libnvmm_x86.c revision 1.32 1 1.32 maxv /* $NetBSD: libnvmm_x86.c,v 1.32 2019/10/13 17:32:15 maxv Exp $ */
2 1.1 maxv
3 1.1 maxv /*
4 1.32 maxv * Copyright (c) 2018-2019 The NetBSD Foundation, Inc.
5 1.1 maxv * All rights reserved.
6 1.1 maxv *
7 1.1 maxv * This code is derived from software contributed to The NetBSD Foundation
8 1.1 maxv * by Maxime Villard.
9 1.1 maxv *
10 1.1 maxv * Redistribution and use in source and binary forms, with or without
11 1.1 maxv * modification, are permitted provided that the following conditions
12 1.1 maxv * are met:
13 1.1 maxv * 1. Redistributions of source code must retain the above copyright
14 1.1 maxv * notice, this list of conditions and the following disclaimer.
15 1.1 maxv * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 maxv * notice, this list of conditions and the following disclaimer in the
17 1.1 maxv * documentation and/or other materials provided with the distribution.
18 1.1 maxv *
19 1.1 maxv * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 maxv * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 maxv * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 maxv * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 maxv * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 maxv * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 maxv * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 maxv * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 maxv * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 maxv * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 maxv * POSSIBILITY OF SUCH DAMAGE.
30 1.1 maxv */
31 1.1 maxv
32 1.1 maxv #include <sys/cdefs.h>
33 1.1 maxv
34 1.1 maxv #include <stdio.h>
35 1.1 maxv #include <stdlib.h>
36 1.1 maxv #include <string.h>
37 1.1 maxv #include <unistd.h>
38 1.1 maxv #include <fcntl.h>
39 1.1 maxv #include <errno.h>
40 1.1 maxv #include <sys/ioctl.h>
41 1.1 maxv #include <sys/mman.h>
42 1.1 maxv #include <machine/vmparam.h>
43 1.1 maxv #include <machine/pte.h>
44 1.1 maxv #include <machine/psl.h>
45 1.1 maxv
46 1.10 maxv #define MIN(X, Y) (((X) < (Y)) ? (X) : (Y))
47 1.27 maxv #define __cacheline_aligned __attribute__((__aligned__(64)))
48 1.10 maxv
49 1.1 maxv #include <x86/specialreg.h>
50 1.1 maxv
51 1.29 maxv /* -------------------------------------------------------------------------- */
52 1.29 maxv
53 1.6 maxv /*
54 1.6 maxv * Undocumented debugging function. Helpful.
55 1.6 maxv */
56 1.6 maxv int
57 1.31 maxv nvmm_vcpu_dump(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
58 1.6 maxv {
59 1.31 maxv struct nvmm_x64_state *state = vcpu->state;
60 1.26 maxv uint16_t *attr;
61 1.6 maxv size_t i;
62 1.6 maxv int ret;
63 1.6 maxv
64 1.6 maxv const char *segnames[] = {
65 1.26 maxv "ES", "CS", "SS", "DS", "FS", "GS", "GDT", "IDT", "LDT", "TR"
66 1.6 maxv };
67 1.6 maxv
68 1.31 maxv ret = nvmm_vcpu_getstate(mach, vcpu, NVMM_X64_STATE_ALL);
69 1.6 maxv if (ret == -1)
70 1.6 maxv return -1;
71 1.6 maxv
72 1.31 maxv printf("+ VCPU id=%d\n", (int)vcpu->cpuid);
73 1.31 maxv printf("| -> RIP=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RIP]);
74 1.31 maxv printf("| -> RSP=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RSP]);
75 1.31 maxv printf("| -> RAX=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RAX]);
76 1.31 maxv printf("| -> RBX=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RBX]);
77 1.31 maxv printf("| -> RCX=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RCX]);
78 1.31 maxv printf("| -> RFLAGS=%p\n", (void *)state->gprs[NVMM_X64_GPR_RFLAGS]);
79 1.6 maxv for (i = 0; i < NVMM_X64_NSEG; i++) {
80 1.31 maxv attr = (uint16_t *)&state->segs[i].attrib;
81 1.26 maxv printf("| -> %s: sel=0x%x base=%"PRIx64", limit=%x, attrib=%x\n",
82 1.6 maxv segnames[i],
83 1.31 maxv state->segs[i].selector,
84 1.31 maxv state->segs[i].base,
85 1.31 maxv state->segs[i].limit,
86 1.26 maxv *attr);
87 1.26 maxv }
88 1.31 maxv printf("| -> MSR_EFER=%"PRIx64"\n", state->msrs[NVMM_X64_MSR_EFER]);
89 1.31 maxv printf("| -> CR0=%"PRIx64"\n", state->crs[NVMM_X64_CR_CR0]);
90 1.31 maxv printf("| -> CR3=%"PRIx64"\n", state->crs[NVMM_X64_CR_CR3]);
91 1.31 maxv printf("| -> CR4=%"PRIx64"\n", state->crs[NVMM_X64_CR_CR4]);
92 1.31 maxv printf("| -> CR8=%"PRIx64"\n", state->crs[NVMM_X64_CR_CR8]);
93 1.6 maxv
94 1.6 maxv return 0;
95 1.6 maxv }
96 1.6 maxv
97 1.1 maxv /* -------------------------------------------------------------------------- */
98 1.1 maxv
99 1.1 maxv #define PTE32_L1_SHIFT 12
100 1.1 maxv #define PTE32_L2_SHIFT 22
101 1.1 maxv
102 1.1 maxv #define PTE32_L2_MASK 0xffc00000
103 1.1 maxv #define PTE32_L1_MASK 0x003ff000
104 1.1 maxv
105 1.1 maxv #define PTE32_L2_FRAME (PTE32_L2_MASK)
106 1.1 maxv #define PTE32_L1_FRAME (PTE32_L2_FRAME|PTE32_L1_MASK)
107 1.1 maxv
108 1.1 maxv #define pte32_l1idx(va) (((va) & PTE32_L1_MASK) >> PTE32_L1_SHIFT)
109 1.1 maxv #define pte32_l2idx(va) (((va) & PTE32_L2_MASK) >> PTE32_L2_SHIFT)
110 1.1 maxv
111 1.19 maxv #define CR3_FRAME_32BIT PG_FRAME
112 1.19 maxv
113 1.1 maxv typedef uint32_t pte_32bit_t;
114 1.1 maxv
115 1.1 maxv static int
116 1.1 maxv x86_gva_to_gpa_32bit(struct nvmm_machine *mach, uint64_t cr3,
117 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, bool has_pse, nvmm_prot_t *prot)
118 1.1 maxv {
119 1.1 maxv gpaddr_t L2gpa, L1gpa;
120 1.1 maxv uintptr_t L2hva, L1hva;
121 1.1 maxv pte_32bit_t *pdir, pte;
122 1.28 maxv nvmm_prot_t pageprot;
123 1.1 maxv
124 1.1 maxv /* We begin with an RWXU access. */
125 1.1 maxv *prot = NVMM_PROT_ALL;
126 1.1 maxv
127 1.1 maxv /* Parse L2. */
128 1.19 maxv L2gpa = (cr3 & CR3_FRAME_32BIT);
129 1.28 maxv if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva, &pageprot) == -1)
130 1.1 maxv return -1;
131 1.1 maxv pdir = (pte_32bit_t *)L2hva;
132 1.1 maxv pte = pdir[pte32_l2idx(gva)];
133 1.1 maxv if ((pte & PG_V) == 0)
134 1.1 maxv return -1;
135 1.1 maxv if ((pte & PG_u) == 0)
136 1.1 maxv *prot &= ~NVMM_PROT_USER;
137 1.1 maxv if ((pte & PG_KW) == 0)
138 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
139 1.1 maxv if ((pte & PG_PS) && !has_pse)
140 1.1 maxv return -1;
141 1.1 maxv if (pte & PG_PS) {
142 1.1 maxv *gpa = (pte & PTE32_L2_FRAME);
143 1.10 maxv *gpa = *gpa + (gva & PTE32_L1_MASK);
144 1.1 maxv return 0;
145 1.1 maxv }
146 1.1 maxv
147 1.1 maxv /* Parse L1. */
148 1.1 maxv L1gpa = (pte & PG_FRAME);
149 1.28 maxv if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva, &pageprot) == -1)
150 1.1 maxv return -1;
151 1.1 maxv pdir = (pte_32bit_t *)L1hva;
152 1.1 maxv pte = pdir[pte32_l1idx(gva)];
153 1.1 maxv if ((pte & PG_V) == 0)
154 1.1 maxv return -1;
155 1.1 maxv if ((pte & PG_u) == 0)
156 1.1 maxv *prot &= ~NVMM_PROT_USER;
157 1.1 maxv if ((pte & PG_KW) == 0)
158 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
159 1.1 maxv if (pte & PG_PS)
160 1.1 maxv return -1;
161 1.1 maxv
162 1.1 maxv *gpa = (pte & PG_FRAME);
163 1.1 maxv return 0;
164 1.1 maxv }
165 1.1 maxv
166 1.1 maxv /* -------------------------------------------------------------------------- */
167 1.1 maxv
168 1.1 maxv #define PTE32_PAE_L1_SHIFT 12
169 1.1 maxv #define PTE32_PAE_L2_SHIFT 21
170 1.1 maxv #define PTE32_PAE_L3_SHIFT 30
171 1.1 maxv
172 1.1 maxv #define PTE32_PAE_L3_MASK 0xc0000000
173 1.1 maxv #define PTE32_PAE_L2_MASK 0x3fe00000
174 1.1 maxv #define PTE32_PAE_L1_MASK 0x001ff000
175 1.1 maxv
176 1.1 maxv #define PTE32_PAE_L3_FRAME (PTE32_PAE_L3_MASK)
177 1.1 maxv #define PTE32_PAE_L2_FRAME (PTE32_PAE_L3_FRAME|PTE32_PAE_L2_MASK)
