libnvmm_x86.c revision 1.23 1 1.23 maxv /* $NetBSD: libnvmm_x86.c,v 1.23 2019/02/15 16:42:27 maxv Exp $ */
2 1.1 maxv
3 1.1 maxv /*
4 1.1 maxv * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 1.1 maxv * All rights reserved.
6 1.1 maxv *
7 1.1 maxv * This code is derived from software contributed to The NetBSD Foundation
8 1.1 maxv * by Maxime Villard.
9 1.1 maxv *
10 1.1 maxv * Redistribution and use in source and binary forms, with or without
11 1.1 maxv * modification, are permitted provided that the following conditions
12 1.1 maxv * are met:
13 1.1 maxv * 1. Redistributions of source code must retain the above copyright
14 1.1 maxv * notice, this list of conditions and the following disclaimer.
15 1.1 maxv * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 maxv * notice, this list of conditions and the following disclaimer in the
17 1.1 maxv * documentation and/or other materials provided with the distribution.
18 1.1 maxv *
19 1.1 maxv * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 maxv * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 maxv * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 maxv * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 maxv * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 maxv * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 maxv * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 maxv * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 maxv * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 maxv * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 maxv * POSSIBILITY OF SUCH DAMAGE.
30 1.1 maxv */
31 1.1 maxv
32 1.1 maxv #include <sys/cdefs.h>
33 1.1 maxv
34 1.1 maxv #include <stdio.h>
35 1.1 maxv #include <stdlib.h>
36 1.1 maxv #include <string.h>
37 1.1 maxv #include <unistd.h>
38 1.1 maxv #include <fcntl.h>
39 1.1 maxv #include <errno.h>
40 1.1 maxv #include <sys/ioctl.h>
41 1.1 maxv #include <sys/mman.h>
42 1.1 maxv #include <machine/vmparam.h>
43 1.1 maxv #include <machine/pte.h>
44 1.1 maxv #include <machine/psl.h>
45 1.1 maxv
46 1.1 maxv #include "nvmm.h"
47 1.1 maxv
48 1.10 maxv #define MIN(X, Y) (((X) < (Y)) ? (X) : (Y))
49 1.10 maxv
50 1.1 maxv #include <x86/specialreg.h>
51 1.1 maxv
52 1.6 maxv extern struct nvmm_callbacks __callbacks;
53 1.6 maxv
54 1.6 maxv /* -------------------------------------------------------------------------- */
55 1.6 maxv
56 1.6 maxv /*
57 1.6 maxv * Undocumented debugging function. Helpful.
58 1.6 maxv */
59 1.6 maxv int
60 1.6 maxv nvmm_vcpu_dump(struct nvmm_machine *mach, nvmm_cpuid_t cpuid)
61 1.6 maxv {
62 1.6 maxv struct nvmm_x64_state state;
63 1.6 maxv size_t i;
64 1.6 maxv int ret;
65 1.6 maxv
66 1.6 maxv const char *segnames[] = {
67 1.6 maxv "CS", "DS", "ES", "FS", "GS", "SS", "GDT", "IDT", "LDT", "TR"
68 1.6 maxv };
69 1.6 maxv
70 1.6 maxv ret = nvmm_vcpu_getstate(mach, cpuid, &state, NVMM_X64_STATE_ALL);
71 1.6 maxv if (ret == -1)
72 1.6 maxv return -1;
73 1.6 maxv
74 1.6 maxv printf("+ VCPU id=%d\n", (int)cpuid);
75 1.6 maxv printf("| -> RIP=%p\n", (void *)state.gprs[NVMM_X64_GPR_RIP]);
76 1.6 maxv printf("| -> RSP=%p\n", (void *)state.gprs[NVMM_X64_GPR_RSP]);
77 1.6 maxv printf("| -> RAX=%p\n", (void *)state.gprs[NVMM_X64_GPR_RAX]);
78 1.6 maxv printf("| -> RBX=%p\n", (void *)state.gprs[NVMM_X64_GPR_RBX]);
79 1.6 maxv printf("| -> RCX=%p\n", (void *)state.gprs[NVMM_X64_GPR_RCX]);
80 1.15 maxv printf("| -> RFLAGS=%p\n", (void *)state.gprs[NVMM_X64_GPR_RFLAGS]);
81 1.6 maxv for (i = 0; i < NVMM_X64_NSEG; i++) {
82 1.15 maxv printf("| -> %s: sel=0x%lx base=%p, limit=%p, P=%d, D=%d L=%d\n",
83 1.6 maxv segnames[i],
84 1.6 maxv state.segs[i].selector,
85 1.6 maxv (void *)state.segs[i].base,
86 1.6 maxv (void *)state.segs[i].limit,
87 1.15 maxv state.segs[i].attrib.p, state.segs[i].attrib.def32,
88 1.15 maxv state.segs[i].attrib.lng);
89 1.6 maxv }
90 1.10 maxv printf("| -> MSR_EFER=%p\n", (void *)state.msrs[NVMM_X64_MSR_EFER]);
91 1.10 maxv printf("| -> CR0=%p\n", (void *)state.crs[NVMM_X64_CR_CR0]);
92 1.10 maxv printf("| -> CR3=%p\n", (void *)state.crs[NVMM_X64_CR_CR3]);
93 1.10 maxv printf("| -> CR4=%p\n", (void *)state.crs[NVMM_X64_CR_CR4]);
94 1.10 maxv printf("| -> CR8=%p\n", (void *)state.crs[NVMM_X64_CR_CR8]);
95 1.6 maxv
96 1.6 maxv return 0;
97 1.6 maxv }
98 1.6 maxv
99 1.1 maxv /* -------------------------------------------------------------------------- */
100 1.1 maxv
101 1.1 maxv #define PTE32_L1_SHIFT 12
102 1.1 maxv #define PTE32_L2_SHIFT 22
103 1.1 maxv
104 1.1 maxv #define PTE32_L2_MASK 0xffc00000
105 1.1 maxv #define PTE32_L1_MASK 0x003ff000
106 1.1 maxv
107 1.1 maxv #define PTE32_L2_FRAME (PTE32_L2_MASK)
108 1.1 maxv #define PTE32_L1_FRAME (PTE32_L2_FRAME|PTE32_L1_MASK)
109 1.1 maxv
110 1.1 maxv #define pte32_l1idx(va) (((va) & PTE32_L1_MASK) >> PTE32_L1_SHIFT)
111 1.1 maxv #define pte32_l2idx(va) (((va) & PTE32_L2_MASK) >> PTE32_L2_SHIFT)
112 1.1 maxv
113 1.19 maxv #define CR3_FRAME_32BIT PG_FRAME
114 1.19 maxv
115 1.1 maxv typedef uint32_t pte_32bit_t;
116 1.1 maxv
117 1.1 maxv static int
118 1.1 maxv x86_gva_to_gpa_32bit(struct nvmm_machine *mach, uint64_t cr3,
119 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, bool has_pse, nvmm_prot_t *prot)
120 1.1 maxv {
121 1.1 maxv gpaddr_t L2gpa, L1gpa;
122 1.1 maxv uintptr_t L2hva, L1hva;
123 1.1 maxv pte_32bit_t *pdir, pte;
124 1.1 maxv
125 1.1 maxv /* We begin with an RWXU access. */
126 1.1 maxv *prot = NVMM_PROT_ALL;
127 1.1 maxv
128 1.1 maxv /* Parse L2. */
129 1.19 maxv L2gpa = (cr3 & CR3_FRAME_32BIT);
130 1.1 maxv if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva) == -1)
131 1.1 maxv return -1;
132 1.1 maxv pdir = (pte_32bit_t *)L2hva;
133 1.1 maxv pte = pdir[pte32_l2idx(gva)];
134 1.1 maxv if ((pte & PG_V) == 0)
135 1.1 maxv return -1;
136 1.1 maxv if ((pte & PG_u) == 0)
137 1.1 maxv *prot &= ~NVMM_PROT_USER;
138 1.1 maxv if ((pte & PG_KW) == 0)
139 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
140 1.1 maxv if ((pte & PG_PS) && !has_pse)
141 1.1 maxv return -1;
142 1.1 maxv if (pte & PG_PS) {
143 1.1 maxv *gpa = (pte & PTE32_L2_FRAME);
144 1.10 maxv *gpa = *gpa + (gva & PTE32_L1_MASK);
145 1.1 maxv return 0;
146 1.1 maxv }
147 1.1 maxv
148 1.1 maxv /* Parse L1. */
149 1.1 maxv L1gpa = (pte & PG_FRAME);
150 1.1 maxv if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva) == -1)
151 1.1 maxv return -1;
152 1.1 maxv pdir = (pte_32bit_t *)L1hva;
153 1.1 maxv pte = pdir[pte32_l1idx(gva)];
154 1.1 maxv if ((pte & PG_V) == 0)
155 1.1 maxv return -1;
156 1.1 maxv if ((pte & PG_u) == 0)
157 1.1 maxv *prot &= ~NVMM_PROT_USER;
158 1.1 maxv if ((pte & PG_KW) == 0)
159 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
160 1.1 maxv if (pte & PG_PS)
161 1.1 maxv return -1;
162 1.1 maxv
163 1.1 maxv *gpa = (pte & PG_FRAME);
164 1.1 maxv return 0;
165 1.1 maxv }
166 1.1 maxv
167 1.1 maxv /* -------------------------------------------------------------------------- */
168 1.1 maxv
169 1.1 maxv #define PTE32_PAE_L1_SHIFT 12
170 1.1 maxv #define PTE32_PAE_L2_SHIFT 21
171 1.1 maxv #define PTE32_PAE_L3_SHIFT 30
172 1.1 maxv
173 1.1 maxv #define PTE32_PAE_L3_MASK 0xc0000000
174 1.1 maxv #define PTE32_PAE_L2_MASK 0x3fe00000
175 1.1 maxv #define PTE32_PAE_L1_MASK 0x001ff000
176 1.1 maxv
177 1.1 maxv #define PTE32_PAE_L3_FRAME (PTE32_PAE_L3_MASK)
178 1.1 maxv #define PTE32_PAE_L2_FRAME (PTE32_PAE_L3_FRAME|PTE32_PAE_L2_MASK)
179 1.1 maxv #define PTE32_PAE_L1_FRAME (PTE32_PAE_L2_FRAME|PTE32_PAE_L1_MASK)
180 1.1 maxv
181 1.1 maxv #define pte32_pae_l1idx(va) (((va) & PTE32_PAE_L1_MASK) >> PTE32_PAE_L1_SHIFT)
182 1.1 maxv #define pte32_pae_l2idx(va) (((va) & PTE32_PAE_L2_MASK) >> PTE32_PAE_L2_SHIFT)
183 1.1 maxv #define pte32_pae_l3idx(va) (((va) & PTE32_PAE_L3_MASK) >> PTE32_PAE_L3_SHIFT)
184 1.1 maxv
185 1.19 maxv #define CR3_FRAME_32BIT_PAE __BITS(31, 5)
186 1.19 maxv
187 1.1 maxv typedef uint64_t pte_32bit_pae_t;
188 1.1 maxv
189 1.1 maxv static int
190 1.1 maxv x86_gva_to_gpa_32bit_pae(struct nvmm_machine *mach, uint64_t cr3,
191 1.23 maxv gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
192 1.1 maxv {
193 1.1 maxv gpaddr_t L3gpa, L2gpa, L1gpa;
194 1.1 maxv uintptr_t L3hva, L2hva, L1hva;
195 1.1 maxv pte_32bit_pae_t *pdir, pte;
196 1.1 maxv
197 1.1 maxv /* We begin with an RWXU access. */
198 1.1 maxv *prot = NVMM_PROT_ALL;
199 1.1 maxv
200 1.1 maxv /* Parse L3. */
201 1.19 maxv L3gpa = (cr3 & CR3_FRAME_32BIT_PAE);
202 1.1 maxv if (nvmm_gpa_to_hva(mach, L3gpa, &L3hva) == -1)
203 1.1 maxv return -1;
204 1.1 maxv pdir = (pte_32bit_pae_t *)L3hva;
205 1.1 maxv pte = pdir[pte32_pae_l3idx(gva)];
206 1.1 maxv if ((pte & PG_V) == 0)
207 1.1 maxv return -1;
208 1.1 maxv if (pte & PG_NX)
209 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
210 1.1 maxv if (pte & PG_PS)
211 1.1 maxv return -1;
212 1.1 maxv
213 1.1 maxv /* Parse L2. */
214 1.1 maxv L2gpa = (pte & PG_FRAME);
215 1.1 maxv if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva) == -1)
216 1.1 maxv return -1;
217 1.1 maxv pdir = (pte_32bit_pae_t *)L2hva;
218 1.1 maxv pte = pdir[pte32_pae_l2idx(gva)];
219 1.1 maxv if ((pte & PG_V) == 0)
220 1.1 maxv return -1;
221 1.1 maxv if ((pte & PG_u) == 0)
222 1.1 maxv *prot &= ~NVMM_PROT_USER;
223 1.1 maxv if ((pte & PG_KW) == 0)
224 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
225 1.1 maxv if (pte & PG_NX)
226 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
227 1.1 maxv if (pte & PG_PS) {
228 1.1 maxv *gpa = (pte & PTE32_PAE_L2_FRAME);
229 1.10 maxv *gpa = *gpa + (gva & PTE32_PAE_L1_MASK);
230 1.1 maxv return 0;
231 1.1 maxv }
232 1.1 maxv
233 1.1 maxv /* Parse L1. */
234 1.1 maxv L1gpa = (pte & PG_FRAME);
235 1.1 maxv if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva) == -1)
236 1.1 maxv return -1;
237 1.1 maxv pdir = (pte_32bit_pae_t *)L1hva;
238 1.1 maxv pte = pdir[pte32_pae_l1idx(gva)];
239 1.1 maxv if ((pte & PG_V) == 0)
240 1.1 maxv return -1;
241 1.1 maxv if ((pte & PG_u) == 0)
242 1.1 maxv *prot &= ~NVMM_PROT_USER;
243 1.1 maxv if ((pte & PG_KW) == 0)
244 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
245 1.1 maxv if (pte & PG_NX)
246 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
247 1.1 maxv if (pte & PG_PS)
248 1.1 maxv return -1;
249 1.1 maxv
250 1.1 maxv *gpa = (pte & PG_FRAME);
251 1.1 maxv return 0;
252 1.1 maxv }
253 1.1 maxv
254 1.1 maxv /* -------------------------------------------------------------------------- */
255 1.1 maxv
256 1.1 maxv #define PTE64_L1_SHIFT 12
257 1.1 maxv #define PTE64_L2_SHIFT 21
258 1.1 maxv #define PTE64_L3_SHIFT 30
259 1.1 maxv #define PTE64_L4_SHIFT 39
260 1.1 maxv
261 1.1 maxv #define PTE64_L4_MASK 0x0000ff8000000000
262 1.1 maxv #define PTE64_L3_MASK 0x0000007fc0000000
263 1.1 maxv #define PTE64_L2_MASK 0x000000003fe00000
264 1.1 maxv #define PTE64_L1_MASK 0x00000000001ff000
265 1.1 maxv
266 1.1 maxv #define PTE64_L4_FRAME PTE64_L4_MASK
267 1.1 maxv #define PTE64_L3_FRAME (PTE64_L4_FRAME|PTE64_L3_MASK)
268 1.1 maxv #define PTE64_L2_FRAME (PTE64_L3_FRAME|PTE64_L2_MASK)
269 1.1 maxv #define PTE64_L1_FRAME (PTE64_L2_FRAME|PTE64_L1_MASK)
270 1.1 maxv
271 1.1 maxv #define pte64_l1idx(va) (((va) & PTE64_L1_MASK) >> PTE64_L1_SHIFT)
272 1.1 maxv #define pte64_l2idx(va) (((va) & PTE64_L2_MASK) >> PTE64_L2_SHIFT)
273 1.1 maxv #define pte64_l3idx(va) (((va) & PTE64_L3_MASK) >> PTE64_L3_SHIFT)
274 1.1 maxv #define pte64_l4idx(va) (((va) & PTE64_L4_MASK) >> PTE64_L4_SHIFT)
275 1.1 maxv
276 1.19 maxv #define CR3_FRAME_64BIT PG_FRAME
277 1.19 maxv
278 1.1 maxv typedef uint64_t pte_64bit_t;
279 1.1 maxv
280 1.1 maxv static inline bool
281 1.1 maxv x86_gva_64bit_canonical(gvaddr_t gva)
282 1.1 maxv {
283 1.1 maxv /* Bits 63:47 must have the same value. */
284 1.1 maxv #define SIGN_EXTEND 0xffff800000000000ULL
285 1.1 maxv return (gva & SIGN_EXTEND) == 0 || (gva & SIGN_EXTEND) == SIGN_EXTEND;
286 1.1 maxv }
287 1.1 maxv
288 1.1 maxv static int
289 1.1 maxv x86_gva_to_gpa_64bit(struct nvmm_machine *mach, uint64_t cr3,
290 1.11 maxv gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
291 1.1 maxv {
292 1.1 maxv gpaddr_t L4gpa, L3gpa, L2gpa, L1gpa;
293 1.1 maxv uintptr_t L4hva, L3hva, L2hva, L1hva;
294 1.1 maxv pte_64bit_t *pdir, pte;
295 1.1 maxv
296 1.1 maxv /* We begin with an RWXU access. */
297 1.1 maxv *prot = NVMM_PROT_ALL;
298 1.1 maxv
299 1.1 maxv if (!x86_gva_64bit_canonical(gva))
300 1.1 maxv return -1;
301 1.1 maxv
302 1.1 maxv /* Parse L4. */
303 1.19 maxv L4gpa = (cr3 & CR3_FRAME_64BIT);
304 1.1 maxv if (nvmm_gpa_to_hva(mach, L4gpa, &L4hva) == -1)
305 1.1 maxv return -1;
306 1.1 maxv pdir = (pte_64bit_t *)L4hva;
307 1.1 maxv pte = pdir[pte64_l4idx(gva)];
308 1.1 maxv if ((pte & PG_V) == 0)
309 1.1 maxv return -1;
310 1.1 maxv if ((pte & PG_u) == 0)
311 1.1 maxv *prot &= ~NVMM_PROT_USER;
312 1.1 maxv if ((pte & PG_KW) == 0)
313 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
314 1.1 maxv if (pte & PG_NX)
315 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
316 1.1 maxv if (pte & PG_PS)
317 1.1 maxv return -1;
318 1.1 maxv
319 1.1 maxv /* Parse L3. */
320 1.1 maxv L3gpa = (pte & PG_FRAME);
321 1.1 maxv if (nvmm_gpa_to_hva(mach, L3gpa, &L3hva) == -1)
322 1.1 maxv return -1;
323 1.1 maxv pdir = (pte_64bit_t *)L3hva;
324 1.1 maxv pte = pdir[pte64_l3idx(gva)];
325 1.1 maxv if ((pte & PG_V) == 0)
326 1.1 maxv return -1;
327 1.1 maxv if ((pte & PG_u) == 0)
328 1.1 maxv *prot &= ~NVMM_PROT_USER;
329 1.1 maxv if ((pte & PG_KW) == 0)
330 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
331 1.1 maxv if (pte & PG_NX)
332 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
333 1.1 maxv if (pte & PG_PS) {
334 1.1 maxv *gpa = (pte & PTE64_L3_FRAME);
335 1.10 maxv *gpa = *gpa + (gva & (PTE64_L2_MASK|PTE64_L1_MASK));
336 1.1 maxv return 0;
337 1.1 maxv }
338 1.1 maxv
339 1.1 maxv /* Parse L2. */
340 1.1 maxv L2gpa = (pte & PG_FRAME);
341 1.1 maxv if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva) == -1)
342 1.1 maxv return -1;
343 1.1 maxv pdir = (pte_64bit_t *)L2hva;
344 1.1 maxv pte = pdir[pte64_l2idx(gva)];
345 1.1 maxv if ((pte & PG_V) == 0)
346 1.1 maxv return -1;
347 1.1 maxv if ((pte & PG_u) == 0)
348 1.1 maxv *prot &= ~NVMM_PROT_USER;
349 1.1 maxv if ((pte & PG_KW) == 0)
350 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
351 1.1 maxv if (pte & PG_NX)
352 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
353 1.1 maxv if (pte & PG_PS) {
354 1.1 maxv *gpa = (pte & PTE64_L2_FRAME);
355 1.10 maxv *gpa = *gpa + (gva & PTE64_L1_MASK);
356 1.1 maxv return 0;
357 1.1 maxv }
358 1.1 maxv
359 1.1 maxv /* Parse L1. */
360 1.1 maxv L1gpa = (pte & PG_FRAME);
361 1.1 maxv if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva) == -1)
362 1.1 maxv return -1;
363 1.1 maxv pdir = (pte_64bit_t *)L1hva;
364 1.1 maxv pte = pdir[pte64_l1idx(gva)];
365 1.1 maxv if ((pte & PG_V) == 0)
366 1.1 maxv return -1;
367 1.1 maxv if ((pte & PG_u) == 0)
368 1.1 maxv *prot &= ~NVMM_PROT_USER;
369 1.1 maxv if ((pte & PG_KW) == 0)
370 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
371 1.1 maxv if (pte & PG_NX)
372 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
373 1.1 maxv if (pte & PG_PS)
374 1.1 maxv return -1;
375 1.1 maxv
376 1.1 maxv *gpa = (pte & PG_FRAME);
377 1.1 maxv return 0;
378 1.1 maxv }
379 1.1 maxv
380 1.1 maxv static inline int
381 1.1 maxv x86_gva_to_gpa(struct nvmm_machine *mach, struct nvmm_x64_state *state,
382 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
383 1.1 maxv {
384 1.1 maxv bool is_pae, is_lng, has_pse;
385 1.1 maxv uint64_t cr3;
386 1.6 maxv size_t off;
387 1.1 maxv int ret;
388 1.1 maxv
389 1.1 maxv if ((state->crs[NVMM_X64_CR_CR0] & CR0_PG) == 0) {
390 1.1 maxv /* No paging. */
391 1.4 maxv *prot = NVMM_PROT_ALL;
392 1.1 maxv *gpa = gva;
393 1.1 maxv return 0;
394 1.1 maxv }
395 1.1 maxv
396 1.6 maxv off = (gva & PAGE_MASK);
397 1.6 maxv gva &= ~PAGE_MASK;
398 1.6 maxv
399 1.1 maxv is_pae = (state->crs[NVMM_X64_CR_CR4] & CR4_PAE) != 0;
400 1.15 maxv is_lng = (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) != 0;
401 1.1 maxv has_pse = (state->crs[NVMM_X64_CR_CR4] & CR4_PSE) != 0;
402 1.1 maxv cr3 = state->crs[NVMM_X64_CR_CR3];
403 1.1 maxv
404 1.1 maxv if (is_pae && is_lng) {
405 1.1 maxv /* 64bit */
406 1.11 maxv ret = x86_gva_to_gpa_64bit(mach, cr3, gva, gpa, prot);
407 1.1 maxv } else if (is_pae && !is_lng) {
408 1.1 maxv /* 32bit PAE */
409 1.23 maxv ret = x86_gva_to_gpa_32bit_pae(mach, cr3, gva, gpa, prot);
410 1.1 maxv } else if (!is_pae && !is_lng) {
411 1.1 maxv /* 32bit */
412 1.1 maxv ret = x86_gva_to_gpa_32bit(mach, cr3, gva, gpa, has_pse, prot);
413 1.1 maxv } else {
414 1.1 maxv ret = -1;
415 1.1 maxv }
416 1.1 maxv
417 1.1 maxv if (ret == -1) {
418 1.1 maxv errno = EFAULT;
419 1.1 maxv }
420 1.1 maxv
421 1.6 maxv *gpa = *gpa + off;
422 1.6 maxv
423 1.1 maxv return ret;
424 1.1 maxv }
425 1.1 maxv
426 1.1 maxv int
427 1.1 maxv nvmm_gva_to_gpa(struct nvmm_machine *mach, nvmm_cpuid_t cpuid,
428 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
429 1.1 maxv {
430 1.1 maxv struct nvmm_x64_state state;
431 1.1 maxv int ret;
432 1.1 maxv
433 1.1 maxv ret = nvmm_vcpu_getstate(mach, cpuid, &state,
434 1.1 maxv NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
435 1.1 maxv if (ret == -1)
436 1.1 maxv return -1;
437 1.1 maxv
438 1.1 maxv return x86_gva_to_gpa(mach, &state, gva, gpa, prot);
439 1.1 maxv }
440 1.1 maxv
441 1.1 maxv /* -------------------------------------------------------------------------- */
442 1.1 maxv
443 1.1 maxv static inline bool
444 1.15 maxv is_long_mode(struct nvmm_x64_state *state)
445 1.15 maxv {
446 1.15 maxv return (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) != 0;
447 1.15 maxv }
448 1.15 maxv
449 1.15 maxv static inline bool
450 1.5 maxv is_64bit(struct nvmm_x64_state *state)
451 1.5 maxv {
452 1.5 maxv return (state->segs[NVMM_X64_SEG_CS].attrib.lng != 0);
453 1.5 maxv }
454 1.5 maxv
455 1.5 maxv static inline bool
456 1.5 maxv is_32bit(struct nvmm_x64_state *state)
457 1.5 maxv {
458 1.5 maxv return (state->segs[NVMM_X64_SEG_CS].attrib.lng == 0) &&
459 1.5 maxv (state->segs[NVMM_X64_SEG_CS].attrib.def32 == 1);
460 1.5 maxv }
461 1.5 maxv
462 1.5 maxv static inline bool
463 1.5 maxv is_16bit(struct nvmm_x64_state *state)
464 1.5 maxv {
465 1.5 maxv return (state->segs[NVMM_X64_SEG_CS].attrib.lng == 0) &&
466 1.5 maxv (state->segs[NVMM_X64_SEG_CS].attrib.def32 == 0);
467 1.5 maxv }
468 1.5 maxv
469 1.1 maxv static int
470 1.15 maxv segment_check(struct nvmm_x64_state_seg *seg, gvaddr_t gva, size_t size)
471 1.1 maxv {
472 1.1 maxv uint64_t limit;
473 1.1 maxv
474 1.1 maxv /*
475 1.1 maxv * This is incomplete. We should check topdown, etc, really that's
476 1.1 maxv * tiring.
