep || instr.legpref.repn) {
2937 1.15 maxv cnt -= 1;
2938 1.15 maxv rep_set_cnt(&state, instr.address_size, cnt);
2939 1.6 maxv if (cnt == 0) {
2940 1.5 maxv state.gprs[NVMM_X64_GPR_RIP] += instr.len;
2941 1.14 maxv } else if (__predict_false(instr.legpref.repn)) {
2942 1.14 maxv if (state.gprs[NVMM_X64_GPR_RFLAGS] & PSL_Z) {
2943 1.14 maxv state.gprs[NVMM_X64_GPR_RIP] += instr.len;
2944 1.14 maxv }
2945 1.5 maxv }
2946 1.5 maxv } else {
2947 1.5 maxv state.gprs[NVMM_X64_GPR_RIP] += instr.len;
2948 1.5 maxv }
2949 1.5 maxv
2950 1.15 maxv out:
2951 1.5 maxv ret = nvmm_vcpu_setstate(mach, cpuid, &state, NVMM_X64_STATE_GPRS);
2952 1.5 maxv if (ret == -1)
2953 1.5 maxv return -1;
2954 1.5 maxv
2955 1.5 maxv return 0;
2956 1.1 maxv }
2957