178 1.1 maxv #define PTE32_PAE_L1_FRAME (PTE32_PAE_L2_FRAME|PTE32_PAE_L1_MASK)
179 1.1 maxv
180 1.1 maxv #define pte32_pae_l1idx(va) (((va) & PTE32_PAE_L1_MASK) >> PTE32_PAE_L1_SHIFT)
181 1.1 maxv #define pte32_pae_l2idx(va) (((va) & PTE32_PAE_L2_MASK) >> PTE32_PAE_L2_SHIFT)
182 1.1 maxv #define pte32_pae_l3idx(va) (((va) & PTE32_PAE_L3_MASK) >> PTE32_PAE_L3_SHIFT)
183 1.1 maxv
184 1.19 maxv #define CR3_FRAME_32BIT_PAE __BITS(31, 5)
185 1.19 maxv
186 1.1 maxv typedef uint64_t pte_32bit_pae_t;
187 1.1 maxv
188 1.1 maxv static int
189 1.1 maxv x86_gva_to_gpa_32bit_pae(struct nvmm_machine *mach, uint64_t cr3,
190 1.23 maxv gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
191 1.1 maxv {
192 1.1 maxv gpaddr_t L3gpa, L2gpa, L1gpa;
193 1.1 maxv uintptr_t L3hva, L2hva, L1hva;
194 1.1 maxv pte_32bit_pae_t *pdir, pte;
195 1.28 maxv nvmm_prot_t pageprot;
196 1.1 maxv
197 1.1 maxv /* We begin with an RWXU access. */
198 1.1 maxv *prot = NVMM_PROT_ALL;
199 1.1 maxv
200 1.1 maxv /* Parse L3. */
201 1.19 maxv L3gpa = (cr3 & CR3_FRAME_32BIT_PAE);
202 1.28 maxv if (nvmm_gpa_to_hva(mach, L3gpa, &L3hva, &pageprot) == -1)
203 1.1 maxv return -1;
204 1.1 maxv pdir = (pte_32bit_pae_t *)L3hva;
205 1.1 maxv pte = pdir[pte32_pae_l3idx(gva)];
206 1.1 maxv if ((pte & PG_V) == 0)
207 1.1 maxv return -1;
208 1.1 maxv if (pte & PG_NX)
209 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
210 1.1 maxv if (pte & PG_PS)
211 1.1 maxv return -1;
212 1.1 maxv
213 1.1 maxv /* Parse L2. */
214 1.1 maxv L2gpa = (pte & PG_FRAME);
215 1.28 maxv if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva, &pageprot) == -1)
216 1.1 maxv return -1;
217 1.1 maxv pdir = (pte_32bit_pae_t *)L2hva;
218 1.1 maxv pte = pdir[pte32_pae_l2idx(gva)];
219 1.1 maxv if ((pte & PG_V) == 0)
220 1.1 maxv return -1;
221 1.1 maxv if ((pte & PG_u) == 0)
222 1.1 maxv *prot &= ~NVMM_PROT_USER;
223 1.1 maxv if ((pte & PG_KW) == 0)
224 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
225 1.1 maxv if (pte & PG_NX)
226 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
227 1.1 maxv if (pte & PG_PS) {
228 1.1 maxv *gpa = (pte & PTE32_PAE_L2_FRAME);
229 1.10 maxv *gpa = *gpa + (gva & PTE32_PAE_L1_MASK);
230 1.1 maxv return 0;
231 1.1 maxv }
232 1.1 maxv
233 1.1 maxv /* Parse L1. */
234 1.1 maxv L1gpa = (pte & PG_FRAME);
235 1.28 maxv if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva, &pageprot) == -1)
236 1.1 maxv return -1;
237 1.1 maxv pdir = (pte_32bit_pae_t *)L1hva;
238 1.1 maxv pte = pdir[pte32_pae_l1idx(gva)];
239 1.1 maxv if ((pte & PG_V) == 0)
240 1.1 maxv return -1;
241 1.1 maxv if ((pte & PG_u) == 0)
242 1.1 maxv *prot &= ~NVMM_PROT_USER;
243 1.1 maxv if ((pte & PG_KW) == 0)
244 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
245 1.1 maxv if (pte & PG_NX)
246 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
247 1.1 maxv if (pte & PG_PS)
248 1.1 maxv return -1;
249 1.1 maxv
250 1.1 maxv *gpa = (pte & PG_FRAME);
251 1.1 maxv return 0;
252 1.1 maxv }
253 1.1 maxv
254 1.1 maxv /* -------------------------------------------------------------------------- */
255 1.1 maxv
256 1.1 maxv #define PTE64_L1_SHIFT 12
257 1.1 maxv #define PTE64_L2_SHIFT 21
258 1.1 maxv #define PTE64_L3_SHIFT 30
259 1.1 maxv #define PTE64_L4_SHIFT 39
260 1.1 maxv
261 1.1 maxv #define PTE64_L4_MASK 0x0000ff8000000000
262 1.1 maxv #define PTE64_L3_MASK 0x0000007fc0000000
263 1.1 maxv #define PTE64_L2_MASK 0x000000003fe00000
264 1.1 maxv #define PTE64_L1_MASK 0x00000000001ff000
265 1.1 maxv
266 1.1 maxv #define PTE64_L4_FRAME PTE64_L4_MASK
267 1.1 maxv #define PTE64_L3_FRAME (PTE64_L4_FRAME|PTE64_L3_MASK)
268 1.1 maxv #define PTE64_L2_FRAME (PTE64_L3_FRAME|PTE64_L2_MASK)
269 1.1 maxv #define PTE64_L1_FRAME (PTE64_L2_FRAME|PTE64_L1_MASK)
270 1.1 maxv
271 1.1 maxv #define pte64_l1idx(va) (((va) & PTE64_L1_MASK) >> PTE64_L1_SHIFT)
272 1.1 maxv #define pte64_l2idx(va) (((va) & PTE64_L2_MASK) >> PTE64_L2_SHIFT)
273 1.1 maxv #define pte64_l3idx(va) (((va) & PTE64_L3_MASK) >> PTE64_L3_SHIFT)
274 1.1 maxv #define pte64_l4idx(va) (((va) & PTE64_L4_MASK) >> PTE64_L4_SHIFT)
275 1.1 maxv
276 1.19 maxv #define CR3_FRAME_64BIT PG_FRAME
277 1.19 maxv
278 1.1 maxv typedef uint64_t pte_64bit_t;
279 1.1 maxv
280 1.1 maxv static inline bool
281 1.1 maxv x86_gva_64bit_canonical(gvaddr_t gva)
282 1.1 maxv {
283 1.1 maxv /* Bits 63:47 must have the same value. */
284 1.1 maxv #define SIGN_EXTEND 0xffff800000000000ULL
285 1.1 maxv return (gva & SIGN_EXTEND) == 0 || (gva & SIGN_EXTEND) == SIGN_EXTEND;
286 1.1 maxv }
287 1.1 maxv
288 1.1 maxv static int
289 1.1 maxv x86_gva_to_gpa_64bit(struct nvmm_machine *mach, uint64_t cr3,
290 1.11 maxv gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
291 1.1 maxv {
292 1.1 maxv gpaddr_t L4gpa, L3gpa, L2gpa, L1gpa;
293 1.1 maxv uintptr_t L4hva, L3hva, L2hva, L1hva;
294 1.1 maxv pte_64bit_t *pdir, pte;
295 1.28 maxv nvmm_prot_t pageprot;
296 1.1 maxv
297 1.1 maxv /* We begin with an RWXU access. */
298 1.1 maxv *prot = NVMM_PROT_ALL;
299 1.1 maxv
300 1.1 maxv if (!x86_gva_64bit_canonical(gva))
301 1.1 maxv return -1;
302 1.1 maxv
303 1.1 maxv /* Parse L4. */
304 1.19 maxv L4gpa = (cr3 & CR3_FRAME_64BIT);
305 1.28 maxv if (nvmm_gpa_to_hva(mach, L4gpa, &L4hva, &pageprot) == -1)
306 1.1 maxv return -1;
307 1.1 maxv pdir = (pte_64bit_t *)L4hva;
308 1.1 maxv pte = pdir[pte64_l4idx(gva)];
309 1.1 maxv if ((pte & PG_V) == 0)
310 1.1 maxv return -1;
311 1.1 maxv if ((pte & PG_u) == 0)
312 1.1 maxv *prot &= ~NVMM_PROT_USER;
313 1.1 maxv if ((pte & PG_KW) == 0)
314 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
315 1.1 maxv if (pte & PG_NX)
316 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
317 1.1 maxv if (pte & PG_PS)
318 1.1 maxv return -1;
319 1.1 maxv
320 1.1 maxv /* Parse L3. */
321 1.1 maxv L3gpa = (pte & PG_FRAME);
322 1.28 maxv if (nvmm_gpa_to_hva(mach, L3gpa, &L3hva, &pageprot) == -1)
323 1.1 maxv return -1;
324 1.1 maxv pdir = (pte_64bit_t *)L3hva;
325 1.1 maxv pte = pdir[pte64_l3idx(gva)];
326 1.1 maxv if ((pte & PG_V) == 0)
327 1.1 maxv return -1;
328 1.1 maxv if ((pte & PG_u) == 0)
329 1.1 maxv *prot &= ~NVMM_PROT_USER;
330 1.1 maxv if ((pte & PG_KW) == 0)
331 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
332 1.1 maxv if (pte & PG_NX)
333 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
334 1.1 maxv if (pte & PG_PS) {
335 1.1 maxv *gpa = (pte & PTE64_L3_FRAME);
336 1.10 maxv *gpa = *gpa + (gva & (PTE64_L2_MASK|PTE64_L1_MASK));
337 1.1 maxv return 0;
338 1.1 maxv }
339 1.1 maxv
340 1.1 maxv /* Parse L2. */
341 1.1 maxv L2gpa = (pte & PG_FRAME);
342 1.28 maxv if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva, &pageprot) == -1)
343 1.1 maxv return -1;
344 1.1 maxv pdir = (pte_64bit_t *)L2hva;
345 1.1 maxv pte = pdir[pte64_l2idx(gva)];
346 1.1 maxv if ((pte & PG_V) == 0)
347 1.1 maxv return -1;
348 1.1 maxv if ((pte & PG_u) == 0)
349 1.1 maxv *prot &= ~NVMM_PROT_USER;
350 1.1 maxv if ((pte & PG_KW) == 0)
351 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
352 1.1 maxv if (pte & PG_NX)
353 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
354 1.1 maxv if (pte & PG_PS) {
355 1.1 maxv *gpa = (pte & PTE64_L2_FRAME);
356 1.10 maxv *gpa = *gpa + (gva & PTE64_L1_MASK);
357 1.1 maxv return 0;
358 1.1 maxv }
359 1.1 maxv
360 1.1 maxv /* Parse L1. */
361 1.1 maxv L1gpa = (pte & PG_FRAME);
362 1.28 maxv if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva, &pageprot) == -1)