477 1.1 maxv */
478 1.1 maxv if (__predict_false(!seg->attrib.p)) {
479 1.1 maxv goto error;
480 1.1 maxv }
481 1.1 maxv
482 1.1 maxv limit = (seg->limit + 1);
483 1.1 maxv if (__predict_true(seg->attrib.gran)) {
484 1.1 maxv limit *= PAGE_SIZE;
485 1.1 maxv }
486 1.1 maxv
487 1.15 maxv if (__predict_false(gva + size > limit)) {
488 1.1 maxv goto error;
489 1.1 maxv }
490 1.1 maxv
491 1.1 maxv return 0;
492 1.1 maxv
493 1.1 maxv error:
494 1.1 maxv errno = EFAULT;
495 1.1 maxv return -1;
496 1.1 maxv }
497 1.1 maxv
498 1.15 maxv static inline void
499 1.15 maxv segment_apply(struct nvmm_x64_state_seg *seg, gvaddr_t *gva)
500 1.15 maxv {
501 1.15 maxv *gva += seg->base;
502 1.15 maxv }
503 1.15 maxv
504 1.15 maxv static inline uint64_t
505 1.15 maxv size_to_mask(size_t size)
506 1.6 maxv {
507 1.15 maxv switch (size) {
508 1.15 maxv case 1:
509 1.15 maxv return 0x00000000000000FF;
510 1.15 maxv case 2:
511 1.15 maxv return 0x000000000000FFFF;
512 1.15 maxv case 4:
513 1.15 maxv return 0x00000000FFFFFFFF;
514 1.6 maxv case 8:
515 1.15 maxv default:
516 1.6 maxv return 0xFFFFFFFFFFFFFFFF;
517 1.6 maxv }
518 1.6 maxv }
519 1.6 maxv
520 1.6 maxv static uint64_t
521 1.10 maxv rep_get_cnt(struct nvmm_x64_state *state, size_t adsize)
522 1.10 maxv {
523 1.10 maxv uint64_t mask, cnt;
524 1.10 maxv
525 1.15 maxv mask = size_to_mask(adsize);
526 1.10 maxv cnt = state->gprs[NVMM_X64_GPR_RCX] & mask;
527 1.10 maxv
528 1.10 maxv return cnt;
529 1.10 maxv }
530 1.10 maxv
531 1.10 maxv static void
532 1.10 maxv rep_set_cnt(struct nvmm_x64_state *state, size_t adsize, uint64_t cnt)
533 1.10 maxv {
534 1.10 maxv uint64_t mask;
535 1.10 maxv
536 1.15 maxv /* XXX: should we zero-extend? */
537 1.15 maxv mask = size_to_mask(adsize);
538 1.10 maxv state->gprs[NVMM_X64_GPR_RCX] &= ~mask;
539 1.10 maxv state->gprs[NVMM_X64_GPR_RCX] |= cnt;
540 1.10 maxv }
541 1.10 maxv
542 1.6 maxv static int
543 1.6 maxv read_guest_memory(struct nvmm_machine *mach, struct nvmm_x64_state *state,
544 1.6 maxv gvaddr_t gva, uint8_t *data, size_t size)
545 1.6 maxv {
546 1.6 maxv struct nvmm_mem mem;
547 1.6 maxv nvmm_prot_t prot;
548 1.6 maxv gpaddr_t gpa;
549 1.6 maxv uintptr_t hva;
550 1.6 maxv bool is_mmio;
551 1.6 maxv int ret, remain;
552 1.6 maxv
553 1.6 maxv ret = x86_gva_to_gpa(mach, state, gva, &gpa, &prot);
554 1.6 maxv if (__predict_false(ret == -1)) {
555 1.6 maxv return -1;
556 1.6 maxv }
557 1.6 maxv if (__predict_false(!(prot & NVMM_PROT_READ))) {
558 1.6 maxv errno = EFAULT;
559 1.6 maxv return -1;
560 1.6 maxv }
561 1.6 maxv
562 1.6 maxv if ((gva & PAGE_MASK) + size > PAGE_SIZE) {
563 1.6 maxv remain = ((gva & PAGE_MASK) + size - PAGE_SIZE);
564 1.6 maxv } else {
565 1.6 maxv remain = 0;
566 1.6 maxv }
567 1.6 maxv size -= remain;
568 1.6 maxv
569 1.6 maxv ret = nvmm_gpa_to_hva(mach, gpa, &hva);
570 1.6 maxv is_mmio = (ret == -1);
571 1.6 maxv
572 1.6 maxv if (is_mmio) {
573 1.11 maxv mem.data = data;
574 1.6 maxv mem.gpa = gpa;
575 1.6 maxv mem.write = false;
576 1.6 maxv mem.size = size;
577 1.6 maxv (*__callbacks.mem)(&mem);
578 1.6 maxv } else {
579 1.6 maxv memcpy(data, (uint8_t *)hva, size);
580 1.6 maxv }
581 1.6 maxv
582 1.6 maxv if (remain > 0) {
583 1.6 maxv ret = read_guest_memory(mach, state, gva + size,
584 1.6 maxv data + size, remain);
585 1.6 maxv } else {
586 1.6 maxv ret = 0;
587 1.6 maxv }
588 1.6 maxv
589 1.6 maxv return ret;
590 1.6 maxv }
591 1.6 maxv
592 1.6 maxv static int
593 1.6 maxv write_guest_memory(struct nvmm_machine *mach, struct nvmm_x64_state *state,
594 1.6 maxv gvaddr_t gva, uint8_t *data, size_t size)
595 1.6 maxv {
596 1.6 maxv struct nvmm_mem mem;
597 1.6 maxv nvmm_prot_t prot;
598 1.6 maxv gpaddr_t gpa;
599 1.6 maxv uintptr_t hva;
600 1.6 maxv bool is_mmio;
601 1.6 maxv int ret, remain;
602 1.6 maxv
603 1.6 maxv ret = x86_gva_to_gpa(mach, state, gva, &gpa, &prot);
604 1.6 maxv if (__predict_false(ret == -1)) {
605 1.6 maxv return -1;
606 1.6 maxv }
607 1.6 maxv if (__predict_false(!(prot & NVMM_PROT_WRITE))) {
608 1.6 maxv errno = EFAULT;
609 1.6 maxv return -1;
610 1.6 maxv }
611 1.6 maxv
612 1.6 maxv if ((gva & PAGE_MASK) + size > PAGE_SIZE) {
613 1.6 maxv remain = ((gva & PAGE_MASK) + size - PAGE_SIZE);
614 1.6 maxv } else {
615 1.6 maxv remain = 0;
616 1.6 maxv }
617 1.6 maxv size -= remain;
618 1.6 maxv
619 1.6 maxv ret = nvmm_gpa_to_hva(mach, gpa, &hva);
620 1.6 maxv is_mmio = (ret == -1);
621 1.6 maxv
622 1.6 maxv if (is_mmio) {
623 1.11 maxv mem.data = data;
624 1.6 maxv mem.gpa = gpa;
625 1.6 maxv mem.write = true;
626 1.6 maxv mem.size = size;
627 1.6 maxv (*__callbacks.mem)(&mem);
628 1.6 maxv } else {
629 1.6 maxv memcpy((uint8_t *)hva, data, size);
630 1.6 maxv }
631 1.6 maxv
632 1.6 maxv if (remain > 0) {
633 1.6 maxv ret = write_guest_memory(mach, state, gva + size,
634 1.6 maxv data + size, remain);
635 1.6 maxv } else {
636 1.6 maxv ret = 0;
637 1.6 maxv }
638 1.6 maxv
639 1.6 maxv return ret;
640 1.6 maxv }
641 1.6 maxv
642 1.6 maxv /* -------------------------------------------------------------------------- */
643 1.6 maxv
644 1.8 maxv static int fetch_segment(struct nvmm_machine *, struct nvmm_x64_state *);
645 1.8 maxv
646 1.10 maxv #define NVMM_IO_BATCH_SIZE 32
647 1.10 maxv
648 1.10 maxv static int
649 1.10 maxv assist_io_batch(struct nvmm_machine *mach, struct nvmm_x64_state *state,
650 1.10 maxv struct nvmm_io *io, gvaddr_t gva, uint64_t cnt)
651 1.10 maxv {
652 1.10 maxv uint8_t iobuf[NVMM_IO_BATCH_SIZE];
653 1.10 maxv size_t i, iosize, iocnt;
654 1.10 maxv int ret;
655 1.10 maxv
656 1.10 maxv cnt = MIN(cnt, NVMM_IO_BATCH_SIZE);
657 1.10 maxv iosize = MIN(io->size * cnt, NVMM_IO_BATCH_SIZE);
658 1.10 maxv iocnt = iosize / io->size;
659 1.10 maxv
660 1.10 maxv io->data = iobuf;
661 1.10 maxv
662 1.10 maxv if (!io->in) {
663 1.10 maxv ret = read_guest_memory(mach, state, gva, iobuf, iosize);
664 1.10 maxv if (ret == -1)
665 1.10 maxv return -1;
666 1.10 maxv }
667 1.10 maxv
668 1.10 maxv for (i = 0; i < iocnt; i++) {
669 1.10 maxv (*__callbacks.io)(io);
670 1.10 maxv io->data += io->size;
671 1.10 maxv }
672 1.10 maxv
673 1.10 maxv if (io->in) {
674 1.10 maxv ret = write_guest_memory(mach, state, gva, iobuf, iosize);
675 1.10 maxv if (ret == -1)
676 1.10 maxv return -1;
677 1.10 maxv }
678 1.10 maxv
679 1.10 maxv return iocnt;
680 1.10 maxv }
681 1.10 maxv
682 1.1 maxv int
683 1.1 maxv nvmm_assist_io(struct nvmm_machine *mach, nvmm_cpuid_t cpuid,
684 1.6 maxv struct nvmm_exit *exit)
685 1.1 maxv {
686 1.1 maxv struct nvmm_x64_state state;
687 1.1 maxv struct nvmm_io io;
688 1.10 maxv uint64_t cnt = 0; /* GCC */
689 1.10 maxv uint8_t iobuf[8];
690 1.10 maxv int iocnt = 1;
691 1.15 maxv gvaddr_t gva = 0; /* GCC */
692 1.5 maxv int reg = 0; /* GCC */
693 1.8 maxv int ret, seg;
694 1.10 maxv bool psld = false;
695 1.1 maxv
696 1.1 maxv if (__predict_false(exit->reason != NVMM_EXIT_IO)) {
697 1.1 maxv errno = EINVAL;
698 1.1 maxv return -1;
699 1.1 maxv }
700 1.1 maxv
701 1.1 maxv io.port = exit->u.io.port;
702 1.1 maxv io.in = (exit->u.io.type == NVMM_EXIT_IO_IN);
703 1.1 maxv io.size = exit->u.io.operand_size;
704 1.10 maxv io.data = iobuf;
705 1.1 maxv
706 1.1 maxv ret = nvmm_vcpu_getstate(mach, cpuid, &state,
707 1.1 maxv NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
708 1.1 maxv NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
709 1.1 maxv if (ret == -1)
710 1.1 maxv return -1;
711 1.1 maxv
712 1.10 maxv if (exit->u.io.rep) {
713 1.10 maxv cnt = rep_get_cnt(&state, exit->u.io.address_size);
714 1.10 maxv if (__predict_false(cnt == 0)) {
715 1.15 maxv state.gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
716 1.15 maxv goto out;
717 1.10 maxv }
718 1.10 maxv }
719 1.10 maxv
720 1.10 maxv if (__predict_false(state.gprs[NVMM_X64_GPR_RFLAGS] & PSL_D)) {
721 1.10 maxv psld = true;
722 1.10 maxv }
723 1.10 maxv
724 1.6 maxv /*
725 1.6 maxv * Determine GVA.
726 1.6 maxv */
727 1.6 maxv if (exit->u.io.str) {
728 1.5 maxv if (io.in) {
729 1.5 maxv reg = NVMM_X64_GPR_RDI;
730 1.5 maxv } else {
731 1.5 maxv reg = NVMM_X64_GPR_RSI;
732 1.5 maxv }
733 1.1 maxv
734 1.6 maxv gva = state.gprs[reg];
735 1.15 maxv gva &= size_to_mask(exit->u.io.address_size);
736 1.1 maxv
737 1.15 maxv if (exit->u.io.seg != -1) {
738 1.15 maxv seg = exit->u.io.seg;
739 1.15 maxv } else {
740 1.15 maxv if (io.in) {
741 1.15 maxv seg = NVMM_X64_SEG_ES;
742 1.8 maxv } else {
743 1.15 maxv seg = fetch_segment(mach, &state);
744 1.15 maxv if (seg == -1)
745 1.15 maxv return -1;
746 1.8 maxv }
747 1.15 maxv }
748 1.8 maxv
749 1.15 maxv if (__predict_true(is_long_mode(&state))) {
750 1.15 maxv if (seg == NVMM_X64_SEG_GS || seg == NVMM_X64_SEG_FS) {
751 1.15 maxv segment_apply(&state.segs[seg], &gva);
752 1.15 maxv }
753 1.15 maxv } else {
754 1.15 maxv ret = segment_check(&state.segs[seg], gva, io.size);
755 1.1 maxv if (ret == -1)
756 1.1 maxv return -1;
757 1.15 maxv segment_apply(&state.segs[seg], &gva);
758 1.1 maxv }
759 1.10 maxv
760 1.10 maxv if (exit->u.io.rep && !psld) {
761 1.10 maxv iocnt = assist_io_batch(mach, &state, &io, gva, cnt);
762 1.10 maxv if (iocnt == -1)
763 1.10 maxv return -1;
764 1.10 maxv goto done;
765 1.10 maxv }
766 1.6 maxv }
767 1.1 maxv
768 1.6 maxv if (!io.in) {
769 1.6 maxv if (!exit->u.io.str) {
770 1.6 maxv memcpy(io.data, &state.gprs[NVMM_X64_GPR_RAX], io.size);
771 1.6 maxv } else {
772 1.6 maxv ret = read_guest_memory(mach, &state, gva, io.data,
773 1.6 maxv io.size);
774 1.1 maxv if (ret == -1)
775 1.1 maxv return -1;
776 1.1 maxv }
777 1.1 maxv }
778 1.1 maxv
779 1.6 maxv (*__callbacks.io)(&io);
780 1.1 maxv
781 1.1 maxv if (io.in) {
782 1.6 maxv if (!exit->u.io.str) {
783 1.6 maxv memcpy(&state.gprs[NVMM_X64_GPR_RAX], io.data, io.size);
784 1.15 maxv if (io.size == 4) {
785 1.15 maxv /* Zero-extend to 64 bits. */
786 1.15 maxv state.gprs[NVMM_X64_GPR_RAX] &= size_to_mask(4);
787 1.15 maxv }
788 1.1 maxv } else {
789 1.6 maxv ret = write_guest_memory(mach, &state, gva, io.data,
790 1.6 maxv io.size);
791 1.6 maxv if (ret == -1)
792 1.6 maxv return -1;
793 1.1 maxv }
794 1.1 maxv }
795 1.1 maxv
796 1.10 maxv done:
797 1.5 maxv if (exit->u.io.str) {
798 1.10 maxv if (__predict_false(psld)) {
799 1.10 maxv state.gprs[reg] -= iocnt * io.size;
800 1.5 maxv } else {
801 1.10 maxv state.gprs[reg] += iocnt * io.size;
802 1.5 maxv }
803 1.5 maxv }
804 1.5 maxv
805 1.1 maxv if (exit->u.io.rep) {
806 1.10 maxv cnt -= iocnt;
807 1.10 maxv rep_set_cnt(&state, exit->u.io.address_size, cnt);
808 1.6 maxv if (cnt == 0) {
809 1.1 maxv state.gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
810 1.1 maxv }
811 1.1 maxv } else {
812 1.1 maxv state.gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
813 1.1 maxv }
814 1.1 maxv
815 1.15 maxv out:
816 1.1 maxv ret = nvmm_vcpu_setstate(mach, cpuid, &state, NVMM_X64_STATE_GPRS);
817 1.1 maxv if (ret == -1)
818 1.1 maxv return -1;
819 1.1 maxv
820 1.1 maxv return 0;
821 1.1 maxv }
822 1.1 maxv
823 1.1 maxv /* -------------------------------------------------------------------------- */
824 1.1 maxv
825 1.19 maxv struct x86_emul {
826 1.19 maxv bool read;
827 1.19 maxv bool notouch;
828 1.19 maxv void (*func)(struct nvmm_mem *, uint64_t *);
829 1.19 maxv };
830 1.19 maxv
831 1.19 maxv static void x86_func_or(struct nvmm_mem *, uint64_t *);
832 1.19 maxv static void x86_func_and(struct nvmm_mem *, uint64_t *);
833 1.19 maxv static void x86_func_sub(struct nvmm_mem *, uint64_t *);
834 1.19 maxv static void x86_func_xor(struct nvmm_mem *, uint64_t *);
835 1.19 maxv static void x86_func_cmp(struct nvmm_mem *, uint64_t *);
836 1.19 maxv static void x86_func_test(struct nvmm_mem *, uint64_t *);
837 1.19 maxv static void x86_func_mov(struct nvmm_mem *, uint64_t *);
838 1.19 maxv static void x86_func_stos(struct nvmm_mem *, uint64_t *);
839 1.19 maxv static void x86_func_lods(struct nvmm_mem *, uint64_t *);
840 1.19 maxv static void x86_func_movs(struct nvmm_mem *, uint64_t *);
841 1.19 maxv
842 1.19 maxv static const struct x86_emul x86_emul_or = {
843 1.19 maxv .read = true,
844 1.19 maxv .func = x86_func_or
845 1.19 maxv };
846 1.19 maxv
847 1.19 maxv static const struct x86_emul x86_emul_and = {
848 1.19 maxv .read = true,
849 1.19 maxv .func = x86_func_and
850 1.19 maxv };
851 1.19 maxv
852 1.19 maxv static const struct x86_emul x86_emul_sub = {
853 1.19 maxv .read = true,
854 1.19 maxv .func = x86_func_sub
855 1.19 maxv };
856 1.19 maxv
857 1.19 maxv static const struct x86_emul x86_emul_xor = {
858 1.19 maxv .read = true,
859 1.19 maxv .func = x86_func_xor
860 1.19 maxv };
861 1.19 maxv
862 1.19 maxv static const struct x86_emul x86_emul_cmp = {
863 1.19 maxv .notouch = true,
864 1.19 maxv .func = x86_func_cmp
865 1.19 maxv };
866 1.19 maxv
867 1.19 maxv static const struct x86_emul x86_emul_test = {
868 1.19 maxv .notouch = true,
869 1.19 maxv .func = x86_func_test
870 1.19 maxv };
871 1.19 maxv
872 1.19 maxv static const struct x86_emul x86_emul_mov = {
873 1.19 maxv .func = x86_func_mov
874 1.19 maxv };
875 1.19 maxv
876 1.19 maxv static const struct x86_emul x86_emul_stos = {
877 1.19 maxv .func = x86_func_stos
878 1.19 maxv };
879 1.19 maxv
880 1.19 maxv static const struct x86_emul x86_emul_lods = {
881 1.19 maxv .func = x86_func_lods
882 1.19 maxv };
883 1.19 maxv
884 1.19 maxv static const struct x86_emul x86_emul_movs = {
885 1.19 maxv .func = x86_func_movs
886 1.19 maxv };
887 1.5 maxv
888 1.13 maxv /* Legacy prefixes. */
889 1.13 maxv #define LEG_LOCK 0xF0
890 1.13 maxv #define LEG_REPN 0xF2
891 1.13 maxv #define LEG_REP 0xF3
892 1.13 maxv #define LEG_OVR_CS 0x2E
893 1.13 maxv #define LEG_OVR_SS 0x36
894 1.13 maxv #define LEG_OVR_DS 0x3E
895 1.13 maxv #define LEG_OVR_ES 0x26
896 1.13 maxv #define LEG_OVR_FS 0x64
897 1.13 maxv #define LEG_OVR_GS 0x65
898 1.13 maxv #define LEG_OPR_OVR 0x66
899 1.13 maxv #define LEG_ADR_OVR 0x67
900 1.13 maxv
901 1.13 maxv struct x86_legpref {
902 1.13 maxv bool opr_ovr:1;
903 1.13 maxv bool adr_ovr:1;
904 1.13 maxv bool rep:1;
905 1.13 maxv bool repn:1;
906 1.13 maxv int seg;
907 1.5 maxv };
908 1.5 maxv
909 1.5 maxv struct x86_rexpref {
910 1.5 maxv bool present;
911 1.5 maxv bool w;
912 1.5 maxv bool r;
913 1.5 maxv bool x;
914 1.5 maxv bool b;
915 1.5 maxv };
916 1.5 maxv
917 1.5 maxv struct x86_reg {
918 1.5 maxv int num; /* NVMM GPR state index */
919 1.5 maxv uint64_t mask;
920 1.5 maxv };
921 1.5 maxv
922 1.5 maxv enum x86_disp_type {
923 1.5 maxv DISP_NONE,
924 1.5 maxv DISP_0,
925 1.5 maxv DISP_1,
926 1.5 maxv DISP_4
927 1.5 maxv };
928 1.5 maxv
929 1.5 maxv struct x86_disp {
930 1.5 maxv enum x86_disp_type type;
931 1.11 maxv uint64_t data; /* 4 bytes, but can be sign-extended */
932 1.5 maxv };
933 1.5 maxv
934 1.5 maxv enum REGMODRM__Mod {
935 1.5 maxv MOD_DIS0, /* also, register indirect */
936 1.5 maxv MOD_DIS1,
937 1.5 maxv MOD_DIS4,
938 1.5 maxv MOD_REG
939 1.5 maxv };
940 1.5 maxv
941 1.5 maxv enum REGMODRM__Reg {
942 1.5 maxv REG_000, /* these fields are indexes to the register map */
943 1.5 maxv REG_001,
944 1.5 maxv REG_010,
945 1.5 maxv REG_011,
946 1.5 maxv REG_100,
947 1.5 maxv REG_101,
948 1.5 maxv REG_110,
949 1.5 maxv REG_111
950 1.5 maxv };
951 1.5 maxv
952 1.5 maxv enum REGMODRM__Rm {
953 1.5 maxv RM_000, /* reg */
954 1.5 maxv RM_001, /* reg */
955 1.5 maxv RM_010, /* reg */
956 1.5 maxv RM_011, /* reg */
957 1.5 maxv RM_RSP_SIB, /* reg or SIB, depending on the MOD */
958 1.5 maxv RM_RBP_DISP32, /* reg or displacement-only (= RIP-relative on amd64) */
959 1.5 maxv RM_110,
960 1.5 maxv RM_111
961 1.5 maxv };
962 1.5 maxv
963 1.5 maxv struct x86_regmodrm {
964 1.5 maxv bool present;
965 1.5 maxv enum REGMODRM__Mod mod;
966 1.5 maxv enum REGMODRM__Reg reg;
967 1.5 maxv enum REGMODRM__Rm rm;
968 1.5 maxv };
969 1.5 maxv
970 1.5 maxv struct x86_immediate {
971 1.11 maxv uint64_t data;
972 1.5 maxv };
973 1.5 maxv
974 1.5 maxv struct x86_sib {
975 1.5 maxv uint8_t scale;
976 1.5 maxv const struct x86_reg *idx;
977 1.5 maxv const struct x86_reg *bas;
978 1.5 maxv };
979 1.5 maxv
980 1.5 maxv enum x86_store_type {
981 1.5 maxv STORE_NONE,
982 1.5 maxv STORE_REG,
983 1.5 maxv STORE_IMM,
984 1.5 maxv STORE_SIB,
985 1.5 maxv STORE_DMO
986 1.5 maxv };
987 1.5 maxv
988 1.5 maxv struct x86_store {
989 1.5 maxv enum x86_store_type type;
990 1.5 maxv union {
991 1.5 maxv const struct x86_reg *reg;
992 1.5 maxv struct x86_immediate imm;
993 1.5 maxv struct x86_sib sib;
994 1.5 maxv uint64_t dmo;
995 1.5 maxv } u;
996 1.5 maxv struct x86_disp disp;
997 1.6 maxv int hardseg;
998 1.5 maxv };
999 1.5 maxv
1000 1.5 maxv struct x86_instr {
1001 1.5 maxv size_t len;
1002 1.13 maxv struct x86_legpref legpref;
1003 1.5 maxv struct x86_rexpref rexpref;
1004 1.5 maxv size_t operand_size;
1005 1.5 maxv size_t address_size;
1006 1.10 maxv uint64_t zeroextend_mask;
1007 1.5 maxv
1008 1.5 maxv struct x86_regmodrm regmodrm;
1009 1.5 maxv
1010 1.5 maxv const struct x86_opcode *opcode;
1011 1.5 maxv
1012 1.5 maxv struct x86_store src;
1013 1.5 maxv struct x86_store dst;
1014 1.5 maxv struct x86_store *strm;
1015 1.5 maxv
1016 1.19 maxv const struct x86_emul *emul;
1017 1.5 maxv };
1018 1.5 maxv
1019 1.5 maxv struct x86_decode_fsm {
1020 1.5 maxv /* vcpu */
1021 1.5 maxv bool is64bit;
1022 1.5 maxv bool is32bit;
1023 1.5 maxv bool is16bit;
1024 1.5 maxv
1025 1.5 maxv /* fsm */
1026 1.5 maxv int (*fn)(struct x86_decode_fsm *, struct x86_instr *);
1027 1.5 maxv uint8_t *buf;
1028 1.5 maxv uint8_t *end;
1029 1.5 maxv };
1030 1.5 maxv
1031 1.5 maxv struct x86_opcode {
1032 1.5 maxv uint8_t byte;
1033 1.5 maxv bool regmodrm;
1034 1.5 maxv bool regtorm;
1035 1.5 maxv bool dmo;
1036 1.5 maxv bool todmo;
1037 1.6 maxv bool movs;
1038 1.5 maxv bool stos;
1039 1.5 maxv bool lods;
1040 1.5 maxv bool szoverride;
1041 1.5 maxv int defsize;
1042 1.5 maxv int allsize;
1043 1.11 maxv bool group1;
1044 1.19 maxv bool group3;
1045 1.5 maxv bool group11;
1046 1.5 maxv bool immediate;
1047 1.5 maxv int flags;
1048 1.19 maxv const struct x86_emul *emul;
1049 1.5 maxv };
1050 1.5 maxv
1051 1.5 maxv struct x86_group_entry {
1052 1.19 maxv const struct x86_emul *emul;
1053 1.5 maxv };
1054 1.5 maxv
1055 1.5 maxv #define OPSIZE_BYTE 0x01
1056 1.5 maxv #define OPSIZE_WORD 0x02 /* 2 bytes */
1057 1.5 maxv #define OPSIZE_DOUB 0x04 /* 4 bytes */
1058 1.5 maxv #define OPSIZE_QUAD 0x08 /* 8 bytes */
1059 1.5 maxv
1060 1.11 maxv #define FLAG_imm8 0x01
1061 1.11 maxv #define FLAG_immz 0x02
1062 1.11 maxv #define FLAG_ze 0x04
1063 1.11 maxv
1064 1.11 maxv static const struct x86_group_entry group1[8] = {
1065 1.19 maxv [1] = { .emul = &x86_emul_or },
1066 1.19 maxv [4] = { .emul = &x86_emul_and },
1067 1.19 maxv [6] = { .emul = &x86_emul_xor },
1068 1.19 maxv [7] = { .emul = &x86_emul_cmp }
1069 1.19 maxv };
1070 1.19 maxv
1071 1.19 maxv static const struct x86_group_entry group3[8] = {
1072 1.19 maxv [0] = { .emul = &x86_emul_test },
1073 1.19 maxv [1] = { .emul = &x86_emul_test }
1074 1.11 maxv };
1075 1.5 maxv
1076 1.5 maxv static const struct x86_group_entry group11[8] = {
1077 1.19 maxv [0] = { .emul = &x86_emul_mov }
1078 1.5 maxv };
1079 1.5 maxv
1080 1.5 maxv static const struct x86_opcode primary_opcode_table[] = {
1081 1.5 maxv /*
1082 1.11 maxv * Group1
1083 1.11 maxv */
1084 1.11 maxv {
1085 1.19 maxv /* Eb, Ib */
1086 1.19 maxv .byte = 0x80,
1087 1.19 maxv .regmodrm = true,
1088 1.19 maxv .regtorm = true,
1089 1.19 maxv .szoverride = false,
1090 1.19 maxv .defsize = OPSIZE_BYTE,
1091 1.19 maxv .allsize = -1,
1092 1.19 maxv .group1 = true,
1093 1.19 maxv .immediate = true,
1094 1.19 maxv .emul = NULL /* group1 */
1095 1.19 maxv },
1096 1.19 maxv {
1097 1.15 maxv /* Ev, Iz */
1098 1.15 maxv .byte = 0x81,
1099 1.15 maxv .regmodrm = true,
1100 1.15 maxv .regtorm = true,
1101 1.15 maxv .szoverride = true,
1102 1.15 maxv .defsize = -1,
1103 1.15 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1104 1.15 maxv .group1 = true,
1105 1.15 maxv .immediate = true,
1106 1.15 maxv .flags = FLAG_immz,
1107 1.15 maxv .emul = NULL /* group1 */
1108 1.15 maxv },
1109 1.15 maxv {
1110 1.11 maxv /* Ev, Ib */
1111 1.11 maxv .byte = 0x83,
1112 1.11 maxv .regmodrm = true,
1113 1.11 maxv .regtorm = true,
1114 1.11 maxv .szoverride = true,
1115 1.11 maxv .defsize = -1,
1116 1.11 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1117 1.11 maxv .group1 = true,
1118 1.11 maxv .immediate = true,
1119 1.11 maxv .flags = FLAG_imm8,
1120 1.11 maxv .emul = NULL /* group1 */
1121 1.11 maxv },
1122 1.11 maxv
1123 1.11 maxv /*
1124 1.19 maxv * Group3
1125 1.19 maxv */
1126 1.19 maxv {
1127 1.19 maxv /* Eb, Ib */
1128 1.19 maxv .byte = 0xF6,
1129 1.19 maxv .regmodrm = true,
1130 1.19 maxv .regtorm = true,
1131 1.19 maxv .szoverride = false,
1132 1.19 maxv .defsize = OPSIZE_BYTE,
1133 1.19 maxv .allsize = -1,
1134 1.19 maxv .group3 = true,
1135 1.19 maxv .immediate = true,
1136 1.19 maxv .emul = NULL /* group3 */
1137 1.19 maxv },
1138 1.19 maxv {
1139 1.19 maxv /* Ev, Iz */
1140 1.19 maxv .byte = 0xF7,
1141 1.19 maxv .regmodrm = true,
1142 1.19 maxv .regtorm = true,
1143 1.19 maxv .szoverride = true,
1144 1.19 maxv .defsize = -1,
1145 1.19 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1146 1.19 maxv .group3 = true,
1147 1.19 maxv .immediate = true,
1148 1.19 maxv .flags = FLAG_immz,
1149 1.19 maxv .emul = NULL /* group3 */
1150 1.19 maxv },
1151 1.19 maxv
1152 1.19 maxv /*
1153 1.5 maxv * Group11
1154 1.5 maxv */
1155 1.5 maxv {
1156 1.11 maxv /* Eb, Ib */
1157 1.5 maxv .byte = 0xC6,
1158 1.5 maxv .regmodrm = true,
1159 1.5 maxv .regtorm = true,
1160 1.5 maxv .szoverride = false,
1161 1.5 maxv .defsize = OPSIZE_BYTE,
1162 1.5 maxv .allsize = -1,
1163 1.5 maxv .group11 = true,
1164 1.5 maxv .immediate = true,
1165 1.5 maxv .emul = NULL /* group11 */
1166 1.5 maxv },
1167 1.5 maxv {
1168 1.11 maxv /* Ev, Iz */
1169 1.5 maxv .byte = 0xC7,
1170 1.5 maxv .regmodrm = true,
1171 1.5 maxv .regtorm = true,
1172 1.5 maxv .szoverride = true,
1173 1.5 maxv .defsize = -1,
1174 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1175 1.5 maxv .group11 = true,
1176 1.5 maxv .immediate = true,
1177 1.11 maxv .flags = FLAG_immz,
1178 1.5 maxv .emul = NULL /* group11 */
1179 1.5 maxv },
1180 1.5 maxv
1181 1.5 maxv /*
1182 1.5 maxv * OR
1183 1.5 maxv */
1184 1.5 maxv {
1185 1.5 maxv /* Eb, Gb */
1186 1.5 maxv .byte = 0x08,