363 1.1 maxv return -1;
364 1.1 maxv pdir = (pte_64bit_t *)L1hva;
365 1.1 maxv pte = pdir[pte64_l1idx(gva)];
366 1.1 maxv if ((pte & PG_V) == 0)
367 1.1 maxv return -1;
368 1.1 maxv if ((pte & PG_u) == 0)
369 1.1 maxv *prot &= ~NVMM_PROT_USER;
370 1.1 maxv if ((pte & PG_KW) == 0)
371 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
372 1.1 maxv if (pte & PG_NX)
373 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
374 1.1 maxv if (pte & PG_PS)
375 1.1 maxv return -1;
376 1.1 maxv
377 1.1 maxv *gpa = (pte & PG_FRAME);
378 1.1 maxv return 0;
379 1.1 maxv }
380 1.1 maxv
381 1.1 maxv static inline int
382 1.1 maxv x86_gva_to_gpa(struct nvmm_machine *mach, struct nvmm_x64_state *state,
383 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
384 1.1 maxv {
385 1.1 maxv bool is_pae, is_lng, has_pse;
386 1.1 maxv uint64_t cr3;
387 1.6 maxv size_t off;
388 1.1 maxv int ret;
389 1.1 maxv
390 1.1 maxv if ((state->crs[NVMM_X64_CR_CR0] & CR0_PG) == 0) {
391 1.1 maxv /* No paging. */
392 1.4 maxv *prot = NVMM_PROT_ALL;
393 1.1 maxv *gpa = gva;
394 1.1 maxv return 0;
395 1.1 maxv }
396 1.1 maxv
397 1.6 maxv off = (gva & PAGE_MASK);
398 1.6 maxv gva &= ~PAGE_MASK;
399 1.6 maxv
400 1.1 maxv is_pae = (state->crs[NVMM_X64_CR_CR4] & CR4_PAE) != 0;
401 1.15 maxv is_lng = (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) != 0;
402 1.1 maxv has_pse = (state->crs[NVMM_X64_CR_CR4] & CR4_PSE) != 0;
403 1.1 maxv cr3 = state->crs[NVMM_X64_CR_CR3];
404 1.1 maxv
405 1.1 maxv if (is_pae && is_lng) {
406 1.1 maxv /* 64bit */
407 1.11 maxv ret = x86_gva_to_gpa_64bit(mach, cr3, gva, gpa, prot);
408 1.1 maxv } else if (is_pae && !is_lng) {
409 1.1 maxv /* 32bit PAE */
410 1.23 maxv ret = x86_gva_to_gpa_32bit_pae(mach, cr3, gva, gpa, prot);
411 1.1 maxv } else if (!is_pae && !is_lng) {
412 1.1 maxv /* 32bit */
413 1.1 maxv ret = x86_gva_to_gpa_32bit(mach, cr3, gva, gpa, has_pse, prot);
414 1.1 maxv } else {
415 1.1 maxv ret = -1;
416 1.1 maxv }
417 1.1 maxv
418 1.1 maxv if (ret == -1) {
419 1.1 maxv errno = EFAULT;
420 1.1 maxv }
421 1.1 maxv
422 1.6 maxv *gpa = *gpa + off;
423 1.6 maxv
424 1.1 maxv return ret;
425 1.1 maxv }
426 1.1 maxv
427 1.1 maxv int
428 1.31 maxv nvmm_gva_to_gpa(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
429 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
430 1.1 maxv {
431 1.31 maxv struct nvmm_x64_state *state = vcpu->state;
432 1.1 maxv int ret;
433 1.1 maxv
434 1.31 maxv ret = nvmm_vcpu_getstate(mach, vcpu,
435 1.1 maxv NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
436 1.1 maxv if (ret == -1)
437 1.1 maxv return -1;
438 1.1 maxv
439 1.31 maxv return x86_gva_to_gpa(mach, state, gva, gpa, prot);
440 1.1 maxv }
441 1.1 maxv
442 1.1 maxv /* -------------------------------------------------------------------------- */
443 1.1 maxv
444 1.32 maxv #define DISASSEMBLER_BUG() \
445 1.32 maxv do { \
446 1.32 maxv errno = EINVAL; \
447 1.32 maxv return -1; \
448 1.32 maxv } while (0);
449 1.32 maxv
450 1.1 maxv static inline bool
451 1.15 maxv is_long_mode(struct nvmm_x64_state *state)
452 1.15 maxv {
453 1.15 maxv return (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) != 0;
454 1.15 maxv }
455 1.15 maxv
456 1.15 maxv static inline bool
457 1.5 maxv is_64bit(struct nvmm_x64_state *state)
458 1.5 maxv {
459 1.26 maxv return (state->segs[NVMM_X64_SEG_CS].attrib.l != 0);
460 1.5 maxv }
461 1.5 maxv
462 1.5 maxv static inline bool
463 1.5 maxv is_32bit(struct nvmm_x64_state *state)
464 1.5 maxv {
465 1.26 maxv return (state->segs[NVMM_X64_SEG_CS].attrib.l == 0) &&
466 1.26 maxv (state->segs[NVMM_X64_SEG_CS].attrib.def == 1);
467 1.5 maxv }
468 1.5 maxv
469 1.5 maxv static inline bool
470 1.5 maxv is_16bit(struct nvmm_x64_state *state)
471 1.5 maxv {
472 1.26 maxv return (state->segs[NVMM_X64_SEG_CS].attrib.l == 0) &&
473 1.26 maxv (state->segs[NVMM_X64_SEG_CS].attrib.def == 0);
474 1.5 maxv }
475 1.5 maxv
476 1.1 maxv static int
477 1.15 maxv segment_check(struct nvmm_x64_state_seg *seg, gvaddr_t gva, size_t size)
478 1.1 maxv {
479 1.1 maxv uint64_t limit;
480 1.1 maxv
481 1.1 maxv /*
482 1.1 maxv * This is incomplete. We should check topdown, etc, really that's
483 1.1 maxv * tiring.
484 1.1 maxv */
485 1.1 maxv if (__predict_false(!seg->attrib.p)) {
486 1.1 maxv goto error;
487 1.1 maxv }
488 1.1 maxv
489 1.26 maxv limit = (uint64_t)seg->limit + 1;
490 1.26 maxv if (__predict_true(seg->attrib.g)) {
491 1.1 maxv limit *= PAGE_SIZE;
492 1.1 maxv }
493 1.1 maxv
494 1.15 maxv if (__predict_false(gva + size > limit)) {
495 1.1 maxv goto error;
496 1.1 maxv }
497 1.1 maxv
498 1.1 maxv return 0;
499 1.1 maxv
500 1.1 maxv error:
501 1.1 maxv errno = EFAULT;
502 1.1 maxv return -1;
503 1.1 maxv }
504 1.1 maxv
505 1.15 maxv static inline void
506 1.15 maxv segment_apply(struct nvmm_x64_state_seg *seg, gvaddr_t *gva)
507 1.15 maxv {
508 1.15 maxv *gva += seg->base;
509 1.15 maxv }
510 1.15 maxv
511 1.15 maxv static inline uint64_t
512 1.15 maxv size_to_mask(size_t size)
513 1.6 maxv {
514 1.15 maxv switch (size) {
515 1.15 maxv case 1:
516 1.15 maxv return 0x00000000000000FF;
517 1.15 maxv case 2:
518 1.15 maxv return 0x000000000000FFFF;
519 1.15 maxv case 4:
520 1.15 maxv return 0x00000000FFFFFFFF;
521 1.6 maxv case 8:
522 1.15 maxv default:
523 1.6 maxv return 0xFFFFFFFFFFFFFFFF;
524 1.6 maxv }
525 1.6 maxv }
526 1.6 maxv
527 1.6 maxv static uint64_t
528 1.10 maxv rep_get_cnt(struct nvmm_x64_state *state, size_t adsize)
529 1.10 maxv {
530 1.10 maxv uint64_t mask, cnt;
531 1.10 maxv
532 1.15 maxv mask = size_to_mask(adsize);
533 1.10 maxv cnt = state->gprs[NVMM_X64_GPR_RCX] & mask;
534 1.10 maxv
535 1.10 maxv return cnt;
536 1.10 maxv }
537 1.10 maxv
538 1.10 maxv static void
539 1.10 maxv rep_set_cnt(struct nvmm_x64_state *state, size_t adsize, uint64_t cnt)
540 1.10 maxv {
541 1.10 maxv uint64_t mask;
542 1.10 maxv
543 1.15 maxv /* XXX: should we zero-extend? */
544 1.15 maxv mask = size_to_mask(adsize);
545 1.10 maxv state->gprs[NVMM_X64_GPR_RCX] &= ~mask;
546 1.10 maxv state->gprs[NVMM_X64_GPR_RCX] |= cnt;
547 1.10 maxv }
548 1.10 maxv
549 1.6 maxv static int
550 1.6 maxv read_guest_memory(struct nvmm_machine *mach, struct nvmm_x64_state *state,
551 1.6 maxv gvaddr_t gva, uint8_t *data, size_t size)
552 1.6 maxv {
553 1.6 maxv struct nvmm_mem mem;
554 1.6 maxv nvmm_prot_t prot;
555 1.6 maxv gpaddr_t gpa;
556 1.6 maxv uintptr_t hva;
557 1.6 maxv bool is_mmio;
558 1.6 maxv int ret, remain;
559 1.6 maxv
560 1.6 maxv ret = x86_gva_to_gpa(mach, state, gva, &gpa, &prot);
561 1.6 maxv if (__predict_false(ret == -1)) {
562 1.6 maxv return -1;
563 1.6 maxv }
564 1.6 maxv if (__predict_false(!(prot & NVMM_PROT_READ))) {
565 1.6 maxv errno = EFAULT;
566 1.6 maxv return -1;
567 1.6 maxv }
568 1.6 maxv
569 1.6 maxv if ((gva & PAGE_MASK) + size > PAGE_SIZE) {
570 1.6 maxv remain = ((gva & PAGE_MASK) + size - PAGE_SIZE);
571 1.6 maxv } else {
572 1.6 maxv remain = 0;
573 1.6 maxv }
574 1.6 maxv size -= remain;
575 1.6 maxv
576 1.28 maxv ret = nvmm_gpa_to_hva(mach, gpa, &hva, &prot);
577 1.6 maxv is_mmio = (ret == -1);
578 1.6 maxv
579 1.6 maxv if (is_mmio) {
580 1.11 maxv mem.data = data;
581 1.6 maxv mem.gpa = gpa;
582 1.6 maxv mem.write = false;
583 1.6 maxv mem.size = size;
584 1.30 maxv (*mach->cbs.mem)(&mem);
585 1.6 maxv } else {
586 1.28 maxv if (__predict_false(!(prot & NVMM_PROT_READ))) {
587 1.28 maxv errno = EFAULT;
588 1.28 maxv return -1;
589 1.28 maxv }
590 1.6 maxv memcpy(data, (uint8_t *)hva, size);