1187 1.5 maxv .regmodrm = true,
1188 1.5 maxv .regtorm = true,
1189 1.5 maxv .szoverride = false,
1190 1.5 maxv .defsize = OPSIZE_BYTE,
1191 1.5 maxv .allsize = -1,
1192 1.19 maxv .emul = &x86_emul_or
1193 1.5 maxv },
1194 1.5 maxv {
1195 1.5 maxv /* Ev, Gv */
1196 1.5 maxv .byte = 0x09,
1197 1.5 maxv .regmodrm = true,
1198 1.5 maxv .regtorm = true,
1199 1.5 maxv .szoverride = true,
1200 1.5 maxv .defsize = -1,
1201 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1202 1.19 maxv .emul = &x86_emul_or
1203 1.5 maxv },
1204 1.5 maxv {
1205 1.5 maxv /* Gb, Eb */
1206 1.5 maxv .byte = 0x0A,
1207 1.5 maxv .regmodrm = true,
1208 1.5 maxv .regtorm = false,
1209 1.5 maxv .szoverride = false,
1210 1.5 maxv .defsize = OPSIZE_BYTE,
1211 1.5 maxv .allsize = -1,
1212 1.19 maxv .emul = &x86_emul_or
1213 1.5 maxv },
1214 1.5 maxv {
1215 1.5 maxv /* Gv, Ev */
1216 1.5 maxv .byte = 0x0B,
1217 1.5 maxv .regmodrm = true,
1218 1.5 maxv .regtorm = false,
1219 1.5 maxv .szoverride = true,
1220 1.5 maxv .defsize = -1,
1221 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1222 1.19 maxv .emul = &x86_emul_or
1223 1.5 maxv },
1224 1.5 maxv
1225 1.5 maxv /*
1226 1.5 maxv * AND
1227 1.5 maxv */
1228 1.5 maxv {
1229 1.5 maxv /* Eb, Gb */
1230 1.5 maxv .byte = 0x20,
1231 1.5 maxv .regmodrm = true,
1232 1.5 maxv .regtorm = true,
1233 1.5 maxv .szoverride = false,
1234 1.5 maxv .defsize = OPSIZE_BYTE,
1235 1.5 maxv .allsize = -1,
1236 1.19 maxv .emul = &x86_emul_and
1237 1.5 maxv },
1238 1.5 maxv {
1239 1.5 maxv /* Ev, Gv */
1240 1.5 maxv .byte = 0x21,
1241 1.5 maxv .regmodrm = true,
1242 1.5 maxv .regtorm = true,
1243 1.5 maxv .szoverride = true,
1244 1.5 maxv .defsize = -1,
1245 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1246 1.19 maxv .emul = &x86_emul_and
1247 1.5 maxv },
1248 1.5 maxv {
1249 1.5 maxv /* Gb, Eb */
1250 1.5 maxv .byte = 0x22,
1251 1.5 maxv .regmodrm = true,
1252 1.5 maxv .regtorm = false,
1253 1.5 maxv .szoverride = false,
1254 1.5 maxv .defsize = OPSIZE_BYTE,
1255 1.5 maxv .allsize = -1,
1256 1.19 maxv .emul = &x86_emul_and
1257 1.5 maxv },
1258 1.5 maxv {
1259 1.5 maxv /* Gv, Ev */
1260 1.5 maxv .byte = 0x23,
1261 1.5 maxv .regmodrm = true,
1262 1.5 maxv .regtorm = false,
1263 1.5 maxv .szoverride = true,
1264 1.5 maxv .defsize = -1,
1265 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1266 1.19 maxv .emul = &x86_emul_and
1267 1.19 maxv },
1268 1.19 maxv
1269 1.19 maxv /*
1270 1.19 maxv * SUB
1271 1.19 maxv */
1272 1.19 maxv {
1273 1.19 maxv /* Eb, Gb */
1274 1.19 maxv .byte = 0x28,
1275 1.19 maxv .regmodrm = true,
1276 1.19 maxv .regtorm = true,
1277 1.19 maxv .szoverride = false,
1278 1.19 maxv .defsize = OPSIZE_BYTE,
1279 1.19 maxv .allsize = -1,
1280 1.19 maxv .emul = &x86_emul_sub
1281 1.19 maxv },
1282 1.19 maxv {
1283 1.19 maxv /* Ev, Gv */
1284 1.19 maxv .byte = 0x29,
1285 1.19 maxv .regmodrm = true,
1286 1.19 maxv .regtorm = true,
1287 1.19 maxv .szoverride = true,
1288 1.19 maxv .defsize = -1,
1289 1.19 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1290 1.19 maxv .emul = &x86_emul_sub
1291 1.19 maxv },
1292 1.19 maxv {
1293 1.19 maxv /* Gb, Eb */
1294 1.19 maxv .byte = 0x2A,
1295 1.19 maxv .regmodrm = true,
1296 1.19 maxv .regtorm = false,
1297 1.19 maxv .szoverride = false,
1298 1.19 maxv .defsize = OPSIZE_BYTE,
1299 1.19 maxv .allsize = -1,
1300 1.19 maxv .emul = &x86_emul_sub
1301 1.19 maxv },
1302 1.19 maxv {
1303 1.19 maxv /* Gv, Ev */
1304 1.19 maxv .byte = 0x2B,
1305 1.19 maxv .regmodrm = true,
1306 1.19 maxv .regtorm = false,
1307 1.19 maxv .szoverride = true,
1308 1.19 maxv .defsize = -1,
1309 1.19 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1310 1.19 maxv .emul = &x86_emul_sub
1311 1.5 maxv },
1312 1.5 maxv
1313 1.5 maxv /*
1314 1.5 maxv * XOR
1315 1.5 maxv */
1316 1.5 maxv {
1317 1.5 maxv /* Eb, Gb */
1318 1.5 maxv .byte = 0x30,
1319 1.5 maxv .regmodrm = true,
1320 1.5 maxv .regtorm = true,
1321 1.5 maxv .szoverride = false,
1322 1.5 maxv .defsize = OPSIZE_BYTE,
1323 1.5 maxv .allsize = -1,
1324 1.19 maxv .emul = &x86_emul_xor
1325 1.5 maxv },
1326 1.5 maxv {
1327 1.5 maxv /* Ev, Gv */
1328 1.5 maxv .byte = 0x31,
1329 1.5 maxv .regmodrm = true,
1330 1.5 maxv .regtorm = true,
1331 1.5 maxv .szoverride = true,
1332 1.5 maxv .defsize = -1,
1333 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1334 1.19 maxv .emul = &x86_emul_xor
1335 1.5 maxv },
1336 1.5 maxv {
1337 1.5 maxv /* Gb, Eb */
1338 1.5 maxv .byte = 0x32,
1339 1.5 maxv .regmodrm = true,
1340 1.5 maxv .regtorm = false,
1341 1.5 maxv .szoverride = false,
1342 1.5 maxv .defsize = OPSIZE_BYTE,
1343 1.5 maxv .allsize = -1,
1344 1.19 maxv .emul = &x86_emul_xor
1345 1.5 maxv },
1346 1.5 maxv {
1347 1.5 maxv /* Gv, Ev */
1348 1.5 maxv .byte = 0x33,
1349 1.5 maxv .regmodrm = true,
1350 1.5 maxv .regtorm = false,
1351 1.5 maxv .szoverride = true,
1352 1.5 maxv .defsize = -1,
1353 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1354 1.19 maxv .emul = &x86_emul_xor
1355 1.5 maxv },
1356 1.5 maxv
1357 1.5 maxv /*
1358 1.5 maxv * MOV
1359 1.5 maxv */
1360 1.5 maxv {
1361 1.5 maxv /* Eb, Gb */
1362 1.5 maxv .byte = 0x88,
1363 1.5 maxv .regmodrm = true,
1364 1.5 maxv .regtorm = true,
1365 1.5 maxv .szoverride = false,
1366 1.5 maxv .defsize = OPSIZE_BYTE,
1367 1.5 maxv .allsize = -1,
1368 1.19 maxv .emul = &x86_emul_mov
1369 1.5 maxv },
1370 1.5 maxv {
1371 1.5 maxv /* Ev, Gv */
1372 1.5 maxv .byte = 0x89,
1373 1.5 maxv .regmodrm = true,
1374 1.5 maxv .regtorm = true,
1375 1.5 maxv .szoverride = true,
1376 1.5 maxv .defsize = -1,
1377 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1378 1.19 maxv .emul = &x86_emul_mov
1379 1.5 maxv },
1380 1.5 maxv {
1381 1.5 maxv /* Gb, Eb */
1382 1.5 maxv .byte = 0x8A,
1383 1.5 maxv .regmodrm = true,
1384 1.5 maxv .regtorm = false,
1385 1.5 maxv .szoverride = false,
1386 1.5 maxv .defsize = OPSIZE_BYTE,
1387 1.5 maxv .allsize = -1,
1388 1.19 maxv .emul = &x86_emul_mov
1389 1.5 maxv },
1390 1.5 maxv {
1391 1.5 maxv /* Gv, Ev */
1392 1.5 maxv .byte = 0x8B,
1393 1.5 maxv .regmodrm = true,
1394 1.5 maxv .regtorm = false,
1395 1.5 maxv .szoverride = true,
1396 1.5 maxv .defsize = -1,
1397 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1398 1.19 maxv .emul = &x86_emul_mov
1399 1.5 maxv },
1400 1.5 maxv {
1401 1.5 maxv /* AL, Ob */
1402 1.5 maxv .byte = 0xA0,
1403 1.5 maxv .dmo = true,
1404 1.5 maxv .todmo = false,
1405 1.5 maxv .szoverride = false,
1406 1.5 maxv .defsize = OPSIZE_BYTE,
1407 1.5 maxv .allsize = -1,
1408 1.19 maxv .emul = &x86_emul_mov
1409 1.5 maxv },
1410 1.5 maxv {
1411 1.5 maxv /* rAX, Ov */
1412 1.5 maxv .byte = 0xA1,
1413 1.5 maxv .dmo = true,
1414 1.5 maxv .todmo = false,
1415 1.5 maxv .szoverride = true,
1416 1.5 maxv .defsize = -1,
1417 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1418 1.19 maxv .emul = &x86_emul_mov
1419 1.5 maxv },
1420 1.5 maxv {
1421 1.5 maxv /* Ob, AL */
1422 1.5 maxv .byte = 0xA2,
1423 1.5 maxv .dmo = true,
1424 1.5 maxv .todmo = true,
1425 1.5 maxv .szoverride = false,
1426 1.5 maxv .defsize = OPSIZE_BYTE,
1427 1.5 maxv .allsize = -1,
1428 1.19 maxv .emul = &x86_emul_mov
1429 1.5 maxv },
1430 1.5 maxv {
1431 1.5 maxv /* Ov, rAX */
1432 1.5 maxv .byte = 0xA3,
1433 1.5 maxv .dmo = true,
1434 1.5 maxv .todmo = true,
1435 1.5 maxv .szoverride = true,
1436 1.5 maxv .defsize = -1,
1437 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1438 1.19 maxv .emul = &x86_emul_mov
1439 1.5 maxv },
1440 1.5 maxv
1441 1.5 maxv /*
1442 1.6 maxv * MOVS
1443 1.6 maxv */
1444 1.6 maxv {
1445 1.6 maxv /* Yb, Xb */
1446 1.6 maxv .byte = 0xA4,
1447 1.6 maxv .movs = true,
1448 1.6 maxv .szoverride = false,
1449 1.6 maxv .defsize = OPSIZE_BYTE,
1450 1.6 maxv .allsize = -1,
1451 1.19 maxv .emul = &x86_emul_movs
1452 1.6 maxv },
1453 1.6 maxv {
1454 1.6 maxv /* Yv, Xv */
1455 1.6 maxv .byte = 0xA5,
1456 1.6 maxv .movs = true,
1457 1.6 maxv .szoverride = true,
1458 1.6 maxv .defsize = -1,
1459 1.6 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1460 1.19 maxv .emul = &x86_emul_movs
1461 1.6 maxv },
1462 1.6 maxv
1463 1.6 maxv /*
1464 1.5 maxv * STOS
1465 1.5 maxv */
1466 1.5 maxv {
1467 1.5 maxv /* Yb, AL */
1468 1.5 maxv .byte = 0xAA,
1469 1.5 maxv .stos = true,
1470 1.5 maxv .szoverride = false,
1471 1.5 maxv .defsize = OPSIZE_BYTE,
1472 1.5 maxv .allsize = -1,
1473 1.19 maxv .emul = &x86_emul_stos
1474 1.5 maxv },
1475 1.5 maxv {
1476 1.5 maxv /* Yv, rAX */
1477 1.5 maxv .byte = 0xAB,
1478 1.5 maxv .stos = true,
1479 1.5 maxv .szoverride = true,
1480 1.5 maxv .defsize = -1,
1481 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1482 1.19 maxv .emul = &x86_emul_stos
1483 1.5 maxv },
1484 1.5 maxv
1485 1.5 maxv /*
1486 1.5 maxv * LODS
1487 1.5 maxv */
1488 1.5 maxv {
1489 1.5 maxv /* AL, Xb */
1490 1.5 maxv .byte = 0xAC,
1491 1.5 maxv .lods = true,
1492 1.5 maxv .szoverride = false,
1493 1.5 maxv .defsize = OPSIZE_BYTE,
1494 1.5 maxv .allsize = -1,
1495 1.19 maxv .emul = &x86_emul_lods
1496 1.5 maxv },
1497 1.5 maxv {
1498 1.5 maxv /* rAX, Xv */
1499 1.5 maxv .byte = 0xAD,
1500 1.5 maxv .lods = true,
1501 1.5 maxv .szoverride = true,
1502 1.5 maxv .defsize = -1,
1503 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1504 1.19 maxv .emul = &x86_emul_lods
1505 1.5 maxv },
1506 1.5 maxv };
1507 1.5 maxv
1508 1.10 maxv static const struct x86_opcode secondary_opcode_table[] = {
1509 1.10 maxv /*
1510 1.10 maxv * MOVZX
1511 1.10 maxv */
1512 1.10 maxv {
1513 1.10 maxv /* Gv, Eb */
1514 1.10 maxv .byte = 0xB6,
1515 1.10 maxv .regmodrm = true,
1516 1.10 maxv .regtorm = false,
1517 1.10 maxv .szoverride = true,
1518 1.10 maxv .defsize = OPSIZE_BYTE,
1519 1.10 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1520 1.11 maxv .flags = FLAG_ze,
1521 1.19 maxv .emul = &x86_emul_mov
1522 1.10 maxv },
1523 1.10 maxv {
1524 1.10 maxv /* Gv, Ew */
1525 1.10 maxv .byte = 0xB7,
1526 1.10 maxv .regmodrm = true,
1527 1.10 maxv .regtorm = false,
1528 1.10 maxv .szoverride = true,
1529 1.10 maxv .defsize = OPSIZE_WORD,
1530 1.10 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1531 1.11 maxv .flags = FLAG_ze,
1532 1.19 maxv .emul = &x86_emul_mov
1533 1.10 maxv },
1534 1.10 maxv };
1535 1.10 maxv
1536 1.5 maxv static const struct x86_reg gpr_map__rip = { NVMM_X64_GPR_RIP, 0xFFFFFFFFFFFFFFFF };
1537 1.5 maxv
1538 1.5 maxv /* [REX-present][enc][opsize] */
1539 1.5 maxv static const struct x86_reg gpr_map__special[2][4][8] = {
1540 1.5 maxv [false] = {
1541 1.5 maxv /* No REX prefix. */
1542 1.5 maxv [0b00] = {
1543 1.5 maxv [0] = { NVMM_X64_GPR_RAX, 0x000000000000FF00 }, /* AH */
1544 1.5 maxv [1] = { NVMM_X64_GPR_RSP, 0x000000000000FFFF }, /* SP */
1545 1.5 maxv [2] = { -1, 0 },
1546 1.5 maxv [3] = { NVMM_X64_GPR_RSP, 0x00000000FFFFFFFF }, /* ESP */
1547 1.5 maxv [4] = { -1, 0 },
1548 1.5 maxv [5] = { -1, 0 },
1549 1.5 maxv [6] = { -1, 0 },
1550 1.5 maxv [7] = { -1, 0 },
1551 1.5 maxv },
1552 1.5 maxv [0b01] = {
1553 1.5 maxv [0] = { NVMM_X64_GPR_RCX, 0x000000000000FF00 }, /* CH */
1554 1.5 maxv [1] = { NVMM_X64_GPR_RBP, 0x000000000000FFFF }, /* BP */
1555 1.5 maxv [2] = { -1, 0 },
1556 1.5 maxv [3] = { NVMM_X64_GPR_RBP, 0x00000000FFFFFFFF }, /* EBP */
1557 1.5 maxv [4] = { -1, 0 },
1558 1.5 maxv [5] = { -1, 0 },
1559 1.5 maxv [6] = { -1, 0 },
1560 1.5 maxv [7] = { -1, 0 },
1561 1.5 maxv },
1562 1.5 maxv [0b10] = {
1563 1.5 maxv [0] = { NVMM_X64_GPR_RDX, 0x000000000000FF00 }, /* DH */
1564 1.5 maxv [1] = { NVMM_X64_GPR_RSI, 0x000000000000FFFF }, /* SI */
1565 1.5 maxv [2] = { -1, 0 },
1566 1.5 maxv [3] = { NVMM_X64_GPR_RSI, 0x00000000FFFFFFFF }, /* ESI */
1567 1.5 maxv [4] = { -1, 0 },
1568 1.5 maxv [5] = { -1, 0 },
1569 1.5 maxv [6] = { -1, 0 },
1570 1.5 maxv [7] = { -1, 0 },
1571 1.5 maxv },
1572 1.5 maxv [0b11] = {
1573 1.5 maxv [0] = { NVMM_X64_GPR_RBX, 0x000000000000FF00 }, /* BH */
1574 1.5 maxv [1] = { NVMM_X64_GPR_RDI, 0x000000000000FFFF }, /* DI */
1575 1.5 maxv [2] = { -1, 0 },
1576 1.5 maxv [3] = { NVMM_X64_GPR_RDI, 0x00000000FFFFFFFF }, /* EDI */
1577 1.5 maxv [4] = { -1, 0 },
1578 1.5 maxv [5] = { -1, 0 },
1579 1.5 maxv [6] = { -1, 0 },
1580 1.5 maxv [7] = { -1, 0 },
1581 1.5 maxv }
1582 1.5 maxv },
1583 1.5 maxv [true] = {
1584 1.5 maxv /* Has REX prefix. */
1585 1.5 maxv [0b00] = {
1586 1.5 maxv [0] = { NVMM_X64_GPR_RSP, 0x00000000000000FF }, /* SPL */
1587 1.5 maxv [1] = { NVMM_X64_GPR_RSP, 0x000000000000FFFF }, /* SP */
1588 1.5 maxv [2] = { -1, 0 },
1589 1.5 maxv [3] = { NVMM_X64_GPR_RSP, 0x00000000FFFFFFFF }, /* ESP */
1590 1.5 maxv [4] = { -1, 0 },
1591 1.5 maxv [5] = { -1, 0 },
1592 1.5 maxv [6] = { -1, 0 },
1593 1.5 maxv [7] = { NVMM_X64_GPR_RSP, 0xFFFFFFFFFFFFFFFF }, /* RSP */
1594 1.5 maxv },
1595 1.5 maxv [0b01] = {
1596 1.5 maxv [0] = { NVMM_X64_GPR_RBP, 0x00000000000000FF }, /* BPL */
1597 1.5 maxv [1] = { NVMM_X64_GPR_RBP, 0x000000000000FFFF }, /* BP */
1598 1.5 maxv [2] = { -1, 0 },
1599 1.5 maxv [3] = { NVMM_X64_GPR_RBP, 0x00000000FFFFFFFF }, /* EBP */
1600 1.5 maxv [4] = { -1, 0 },
1601 1.5 maxv [5] = { -1, 0 },
1602 1.5 maxv [6] = { -1, 0 },
1603 1.5 maxv [7] = { NVMM_X64_GPR_RBP, 0xFFFFFFFFFFFFFFFF }, /* RBP */
1604 1.5 maxv },
1605 1.5 maxv [0b10] = {
1606 1.5 maxv [0] = { NVMM_X64_GPR_RSI, 0x00000000000000FF }, /* SIL */
1607 1.5 maxv [1] = { NVMM_X64_GPR_RSI, 0x000000000000FFFF }, /* SI */
1608 1.5 maxv [2] = { -1, 0 },
1609 1.5 maxv [3] = { NVMM_X64_GPR_RSI, 0x00000000FFFFFFFF }, /* ESI */
1610 1.5 maxv [4] = { -1, 0 },
1611 1.5 maxv [5] = { -1, 0 },
1612 1.5 maxv [6] = { -1, 0 },
1613 1.5 maxv [7] = { NVMM_X64_GPR_RSI, 0xFFFFFFFFFFFFFFFF }, /* RSI */
1614 1.5 maxv },
1615 1.5 maxv [0b11] = {
1616 1.5 maxv [0] = { NVMM_X64_GPR_RDI, 0x00000000000000FF }, /* DIL */
1617 1.5 maxv [1] = { NVMM_X64_GPR_RDI, 0x000000000000FFFF }, /* DI */
1618 1.5 maxv [2] = { -1, 0 },
1619 1.5 maxv [3] = { NVMM_X64_GPR_RDI, 0x00000000FFFFFFFF }, /* EDI */
1620 1.5 maxv [4] = { -1, 0 },
1621 1.5 maxv [5] = { -1, 0 },
1622 1.5 maxv [6] = { -1, 0 },
1623 1.5 maxv [7] = { NVMM_X64_GPR_RDI, 0xFFFFFFFFFFFFFFFF }, /* RDI */
1624 1.5 maxv }
1625 1.5 maxv }
1626 1.5 maxv };
1627 1.5 maxv
1628 1.5 maxv /* [depends][enc][size] */
1629 1.5 maxv static const struct x86_reg gpr_map[2][8][8] = {
1630 1.5 maxv [false] = {
1631 1.5 maxv /* Not extended. */
1632 1.5 maxv [0b000] = {
1633 1.5 maxv [0] = { NVMM_X64_GPR_RAX, 0x00000000000000FF }, /* AL */
1634 1.5 maxv [1] = { NVMM_X64_GPR_RAX, 0x000000000000FFFF }, /* AX */
1635 1.5 maxv [2] = { -1, 0 },
1636 1.5 maxv [3] = { NVMM_X64_GPR_RAX, 0x00000000FFFFFFFF }, /* EAX */
1637 1.5 maxv [4] = { -1, 0 },
1638 1.5 maxv [5] = { -1, 0 },
1639 1.5 maxv [6] = { -1, 0 },
1640 1.18 maxv [7] = { NVMM_X64_GPR_RAX, 0xFFFFFFFFFFFFFFFF }, /* RAX */
1641 1.5 maxv },
1642 1.5 maxv [0b001] = {
1643 1.5 maxv [0] = { NVMM_X64_GPR_RCX, 0x00000000000000FF }, /* CL */
1644 1.5 maxv [1] = { NVMM_X64_GPR_RCX, 0x000000000000FFFF }, /* CX */
1645 1.5 maxv [2] = { -1, 0 },
1646 1.5 maxv [3] = { NVMM_X64_GPR_RCX, 0x00000000FFFFFFFF }, /* ECX */
1647 1.5 maxv [4] = { -1, 0 },
1648 1.5 maxv [5] = { -1, 0 },
1649 1.5 maxv [6] = { -1, 0 },
1650 1.18 maxv [7] = { NVMM_X64_GPR_RCX, 0xFFFFFFFFFFFFFFFF }, /* RCX */
1651 1.5 maxv },
1652 1.5 maxv [0b010] = {
1653 1.5 maxv [0] = { NVMM_X64_GPR_RDX, 0x00000000000000FF }, /* DL */
1654 1.5 maxv [1] = { NVMM_X64_GPR_RDX, 0x000000000000FFFF }, /* DX */
1655 1.5 maxv [2] = { -1, 0 },
1656 1.5 maxv [3] = { NVMM_X64_GPR_RDX, 0x00000000FFFFFFFF }, /* EDX */
1657 1.5 maxv [4] = { -1, 0 },
1658 1.5 maxv [5] = { -1, 0 },
1659 1.5 maxv [6] = { -1, 0 },
1660 1.18 maxv [7] = { NVMM_X64_GPR_RDX, 0xFFFFFFFFFFFFFFFF }, /* RDX */
1661 1.5 maxv },
1662 1.5 maxv [0b011] = {
1663 1.5 maxv [0] = { NVMM_X64_GPR_RBX, 0x00000000000000FF }, /* BL */
1664 1.5 maxv [1] = { NVMM_X64_GPR_RBX, 0x000000000000FFFF }, /* BX */
1665 1.5 maxv [2] = { -1, 0 },
1666 1.5 maxv [3] = { NVMM_X64_GPR_RBX, 0x00000000FFFFFFFF }, /* EBX */
1667 1.5 maxv [4] = { -1, 0 },
1668 1.5 maxv [5] = { -1, 0 },
1669 1.5 maxv [6] = { -1, 0 },
1670 1.18 maxv [7] = { NVMM_X64_GPR_RBX, 0xFFFFFFFFFFFFFFFF }, /* RBX */
1671 1.5 maxv },
1672 1.5 maxv [0b100] = {
1673 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1674 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1675 1.5 maxv [2] = { -1, 0 },
1676 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1677 1.5 maxv [4] = { -1, 0 },
1678 1.5 maxv [5] = { -1, 0 },
1679 1.5 maxv [6] = { -1, 0 },
1680 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1681 1.5 maxv },
1682 1.5 maxv [0b101] = {
1683 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1684 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1685 1.5 maxv [2] = { -1, 0 },
1686 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1687 1.5 maxv [4] = { -1, 0 },
1688 1.5 maxv [5] = { -1, 0 },
1689 1.5 maxv [6] = { -1, 0 },
1690 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1691 1.5 maxv },
1692 1.5 maxv [0b110] = {
1693 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1694 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1695 1.5 maxv [2] = { -1, 0 },
1696 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1697 1.5 maxv [4] = { -1, 0 },
1698 1.5 maxv [5] = { -1, 0 },
1699 1.5 maxv [6] = { -1, 0 },
1700 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1701 1.5 maxv },
1702 1.5 maxv [0b111] = {
1703 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1704 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1705 1.5 maxv [2] = { -1, 0 },
1706 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1707 1.5 maxv [4] = { -1, 0 },
1708 1.5 maxv [5] = { -1, 0 },
1709 1.5 maxv [6] = { -1, 0 },
1710 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1711 1.5 maxv },
1712 1.5 maxv },
1713 1.5 maxv [true] = {
1714 1.5 maxv /* Extended. */
1715 1.5 maxv [0b000] = {
1716 1.5 maxv [0] = { NVMM_X64_GPR_R8, 0x00000000000000FF }, /* R8B */
1717 1.5 maxv [1] = { NVMM_X64_GPR_R8, 0x000000000000FFFF }, /* R8W */
1718 1.5 maxv [2] = { -1, 0 },
1719 1.5 maxv [3] = { NVMM_X64_GPR_R8, 0x00000000FFFFFFFF }, /* R8D */
1720 1.5 maxv [4] = { -1, 0 },
1721 1.5 maxv [5] = { -1, 0 },
1722 1.5 maxv [6] = { -1, 0 },
1723 1.18 maxv [7] = { NVMM_X64_GPR_R8, 0xFFFFFFFFFFFFFFFF }, /* R8 */
1724 1.5 maxv },
1725 1.5 maxv [0b001] = {
1726 1.5 maxv [0] = { NVMM_X64_GPR_R9, 0x00000000000000FF }, /* R9B */
1727 1.5 maxv [1] = { NVMM_X64_GPR_R9, 0x000000000000FFFF }, /* R9W */
1728 1.5 maxv [2] = { -1, 0 },
1729 1.5 maxv [3] = { NVMM_X64_GPR_R9, 0x00000000FFFFFFFF }, /* R9D */
1730 1.5 maxv [4] = { -1, 0 },
1731 1.5 maxv [5] = { -1, 0 },
1732 1.5 maxv [6] = { -1, 0 },
1733 1.18 maxv [7] = { NVMM_X64_GPR_R9, 0xFFFFFFFFFFFFFFFF }, /* R9 */
1734 1.5 maxv },
1735 1.5 maxv [0b010] = {
1736 1.5 maxv [0] = { NVMM_X64_GPR_R10, 0x00000000000000FF }, /* R10B */
1737 1.5 maxv [1] = { NVMM_X64_GPR_R10, 0x000000000000FFFF }, /* R10W */
1738 1.5 maxv [2] = { -1, 0 },
1739 1.5 maxv [3] = { NVMM_X64_GPR_R10, 0x00000000FFFFFFFF }, /* R10D */
1740 1.5 maxv [4] = { -1, 0 },
1741 1.5 maxv [5] = { -1, 0 },
1742 1.5 maxv [6] = { -1, 0 },
1743 1.18 maxv [7] = { NVMM_X64_GPR_R10, 0xFFFFFFFFFFFFFFFF }, /* R10 */
1744 1.5 maxv },
1745 1.5 maxv [0b011] = {
1746 1.5 maxv [0] = { NVMM_X64_GPR_R11, 0x00000000000000FF }, /* R11B */
1747 1.5 maxv [1] = { NVMM_X64_GPR_R11, 0x000000000000FFFF }, /* R11W */
1748 1.5 maxv [2] = { -1, 0 },
1749 1.5 maxv [3] = { NVMM_X64_GPR_R11, 0x00000000FFFFFFFF }, /* R11D */
1750 1.5 maxv [4] = { -1, 0 },
1751 1.5 maxv [5] = { -1, 0 },
1752 1.5 maxv [6] = { -1, 0 },
1753 1.18 maxv [7] = { NVMM_X64_GPR_R11, 0xFFFFFFFFFFFFFFFF }, /* R11 */
1754 1.5 maxv },
1755 1.5 maxv [0b100] = {
1756 1.5 maxv [0] = { NVMM_X64_GPR_R12, 0x00000000000000FF }, /* R12B */
1757 1.5 maxv [1] = { NVMM_X64_GPR_R12, 0x000000000000FFFF }, /* R12W */
1758 1.5 maxv [2] = { -1, 0 },
1759 1.5 maxv [3] = { NVMM_X64_GPR_R12, 0x00000000FFFFFFFF }, /* R12D */
1760 1.5 maxv [4] = { -1, 0 },
1761 1.5 maxv [5] = { -1, 0 },
1762 1.5 maxv [6] = { -1, 0 },
1763 1.18 maxv [7] = { NVMM_X64_GPR_R12, 0xFFFFFFFFFFFFFFFF }, /* R12 */
1764 1.5 maxv },
1765 1.5 maxv [0b101] = {
1766 1.5 maxv [0] = { NVMM_X64_GPR_R13, 0x00000000000000FF }, /* R13B */
1767 1.5 maxv [1] = { NVMM_X64_GPR_R13, 0x000000000000FFFF }, /* R13W */
1768 1.5 maxv [2] = { -1, 0 },
1769 1.5 maxv [3] = { NVMM_X64_GPR_R13, 0x00000000FFFFFFFF }, /* R13D */
1770 1.5 maxv [4] = { -1, 0 },
1771 1.5 maxv [5] = { -1, 0 },
1772 1.5 maxv [6] = { -1, 0 },
1773 1.18 maxv [7] = { NVMM_X64_GPR_R13, 0xFFFFFFFFFFFFFFFF }, /* R13 */
1774 1.5 maxv },
1775 1.5 maxv [0b110] = {
1776 1.5 maxv [0] = { NVMM_X64_GPR_R14, 0x00000000000000FF }, /* R14B */
1777 1.5 maxv [1] = { NVMM_X64_GPR_R14, 0x000000000000FFFF }, /* R14W */
1778 1.5 maxv [2] = { -1, 0 },
1779 1.5 maxv [3] = { NVMM_X64_GPR_R14, 0x00000000FFFFFFFF }, /* R14D */
1780 1.5 maxv [4] = { -1, 0 },
1781 1.5 maxv [5] = { -1, 0 },
1782 1.5 maxv [6] = { -1, 0 },
1783 1.18 maxv [7] = { NVMM_X64_GPR_R14, 0xFFFFFFFFFFFFFFFF }, /* R14 */
1784 1.5 maxv },
1785 1.5 maxv [0b111] = {
1786 1.5 maxv [0] = { NVMM_X64_GPR_R15, 0x00000000000000FF }, /* R15B */
1787 1.5 maxv [1] = { NVMM_X64_GPR_R15, 0x000000000000FFFF }, /* R15W */
1788 1.5 maxv [2] = { -1, 0 },
1789 1.5 maxv [3] = { NVMM_X64_GPR_R15, 0x00000000FFFFFFFF }, /* R15D */
1790 1.5 maxv [4] = { -1, 0 },
1791 1.5 maxv [5] = { -1, 0 },
1792 1.5 maxv [6] = { -1, 0 },
1793 1.18 maxv [7] = { NVMM_X64_GPR_R15, 0xFFFFFFFFFFFFFFFF }, /* R15 */
1794 1.5 maxv },
1795 1.5 maxv }
1796 1.5 maxv };
1797 1.5 maxv
1798 1.5 maxv static int
1799 1.5 maxv node_overflow(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1800 1.5 maxv {
1801 1.5 maxv fsm->fn = NULL;
1802 1.5 maxv return -1;
1803 1.5 maxv }
1804 1.5 maxv
1805 1.5 maxv static int
1806 1.5 maxv fsm_read(struct x86_decode_fsm *fsm, uint8_t *bytes, size_t n)
1807 1.5 maxv {
1808 1.5 maxv if (fsm->buf + n > fsm->end) {
1809 1.5 maxv return -1;
1810 1.5 maxv }
1811 1.5 maxv memcpy(bytes, fsm->buf, n);
1812 1.5 maxv return 0;
1813 1.5 maxv }
1814 1.5 maxv
1815 1.5 maxv static void
1816 1.5 maxv fsm_advance(struct x86_decode_fsm *fsm, size_t n,
1817 1.5 maxv int (*fn)(struct x86_decode_fsm *, struct x86_instr *))
1818 1.5 maxv {
1819 1.5 maxv fsm->buf += n;
1820 1.5 maxv if (fsm->buf > fsm->end) {
1821 1.5 maxv fsm->fn = node_overflow;
1822 1.5 maxv } else {
1823 1.5 maxv fsm->fn = fn;
1824 1.5 maxv }
1825 1.5 maxv }
1826 1.5 maxv
1827 1.5 maxv static const struct x86_reg *
1828 1.5 maxv resolve_special_register(struct x86_instr *instr, uint8_t enc, size_t regsize)
1829 1.5 maxv {
1830 1.5 maxv enc &= 0b11;
1831 1.5 maxv if (regsize == 8) {
1832 1.5 maxv /* May be 64bit without REX */
1833 1.5 maxv return &gpr_map__special[1][enc][regsize-1];
1834 1.5 maxv }
1835 1.5 maxv return &gpr_map__special[instr->rexpref.present][enc][regsize-1];
1836 1.5 maxv }
1837 1.5 maxv
1838 1.5 maxv /*
1839 1.6 maxv * Special node, for MOVS. Fake two displacements of zero on the source and
1840 1.6 maxv * destination registers.
1841 1.6 maxv */
1842 1.6 maxv static int
1843 1.6 maxv node_movs(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1844 1.6 maxv {
1845 1.6 maxv size_t adrsize;
1846 1.6 maxv
1847 1.6 maxv adrsize = instr->address_size;
1848 1.6 maxv
1849 1.6 maxv /* DS:RSI */
1850 1.6 maxv instr->src.type = STORE_REG;
1851 1.6 maxv instr->src.u.reg = &gpr_map__special[1][2][adrsize-1];
1852 1.6 maxv instr->src.disp.type = DISP_0;
1853 1.6 maxv
1854 1.6 maxv /* ES:RDI, force ES */
1855 1.6 maxv instr->dst.type = STORE_REG;
1856 1.6 maxv instr->dst.u.reg = &gpr_map__special[1][3][adrsize-1];
1857 1.6 maxv instr->dst.disp.type = DISP_0;
1858 1.6 maxv instr->dst.hardseg = NVMM_X64_SEG_ES;
1859 1.6 maxv
1860 1.6 maxv fsm_advance(fsm, 0, NULL);
1861 1.6 maxv
1862 1.6 maxv return 0;
1863 1.6 maxv }
1864 1.6 maxv
1865 1.6 maxv /*
1866 1.5 maxv * Special node, for STOS and LODS. Fake a displacement of zero on the
1867 1.5 maxv * destination register.
1868 1.5 maxv */
1869 1.5 maxv static int
1870 1.5 maxv node_stlo(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1871 1.5 maxv {
1872 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1873 1.5 maxv struct x86_store *stlo, *streg;
1874 1.5 maxv size_t adrsize, regsize;
1875 1.5 maxv
1876 1.5 maxv adrsize = instr->address_size;
1877 1.5 maxv regsize = instr->operand_size;
1878 1.5 maxv
1879 1.5 maxv if (opcode->stos) {
1880 1.5 maxv streg = &instr->src;
1881 1.5 maxv stlo = &instr->dst;
1882 1.5 maxv } else {
1883 1.5 maxv streg = &instr->dst;
1884 1.5 maxv stlo = &instr->src;
1885 1.5 maxv }
1886 1.5 maxv
1887 1.5 maxv streg->type = STORE_REG;
1888 1.5 maxv streg->u.reg = &gpr_map[0][0][regsize-1]; /* ?AX */
1889 1.5 maxv
1890 1.5 maxv stlo->type = STORE_REG;
1891 1.5 maxv if (opcode->stos) {
1892 1.5 maxv /* ES:RDI, force ES */
1893 1.5 maxv stlo->u.reg = &gpr_map__special[1][3][adrsize-1];
1894 1.6 maxv stlo->hardseg = NVMM_X64_SEG_ES;
1895 1.5 maxv } else {
1896 1.5 maxv /* DS:RSI */
1897 1.5 maxv stlo->u.reg = &gpr_map__special[1][2][adrsize-1];
1898 1.5 maxv }
1899 1.5 maxv stlo->disp.type = DISP_0;
1900 1.5 maxv
1901 1.5 maxv fsm_advance(fsm, 0, NULL);
1902 1.5 maxv
1903 1.5 maxv return 0;
1904 1.5 maxv }
1905 1.5 maxv
1906 1.5 maxv static int
1907 1.5 maxv node_dmo(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1908 1.5 maxv {
1909 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1910 1.5 maxv struct x86_store *stdmo, *streg;
1911 1.5 maxv size_t adrsize, regsize;
1912 1.5 maxv
1913 1.5 maxv adrsize = instr->address_size;
1914 1.5 maxv regsize = instr->operand_size;
1915 1.5 maxv
1916 1.5 maxv if (opcode->todmo) {
1917 1.5 maxv streg = &instr->src;
1918 1.5 maxv stdmo = &instr->dst;
1919 1.5 maxv } else {
1920 1.5 maxv streg = &instr->dst;
1921 1.5 maxv stdmo = &instr->src;
1922 1.5 maxv }
1923 1.5 maxv
1924 1.5 maxv streg->type = STORE_REG;
1925 1.5 maxv streg->u.reg = &gpr_map[0][0][regsize-1]; /* ?AX */
1926 1.5 maxv
1927 1.5 maxv stdmo->type = STORE_DMO;
1928 1.5 maxv if (fsm_read(fsm, (uint8_t *)&stdmo->u.dmo, adrsize) == -1) {
1929 1.5 maxv return -1;
1930 1.5 maxv }
1931 1.5 maxv fsm_advance(fsm, adrsize, NULL);
1932 1.5 maxv
1933 1.5 maxv return 0;
1934 1.5 maxv }
1935 1.5 maxv
1936 1.15 maxv static inline uint64_t
1937 1.11 maxv sign_extend(uint64_t val, int size)
1938 1.11 maxv {
1939 1.11 maxv if (size == 1) {
1940 1.11 maxv if (val & __BIT(7))
1941 1.11 maxv val |= 0xFFFFFFFFFFFFFF00;
1942 1.11 maxv } else if (size == 2) {
1943 1.11 maxv if (val & __BIT(15))
1944 1.11 maxv val |= 0xFFFFFFFFFFFF0000;
1945 1.11 maxv } else if (size == 4) {
1946 1.11 maxv if (val & __BIT(31))
1947 1.11 maxv val |= 0xFFFFFFFF00000000;
1948 1.11 maxv }
1949 1.11 maxv return val;
1950 1.11 maxv }
1951 1.11 maxv
1952 1.5 maxv static int
1953 1.5 maxv node_immediate(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1954 1.5 maxv {
1955 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1956 1.5 maxv struct x86_store *store;
1957 1.5 maxv uint8_t immsize;
1958 1.11 maxv size_t sesize = 0;
1959 1.5 maxv
1960 1.5 maxv /* The immediate is the source */
1961 1.5 maxv store = &instr->src;
1962 1.5 maxv immsize = instr->operand_size;
1963 1.5 maxv
1964 1.11 maxv if (opcode->flags & FLAG_imm8) {
1965 1.11 maxv sesize = immsize;
1966 1.11 maxv immsize = 1;
1967 1.11 maxv } else if ((opcode->flags & FLAG_immz) && (immsize == 8)) {
1968 1.11 maxv sesize = immsize;
1969 1.5 maxv immsize = 4;
1970 1.5 maxv }
1971 1.5 maxv
1972 1.5 maxv store->type = STORE_IMM;
1973 1.11 maxv if (fsm_read(fsm, (uint8_t *)&store->u.imm.data, immsize) == -1) {
1974 1.5 maxv return -1;
1975 1.5 maxv }
1976 1.15 maxv fsm_advance(fsm, immsize, NULL);
1977 1.5 maxv
1978 1.11 maxv if (sesize != 0) {
1979 1.11 maxv store->u.imm.data = sign_extend(store->u.imm.data, sesize);
1980 1.11 maxv }
1981 1.5 maxv
1982 1.5 maxv return 0;
1983 1.5 maxv }
1984 1.5 maxv
1985 1.5 maxv static int
1986 1.5 maxv node_disp(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1987 1.5 maxv {
1988 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1989 1.11 maxv uint64_t data = 0;
1990 1.5 maxv size_t n;
1991 1.5 maxv
1992 1.5 maxv if (instr->strm->disp.type == DISP_1) {
1993 1.5 maxv n = 1;
1994 1.5 maxv } else { /* DISP4 */
1995 1.5 maxv n = 4;
1996 1.5 maxv }
1997 1.5 maxv
1998 1.11 maxv if (fsm_read(fsm, (uint8_t *)&data, n) == -1) {
1999 1.5 maxv return -1;
2000 1.5 maxv }
2001 1.5 maxv
2002 1.11 maxv if (__predict_true(fsm->is64bit)) {
2003 1.11 maxv data = sign_extend(data, n);
2004 1.11 maxv }
2005 1.11 maxv
2006 1.11 maxv instr->strm->disp.data = data;
2007 1.11 maxv
2008 1.5 maxv if (opcode->immediate) {
2009 1.5 maxv fsm_advance(fsm, n, node_immediate);
2010 1.5 maxv } else {
2011 1.5 maxv fsm_advance(fsm, n, NULL);
2012 1.5 maxv }
2013 1.5 maxv
2014 1.5 maxv return 0;
2015 1.5 maxv }
2016 1.5 maxv
2017 1.5 maxv static const struct x86_reg *