591 1.6 maxv }
592 1.6 maxv
593 1.6 maxv if (remain > 0) {
594 1.6 maxv ret = read_guest_memory(mach, state, gva + size,
595 1.6 maxv data + size, remain);
596 1.6 maxv } else {
597 1.6 maxv ret = 0;
598 1.6 maxv }
599 1.6 maxv
600 1.6 maxv return ret;
601 1.6 maxv }
602 1.6 maxv
603 1.6 maxv static int
604 1.6 maxv write_guest_memory(struct nvmm_machine *mach, struct nvmm_x64_state *state,
605 1.6 maxv gvaddr_t gva, uint8_t *data, size_t size)
606 1.6 maxv {
607 1.6 maxv struct nvmm_mem mem;
608 1.6 maxv nvmm_prot_t prot;
609 1.6 maxv gpaddr_t gpa;
610 1.6 maxv uintptr_t hva;
611 1.6 maxv bool is_mmio;
612 1.6 maxv int ret, remain;
613 1.6 maxv
614 1.6 maxv ret = x86_gva_to_gpa(mach, state, gva, &gpa, &prot);
615 1.6 maxv if (__predict_false(ret == -1)) {
616 1.6 maxv return -1;
617 1.6 maxv }
618 1.6 maxv if (__predict_false(!(prot & NVMM_PROT_WRITE))) {
619 1.6 maxv errno = EFAULT;
620 1.6 maxv return -1;
621 1.6 maxv }
622 1.6 maxv
623 1.6 maxv if ((gva & PAGE_MASK) + size > PAGE_SIZE) {
624 1.6 maxv remain = ((gva & PAGE_MASK) + size - PAGE_SIZE);
625 1.6 maxv } else {
626 1.6 maxv remain = 0;
627 1.6 maxv }
628 1.6 maxv size -= remain;
629 1.6 maxv
630 1.28 maxv ret = nvmm_gpa_to_hva(mach, gpa, &hva, &prot);
631 1.6 maxv is_mmio = (ret == -1);
632 1.6 maxv
633 1.6 maxv if (is_mmio) {
634 1.11 maxv mem.data = data;
635 1.6 maxv mem.gpa = gpa;
636 1.6 maxv mem.write = true;
637 1.6 maxv mem.size = size;
638 1.30 maxv (*mach->cbs.mem)(&mem);
639 1.6 maxv } else {
640 1.28 maxv if (__predict_false(!(prot & NVMM_PROT_WRITE))) {
641 1.28 maxv errno = EFAULT;
642 1.28 maxv return -1;
643 1.28 maxv }
644 1.6 maxv memcpy((uint8_t *)hva, data, size);
645 1.6 maxv }
646 1.6 maxv
647 1.6 maxv if (remain > 0) {
648 1.6 maxv ret = write_guest_memory(mach, state, gva + size,
649 1.6 maxv data + size, remain);
650 1.6 maxv } else {
651 1.6 maxv ret = 0;
652 1.6 maxv }
653 1.6 maxv
654 1.6 maxv return ret;
655 1.6 maxv }
656 1.6 maxv
657 1.6 maxv /* -------------------------------------------------------------------------- */
658 1.6 maxv
659 1.8 maxv static int fetch_segment(struct nvmm_machine *, struct nvmm_x64_state *);
660 1.8 maxv
661 1.10 maxv #define NVMM_IO_BATCH_SIZE 32
662 1.10 maxv
663 1.10 maxv static int
664 1.10 maxv assist_io_batch(struct nvmm_machine *mach, struct nvmm_x64_state *state,
665 1.10 maxv struct nvmm_io *io, gvaddr_t gva, uint64_t cnt)
666 1.10 maxv {
667 1.10 maxv uint8_t iobuf[NVMM_IO_BATCH_SIZE];
668 1.10 maxv size_t i, iosize, iocnt;
669 1.10 maxv int ret;
670 1.10 maxv
671 1.10 maxv cnt = MIN(cnt, NVMM_IO_BATCH_SIZE);
672 1.10 maxv iosize = MIN(io->size * cnt, NVMM_IO_BATCH_SIZE);
673 1.10 maxv iocnt = iosize / io->size;
674 1.10 maxv
675 1.10 maxv io->data = iobuf;
676 1.10 maxv
677 1.10 maxv if (!io->in) {
678 1.10 maxv ret = read_guest_memory(mach, state, gva, iobuf, iosize);
679 1.10 maxv if (ret == -1)
680 1.10 maxv return -1;
681 1.10 maxv }
682 1.10 maxv
683 1.10 maxv for (i = 0; i < iocnt; i++) {
684 1.30 maxv (*mach->cbs.io)(io);
685 1.10 maxv io->data += io->size;
686 1.10 maxv }
687 1.10 maxv
688 1.10 maxv if (io->in) {
689 1.10 maxv ret = write_guest_memory(mach, state, gva, iobuf, iosize);
690 1.10 maxv if (ret == -1)
691 1.10 maxv return -1;
692 1.10 maxv }
693 1.10 maxv
694 1.10 maxv return iocnt;
695 1.10 maxv }
696 1.10 maxv
697 1.1 maxv int
698 1.31 maxv nvmm_assist_io(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
699 1.1 maxv {
700 1.31 maxv struct nvmm_x64_state *state = vcpu->state;
701 1.31 maxv struct nvmm_exit *exit = vcpu->exit;
702 1.1 maxv struct nvmm_io io;
703 1.10 maxv uint64_t cnt = 0; /* GCC */
704 1.10 maxv uint8_t iobuf[8];
705 1.10 maxv int iocnt = 1;
706 1.15 maxv gvaddr_t gva = 0; /* GCC */
707 1.5 maxv int reg = 0; /* GCC */
708 1.8 maxv int ret, seg;
709 1.10 maxv bool psld = false;
710 1.1 maxv
711 1.1 maxv if (__predict_false(exit->reason != NVMM_EXIT_IO)) {
712 1.1 maxv errno = EINVAL;
713 1.1 maxv return -1;
714 1.1 maxv }
715 1.1 maxv
716 1.1 maxv io.port = exit->u.io.port;
717 1.1 maxv io.in = (exit->u.io.type == NVMM_EXIT_IO_IN);
718 1.1 maxv io.size = exit->u.io.operand_size;
719 1.10 maxv io.data = iobuf;
720 1.1 maxv
721 1.31 maxv ret = nvmm_vcpu_getstate(mach, vcpu,
722 1.1 maxv NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
723 1.1 maxv NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
724 1.1 maxv if (ret == -1)
725 1.1 maxv return -1;
726 1.1 maxv
727 1.10 maxv if (exit->u.io.rep) {
728 1.31 maxv cnt = rep_get_cnt(state, exit->u.io.address_size);
729 1.10 maxv if (__predict_false(cnt == 0)) {
730 1.31 maxv state->gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
731 1.15 maxv goto out;
732 1.10 maxv }
733 1.10 maxv }
734 1.10 maxv
735 1.31 maxv if (__predict_false(state->gprs[NVMM_X64_GPR_RFLAGS] & PSL_D)) {
736 1.10 maxv psld = true;
737 1.10 maxv }
738 1.10 maxv
739 1.6 maxv /*
740 1.6 maxv * Determine GVA.
741 1.6 maxv */
742 1.6 maxv if (exit->u.io.str) {
743 1.5 maxv if (io.in) {
744 1.5 maxv reg = NVMM_X64_GPR_RDI;
745 1.5 maxv } else {
746 1.5 maxv reg = NVMM_X64_GPR_RSI;
747 1.5 maxv }
748 1.1 maxv
749 1.31 maxv gva = state->gprs[reg];
750 1.15 maxv gva &= size_to_mask(exit->u.io.address_size);
751 1.1 maxv
752 1.15 maxv if (exit->u.io.seg != -1) {
753 1.15 maxv seg = exit->u.io.seg;
754 1.15 maxv } else {
755 1.15 maxv if (io.in) {
756 1.15 maxv seg = NVMM_X64_SEG_ES;
757 1.8 maxv } else {
758 1.31 maxv seg = fetch_segment(mach, state);
759 1.15 maxv if (seg == -1)
760 1.15 maxv return -1;
761 1.8 maxv }
762 1.15 maxv }
763 1.8 maxv
764 1.31 maxv if (__predict_true(is_long_mode(state))) {
765 1.15 maxv if (seg == NVMM_X64_SEG_GS || seg == NVMM_X64_SEG_FS) {
766 1.31 maxv segment_apply(&state->segs[seg], &gva);
767 1.15 maxv }
768 1.15 maxv } else {
769 1.31 maxv ret = segment_check(&state->segs[seg], gva, io.size);
770 1.1 maxv if (ret == -1)
771 1.1 maxv return -1;
772 1.31 maxv segment_apply(&state->segs[seg], &gva);
773 1.1 maxv }
774 1.10 maxv
775 1.10 maxv if (exit->u.io.rep && !psld) {
776 1.31 maxv iocnt = assist_io_batch(mach, state, &io, gva, cnt);
777 1.10 maxv if (iocnt == -1)
778 1.10 maxv return -1;
779 1.10 maxv goto done;
780 1.10 maxv }
781 1.6 maxv }
782 1.1 maxv
783 1.6 maxv if (!io.in) {
784 1.6 maxv if (!exit->u.io.str) {
785 1.31 maxv memcpy(io.data, &state->gprs[NVMM_X64_GPR_RAX], io.size);
786 1.6 maxv } else {
787 1.31 maxv ret = read_guest_memory(mach, state, gva, io.data,
788 1.6 maxv io.size);
789 1.1 maxv if (ret == -1)
790 1.1 maxv return -1;
791 1.1 maxv }
792 1.1 maxv }
793 1.1 maxv
794 1.30 maxv (*mach->cbs.io)(&io);
795 1.1 maxv
796 1.1 maxv if (io.in) {
797 1.6 maxv if (!exit->u.io.str) {
798 1.31 maxv memcpy(&state->gprs[NVMM_X64_GPR_RAX], io.data, io.size);
799 1.15 maxv if (io.size == 4) {
800 1.15 maxv /* Zero-extend to 64 bits. */
801 1.31 maxv state->gprs[NVMM_X64_GPR_RAX] &= size_to_mask(4);
802 1.15 maxv }
803 1.1 maxv } else {
804 1.31 maxv ret = write_guest_memory(mach, state, gva, io.data,
805 1.6 maxv io.size);
806 1.6 maxv if (ret == -1)
807 1.6 maxv return -1;
808 1.1 maxv }
809 1.1 maxv }
810 1.1 maxv
811 1.10 maxv done:
812 1.5 maxv if (exit->u.io.str) {
813 1.10 maxv if (__predict_false(psld)) {
814 1.31 maxv state->gprs[reg] -= iocnt * io.size;
815 1.5 maxv } else {
816 1.31 maxv state->gprs[reg] += iocnt * io.size;
817 1.5 maxv }
818 1.5 maxv }
819 1.5 maxv
820 1.1 maxv if (exit->u.io.rep) {
821 1.10 maxv cnt -= iocnt;
822 1.31 maxv rep_set_cnt(state, exit->u.io.address_size, cnt);