2018 1.5 maxv get_register_idx(struct x86_instr *instr, uint8_t index)
2019 1.5 maxv {
2020 1.5 maxv uint8_t enc = index;
2021 1.5 maxv const struct x86_reg *reg;
2022 1.5 maxv size_t regsize;
2023 1.5 maxv
2024 1.5 maxv regsize = instr->address_size;
2025 1.5 maxv reg = &gpr_map[instr->rexpref.x][enc][regsize-1];
2026 1.5 maxv
2027 1.5 maxv if (reg->num == -1) {
2028 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
2029 1.5 maxv }
2030 1.5 maxv
2031 1.5 maxv return reg;
2032 1.5 maxv }
2033 1.5 maxv
2034 1.5 maxv static const struct x86_reg *
2035 1.5 maxv get_register_bas(struct x86_instr *instr, uint8_t base)
2036 1.5 maxv {
2037 1.5 maxv uint8_t enc = base;
2038 1.5 maxv const struct x86_reg *reg;
2039 1.5 maxv size_t regsize;
2040 1.5 maxv
2041 1.5 maxv regsize = instr->address_size;
2042 1.5 maxv reg = &gpr_map[instr->rexpref.b][enc][regsize-1];
2043 1.5 maxv if (reg->num == -1) {
2044 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
2045 1.5 maxv }
2046 1.5 maxv
2047 1.5 maxv return reg;
2048 1.5 maxv }
2049 1.5 maxv
2050 1.5 maxv static int
2051 1.5 maxv node_sib(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2052 1.5 maxv {
2053 1.5 maxv const struct x86_opcode *opcode;
2054 1.5 maxv uint8_t scale, index, base;
2055 1.5 maxv bool noindex, nobase;
2056 1.5 maxv uint8_t byte;
2057 1.5 maxv
2058 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2059 1.5 maxv return -1;
2060 1.5 maxv }
2061 1.5 maxv
2062 1.5 maxv scale = ((byte & 0b11000000) >> 6);
2063 1.5 maxv index = ((byte & 0b00111000) >> 3);
2064 1.5 maxv base = ((byte & 0b00000111) >> 0);
2065 1.5 maxv
2066 1.5 maxv opcode = instr->opcode;
2067 1.5 maxv
2068 1.5 maxv noindex = false;
2069 1.5 maxv nobase = false;
2070 1.5 maxv
2071 1.5 maxv if (index == 0b100 && !instr->rexpref.x) {
2072 1.5 maxv /* Special case: the index is null */
2073 1.5 maxv noindex = true;
2074 1.5 maxv }
2075 1.5 maxv
2076 1.5 maxv if (instr->regmodrm.mod == 0b00 && base == 0b101) {
2077 1.5 maxv /* Special case: the base is null + disp32 */
2078 1.5 maxv instr->strm->disp.type = DISP_4;
2079 1.5 maxv nobase = true;
2080 1.5 maxv }
2081 1.5 maxv
2082 1.5 maxv instr->strm->type = STORE_SIB;
2083 1.5 maxv instr->strm->u.sib.scale = (1 << scale);
2084 1.5 maxv if (!noindex)
2085 1.5 maxv instr->strm->u.sib.idx = get_register_idx(instr, index);
2086 1.5 maxv if (!nobase)
2087 1.5 maxv instr->strm->u.sib.bas = get_register_bas(instr, base);
2088 1.5 maxv
2089 1.5 maxv /* May have a displacement, or an immediate */
2090 1.5 maxv if (instr->strm->disp.type == DISP_1 || instr->strm->disp.type == DISP_4) {
2091 1.5 maxv fsm_advance(fsm, 1, node_disp);
2092 1.5 maxv } else if (opcode->immediate) {
2093 1.5 maxv fsm_advance(fsm, 1, node_immediate);
2094 1.5 maxv } else {
2095 1.5 maxv fsm_advance(fsm, 1, NULL);
2096 1.5 maxv }
2097 1.5 maxv
2098 1.5 maxv return 0;
2099 1.5 maxv }
2100 1.5 maxv
2101 1.5 maxv static const struct x86_reg *
2102 1.5 maxv get_register_reg(struct x86_instr *instr, const struct x86_opcode *opcode)
2103 1.5 maxv {
2104 1.5 maxv uint8_t enc = instr->regmodrm.reg;
2105 1.5 maxv const struct x86_reg *reg;
2106 1.5 maxv size_t regsize;
2107 1.5 maxv
2108 1.11 maxv regsize = instr->operand_size;
2109 1.5 maxv
2110 1.5 maxv reg = &gpr_map[instr->rexpref.r][enc][regsize-1];
2111 1.5 maxv if (reg->num == -1) {
2112 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
2113 1.5 maxv }
2114 1.5 maxv
2115 1.5 maxv return reg;
2116 1.5 maxv }
2117 1.5 maxv
2118 1.5 maxv static const struct x86_reg *
2119 1.5 maxv get_register_rm(struct x86_instr *instr, const struct x86_opcode *opcode)
2120 1.5 maxv {
2121 1.5 maxv uint8_t enc = instr->regmodrm.rm;
2122 1.5 maxv const struct x86_reg *reg;
2123 1.5 maxv size_t regsize;
2124 1.5 maxv
2125 1.5 maxv if (instr->strm->disp.type == DISP_NONE) {
2126 1.11 maxv regsize = instr->operand_size;
2127 1.5 maxv } else {
2128 1.5 maxv /* Indirect access, the size is that of the address. */
2129 1.5 maxv regsize = instr->address_size;
2130 1.5 maxv }
2131 1.5 maxv
2132 1.5 maxv reg = &gpr_map[instr->rexpref.b][enc][regsize-1];
2133 1.5 maxv if (reg->num == -1) {
2134 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
2135 1.5 maxv }
2136 1.5 maxv
2137 1.5 maxv return reg;
2138 1.5 maxv }
2139 1.5 maxv
2140 1.5 maxv static inline bool
2141 1.5 maxv has_sib(struct x86_instr *instr)
2142 1.5 maxv {
2143 1.5 maxv return (instr->regmodrm.mod != 3 && instr->regmodrm.rm == 4);
2144 1.5 maxv }
2145 1.5 maxv
2146 1.5 maxv static inline bool
2147 1.9 maxv is_rip_relative(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2148 1.5 maxv {
2149 1.9 maxv return (fsm->is64bit && instr->strm->disp.type == DISP_0 &&
2150 1.9 maxv instr->regmodrm.rm == RM_RBP_DISP32);
2151 1.9 maxv }
2152 1.9 maxv
2153 1.9 maxv static inline bool
2154 1.9 maxv is_disp32_only(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2155 1.9 maxv {
2156 1.9 maxv return (!fsm->is64bit && instr->strm->disp.type == DISP_0 &&
2157 1.5 maxv instr->regmodrm.rm == RM_RBP_DISP32);
2158 1.5 maxv }
2159 1.5 maxv
2160 1.5 maxv static enum x86_disp_type
2161 1.5 maxv get_disp_type(struct x86_instr *instr)
2162 1.5 maxv {
2163 1.5 maxv switch (instr->regmodrm.mod) {
2164 1.5 maxv case MOD_DIS0: /* indirect */
2165 1.5 maxv return DISP_0;
2166 1.5 maxv case MOD_DIS1: /* indirect+1 */
2167 1.5 maxv return DISP_1;
2168 1.5 maxv case MOD_DIS4: /* indirect+4 */
2169 1.5 maxv return DISP_4;
2170 1.5 maxv case MOD_REG: /* direct */
2171 1.5 maxv default: /* gcc */
2172 1.5 maxv return DISP_NONE;
2173 1.5 maxv }
2174 1.5 maxv }
2175 1.5 maxv
2176 1.5 maxv static int
2177 1.5 maxv node_regmodrm(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2178 1.5 maxv {
2179 1.5 maxv struct x86_store *strg, *strm;
2180 1.5 maxv const struct x86_opcode *opcode;
2181 1.5 maxv const struct x86_reg *reg;
2182 1.5 maxv uint8_t byte;
2183 1.5 maxv
2184 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2185 1.5 maxv return -1;
2186 1.5 maxv }
2187 1.5 maxv
2188 1.5 maxv opcode = instr->opcode;
2189 1.5 maxv
2190 1.5 maxv instr->regmodrm.present = true;
2191 1.5 maxv instr->regmodrm.mod = ((byte & 0b11000000) >> 6);
2192 1.5 maxv instr->regmodrm.reg = ((byte & 0b00111000) >> 3);
2193 1.5 maxv instr->regmodrm.rm = ((byte & 0b00000111) >> 0);
2194 1.5 maxv
2195 1.5 maxv if (opcode->regtorm) {
2196 1.5 maxv strg = &instr->src;
2197 1.5 maxv strm = &instr->dst;
2198 1.5 maxv } else { /* RM to REG */
2199 1.5 maxv strm = &instr->src;
2200 1.5 maxv strg = &instr->dst;
2201 1.5 maxv }
2202 1.5 maxv
2203 1.5 maxv /* Save for later use. */
2204 1.5 maxv instr->strm = strm;
2205 1.5 maxv
2206 1.5 maxv /*
2207 1.5 maxv * Special cases: Groups. The REG field of REGMODRM is the index in
2208 1.5 maxv * the group. op1 gets overwritten in the Immediate node, if any.
2209 1.5 maxv */
2210 1.11 maxv if (opcode->group1) {
2211 1.11 maxv if (group1[instr->regmodrm.reg].emul == NULL) {
2212 1.11 maxv return -1;
2213 1.11 maxv }
2214 1.11 maxv instr->emul = group1[instr->regmodrm.reg].emul;
2215 1.19 maxv } else if (opcode->group3) {
2216 1.19 maxv if (group3[instr->regmodrm.reg].emul == NULL) {
2217 1.19 maxv return -1;
2218 1.19 maxv }
2219 1.19 maxv instr->emul = group3[instr->regmodrm.reg].emul;
2220 1.11 maxv } else if (opcode->group11) {
2221 1.5 maxv if (group11[instr->regmodrm.reg].emul == NULL) {
2222 1.5 maxv return -1;
2223 1.5 maxv }
2224 1.5 maxv instr->emul = group11[instr->regmodrm.reg].emul;
2225 1.5 maxv }
2226 1.5 maxv
2227 1.16 maxv if (!opcode->immediate) {
2228 1.16 maxv reg = get_register_reg(instr, opcode);
2229 1.16 maxv if (reg == NULL) {
2230 1.16 maxv return -1;
2231 1.16 maxv }
2232 1.16 maxv strg->type = STORE_REG;
2233 1.16 maxv strg->u.reg = reg;
2234 1.5 maxv }
2235 1.5 maxv
2236 1.5 maxv if (has_sib(instr)) {
2237 1.5 maxv /* Overwrites RM */
2238 1.5 maxv fsm_advance(fsm, 1, node_sib);
2239 1.5 maxv return 0;
2240 1.5 maxv }
2241 1.5 maxv
2242 1.5 maxv /* The displacement applies to RM. */
2243 1.5 maxv strm->disp.type = get_disp_type(instr);
2244 1.5 maxv
2245 1.9 maxv if (is_rip_relative(fsm, instr)) {
2246 1.5 maxv /* Overwrites RM */
2247 1.5 maxv strm->type = STORE_REG;
2248 1.5 maxv strm->u.reg = &gpr_map__rip;
2249 1.5 maxv strm->disp.type = DISP_4;
2250 1.5 maxv fsm_advance(fsm, 1, node_disp);
2251 1.5 maxv return 0;
2252 1.5 maxv }
2253 1.5 maxv
2254 1.9 maxv if (is_disp32_only(fsm, instr)) {
2255 1.9 maxv /* Overwrites RM */
2256 1.9 maxv strm->type = STORE_REG;
2257 1.9 maxv strm->u.reg = NULL;
2258 1.9 maxv strm->disp.type = DISP_4;
2259 1.9 maxv fsm_advance(fsm, 1, node_disp);
2260 1.9 maxv return 0;
2261 1.9 maxv }
2262 1.9 maxv
2263 1.5 maxv reg = get_register_rm(instr, opcode);
2264 1.5 maxv if (reg == NULL) {
2265 1.5 maxv return -1;
2266 1.5 maxv }
2267 1.5 maxv strm->type = STORE_REG;
2268 1.5 maxv strm->u.reg = reg;
2269 1.5 maxv
2270 1.5 maxv if (strm->disp.type == DISP_NONE) {
2271 1.5 maxv /* Direct register addressing mode */
2272 1.5 maxv if (opcode->immediate) {
2273 1.5 maxv fsm_advance(fsm, 1, node_immediate);
2274 1.5 maxv } else {
2275 1.5 maxv fsm_advance(fsm, 1, NULL);
2276 1.5 maxv }
2277 1.5 maxv } else if (strm->disp.type == DISP_0) {
2278 1.5 maxv /* Indirect register addressing mode */
2279 1.5 maxv if (opcode->immediate) {
2280 1.5 maxv fsm_advance(fsm, 1, node_immediate);
2281 1.5 maxv } else {
2282 1.5 maxv fsm_advance(fsm, 1, NULL);
2283 1.5 maxv }
2284 1.5 maxv } else {
2285 1.5 maxv fsm_advance(fsm, 1, node_disp);
2286 1.5 maxv }
2287 1.5 maxv
2288 1.5 maxv return 0;
2289 1.5 maxv }
2290 1.5 maxv
2291 1.5 maxv static size_t
2292 1.5 maxv get_operand_size(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2293 1.5 maxv {
2294 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
2295 1.5 maxv int opsize;
2296 1.5 maxv
2297 1.5 maxv /* Get the opsize */
2298 1.5 maxv if (!opcode->szoverride) {
2299 1.5 maxv opsize = opcode->defsize;
2300 1.5 maxv } else if (instr->rexpref.present && instr->rexpref.w) {
2301 1.5 maxv opsize = 8;
2302 1.5 maxv } else {
2303 1.5 maxv if (!fsm->is16bit) {
2304 1.13 maxv if (instr->legpref.opr_ovr) {
2305 1.5 maxv opsize = 2;
2306 1.5 maxv } else {
2307 1.5 maxv opsize = 4;
2308 1.5 maxv }
2309 1.5 maxv } else { /* 16bit */
2310 1.13 maxv if (instr->legpref.opr_ovr) {
2311 1.5 maxv opsize = 4;
2312 1.5 maxv } else {
2313 1.5 maxv opsize = 2;
2314 1.5 maxv }
2315 1.5 maxv }
2316 1.5 maxv }
2317 1.5 maxv
2318 1.5 maxv /* See if available */
2319 1.5 maxv if ((opcode->allsize & opsize) == 0) {
2320 1.5 maxv // XXX do we care?
2321 1.5 maxv }
2322 1.5 maxv
2323 1.5 maxv return opsize;
2324 1.5 maxv }
2325 1.5 maxv
2326 1.5 maxv static size_t
2327 1.5 maxv get_address_size(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2328 1.5 maxv {
2329 1.5 maxv if (fsm->is64bit) {
2330 1.13 maxv if (__predict_false(instr->legpref.adr_ovr)) {
2331 1.5 maxv return 4;
2332 1.5 maxv }
2333 1.5 maxv return 8;
2334 1.5 maxv }
2335 1.5 maxv
2336 1.5 maxv if (fsm->is32bit) {
2337 1.13 maxv if (__predict_false(instr->legpref.adr_ovr)) {
2338 1.5 maxv return 2;
2339 1.5 maxv }
2340 1.5 maxv return 4;
2341 1.5 maxv }
2342 1.5 maxv
2343 1.5 maxv /* 16bit. */
2344 1.13 maxv if (__predict_false(instr->legpref.adr_ovr)) {
2345 1.5 maxv return 4;
2346 1.5 maxv }
2347 1.5 maxv return 2;
2348 1.5 maxv }
2349 1.5 maxv
2350 1.5 maxv static int
2351 1.5 maxv node_primary_opcode(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2352 1.1 maxv {
2353 1.5 maxv const struct x86_opcode *opcode;
2354 1.5 maxv uint8_t byte;
2355 1.5 maxv size_t i, n;
2356 1.5 maxv
2357 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2358 1.5 maxv return -1;
2359 1.5 maxv }
2360 1.5 maxv
2361 1.5 maxv n = sizeof(primary_opcode_table) / sizeof(primary_opcode_table[0]);
2362 1.5 maxv for (i = 0; i < n; i++) {
2363 1.5 maxv if (primary_opcode_table[i].byte == byte)
2364 1.5 maxv break;
2365 1.5 maxv }
2366 1.5 maxv if (i == n) {
2367 1.1 maxv return -1;
2368 1.1 maxv }
2369 1.5 maxv opcode = &primary_opcode_table[i];
2370 1.1 maxv
2371 1.5 maxv instr->opcode = opcode;
2372 1.5 maxv instr->emul = opcode->emul;
2373 1.5 maxv instr->operand_size = get_operand_size(fsm, instr);
2374 1.5 maxv instr->address_size = get_address_size(fsm, instr);
2375 1.5 maxv
2376 1.15 maxv if (fsm->is64bit && (instr->operand_size == 4)) {
2377 1.15 maxv /* Zero-extend to 64 bits. */
2378 1.15 maxv instr->zeroextend_mask = ~size_to_mask(4);
2379 1.15 maxv }
2380 1.15 maxv
2381 1.5 maxv if (opcode->regmodrm) {
2382 1.5 maxv fsm_advance(fsm, 1, node_regmodrm);
2383 1.5 maxv } else if (opcode->dmo) {
2384 1.5 maxv /* Direct-Memory Offsets */
2385 1.5 maxv fsm_advance(fsm, 1, node_dmo);
2386 1.5 maxv } else if (opcode->stos || opcode->lods) {
2387 1.5 maxv fsm_advance(fsm, 1, node_stlo);
2388 1.6 maxv } else if (opcode->movs) {
2389 1.6 maxv fsm_advance(fsm, 1, node_movs);
2390 1.5 maxv } else {
2391 1.5 maxv return -1;
2392 1.5 maxv }
2393 1.5 maxv
2394 1.5 maxv return 0;
2395 1.5 maxv }
2396 1.5 maxv
2397 1.10 maxv static int
2398 1.10 maxv node_secondary_opcode(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2399 1.10 maxv {
2400 1.10 maxv const struct x86_opcode *opcode;
2401 1.10 maxv uint8_t byte;
2402 1.10 maxv size_t i, n;
2403 1.10 maxv
2404 1.10 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2405 1.10 maxv return -1;
2406 1.10 maxv }
2407 1.10 maxv
2408 1.10 maxv n = sizeof(secondary_opcode_table) / sizeof(secondary_opcode_table[0]);
2409 1.10 maxv for (i = 0; i < n; i++) {
2410 1.10 maxv if (secondary_opcode_table[i].byte == byte)
2411 1.10 maxv break;
2412 1.10 maxv }
2413 1.10 maxv if (i == n) {
2414 1.10 maxv return -1;
2415 1.10 maxv }
2416 1.10 maxv opcode = &secondary_opcode_table[i];
2417 1.10 maxv
2418 1.10 maxv instr->opcode = opcode;
2419 1.10 maxv instr->emul = opcode->emul;
2420 1.10 maxv instr->operand_size = get_operand_size(fsm, instr);
2421 1.10 maxv instr->address_size = get_address_size(fsm, instr);
2422 1.10 maxv
2423 1.18 maxv if (fsm->is64bit && (instr->operand_size == 4)) {
2424 1.18 maxv /* Zero-extend to 64 bits. */
2425 1.18 maxv instr->zeroextend_mask = ~size_to_mask(4);
2426 1.18 maxv }
2427 1.18 maxv
2428 1.11 maxv if (opcode->flags & FLAG_ze) {
2429 1.10 maxv /*
2430 1.10 maxv * Compute the mask for zero-extend. Update the operand size,
2431 1.10 maxv * we move fewer bytes.