823 1.6 maxv if (cnt == 0) {
824 1.31 maxv state->gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
825 1.1 maxv }
826 1.1 maxv } else {
827 1.31 maxv state->gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
828 1.1 maxv }
829 1.1 maxv
830 1.15 maxv out:
831 1.31 maxv ret = nvmm_vcpu_setstate(mach, vcpu, NVMM_X64_STATE_GPRS);
832 1.1 maxv if (ret == -1)
833 1.1 maxv return -1;
834 1.1 maxv
835 1.1 maxv return 0;
836 1.1 maxv }
837 1.1 maxv
838 1.1 maxv /* -------------------------------------------------------------------------- */
839 1.1 maxv
840 1.19 maxv struct x86_emul {
841 1.19 maxv bool read;
842 1.19 maxv bool notouch;
843 1.30 maxv void (*func)(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
844 1.19 maxv };
845 1.19 maxv
846 1.30 maxv static void x86_func_or(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
847 1.30 maxv static void x86_func_and(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
848 1.30 maxv static void x86_func_sub(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
849 1.30 maxv static void x86_func_xor(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
850 1.30 maxv static void x86_func_cmp(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
851 1.30 maxv static void x86_func_test(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
852 1.30 maxv static void x86_func_mov(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
853 1.30 maxv static void x86_func_stos(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
854 1.30 maxv static void x86_func_lods(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
855 1.30 maxv static void x86_func_movs(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
856 1.19 maxv
857 1.19 maxv static const struct x86_emul x86_emul_or = {
858 1.19 maxv .read = true,
859 1.19 maxv .func = x86_func_or
860 1.19 maxv };
861 1.19 maxv
862 1.19 maxv static const struct x86_emul x86_emul_and = {
863 1.19 maxv .read = true,
864 1.19 maxv .func = x86_func_and
865 1.19 maxv };
866 1.19 maxv
867 1.19 maxv static const struct x86_emul x86_emul_sub = {
868 1.19 maxv .read = true,
869 1.19 maxv .func = x86_func_sub
870 1.19 maxv };
871 1.19 maxv
872 1.19 maxv static const struct x86_emul x86_emul_xor = {
873 1.19 maxv .read = true,
874 1.19 maxv .func = x86_func_xor
875 1.19 maxv };
876 1.19 maxv
877 1.19 maxv static const struct x86_emul x86_emul_cmp = {
878 1.19 maxv .notouch = true,
879 1.19 maxv .func = x86_func_cmp
880 1.19 maxv };
881 1.19 maxv
882 1.19 maxv static const struct x86_emul x86_emul_test = {
883 1.19 maxv .notouch = true,
884 1.19 maxv .func = x86_func_test
885 1.19 maxv };
886 1.19 maxv
887 1.19 maxv static const struct x86_emul x86_emul_mov = {
888 1.19 maxv .func = x86_func_mov
889 1.19 maxv };
890 1.19 maxv
891 1.19 maxv static const struct x86_emul x86_emul_stos = {
892 1.19 maxv .func = x86_func_stos
893 1.19 maxv };
894 1.19 maxv
895 1.19 maxv static const struct x86_emul x86_emul_lods = {
896 1.19 maxv .func = x86_func_lods
897 1.19 maxv };
898 1.19 maxv
899 1.19 maxv static const struct x86_emul x86_emul_movs = {
900 1.19 maxv .func = x86_func_movs
901 1.19 maxv };
902 1.5 maxv
903 1.13 maxv /* Legacy prefixes. */
904 1.13 maxv #define LEG_LOCK 0xF0
905 1.13 maxv #define LEG_REPN 0xF2
906 1.13 maxv #define LEG_REP 0xF3
907 1.13 maxv #define LEG_OVR_CS 0x2E
908 1.13 maxv #define LEG_OVR_SS 0x36
909 1.13 maxv #define LEG_OVR_DS 0x3E
910 1.13 maxv #define LEG_OVR_ES 0x26
911 1.13 maxv #define LEG_OVR_FS 0x64
912 1.13 maxv #define LEG_OVR_GS 0x65
913 1.13 maxv #define LEG_OPR_OVR 0x66
914 1.13 maxv #define LEG_ADR_OVR 0x67
915 1.13 maxv
916 1.13 maxv struct x86_legpref {
917 1.13 maxv bool opr_ovr:1;
918 1.13 maxv bool adr_ovr:1;
919 1.13 maxv bool rep:1;
920 1.13 maxv bool repn:1;
921 1.27 maxv int8_t seg;
922 1.5 maxv };
923 1.5 maxv
924 1.5 maxv struct x86_rexpref {
925 1.27 maxv bool b:1;
926 1.27 maxv bool x:1;
927 1.27 maxv bool r:1;
928 1.27 maxv bool w:1;
929 1.27 maxv bool present:1;
930 1.5 maxv };
931 1.5 maxv
932 1.5 maxv struct x86_reg {
933 1.5 maxv int num; /* NVMM GPR state index */
934 1.5 maxv uint64_t mask;
935 1.5 maxv };
936 1.5 maxv
937 1.32 maxv struct x86_dualreg {
938 1.32 maxv int reg1;
939 1.32 maxv int reg2;
940 1.32 maxv };
941 1.32 maxv
942 1.5 maxv enum x86_disp_type {
943 1.5 maxv DISP_NONE,
944 1.5 maxv DISP_0,
945 1.5 maxv DISP_1,
946 1.32 maxv DISP_2,
947 1.5 maxv DISP_4
948 1.5 maxv };
949 1.5 maxv
950 1.5 maxv struct x86_disp {
951 1.5 maxv enum x86_disp_type type;
952 1.11 maxv uint64_t data; /* 4 bytes, but can be sign-extended */
953 1.5 maxv };
954 1.5 maxv
955 1.5 maxv struct x86_regmodrm {
956 1.27 maxv uint8_t mod:2;
957 1.27 maxv uint8_t reg:3;
958 1.27 maxv uint8_t rm:3;
959 1.5 maxv };
960 1.5 maxv
961 1.5 maxv struct x86_immediate {
962 1.11 maxv uint64_t data;
963 1.5 maxv };
964 1.5 maxv
965 1.5 maxv struct x86_sib {
966 1.5 maxv uint8_t scale;
967 1.5 maxv const struct x86_reg *idx;
968 1.5 maxv const struct x86_reg *bas;
969 1.5 maxv };
970 1.5 maxv
971 1.5 maxv enum x86_store_type {
972 1.5 maxv STORE_NONE,
973 1.5 maxv STORE_REG,
974 1.32 maxv STORE_DUALREG,
975 1.5 maxv STORE_IMM,
976 1.5 maxv STORE_SIB,
977 1.5 maxv STORE_DMO
978 1.5 maxv };
979 1.5 maxv
980 1.5 maxv struct x86_store {
981 1.5 maxv enum x86_store_type type;
982 1.5 maxv union {
983 1.5 maxv const struct x86_reg *reg;
984 1.32 maxv struct x86_dualreg dualreg;
985 1.5 maxv struct x86_immediate imm;
986 1.5 maxv struct x86_sib sib;
987 1.5 maxv uint64_t dmo;
988 1.5 maxv } u;
989 1.5 maxv struct x86_disp disp;
990 1.6 maxv int hardseg;
991 1.5 maxv };
992 1.5 maxv
993 1.5 maxv struct x86_instr {
994 1.27 maxv uint8_t len;
995 1.13 maxv struct x86_legpref legpref;
996 1.5 maxv struct x86_rexpref rexpref;
997 1.27 maxv struct x86_regmodrm regmodrm;
998 1.27 maxv uint8_t operand_size;
999 1.27 maxv uint8_t address_size;
1000 1.10 maxv uint64_t zeroextend_mask;
1001 1.5 maxv
1002 1.5 maxv const struct x86_opcode *opcode;
1003 1.27 maxv const struct x86_emul *emul;
1004 1.5 maxv
1005 1.5 maxv struct x86_store src;
1006 1.5 maxv struct x86_store dst;
1007 1.5 maxv struct x86_store *strm;
1008 1.5 maxv };
1009 1.5 maxv
1010 1.5 maxv struct x86_decode_fsm {
1011 1.5 maxv /* vcpu */
1012 1.5 maxv bool is64bit;
1013 1.5 maxv bool is32bit;
1014 1.5 maxv bool is16bit;
1015 1.5 maxv
1016 1.5 maxv /* fsm */
1017 1.5 maxv int (*fn)(struct x86_decode_fsm *, struct x86_instr *);
1018 1.5 maxv uint8_t *buf;
1019 1.5 maxv uint8_t *end;
1020 1.5 maxv };
1021 1.5 maxv
1022 1.5 maxv struct x86_opcode {
1023 1.27 maxv bool valid:1;
1024 1.27 maxv bool regmodrm:1;
1025 1.27 maxv bool regtorm:1;
1026 1.27 maxv bool dmo:1;
1027 1.27 maxv bool todmo:1;
1028 1.27 maxv bool movs:1;
1029 1.27 maxv bool stos:1;
1030 1.27 maxv bool lods:1;
1031 1.27 maxv bool szoverride:1;
1032 1.27 maxv bool group1:1;
1033 1.27 maxv bool group3:1;
1034 1.27 maxv bool group11:1;
1035 1.27 maxv bool immediate:1;
1036 1.27 maxv uint8_t defsize;
1037 1.27 maxv uint8_t flags;
1038 1.19 maxv const struct x86_emul *emul;
1039 1.5 maxv };
1040 1.5 maxv
1041 1.5 maxv struct x86_group_entry {
1042 1.19 maxv const struct x86_emul *emul;
1043 1.5 maxv };
1044 1.5 maxv
1045 1.5 maxv #define OPSIZE_BYTE 0x01
1046 1.5 maxv #define OPSIZE_WORD 0x02 /* 2 bytes */
1047 1.5 maxv #define OPSIZE_DOUB 0x04 /* 4 bytes */
1048 1.5 maxv #define OPSIZE_QUAD 0x08 /* 8 bytes */
1049 1.5 maxv
1050 1.11 maxv #define FLAG_imm8 0x01
1051 1.11 maxv #define FLAG_immz 0x02
1052 1.11 maxv #define FLAG_ze 0x04
1053 1.11 maxv
1054 1.27 maxv static const struct x86_group_entry group1[8] __cacheline_aligned = {
1055 1.19 maxv [1] = { .emul = &x86_emul_or },
1056 1.19 maxv [4] = { .emul = &x86_emul_and },
1057 1.19 maxv [6] = { .emul = &x86_emul_xor },
1058 1.19 maxv [7] = { .emul = &x86_emul_cmp }
1059 1.19 maxv };
1060 1.19 maxv
1061 1.27 maxv static const struct x86_group_entry group3[8] __cacheline_aligned = {
1062 1.19 maxv [0] = { .emul = &x86_emul_test },
1063 1.19 maxv [1] = { .emul = &x86_emul_test }
1064 1.11 maxv };
1065 1.5 maxv
1066 1.27 maxv static const struct x86_group_entry group11[8] __cacheline_aligned = {
1067 1.19 maxv [0] = { .emul = &x86_emul_mov }
1068 1.5 maxv };
1069 1.5 maxv
1070 1.27 maxv static const struct x86_opcode primary_opcode_table[256] __cacheline_aligned = {
1071 1.5 maxv /*
1072 1.11 maxv * Group1
1073 1.11 maxv */
1074 1.27 maxv [0x80] = {
1075 1.19 maxv /* Eb, Ib */
1076 1.27 maxv .valid = true,
1077 1.19 maxv .regmodrm = true,
1078 1.19 maxv .regtorm = true,
1079 1.19 maxv .szoverride = false,
1080 1.19 maxv .defsize = OPSIZE_BYTE,
1081 1.19 maxv .group1 = true,
1082 1.19 maxv .immediate = true,
1083 1.19 maxv .emul = NULL /* group1 */
1084 1.19 maxv },
1085 1.27 maxv [0x81] = {
1086 1.15 maxv /* Ev, Iz */
1087 1.27 maxv .valid = true,
1088 1.15 maxv .regmodrm = true,
1089 1.15 maxv .regtorm = true,
1090 1.15 maxv .szoverride = true,
1091 1.15 maxv .defsize = -1,
1092 1.15 maxv .group1 = true,
1093 1.15 maxv .immediate = true,
1094 1.15 maxv .flags = FLAG_immz,
1095 1.15 maxv .emul = NULL /* group1 */
1096 1.15 maxv },
1097 1.27 maxv [0x83] = {
1098 1.11 maxv /* Ev, Ib */
1099 1.27 maxv .valid = true,
1100 1.11 maxv .regmodrm = true,
1101 1.11 maxv .regtorm = true,
1102 1.11 maxv .szoverride = true,
1103 1.11 maxv .defsize = -1,
1104 1.11 maxv .group1 = true,
1105 1.11 maxv .immediate = true,
1106 1.11 maxv .flags = FLAG_imm8,
1107 1.11 maxv .emul = NULL /* group1 */
1108 1.11 maxv },
1109 1.11 maxv
1110 1.11 maxv /*
1111 1.19 maxv * Group3
1112 1.19 maxv */
1113 1.27 maxv [0xF6] = {
1114 1.19 maxv /* Eb, Ib */
1115 1.27 maxv .valid = true,
1116 1.19 maxv .regmodrm = true,
1117 1.19 maxv .regtorm = true,
1118 1.19 maxv .szoverride = false,
1119 1.19 maxv .defsize = OPSIZE_BYTE,
1120 1.19 maxv .group3 = true,
1121 1.19 maxv .immediate = true,
1122 1.19 maxv .emul = NULL /* group3 */
1123 1.19 maxv },
1124 1.27 maxv [0xF7] = {
1125 1.19 maxv /* Ev, Iz */
1126 1.27 maxv .valid = true,
1127 1.19 maxv .regmodrm = true,
1128 1.19 maxv .regtorm = true,
1129 1.19 maxv .szoverride = true,
1130 1.19 maxv .defsize = -1,
1131 1.19 maxv .group3 = true,
1132 1.19 maxv .immediate = true,
1133 1.19 maxv .flags = FLAG_immz,
1134 1.19 maxv .emul = NULL /* group3 */
1135 1.19 maxv },
1136 1.19 maxv
1137 1.19 maxv /*
1138 1.5 maxv * Group11
1139 1.5 maxv */
1140 1.27 maxv [0xC6] = {
1141 1.11 maxv /* Eb, Ib */
1142 1.27 maxv .valid = true,
1143 1.5 maxv .regmodrm = true,
1144 1.5 maxv .regtorm = true,
1145 1.5 maxv .szoverride = false,
1146 1.5 maxv .defsize = OPSIZE_BYTE,
1147 1.5 maxv .group11 = true,
1148 1.5 maxv .immediate = true,
1149 1.5 maxv .emul = NULL /* group11 */
1150 1.5 maxv },
1151 1.27 maxv [0xC7] = {
1152 1.11 maxv /* Ev, Iz */
1153 1.27 maxv .valid = true,
1154 1.5 maxv .regmodrm = true,
1155 1.5 maxv .regtorm = true,
1156 1.5 maxv .szoverride = true,
1157 1.5 maxv .defsize = -1,
1158 1.5 maxv .group11 = true,
1159 1.5 maxv .immediate = true,
1160 1.11 maxv .flags = FLAG_immz,
1161 1.5 maxv .emul = NULL /* group11 */
1162 1.5 maxv },
1163 1.5 maxv
1164 1.5 maxv /*
1165 1.5 maxv * OR
1166 1.5 maxv */
1167 1.27 maxv [0x08] = {
1168 1.5 maxv /* Eb, Gb */
1169 1.27 maxv .valid = true,
1170 1.5 maxv .regmodrm = true,
1171 1.5 maxv .regtorm = true,
1172 1.5 maxv .szoverride = false,
1173 1.5 maxv .defsize = OPSIZE_BYTE,
1174 1.19 maxv .emul = &x86_emul_or
1175 1.5 maxv },
1176 1.27 maxv [0x09] = {
1177 1.5 maxv /* Ev, Gv */
1178 1.27 maxv .valid = true,
1179 1.5 maxv .regmodrm = true,
1180 1.5 maxv .regtorm = true,
1181 1.5 maxv .szoverride = true,
1182 1.5 maxv .defsize = -1,
1183 1.19 maxv .emul = &x86_emul_or
1184 1.5 maxv },
1185 1.27 maxv [0x0A] = {
1186 1.5 maxv /* Gb, Eb */
1187 1.27 maxv .valid = true,
1188 1.5 maxv .regmodrm = true,
1189 1.5 maxv .regtorm = false,
1190 1.5 maxv .szoverride = false,
1191 1.5 maxv .defsize = OPSIZE_BYTE,
1192 1.19 maxv .emul = &x86_emul_or
1193 1.5 maxv },
1194 1.27 maxv [0x0B] = {
1195 1.5 maxv /* Gv, Ev */
1196 1.27 maxv .valid = true,
1197 1.5 maxv .regmodrm = true,
1198 1.5 maxv .regtorm = false,
1199 1.5 maxv .szoverride = true,
1200 1.5 maxv .defsize = -1,
1201 1.19 maxv .emul = &x86_emul_or
1202 1.5 maxv },
1203 1.5 maxv
1204 1.5 maxv /*
1205 1.5 maxv * AND
1206 1.5 maxv */
1207 1.27 maxv [0x20] = {
1208 1.5 maxv /* Eb, Gb */
1209 1.27 maxv .valid = true,
1210 1.5 maxv .regmodrm = true,
1211 1.5 maxv .regtorm = true,
1212 1.5 maxv .szoverride = false,
1213 1.5 maxv .defsize = OPSIZE_BYTE,
1214 1.19 maxv .emul = &x86_emul_and
1215 1.5 maxv },
1216 1.27 maxv [0x21] = {
1217 1.5 maxv /* Ev, Gv */
1218 1.27 maxv .valid = true,
1219 1.5 maxv .regmodrm = true,
1220 1.5 maxv .regtorm = true,
1221 1.5 maxv .szoverride = true,
1222 1.5 maxv .defsize = -1,
1223 1.19 maxv .emul = &x86_emul_and
1224 1.5 maxv },
1225 1.27 maxv [0x22] = {
1226 1.5 maxv /* Gb, Eb */
1227 1.27 maxv .valid = true,
1228 1.5 maxv .regmodrm = true,
1229 1.5 maxv .regtorm = false,
1230 1.5 maxv .szoverride = false,
1231 1.5 maxv .defsize = OPSIZE_BYTE,
1232 1.19 maxv .emul = &x86_emul_and
1233 1.5 maxv },
1234 1.27 maxv [0x23] = {
1235 1.5 maxv /* Gv, Ev */
1236 1.27 maxv .valid = true,
1237 1.5 maxv .regmodrm = true,
1238 1.5 maxv .regtorm = false,
1239 1.5 maxv .szoverride = true,
1240 1.5 maxv .defsize = -1,
1241 1.19 maxv .emul = &x86_emul_and
1242 1.19 maxv },
1243 1.19 maxv
1244 1.19 maxv /*
1245 1.19 maxv * SUB
1246 1.19 maxv */
1247 1.27 maxv [0x28] = {
1248 1.19 maxv /* Eb, Gb */
1249 1.27 maxv .valid = true,
1250 1.19 maxv .regmodrm = true,
1251 1.19 maxv .regtorm = true,
1252 1.19 maxv .szoverride = false,
1253 1.19 maxv .defsize = OPSIZE_BYTE,
1254 1.19 maxv .emul = &x86_emul_sub
1255 1.19 maxv },
1256 1.27 maxv [0x29] = {
1257 1.19 maxv /* Ev, Gv */
1258 1.27 maxv .valid = true,
1259 1.19 maxv .regmodrm = true,
1260 1.19 maxv .regtorm = true,
1261 1.19 maxv .szoverride = true,
1262 1.19 maxv .defsize = -1,
1263 1.19 maxv .emul = &x86_emul_sub
1264 1.19 maxv },
1265 1.27 maxv [0x2A] = {
1266 1.19 maxv /* Gb, Eb */
1267 1.27 maxv .valid = true,
1268 1.19 maxv .regmodrm = true,
1269 1.19 maxv .regtorm = false,
1270 1.19 maxv .szoverride = false,
1271 1.19 maxv .defsize = OPSIZE_BYTE,
1272 1.19 maxv .emul = &x86_emul_sub
1273 1.19 maxv },
1274 1.27 maxv [0x2B] = {
1275 1.19 maxv /* Gv, Ev */
1276 1.27 maxv .valid = true,
1277 1.19 maxv .regmodrm = true,
1278 1.19 maxv .regtorm = false,
1279 1.19 maxv .szoverride = true,
1280 1.19 maxv .defsize = -1,
1281 1.19 maxv .emul = &x86_emul_sub
1282 1.5 maxv },
1283 1.5 maxv
1284 1.5 maxv /*
1285 1.5 maxv * XOR
1286 1.5 maxv */
1287 1.27 maxv [0x30] = {
1288 1.5 maxv /* Eb, Gb */
1289 1.27 maxv .valid = true,
1290 1.5 maxv .regmodrm = true,
1291 1.5 maxv .regtorm = true,
1292 1.5 maxv .szoverride = false,
1293 1.5 maxv .defsize = OPSIZE_BYTE,
1294 1.19 maxv .emul = &x86_emul_xor
1295 1.5 maxv },
1296 1.27 maxv [0x31] = {
1297 1.5 maxv /* Ev, Gv */
1298 1.27 maxv .valid = true,