2432 1.10 maxv */
2433 1.18 maxv instr->zeroextend_mask |= size_to_mask(instr->operand_size);
2434 1.10 maxv instr->zeroextend_mask &= ~size_to_mask(opcode->defsize);
2435 1.10 maxv instr->operand_size = opcode->defsize;
2436 1.10 maxv }
2437 1.10 maxv
2438 1.10 maxv if (opcode->regmodrm) {
2439 1.10 maxv fsm_advance(fsm, 1, node_regmodrm);
2440 1.10 maxv } else {
2441 1.10 maxv return -1;
2442 1.10 maxv }
2443 1.10 maxv
2444 1.10 maxv return 0;
2445 1.10 maxv }
2446 1.10 maxv
2447 1.5 maxv static int
2448 1.5 maxv node_main(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2449 1.5 maxv {
2450 1.5 maxv uint8_t byte;
2451 1.5 maxv
2452 1.5 maxv #define ESCAPE 0x0F
2453 1.5 maxv #define VEX_1 0xC5
2454 1.5 maxv #define VEX_2 0xC4
2455 1.5 maxv #define XOP 0x8F
2456 1.5 maxv
2457 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2458 1.5 maxv return -1;
2459 1.5 maxv }
2460 1.5 maxv
2461 1.5 maxv /*
2462 1.5 maxv * We don't take XOP. It is AMD-specific, and it was removed shortly
2463 1.5 maxv * after being introduced.
2464 1.5 maxv */
2465 1.5 maxv if (byte == ESCAPE) {
2466 1.10 maxv fsm_advance(fsm, 1, node_secondary_opcode);
2467 1.5 maxv } else if (!instr->rexpref.present) {
2468 1.5 maxv if (byte == VEX_1) {
2469 1.5 maxv return -1;
2470 1.5 maxv } else if (byte == VEX_2) {
2471 1.5 maxv return -1;
2472 1.5 maxv } else {
2473 1.5 maxv fsm->fn = node_primary_opcode;
2474 1.5 maxv }
2475 1.5 maxv } else {
2476 1.5 maxv fsm->fn = node_primary_opcode;
2477 1.5 maxv }
2478 1.5 maxv
2479 1.5 maxv return 0;
2480 1.5 maxv }
2481 1.5 maxv
2482 1.5 maxv static int
2483 1.5 maxv node_rex_prefix(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2484 1.5 maxv {
2485 1.5 maxv struct x86_rexpref *rexpref = &instr->rexpref;
2486 1.5 maxv uint8_t byte;
2487 1.5 maxv size_t n = 0;
2488 1.5 maxv
2489 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2490 1.5 maxv return -1;
2491 1.5 maxv }
2492 1.5 maxv
2493 1.5 maxv if (byte >= 0x40 && byte <= 0x4F) {
2494 1.5 maxv if (__predict_false(!fsm->is64bit)) {
2495 1.5 maxv return -1;
2496 1.5 maxv }
2497 1.5 maxv rexpref->present = true;
2498 1.5 maxv rexpref->w = ((byte & 0x8) != 0);
2499 1.5 maxv rexpref->r = ((byte & 0x4) != 0);
2500 1.5 maxv rexpref->x = ((byte & 0x2) != 0);
2501 1.5 maxv rexpref->b = ((byte & 0x1) != 0);
2502 1.5 maxv n = 1;
2503 1.5 maxv }
2504 1.5 maxv
2505 1.5 maxv fsm_advance(fsm, n, node_main);
2506 1.5 maxv return 0;
2507 1.5 maxv }
2508 1.5 maxv
2509 1.5 maxv static int
2510 1.5 maxv node_legacy_prefix(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2511 1.5 maxv {
2512 1.5 maxv uint8_t byte;
2513 1.5 maxv
2514 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2515 1.5 maxv return -1;
2516 1.5 maxv }
2517 1.5 maxv
2518 1.13 maxv if (byte == LEG_OPR_OVR) {
2519 1.13 maxv instr->legpref.opr_ovr = 1;
2520 1.13 maxv } else if (byte == LEG_OVR_DS) {
2521 1.13 maxv instr->legpref.seg = NVMM_X64_SEG_DS;
2522 1.13 maxv } else if (byte == LEG_OVR_ES) {
2523 1.13 maxv instr->legpref.seg = NVMM_X64_SEG_ES;
2524 1.13 maxv } else if (byte == LEG_REP) {
2525 1.13 maxv instr->legpref.rep = 1;
2526 1.13 maxv } else if (byte == LEG_OVR_GS) {
2527 1.13 maxv instr->legpref.seg = NVMM_X64_SEG_GS;
2528 1.13 maxv } else if (byte == LEG_OVR_FS) {
2529 1.13 maxv instr->legpref.seg = NVMM_X64_SEG_FS;
2530 1.13 maxv } else if (byte == LEG_ADR_OVR) {
2531 1.13 maxv instr->legpref.adr_ovr = 1;
2532 1.13 maxv } else if (byte == LEG_OVR_CS) {
2533 1.13 maxv instr->legpref.seg = NVMM_X64_SEG_CS;
2534 1.13 maxv } else if (byte == LEG_OVR_SS) {
2535 1.13 maxv instr->legpref.seg = NVMM_X64_SEG_SS;
2536 1.13 maxv } else if (byte == LEG_REPN) {
2537 1.13 maxv instr->legpref.repn = 1;
2538 1.13 maxv } else if (byte == LEG_LOCK) {
2539 1.13 maxv /* ignore */
2540 1.5 maxv } else {
2541 1.13 maxv /* not a legacy prefix */
2542 1.13 maxv fsm_advance(fsm, 0, node_rex_prefix);
2543 1.13 maxv return 0;
2544 1.5 maxv }
2545 1.5 maxv
2546 1.13 maxv fsm_advance(fsm, 1, node_legacy_prefix);
2547 1.5 maxv return 0;
2548 1.5 maxv }
2549 1.5 maxv
2550 1.5 maxv static int
2551 1.5 maxv x86_decode(uint8_t *inst_bytes, size_t inst_len, struct x86_instr *instr,
2552 1.5 maxv struct nvmm_x64_state *state)
2553 1.5 maxv {
2554 1.5 maxv struct x86_decode_fsm fsm;
2555 1.5 maxv int ret;
2556 1.5 maxv
2557 1.5 maxv memset(instr, 0, sizeof(*instr));
2558 1.13 maxv instr->legpref.seg = -1;
2559 1.5 maxv
2560 1.5 maxv fsm.is64bit = is_64bit(state);
2561 1.5 maxv fsm.is32bit = is_32bit(state);
2562 1.5 maxv fsm.is16bit = is_16bit(state);
2563 1.5 maxv
2564 1.5 maxv fsm.fn = node_legacy_prefix;
2565 1.5 maxv fsm.buf = inst_bytes;
2566 1.5 maxv fsm.end = inst_bytes + inst_len;
2567 1.5 maxv
2568 1.5 maxv while (fsm.fn != NULL) {
2569 1.5 maxv ret = (*fsm.fn)(&fsm, instr);
2570 1.5 maxv if (ret == -1)
2571 1.5 maxv return -1;
2572 1.5 maxv }
2573 1.5 maxv
2574 1.5 maxv instr->len = fsm.buf - inst_bytes;
2575 1.5 maxv
2576 1.5 maxv return 0;
2577 1.5 maxv }
2578 1.5 maxv
2579 1.5 maxv /* -------------------------------------------------------------------------- */
2580 1.5 maxv
2581 1.19 maxv #define EXEC_INSTR(sz, instr) \
2582 1.19 maxv static uint##sz##_t \
2583 1.20 christos exec_##instr##sz(uint##sz##_t op1, uint##sz##_t op2, uint64_t *rflags) \
2584 1.19 maxv { \
2585 1.19 maxv uint##sz##_t res; \
2586 1.19 maxv __asm __volatile ( \
2587 1.19 maxv #instr " %2, %3;" \
2588 1.19 maxv "mov %3, %1;" \
2589 1.19 maxv "pushfq;" \
2590 1.19 maxv "popq %0" \
2591 1.19 maxv : "=r" (*rflags), "=r" (res) \
2592 1.19 maxv : "r" (op1), "r" (op2)); \
2593 1.19 maxv return res; \
2594 1.19 maxv }
2595 1.19 maxv
2596 1.19 maxv #define EXEC_DISPATCHER(instr) \
2597 1.19 maxv static uint64_t \
2598 1.19 maxv exec_##instr(uint64_t op1, uint64_t op2, uint64_t *rflags, size_t opsize) \
2599 1.19 maxv { \
2600 1.19 maxv switch (opsize) { \
2601 1.19 maxv case 1: \
2602 1.19 maxv return exec_##instr##8(op1, op2, rflags); \
2603 1.19 maxv case 2: \
2604 1.19 maxv return exec_##instr##16(op1, op2, rflags); \
2605 1.19 maxv case 4: \
2606 1.19 maxv return exec_##instr##32(op1, op2, rflags); \
2607 1.19 maxv default: \
2608 1.19 maxv return exec_##instr##64(op1, op2, rflags); \
2609 1.19 maxv } \
2610 1.19 maxv }
2611 1.19 maxv
2612 1.19 maxv /* SUB: ret = op1 - op2 */
2613 1.19 maxv #define PSL_SUB_MASK (PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF|PSL_AF)
2614 1.19 maxv EXEC_INSTR(8, sub)
2615 1.19 maxv EXEC_INSTR(16, sub)
2616 1.19 maxv EXEC_INSTR(32, sub)
2617 1.19 maxv EXEC_INSTR(64, sub)
2618 1.19 maxv EXEC_DISPATCHER(sub)
2619 1.19 maxv
2620 1.19 maxv /* OR: ret = op1 | op2 */
2621 1.19 maxv #define PSL_OR_MASK (PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF)
2622 1.19 maxv EXEC_INSTR(8, or)
2623 1.19 maxv EXEC_INSTR(16, or)
2624 1.19 maxv EXEC_INSTR(32, or)
2625 1.19 maxv EXEC_INSTR(64, or)
2626 1.19 maxv EXEC_DISPATCHER(or)
2627 1.19 maxv
2628 1.19 maxv /* AND: ret = op1 & op2 */
2629 1.19 maxv #define PSL_AND_MASK (PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF)
2630 1.19 maxv EXEC_INSTR(8, and)
2631 1.19 maxv EXEC_INSTR(16, and)
2632 1.19 maxv EXEC_INSTR(32, and)
2633 1.19 maxv EXEC_INSTR(64, and)
2634 1.19 maxv EXEC_DISPATCHER(and)
2635 1.19 maxv
2636 1.19 maxv /* XOR: ret = op1 ^ op2 */
2637 1.19 maxv #define PSL_XOR_MASK (PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF)
2638 1.19 maxv EXEC_INSTR(8, xor)
2639 1.19 maxv EXEC_INSTR(16, xor)
2640 1.19 maxv EXEC_INSTR(32, xor)
2641 1.19 maxv EXEC_INSTR(64, xor)
2642 1.19 maxv EXEC_DISPATCHER(xor)
2643 1.19 maxv
2644 1.19 maxv /* -------------------------------------------------------------------------- */
2645 1.5 maxv
2646 1.19 maxv /*
2647 1.19 maxv * Emulation functions. We don't care about the order of the operands, except
2648 1.19 maxv * for SUB, CMP and TEST. For these ones we look at mem->write todetermine who
2649 1.19 maxv * is op1 and who is op2.
2650 1.19 maxv */
2651 1.5 maxv
2652 1.5 maxv static void
2653 1.19 maxv x86_func_or(struct nvmm_mem *mem, uint64_t *gprs)
2654 1.5 maxv {
2655 1.19 maxv uint64_t *retval = (uint64_t *)mem->data;
2656 1.5 maxv const bool write = mem->write;
2657 1.19 maxv uint64_t *op1, op2, fl, ret;
2658 1.5 maxv
2659 1.19 maxv op1 = (uint64_t *)mem->data;
2660 1.19 maxv op2 = 0;
2661 1.5 maxv
2662 1.19 maxv /* Fetch the value to be OR'ed (op2). */
2663 1.19 maxv mem->data = (uint8_t *)&op2;
2664 1.5 maxv mem->write = false;
2665 1.19 maxv (*__callbacks.mem)(mem);
2666 1.5 maxv
2667 1.5 maxv /* Perform the OR. */
2668 1.19 maxv ret = exec_or(*op1, op2, &fl, mem->size);
2669 1.5 maxv
2670 1.5 maxv if (write) {
2671 1.5 maxv /* Write back the result. */
2672 1.19 maxv mem->data = (uint8_t *)&ret;
2673 1.5 maxv mem->write = true;
2674 1.19 maxv (*__callbacks.mem)(mem);
2675 1.19 maxv } else {
2676 1.19 maxv /* Return data to the caller. */
2677 1.19 maxv *retval = ret;
2678 1.5 maxv }
2679 1.5 maxv
2680 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_OR_MASK;
2681 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_OR_MASK);
2682 1.5 maxv }
2683 1.5 maxv
2684 1.5 maxv static void
2685 1.19 maxv x86_func_and(struct nvmm_mem *mem, uint64_t *gprs)
2686 1.5 maxv {
2687 1.19 maxv uint64_t *retval = (uint64_t *)mem->data;
2688 1.5 maxv const bool write = mem->write;
2689 1.19 maxv uint64_t *op1, op2, fl, ret;
2690 1.5 maxv
2691 1.19 maxv op1 = (uint64_t *)mem->data;
2692 1.19 maxv op2 = 0;
2693 1.5 maxv
2694 1.19 maxv /* Fetch the value to be AND'ed (op2). */
2695 1.19 maxv mem->data = (uint8_t *)&op2;
2696 1.5 maxv mem->write = false;
2697 1.19 maxv (*__callbacks.mem)(mem);
2698 1.5 maxv
2699 1.5 maxv /* Perform the AND. */
2700 1.19 maxv ret = exec_and(*op1, op2, &fl, mem->size);
2701 1.5 maxv
2702 1.5 maxv if (write) {
2703 1.5 maxv /* Write back the result. */
2704 1.19 maxv mem->data = (uint8_t *)&ret;
2705 1.5 maxv mem->write = true;
2706 1.19 maxv (*__callbacks.mem)(mem);
2707 1.19 maxv } else {
2708 1.19 maxv /* Return data to the caller. */
2709 1.19 maxv *retval = ret;
2710 1.5 maxv }
2711 1.5 maxv
2712 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_AND_MASK;
2713 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_AND_MASK);
2714 1.5 maxv }
2715 1.5 maxv
2716 1.5 maxv static void
2717 1.19 maxv x86_func_sub(struct nvmm_mem *mem, uint64_t *gprs)
2718 1.5 maxv {
2719 1.19 maxv uint64_t *retval = (uint64_t *)mem->data;
2720 1.5 maxv const bool write = mem->write;
2721 1.19 maxv uint64_t *op1, *op2, fl, ret;
2722 1.19 maxv uint64_t tmp;
2723 1.19 maxv bool memop1;
2724 1.19 maxv
2725 1.19 maxv memop1 = !mem->write;
2726 1.19 maxv op1 = memop1 ? &tmp : (uint64_t *)mem->data;
2727 1.19 maxv op2 = memop1 ? (uint64_t *)mem->data : &tmp;
2728 1.19 maxv
2729 1.19 maxv /* Fetch the value to be SUB'ed (op1 or op2). */
2730 1.19 maxv mem->data = (uint8_t *)&tmp;
2731 1.19 maxv mem->write = false;
2732 1.19 maxv (*__callbacks.mem)(mem);
2733 1.19 maxv
2734 1.19 maxv /* Perform the SUB. */
2735 1.19 maxv ret = exec_sub(*op1, *op2, &fl, mem->size);
2736 1.19 maxv
2737 1.19 maxv if (write) {
2738 1.19 maxv /* Write back the result. */
2739 1.19 maxv mem->data = (uint8_t *)&ret;
2740 1.19 maxv mem->write = true;
2741 1.19 maxv (*__callbacks.mem)(mem);
2742 1.19 maxv } else {
2743 1.19 maxv /* Return data to the caller. */
2744 1.19 maxv *retval = ret;
2745 1.19 maxv }
2746 1.19 maxv
2747 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_SUB_MASK;
2748 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_SUB_MASK);
2749 1.19 maxv }
2750 1.5 maxv
2751 1.19 maxv static void
2752 1.19 maxv x86_func_xor(struct nvmm_mem *mem, uint64_t *gprs)
2753 1.19 maxv {
2754 1.19 maxv uint64_t *retval = (uint64_t *)mem->data;
2755 1.19 maxv const bool write = mem->write;
2756 1.19 maxv uint64_t *op1, op2, fl, ret;
2757 1.5 maxv
2758 1.19 maxv op1 = (uint64_t *)mem->data;
2759 1.19 maxv op2 = 0;
2760 1.5 maxv
2761 1.19 maxv /* Fetch the value to be XOR'ed (op2). */
2762 1.19 maxv mem->data = (uint8_t *)&op2;
2763 1.5 maxv mem->write = false;
2764 1.19 maxv (*__callbacks.mem)(mem);
2765 1.5 maxv
2766 1.5 maxv /* Perform the XOR. */
2767 1.19 maxv ret = exec_xor(*op1, op2, &fl, mem->size);
2768 1.5 maxv
2769 1.5 maxv if (write) {
2770 1.5 maxv /* Write back the result. */
2771 1.19 maxv mem->data = (uint8_t *)&ret;
2772 1.5 maxv mem->write = true;
2773 1.19 maxv (*__callbacks.mem)(mem);
2774 1.19 maxv } else {
2775 1.19 maxv /* Return data to the caller. */
2776 1.19 maxv *retval = ret;
2777 1.5 maxv }
2778 1.5 maxv
2779 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_XOR_MASK;
2780 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_XOR_MASK);
2781 1.5 maxv }
2782 1.5 maxv
2783 1.5 maxv static void
2784 1.19 maxv x86_func_cmp(struct nvmm_mem *mem, uint64_t *gprs)
2785 1.19 maxv {
2786 1.19 maxv uint64_t *op1, *op2, fl;
2787 1.19 maxv uint64_t tmp;
2788 1.19 maxv bool memop1;
2789 1.19 maxv
2790 1.19 maxv memop1 = !mem->write;
2791 1.19 maxv op1 = memop1 ? &tmp : (uint64_t *)mem->data;
2792 1.19 maxv op2 = memop1 ? (uint64_t *)mem->data : &tmp;
2793 1.19 maxv
2794 1.19 maxv /* Fetch the value to be CMP'ed (op1 or op2). */
2795 1.19 maxv mem->data = (uint8_t *)&tmp;
2796 1.19 maxv mem->write = false;
2797 1.19 maxv (*__callbacks.mem)(mem);
2798 1.19 maxv
2799 1.19 maxv /* Perform the CMP. */
2800 1.19 maxv exec_sub(*op1, *op2, &fl, mem->size);
2801 1.19 maxv
2802 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_SUB_MASK;
2803 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_SUB_MASK);
2804 1.19 maxv }
2805 1.19 maxv
2806 1.19 maxv static void
2807 1.19 maxv x86_func_test(struct nvmm_mem *mem, uint64_t *gprs)
2808 1.19 maxv {
2809 1.19 maxv uint64_t *op1, *op2, fl;
2810 1.19 maxv uint64_t tmp;
2811 1.19 maxv bool memop1;
2812 1.19 maxv
2813 1.19 maxv memop1 = !mem->write;
2814 1.19 maxv op1 = memop1 ? &tmp : (uint64_t *)mem->data;
2815 1.19 maxv op2 = memop1 ? (uint64_t *)mem->data : &tmp;
2816 1.19 maxv
2817 1.19 maxv /* Fetch the value to be TEST'ed (op1 or op2). */
2818 1.19 maxv mem->data = (uint8_t *)&tmp;
2819 1.19 maxv mem->write = false;
2820 1.19 maxv (*__callbacks.mem)(mem);
2821 1.19 maxv
2822 1.19 maxv /* Perform the TEST. */
2823 1.19 maxv exec_and(*op1, *op2, &fl, mem->size);
2824 1.19 maxv
2825 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_AND_MASK;
2826 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_AND_MASK);
2827 1.19 maxv }
2828 1.19 maxv
2829 1.19 maxv static void
2830 1.19 maxv x86_func_mov(struct nvmm_mem *mem, uint64_t *gprs)
2831 1.5 maxv {
2832 1.5 maxv /*
2833 1.5 maxv * Nothing special, just move without emulation.
2834 1.5 maxv */
2835 1.19 maxv (*__callbacks.mem)(mem);
2836 1.5 maxv }
2837 1.5 maxv
2838 1.5 maxv static void
2839 1.19 maxv x86_func_stos(struct nvmm_mem *mem, uint64_t *gprs)
2840 1.5 maxv {
2841 1.5 maxv /*
2842 1.5 maxv * Just move, and update RDI.