1299 1.5 maxv .regmodrm = true,
1300 1.5 maxv .regtorm = true,
1301 1.5 maxv .szoverride = true,
1302 1.5 maxv .defsize = -1,
1303 1.19 maxv .emul = &x86_emul_xor
1304 1.5 maxv },
1305 1.27 maxv [0x32] = {
1306 1.5 maxv /* Gb, Eb */
1307 1.27 maxv .valid = true,
1308 1.5 maxv .regmodrm = true,
1309 1.5 maxv .regtorm = false,
1310 1.5 maxv .szoverride = false,
1311 1.5 maxv .defsize = OPSIZE_BYTE,
1312 1.19 maxv .emul = &x86_emul_xor
1313 1.5 maxv },
1314 1.27 maxv [0x33] = {
1315 1.5 maxv /* Gv, Ev */
1316 1.27 maxv .valid = true,
1317 1.5 maxv .regmodrm = true,
1318 1.5 maxv .regtorm = false,
1319 1.5 maxv .szoverride = true,
1320 1.5 maxv .defsize = -1,
1321 1.19 maxv .emul = &x86_emul_xor
1322 1.5 maxv },
1323 1.5 maxv
1324 1.5 maxv /*
1325 1.5 maxv * MOV
1326 1.5 maxv */
1327 1.27 maxv [0x88] = {
1328 1.5 maxv /* Eb, Gb */
1329 1.27 maxv .valid = true,
1330 1.5 maxv .regmodrm = true,
1331 1.5 maxv .regtorm = true,
1332 1.5 maxv .szoverride = false,
1333 1.5 maxv .defsize = OPSIZE_BYTE,
1334 1.19 maxv .emul = &x86_emul_mov
1335 1.5 maxv },
1336 1.27 maxv [0x89] = {
1337 1.5 maxv /* Ev, Gv */
1338 1.27 maxv .valid = true,
1339 1.5 maxv .regmodrm = true,
1340 1.5 maxv .regtorm = true,
1341 1.5 maxv .szoverride = true,
1342 1.5 maxv .defsize = -1,
1343 1.19 maxv .emul = &x86_emul_mov
1344 1.5 maxv },
1345 1.27 maxv [0x8A] = {
1346 1.5 maxv /* Gb, Eb */
1347 1.27 maxv .valid = true,
1348 1.5 maxv .regmodrm = true,
1349 1.5 maxv .regtorm = false,
1350 1.5 maxv .szoverride = false,
1351 1.5 maxv .defsize = OPSIZE_BYTE,
1352 1.19 maxv .emul = &x86_emul_mov
1353 1.5 maxv },
1354 1.27 maxv [0x8B] = {
1355 1.5 maxv /* Gv, Ev */
1356 1.27 maxv .valid = true,
1357 1.5 maxv .regmodrm = true,
1358 1.5 maxv .regtorm = false,
1359 1.5 maxv .szoverride = true,
1360 1.5 maxv .defsize = -1,
1361 1.19 maxv .emul = &x86_emul_mov
1362 1.5 maxv },
1363 1.27 maxv [0xA0] = {
1364 1.5 maxv /* AL, Ob */
1365 1.27 maxv .valid = true,
1366 1.5 maxv .dmo = true,
1367 1.5 maxv .todmo = false,
1368 1.5 maxv .szoverride = false,
1369 1.5 maxv .defsize = OPSIZE_BYTE,
1370 1.19 maxv .emul = &x86_emul_mov
1371 1.5 maxv },
1372 1.27 maxv [0xA1] = {
1373 1.5 maxv /* rAX, Ov */
1374 1.27 maxv .valid = true,
1375 1.5 maxv .dmo = true,
1376 1.5 maxv .todmo = false,
1377 1.5 maxv .szoverride = true,
1378 1.5 maxv .defsize = -1,
1379 1.19 maxv .emul = &x86_emul_mov
1380 1.5 maxv },
1381 1.27 maxv [0xA2] = {
1382 1.5 maxv /* Ob, AL */
1383 1.27 maxv .valid = true,
1384 1.5 maxv .dmo = true,
1385 1.5 maxv .todmo = true,
1386 1.5 maxv .szoverride = false,
1387 1.5 maxv .defsize = OPSIZE_BYTE,
1388 1.19 maxv .emul = &x86_emul_mov
1389 1.5 maxv },
1390 1.27 maxv [0xA3] = {
1391 1.5 maxv /* Ov, rAX */
1392 1.27 maxv .valid = true,
1393 1.5 maxv .dmo = true,
1394 1.5 maxv .todmo = true,
1395 1.5 maxv .szoverride = true,
1396 1.5 maxv .defsize = -1,
1397 1.19 maxv .emul = &x86_emul_mov
1398 1.5 maxv },
1399 1.5 maxv
1400 1.5 maxv /*
1401 1.6 maxv * MOVS
1402 1.6 maxv */
1403 1.27 maxv [0xA4] = {
1404 1.6 maxv /* Yb, Xb */
1405 1.27 maxv .valid = true,
1406 1.6 maxv .movs = true,
1407 1.6 maxv .szoverride = false,
1408 1.6 maxv .defsize = OPSIZE_BYTE,
1409 1.19 maxv .emul = &x86_emul_movs
1410 1.6 maxv },
1411 1.27 maxv [0xA5] = {
1412 1.6 maxv /* Yv, Xv */
1413 1.27 maxv .valid = true,
1414 1.6 maxv .movs = true,
1415 1.6 maxv .szoverride = true,
1416 1.6 maxv .defsize = -1,
1417 1.19 maxv .emul = &x86_emul_movs
1418 1.6 maxv },
1419 1.6 maxv
1420 1.6 maxv /*
1421 1.5 maxv * STOS
1422 1.5 maxv */
1423 1.27 maxv [0xAA] = {
1424 1.5 maxv /* Yb, AL */
1425 1.27 maxv .valid = true,
1426 1.5 maxv .stos = true,
1427 1.5 maxv .szoverride = false,
1428 1.5 maxv .defsize = OPSIZE_BYTE,
1429 1.19 maxv .emul = &x86_emul_stos
1430 1.5 maxv },
1431 1.27 maxv [0xAB] = {
1432 1.5 maxv /* Yv, rAX */
1433 1.27 maxv .valid = true,
1434 1.5 maxv .stos = true,
1435 1.5 maxv .szoverride = true,
1436 1.5 maxv .defsize = -1,
1437 1.19 maxv .emul = &x86_emul_stos
1438 1.5 maxv },
1439 1.5 maxv
1440 1.5 maxv /*
1441 1.5 maxv * LODS
1442 1.5 maxv */
1443 1.27 maxv [0xAC] = {
1444 1.5 maxv /* AL, Xb */
1445 1.27 maxv .valid = true,
1446 1.5 maxv .lods = true,
1447 1.5 maxv .szoverride = false,
1448 1.5 maxv .defsize = OPSIZE_BYTE,
1449 1.19 maxv .emul = &x86_emul_lods
1450 1.5 maxv },
1451 1.27 maxv [0xAD] = {
1452 1.5 maxv /* rAX, Xv */
1453 1.27 maxv .valid = true,
1454 1.5 maxv .lods = true,
1455 1.5 maxv .szoverride = true,
1456 1.5 maxv .defsize = -1,
1457 1.19 maxv .emul = &x86_emul_lods
1458 1.5 maxv },
1459 1.5 maxv };
1460 1.5 maxv
1461 1.27 maxv static const struct x86_opcode secondary_opcode_table[256] __cacheline_aligned = {
1462 1.10 maxv /*
1463 1.10 maxv * MOVZX
1464 1.10 maxv */
1465 1.27 maxv [0xB6] = {
1466 1.10 maxv /* Gv, Eb */
1467 1.27 maxv .valid = true,
1468 1.10 maxv .regmodrm = true,
1469 1.10 maxv .regtorm = false,
1470 1.10 maxv .szoverride = true,
1471 1.10 maxv .defsize = OPSIZE_BYTE,
1472 1.11 maxv .flags = FLAG_ze,
1473 1.19 maxv .emul = &x86_emul_mov
1474 1.10 maxv },
1475 1.27 maxv [0xB7] = {
1476 1.10 maxv /* Gv, Ew */
1477 1.27 maxv .valid = true,
1478 1.10 maxv .regmodrm = true,
1479 1.10 maxv .regtorm = false,
1480 1.10 maxv .szoverride = true,
1481 1.10 maxv .defsize = OPSIZE_WORD,
1482 1.11 maxv .flags = FLAG_ze,
1483 1.19 maxv .emul = &x86_emul_mov
1484 1.10 maxv },
1485 1.10 maxv };
1486 1.10 maxv
1487 1.5 maxv static const struct x86_reg gpr_map__rip = { NVMM_X64_GPR_RIP, 0xFFFFFFFFFFFFFFFF };
1488 1.5 maxv
1489 1.5 maxv /* [REX-present][enc][opsize] */
1490 1.27 maxv static const struct x86_reg gpr_map__special[2][4][8] __cacheline_aligned = {
1491 1.5 maxv [false] = {
1492 1.5 maxv /* No REX prefix. */
1493 1.5 maxv [0b00] = {
1494 1.5 maxv [0] = { NVMM_X64_GPR_RAX, 0x000000000000FF00 }, /* AH */
1495 1.5 maxv [1] = { NVMM_X64_GPR_RSP, 0x000000000000FFFF }, /* SP */
1496 1.5 maxv [2] = { -1, 0 },
1497 1.5 maxv [3] = { NVMM_X64_GPR_RSP, 0x00000000FFFFFFFF }, /* ESP */
1498 1.5 maxv [4] = { -1, 0 },
1499 1.5 maxv [5] = { -1, 0 },
1500 1.5 maxv [6] = { -1, 0 },
1501 1.5 maxv [7] = { -1, 0 },
1502 1.5 maxv },
1503 1.5 maxv [0b01] = {
1504 1.5 maxv [0] = { NVMM_X64_GPR_RCX, 0x000000000000FF00 }, /* CH */
1505 1.5 maxv [1] = { NVMM_X64_GPR_RBP, 0x000000000000FFFF }, /* BP */
1506 1.5 maxv [2] = { -1, 0 },
1507 1.5 maxv [3] = { NVMM_X64_GPR_RBP, 0x00000000FFFFFFFF }, /* EBP */
1508 1.5 maxv [4] = { -1, 0 },
1509 1.5 maxv [5] = { -1, 0 },
1510 1.5 maxv [6] = { -1, 0 },
1511 1.5 maxv [7] = { -1, 0 },
1512 1.5 maxv },
1513 1.5 maxv [0b10] = {
1514 1.5 maxv [0] = { NVMM_X64_GPR_RDX, 0x000000000000FF00 }, /* DH */
1515 1.5 maxv [1] = { NVMM_X64_GPR_RSI, 0x000000000000FFFF }, /* SI */
1516 1.5 maxv [2] = { -1, 0 },
1517 1.5 maxv [3] = { NVMM_X64_GPR_RSI, 0x00000000FFFFFFFF }, /* ESI */
1518 1.5 maxv [4] = { -1, 0 },
1519 1.5 maxv [5] = { -1, 0 },
1520 1.5 maxv [6] = { -1, 0 },
1521 1.5 maxv [7] = { -1, 0 },
1522 1.5 maxv },
1523 1.5 maxv [0b11] = {
1524 1.5 maxv [0] = { NVMM_X64_GPR_RBX, 0x000000000000FF00 }, /* BH */
1525 1.5 maxv [1] = { NVMM_X64_GPR_RDI, 0x000000000000FFFF }, /* DI */
1526 1.5 maxv [2] = { -1, 0 },
1527 1.5 maxv [3] = { NVMM_X64_GPR_RDI, 0x00000000FFFFFFFF }, /* EDI */
1528 1.5 maxv [4] = { -1, 0 },
1529 1.5 maxv [5] = { -1, 0 },
1530 1.5 maxv [6] = { -1, 0 },
1531 1.5 maxv [7] = { -1, 0 },
1532 1.5 maxv }
1533 1.5 maxv },
1534 1.5 maxv [true] = {
1535 1.5 maxv /* Has REX prefix. */
1536 1.5 maxv [0b00] = {