2843 1.5 maxv */
2844 1.19 maxv (*__callbacks.mem)(mem);
2845 1.5 maxv
2846 1.5 maxv if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
2847 1.5 maxv gprs[NVMM_X64_GPR_RDI] -= mem->size;
2848 1.5 maxv } else {
2849 1.5 maxv gprs[NVMM_X64_GPR_RDI] += mem->size;
2850 1.5 maxv }
2851 1.5 maxv }
2852 1.5 maxv
2853 1.5 maxv static void
2854 1.19 maxv x86_func_lods(struct nvmm_mem *mem, uint64_t *gprs)
2855 1.5 maxv {
2856 1.5 maxv /*
2857 1.5 maxv * Just move, and update RSI.
2858 1.5 maxv */
2859 1.19 maxv (*__callbacks.mem)(mem);
2860 1.5 maxv
2861 1.5 maxv if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
2862 1.5 maxv gprs[NVMM_X64_GPR_RSI] -= mem->size;
2863 1.5 maxv } else {
2864 1.5 maxv gprs[NVMM_X64_GPR_RSI] += mem->size;
2865 1.5 maxv }
2866 1.5 maxv }
2867 1.5 maxv
2868 1.6 maxv static void
2869 1.19 maxv x86_func_movs(struct nvmm_mem *mem, uint64_t *gprs)
2870 1.6 maxv {
2871 1.6 maxv /*
2872 1.6 maxv * Special instruction: double memory operand. Don't call the cb,
2873 1.6 maxv * because the storage has already been performed earlier.
2874 1.6 maxv */
2875 1.6 maxv
2876 1.6 maxv if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
2877 1.6 maxv gprs[NVMM_X64_GPR_RSI] -= mem->size;
2878 1.6 maxv gprs[NVMM_X64_GPR_RDI] -= mem->size;
2879 1.6 maxv } else {
2880 1.6 maxv gprs[NVMM_X64_GPR_RSI] += mem->size;
2881 1.6 maxv gprs[NVMM_X64_GPR_RDI] += mem->size;
2882 1.6 maxv }
2883 1.6 maxv }
2884 1.6 maxv
2885 1.5 maxv /* -------------------------------------------------------------------------- */
2886 1.5 maxv
2887 1.5 maxv static inline uint64_t
2888 1.5 maxv gpr_read_address(struct x86_instr *instr, struct nvmm_x64_state *state, int gpr)
2889 1.5 maxv {
2890 1.5 maxv uint64_t val;
2891 1.5 maxv
2892 1.5 maxv val = state->gprs[gpr];
2893 1.15 maxv val &= size_to_mask(instr->address_size);
2894 1.5 maxv
2895 1.5 maxv return val;
2896 1.5 maxv }
2897 1.5 maxv
2898 1.5 maxv static int
2899 1.6 maxv store_to_gva(struct nvmm_x64_state *state, struct x86_instr *instr,
2900 1.6 maxv struct x86_store *store, gvaddr_t *gvap, size_t size)
2901 1.5 maxv {
2902 1.5 maxv struct x86_sib *sib;
2903 1.6 maxv gvaddr_t gva = 0;
2904 1.5 maxv uint64_t reg;
2905 1.5 maxv int ret, seg;
2906 1.5 maxv
2907 1.5 maxv if (store->type == STORE_SIB) {
2908 1.5 maxv sib = &store->u.sib;
2909 1.5 maxv if (sib->bas != NULL)
2910 1.5 maxv gva += gpr_read_address(instr, state, sib->bas->num);
2911 1.5 maxv if (sib->idx != NULL) {
2912 1.5 maxv reg = gpr_read_address(instr, state, sib->idx->num);
2913 1.5 maxv gva += sib->scale * reg;
2914 1.5 maxv }
2915 1.5 maxv } else if (store->type == STORE_REG) {
2916 1.9 maxv if (store->u.reg == NULL) {
2917 1.9 maxv /* The base is null. Happens with disp32-only. */
2918 1.9 maxv } else {
2919 1.9 maxv gva = gpr_read_address(instr, state, store->u.reg->num);
2920 1.9 maxv }
2921 1.5 maxv } else {
2922 1.5 maxv gva = store->u.dmo;
2923 1.5 maxv }
2924 1.5 maxv
2925 1.5 maxv if (store->disp.type != DISP_NONE) {
2926 1.11 maxv gva += store->disp.data;
2927 1.5 maxv }
2928 1.5 maxv
2929 1.15 maxv if (store->hardseg != 0) {
2930 1.15 maxv seg = store->hardseg;
2931 1.15 maxv } else {
2932 1.15 maxv if (__predict_false(instr->legpref.seg != -1)) {
2933 1.15 maxv seg = instr->legpref.seg;
2934 1.5 maxv } else {
2935 1.15 maxv seg = NVMM_X64_SEG_DS;
2936 1.5 maxv }
2937 1.15 maxv }
2938 1.5 maxv
2939 1.15 maxv if (__predict_true(is_long_mode(state))) {
2940 1.15 maxv if (seg == NVMM_X64_SEG_GS || seg == NVMM_X64_SEG_FS) {
2941 1.15 maxv segment_apply(&state->segs[seg], &gva);
2942 1.15 maxv }
2943 1.15 maxv } else {
2944 1.15 maxv ret = segment_check(&state->segs[seg], gva, size);
2945 1.5 maxv if (ret == -1)
2946 1.5 maxv return -1;
2947 1.15 maxv segment_apply(&state->segs[seg], &gva);
2948 1.5 maxv }
2949 1.5 maxv
2950 1.6 maxv *gvap = gva;
2951 1.6 maxv return 0;
2952 1.6 maxv }
2953 1.6 maxv
2954 1.6 maxv static int
2955 1.8 maxv fetch_segment(struct nvmm_machine *mach, struct nvmm_x64_state *state)
2956 1.8 maxv {
2957 1.21 maxv uint8_t inst_bytes[5], byte;
2958 1.13 maxv size_t i, fetchsize;
2959 1.8 maxv gvaddr_t gva;
2960 1.8 maxv int ret, seg;
2961 1.8 maxv
2962 1.8 maxv fetchsize = sizeof(inst_bytes);
2963 1.8 maxv
2964 1.8 maxv gva = state->gprs[NVMM_X64_GPR_RIP];
2965 1.15 maxv if (__predict_false(!is_long_mode(state))) {
2966 1.15 maxv ret = segment_check(&state->segs[NVMM_X64_SEG_CS], gva,
2967 1.8 maxv fetchsize);
2968 1.8 maxv if (ret == -1)
2969 1.8 maxv return -1;
2970 1.15 maxv segment_apply(&state->segs[NVMM_X64_SEG_CS], &gva);
2971 1.8 maxv }
2972 1.8 maxv
2973 1.8 maxv ret = read_guest_memory(mach, state, gva, inst_bytes, fetchsize);
2974 1.8 maxv if (ret == -1)
2975 1.8 maxv return -1;
2976 1.8 maxv
2977 1.8 maxv seg = NVMM_X64_SEG_DS;
2978 1.13 maxv for (i = 0; i < fetchsize; i++) {
2979 1.13 maxv byte = inst_bytes[i];
2980 1.13 maxv
2981 1.13 maxv if (byte == LEG_OVR_DS) {
2982 1.13 maxv seg = NVMM_X64_SEG_DS;
2983 1.13 maxv } else if (byte == LEG_OVR_ES) {
2984 1.13 maxv seg = NVMM_X64_SEG_ES;
2985 1.13 maxv } else if (byte == LEG_OVR_GS) {
2986 1.13 maxv seg = NVMM_X64_SEG_GS;
2987 1.13 maxv } else if (byte == LEG_OVR_FS) {
2988 1.13 maxv seg = NVMM_X64_SEG_FS;
2989 1.13 maxv } else if (byte == LEG_OVR_CS) {
2990 1.13 maxv seg = NVMM_X64_SEG_CS;
2991 1.13 maxv } else if (byte == LEG_OVR_SS) {
2992 1.13 maxv seg = NVMM_X64_SEG_SS;
2993 1.13 maxv } else if (byte == LEG_OPR_OVR) {
2994 1.13 maxv /* nothing */
2995 1.13 maxv } else if (byte == LEG_ADR_OVR) {
2996 1.13 maxv /* nothing */
2997 1.13 maxv } else if (byte == LEG_REP) {
2998 1.13 maxv /* nothing */
2999 1.13 maxv } else if (byte == LEG_REPN) {
3000 1.13 maxv /* nothing */
3001 1.13 maxv } else if (byte == LEG_LOCK) {
3002 1.13 maxv /* nothing */
3003 1.13 maxv } else {
3004 1.13 maxv return seg;
3005 1.8 maxv }
3006 1.8 maxv }
3007 1.8 maxv
3008 1.8 maxv return seg;
3009 1.8 maxv }
3010 1.8 maxv
3011 1.8 maxv static int
3012 1.5 maxv fetch_instruction(struct nvmm_machine *mach, struct nvmm_x64_state *state,
3013 1.5 maxv struct nvmm_exit *exit)
3014 1.5 maxv {
3015 1.6 maxv size_t fetchsize;
3016 1.6 maxv gvaddr_t gva;
3017 1.5 maxv int ret;
3018 1.5 maxv
3019 1.5 maxv fetchsize = sizeof(exit->u.mem.inst_bytes);
3020 1.5 maxv
3021 1.5 maxv gva = state->gprs[NVMM_X64_GPR_RIP];
3022 1.15 maxv if (__predict_false(!is_long_mode(state))) {
3023 1.15 maxv ret = segment_check(&state->segs[NVMM_X64_SEG_CS], gva,
3024 1.5 maxv fetchsize);
3025 1.5 maxv if (ret == -1)
3026 1.5 maxv return -1;
3027 1.15 maxv segment_apply(&state->segs[NVMM_X64_SEG_CS], &gva);
3028 1.5 maxv }
3029 1.5 maxv
3030 1.6 maxv ret = read_guest_memory(mach, state, gva, exit->u.mem.inst_bytes,
3031 1.6 maxv fetchsize);
3032 1.6 maxv if (ret == -1)
3033 1.6 maxv return -1;
3034 1.6 maxv
3035 1.6 maxv exit->u.mem.inst_len = fetchsize;
3036 1.6 maxv
3037 1.6 maxv return 0;
3038 1.6 maxv }
3039 1.6 maxv
3040 1.6 maxv static int
3041 1.6 maxv assist_mem_double(struct nvmm_machine *mach, struct nvmm_x64_state *state,
3042 1.6 maxv struct x86_instr *instr)
3043 1.6 maxv {
3044 1.6 maxv struct nvmm_mem mem;
3045 1.6 maxv uint8_t data[8];
3046 1.6 maxv gvaddr_t gva;
3047 1.6 maxv size_t size;
3048 1.6 maxv int ret;
3049 1.6 maxv
3050 1.6 maxv size = instr->operand_size;
3051 1.5 maxv
3052 1.6 maxv /* Source. */
3053 1.6 maxv ret = store_to_gva(state, instr, &instr->src, &gva, size);
3054 1.5 maxv if (ret == -1)
3055 1.5 maxv return -1;
3056 1.6 maxv ret = read_guest_memory(mach, state, gva, data, size);
3057 1.6 maxv if (ret == -1)
3058 1.5 maxv return -1;
3059 1.5 maxv
3060 1.6 maxv /* Destination. */
3061 1.6 maxv ret = store_to_gva(state, instr, &instr->dst, &gva, size);
3062 1.6 maxv if (ret == -1)
3063 1.6 maxv return -1;
3064 1.6 maxv ret = write_guest_memory(mach, state, gva, data, size);
3065 1.5 maxv if (ret == -1)
3066 1.5 maxv return -1;
3067 1.5 maxv
3068 1.6 maxv mem.size = size;
3069 1.19 maxv (*instr->emul->func)(&mem, state->gprs);
3070 1.5 maxv
3071 1.5 maxv return 0;
3072 1.5 maxv }
3073 1.5 maxv
3074 1.5 maxv #define DISASSEMBLER_BUG() \
3075 1.5 maxv do { \
3076 1.5 maxv errno = EINVAL; \
3077 1.5 maxv return -1; \
3078 1.5 maxv } while (0);
3079 1.5 maxv
3080 1.6 maxv static int
3081 1.6 maxv assist_mem_single(struct nvmm_machine *mach, struct nvmm_x64_state *state,
3082 1.12 maxv struct x86_instr *instr, struct nvmm_exit *exit)
3083 1.5 maxv {
3084 1.5 maxv struct nvmm_mem mem;
3085 1.10 maxv uint8_t membuf[8];
3086 1.5 maxv uint64_t val;
3087 1.5 maxv
3088 1.11 maxv memset(membuf, 0, sizeof(membuf));
3089 1.12 maxv
3090 1.12 maxv mem.gpa = exit->u.mem.gpa;
3091 1.12 maxv mem.size = instr->operand_size;
3092 1.10 maxv mem.data = membuf;
3093 1.5 maxv
3094 1.12 maxv /* Determine the direction. */
3095 1.6 maxv switch (instr->src.type) {
3096 1.5 maxv case STORE_REG:
3097 1.6 maxv if (instr->src.disp.type != DISP_NONE) {
3098 1.5 maxv /* Indirect access. */
3099 1.5 maxv mem.write = false;
3100 1.5 maxv } else {
3101 1.5 maxv /* Direct access. */
3102 1.5 maxv mem.write = true;
3103 1.5 maxv }
3104 1.5 maxv break;
3105 1.5 maxv case STORE_IMM:
3106 1.5 maxv mem.write = true;
3107 1.5 maxv break;
3108 1.5 maxv case STORE_SIB:
3109 1.5 maxv mem.write = false;
3110 1.5 maxv break;
3111 1.5 maxv case STORE_DMO:
3112 1.5 maxv mem.write = false;
3113 1.5 maxv break;
3114 1.5 maxv default:
3115 1.12 maxv DISASSEMBLER_BUG();
3116 1.5 maxv }
3117 1.5 maxv
3118 1.12 maxv if (mem.write) {
3119 1.12 maxv switch (instr->src.type) {
3120 1.12 maxv case STORE_REG:
3121 1.12 maxv if (instr->src.disp.type != DISP_NONE) {
3122 1.5 maxv DISASSEMBLER_BUG();
3123 1.5 maxv }
3124 1.12 maxv val = state->gprs[instr->src.u.reg->num];
3125 1.12 maxv val = __SHIFTOUT(val, instr->src.u.reg->mask);
3126 1.12 maxv memcpy(mem.data, &val, mem.size);
3127 1.12 maxv break;
3128 1.12 maxv case STORE_IMM:
3129 1.12 maxv memcpy(mem.data, &instr->src.u.imm.data, mem.size);
3130 1.12 maxv break;
3131 1.12 maxv default:
3132 1.5 maxv DISASSEMBLER_BUG();
3133 1.5 maxv }
3134 1.19 maxv } else if (instr->emul->read) {
3135 1.19 maxv if (instr->dst.type != STORE_REG) {
3136 1.19 maxv DISASSEMBLER_BUG();
3137 1.19 maxv }
3138 1.19 maxv if (instr->dst.disp.type != DISP_NONE) {
3139 1.19 maxv DISASSEMBLER_BUG();
3140 1.19 maxv }
3141 1.19 maxv val = state->gprs[instr->dst.u.reg->num];
3142 1.19 maxv val = __SHIFTOUT(val, instr->dst.u.reg->mask);
3143 1.19 maxv memcpy(mem.data, &val, mem.size);
3144 1.5 maxv }
3145 1.5 maxv
3146 1.19 maxv (*instr->emul->func)(&mem, state->gprs);
3147 1.5 maxv
3148 1.19 maxv if (!instr->emul->notouch && !mem.write) {
3149 1.12 maxv if (instr->dst.type != STORE_REG) {
3150 1.12 maxv DISASSEMBLER_BUG();
3151 1.12 maxv }
3152 1.19 maxv memcpy(&val, membuf, sizeof(uint64_t));
3153 1.6 maxv val = __SHIFTIN(val, instr->dst.u.reg->mask);
3154 1.6 maxv state->gprs[instr->dst.u.reg->num] &= ~instr->dst.u.reg->mask;
3155 1.6 maxv state->gprs[instr->dst.u.reg->num] |= val;
3156 1.10 maxv state->gprs[instr->dst.u.reg->num] &= ~instr->zeroextend_mask;
3157 1.6 maxv }
3158 1.6 maxv
3159 1.6 maxv return 0;
3160 1.6 maxv }
3161 1.6 maxv
3162 1.6 maxv int
3163 1.6 maxv nvmm_assist_mem(struct nvmm_machine *mach, nvmm_cpuid_t cpuid,
3164 1.6 maxv struct nvmm_exit *exit)
3165 1.6 maxv {
3166 1.6 maxv struct nvmm_x64_state state;
3167 1.6 maxv struct x86_instr instr;
3168 1.15 maxv uint64_t cnt = 0; /* GCC */
3169 1.6 maxv int ret;
3170 1.6 maxv
3171 1.6 maxv if (__predict_false(exit->reason != NVMM_EXIT_MEMORY)) {
3172 1.6 maxv errno = EINVAL;
3173 1.6 maxv return -1;
3174 1.6 maxv }
3175 1.6 maxv
3176 1.6 maxv ret = nvmm_vcpu_getstate(mach, cpuid, &state,
3177 1.15 maxv NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
3178 1.15 maxv NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
3179 1.6 maxv if (ret == -1)
3180 1.6 maxv return -1;
3181 1.6 maxv
3182 1.6 maxv if (exit->u.mem.inst_len == 0) {
3183 1.6 maxv /*
3184 1.6 maxv * The instruction was not fetched from the kernel. Fetch
3185 1.6 maxv * it ourselves.
3186 1.6 maxv */
3187 1.6 maxv ret = fetch_instruction(mach, &state, exit);
3188 1.6 maxv if (ret == -1)
3189 1.6 maxv return -1;
3190 1.6 maxv }
3191 1.6 maxv
3192 1.6 maxv ret = x86_decode(exit->u.mem.inst_bytes, exit->u.mem.inst_len,
3193 1.6 maxv &instr, &state);
3194 1.6 maxv if (ret == -1) {
3195 1.6 maxv errno = ENODEV;
3196 1.6 maxv return -1;
3197 1.6 maxv }
3198 1.6 maxv
3199 1.15 maxv if (instr.legpref.rep || instr.legpref.repn) {
3200 1.15 maxv cnt = rep_get_cnt(&state, instr.address_size);
3201 1.15 maxv if (__predict_false(cnt == 0)) {
3202 1.15 maxv state.gprs[NVMM_X64_GPR_RIP] += instr.len;
3203 1.15 maxv goto out;
3204 1.15 maxv }
3205 1.15 maxv }
3206 1.15 maxv
3207 1.6 maxv if (instr.opcode->movs) {
3208 1.6 maxv ret = assist_mem_double(mach, &state, &instr);
3209 1.6 maxv } else {
3210 1.12 maxv ret = assist_mem_single(mach, &state, &instr, exit);
3211 1.6 maxv }
3212 1.6 maxv if (ret == -1) {
3213 1.6 maxv errno = ENODEV;
3214 1.6 maxv return -1;
3215 1.5 maxv }
3216 1.5 maxv
3217 1.14 maxv if (instr.legpref.rep || instr.legpref.repn) {
3218 1.15 maxv cnt -= 1;
3219 1.15 maxv rep_set_cnt(&state, instr.address_size, cnt);
3220 1.6 maxv if (cnt == 0) {
3221 1.5 maxv state.gprs[NVMM_X64_GPR_RIP] += instr.len;
3222 1.14 maxv } else if (__predict_false(instr.legpref.repn)) {
3223 1.14 maxv if (state.gprs[NVMM_X64_GPR_RFLAGS] & PSL_Z) {
3224 1.14 maxv state.gprs[NVMM_X64_GPR_RIP] += instr.len;
3225 1.14 maxv }
3226 1.5 maxv }
3227 1.5 maxv } else {
3228 1.5 maxv state.gprs[NVMM_X64_GPR_RIP] += instr.len;
3229 1.5 maxv }
3230 1.5 maxv
3231 1.15 maxv out:
3232 1.5 maxv ret = nvmm_vcpu_setstate(mach, cpuid, &state, NVMM_X64_STATE_GPRS);
3233 1.5 maxv if (ret == -1)
3234 1.5 maxv return -1;
3235 1.5 maxv
3236 1.5 maxv return 0;
3237 1.1 maxv }
3238