1537 1.5 maxv [0] = { NVMM_X64_GPR_RSP, 0x00000000000000FF }, /* SPL */
1538 1.5 maxv [1] = { NVMM_X64_GPR_RSP, 0x000000000000FFFF }, /* SP */
1539 1.5 maxv [2] = { -1, 0 },
1540 1.5 maxv [3] = { NVMM_X64_GPR_RSP, 0x00000000FFFFFFFF }, /* ESP */
1541 1.5 maxv [4] = { -1, 0 },
1542 1.5 maxv [5] = { -1, 0 },
1543 1.5 maxv [6] = { -1, 0 },
1544 1.5 maxv [7] = { NVMM_X64_GPR_RSP, 0xFFFFFFFFFFFFFFFF }, /* RSP */
1545 1.5 maxv },
1546 1.5 maxv [0b01] = {
1547 1.5 maxv [0] = { NVMM_X64_GPR_RBP, 0x00000000000000FF }, /* BPL */
1548 1.5 maxv [1] = { NVMM_X64_GPR_RBP, 0x000000000000FFFF }, /* BP */
1549 1.5 maxv [2] = { -1, 0 },
1550 1.5 maxv [3] = { NVMM_X64_GPR_RBP, 0x00000000FFFFFFFF }, /* EBP */
1551 1.5 maxv [4] = { -1, 0 },
1552 1.5 maxv [5] = { -1, 0 },
1553 1.5 maxv [6] = { -1, 0 },
1554 1.5 maxv [7] = { NVMM_X64_GPR_RBP, 0xFFFFFFFFFFFFFFFF }, /* RBP */
1555 1.5 maxv },
1556 1.5 maxv [0b10] = {
1557 1.5 maxv [0] = { NVMM_X64_GPR_RSI, 0x00000000000000FF }, /* SIL */
1558 1.5 maxv [1] = { NVMM_X64_GPR_RSI, 0x000000000000FFFF }, /* SI */
1559 1.5 maxv [2] = { -1, 0 },
1560 1.5 maxv [3] = { NVMM_X64_GPR_RSI, 0x00000000FFFFFFFF }, /* ESI */
1561 1.5 maxv [4] = { -1, 0 },
1562 1.5 maxv [5] = { -1, 0 },
1563 1.5 maxv [6] = { -1, 0 },
1564 1.5 maxv [7] = { NVMM_X64_GPR_RSI, 0xFFFFFFFFFFFFFFFF }, /* RSI */
1565 1.5 maxv },
1566 1.5 maxv [0b11] = {
1567 1.5 maxv [0] = { NVMM_X64_GPR_RDI, 0x00000000000000FF }, /* DIL */
1568 1.5 maxv [1] = { NVMM_X64_GPR_RDI, 0x000000000000FFFF }, /* DI */
1569 1.5 maxv [2] = { -1, 0 },
1570 1.5 maxv [3] = { NVMM_X64_GPR_RDI, 0x00000000FFFFFFFF }, /* EDI */
1571 1.5 maxv [4] = { -1, 0 },
1572 1.5 maxv [5] = { -1, 0 },
1573 1.5 maxv [6] = { -1, 0 },
1574 1.5 maxv [7] = { NVMM_X64_GPR_RDI, 0xFFFFFFFFFFFFFFFF }, /* RDI */
1575 1.5 maxv }
1576 1.5 maxv }
1577 1.5 maxv };
1578 1.5 maxv
1579 1.5 maxv /* [depends][enc][size] */
1580 1.27 maxv static const struct x86_reg gpr_map[2][8][8] __cacheline_aligned = {
1581 1.5 maxv [false] = {
1582 1.5 maxv /* Not extended. */
1583 1.5 maxv [0b000] = {
1584 1.5 maxv [0] = { NVMM_X64_GPR_RAX, 0x00000000000000FF }, /* AL */
1585 1.5 maxv [1] = { NVMM_X64_GPR_RAX, 0x000000000000FFFF }, /* AX */
1586 1.5 maxv [2] = { -1, 0 },
1587 1.5 maxv [3] = { NVMM_X64_GPR_RAX, 0x00000000FFFFFFFF }, /* EAX */
1588 1.5 maxv [4] = { -1, 0 },
1589 1.5 maxv [5] = { -1, 0 },
1590 1.5 maxv [6] = { -1, 0 },
1591 1.18 maxv [7] = { NVMM_X64_GPR_RAX, 0xFFFFFFFFFFFFFFFF }, /* RAX */
1592 1.5 maxv },
1593 1.5 maxv [0b001] = {
1594 1.5 maxv [0] = { NVMM_X64_GPR_RCX, 0x00000000000000FF }, /* CL */
1595 1.5 maxv [1] = { NVMM_X64_GPR_RCX, 0x000000000000FFFF }, /* CX */
1596 1.5 maxv [2] = { -1, 0 },
1597 1.5 maxv [3] = { NVMM_X64_GPR_RCX, 0x00000000FFFFFFFF }, /* ECX */
1598 1.5 maxv [4] = { -1, 0 },
1599 1.5 maxv [5] = { -1, 0 },
1600 1.5 maxv [6] = { -1, 0 },
1601 1.18 maxv [7] = { NVMM_X64_GPR_RCX, 0xFFFFFFFFFFFFFFFF }, /* RCX */
1602 1.5 maxv },
1603 1.5 maxv [0b010] = {
1604 1.5 maxv [0] = { NVMM_X64_GPR_RDX, 0x00000000000000FF }, /* DL */
1605 1.5 maxv [1] = { NVMM_X64_GPR_RDX, 0x000000000000FFFF }, /* DX */
1606 1.5 maxv [2] = { -1, 0 },
1607 1.5 maxv [3] = { NVMM_X64_GPR_RDX, 0x00000000FFFFFFFF }, /* EDX */
1608 1.5 maxv [4] = { -1, 0 },
1609 1.5 maxv [5] = { -1, 0 },
1610 1.5 maxv [6] = { -1, 0 },
1611 1.18 maxv [7] = { NVMM_X64_GPR_RDX, 0xFFFFFFFFFFFFFFFF }, /* RDX */
1612 1.5 maxv },
1613 1.5 maxv [0b011] = {
1614 1.5 maxv [0] = { NVMM_X64_GPR_RBX, 0x00000000000000FF }, /* BL */
1615 1.5 maxv [1] = { NVMM_X64_GPR_RBX, 0x000000000000FFFF }, /* BX */
1616 1.5 maxv [2] = { -1, 0 },
1617 1.5 maxv [3] = { NVMM_X64_GPR_RBX, 0x00000000FFFFFFFF }, /* EBX */
1618 1.5 maxv [4] = { -1, 0 },
1619 1.5 maxv [5] = { -1, 0 },
1620 1.5 maxv [6] = { -1, 0 },
1621 1.18 maxv [7] = { NVMM_X64_GPR_RBX, 0xFFFFFFFFFFFFFFFF }, /* RBX */
1622 1.5 maxv },
1623 1.5 maxv [0b100] = {
1624 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1625 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1626 1.5 maxv [2] = { -1, 0 },
1627 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1628 1.5 maxv [4] = { -1, 0 },
1629 1.5 maxv [5] = { -1, 0 },
1630 1.5 maxv [6] = { -1, 0 },
1631 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1632 1.5 maxv },
1633 1.5 maxv [0b101] = {
1634 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1635 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1636 1.5 maxv [2] = { -1, 0 },
1637 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1638 1.5 maxv [4] = { -1, 0 },
1639 1.5 maxv [5] = { -1, 0 },
1640 1.5 maxv [6] = { -1, 0 },
1641 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1642 1.5 maxv },
1643 1.5 maxv [0b110] = {
1644 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1645 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1646 1.5 maxv [2] = { -1, 0 },
1647 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1648 1.5 maxv [4] = { -1, 0 },
1649 1.5 maxv [5] = { -1, 0 },
1650 1.5 maxv [6] = { -1, 0 },
1651 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1652 1.5 maxv },
1653 1.5 maxv [0b111] = {
1654 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1655 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1656 1.5 maxv [2] = { -1, 0 },
1657 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1658 1.5 maxv [4] = { -1, 0 },
1659 1.5 maxv [5] = { -1, 0 },
1660 1.5 maxv [6] = { -1, 0 },
1661 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1662 1.5 maxv },
1663 1.5 maxv },
1664 1.5 maxv [true] = {
1665 1.5 maxv /* Extended. */
1666 1.5 maxv [0b000] = {
1667 1.5 maxv [0] = { NVMM_X64_GPR_R8, 0x00000000000000FF }, /* R8B */
1668 1.5 maxv [1] = { NVMM_X64_GPR_R8, 0x000000000000FFFF }, /* R8W */
1669 1.5 maxv [2] = { -1, 0 },
1670 1.5 maxv [3] = { NVMM_X64_GPR_R8, 0x00000000FFFFFFFF }, /* R8D */
1671 1.5 maxv [4] = { -1, 0 },
1672 1.5 maxv [5] = { -1, 0 },
1673 1.5 maxv [6] = { -1, 0 },
1674 1.18 maxv [7] = { NVMM_X64_GPR_R8, 0xFFFFFFFFFFFFFFFF }, /* R8 */
1675 1.5 maxv },
1676 1.5 maxv [0b001] = {
1677 1.5 maxv [0] = { NVMM_X64_GPR_R9, 0x00000000000000FF }, /* R9B */
1678 1.5 maxv [1] = { NVMM_X64_GPR_R9, 0x000000000000FFFF }, /* R9W */
1679 1.5 maxv [2] = { -1, 0 },
1680 1.5 maxv [3] = { NVMM_X64_GPR_R9, 0x00000000FFFFFFFF }, /* R9D */
1681 1.5 maxv [4] = { -1, 0 },
1682 1.5 maxv [5] = { -1, 0 },
1683 1.5 maxv [6] = { -1, 0 },
1684 1.18 maxv [7] = { NVMM_X64_GPR_R9, 0xFFFFFFFFFFFFFFFF }, /* R9 */
1685 1.5 maxv },
1686 1.5 maxv [0b010] = {
1687 1.5 maxv [0] = { NVMM_X64_GPR_R10, 0x00000000000000FF }, /* R10B */
1688 1.5 maxv [1] = { NVMM_X64_GPR_R10, 0x000000000000FFFF }, /* R10W */
1689 1.5 maxv [2] = { -1, 0 },
1690 1.5 maxv [3] = { NVMM_X64_GPR_R10, 0x00000000FFFFFFFF }, /* R10D */
1691 1.5 maxv [4] = { -1, 0 },
1692 1.5 maxv [5] = { -1, 0 },
1693 1.5 maxv [6] = { -1, 0 },
1694 1.18 maxv [7] = { NVMM_X64_GPR_R10, 0xFFFFFFFFFFFFFFFF }, /* R10 */
1695 1.5 maxv },
1696 1.5 maxv [0b011] = {
1697 1.5 maxv [0] = { NVMM_X64_GPR_R11, 0x00000000000000FF }, /* R11B */
1698 1.5 maxv [1] = { NVMM_X64_GPR_R11, 0x000000000000FFFF }, /* R11W */
1699 1.5 maxv [2] = { -1, 0 },
1700 1.5 maxv [3] = { NVMM_X64_GPR_R11, 0x00000000FFFFFFFF }, /* R11D */
1701 1.5 maxv [4] = { -1, 0 },
1702 1.5 maxv [5] = { -1, 0 },
1703 1.5 maxv [6] = { -1, 0 },
1704 1.18 maxv [7] = { NVMM_X64_GPR_R11, 0xFFFFFFFFFFFFFFFF }, /* R11 */
1705 1.5 maxv },
1706 1.5 maxv [0b100] = {
1707 1.5 maxv [0] = { NVMM_X64_GPR_R12, 0x00000000000000FF }, /* R12B */
1708 1.5 maxv [1] = { NVMM_X64_GPR_R12, 0x000000000000FFFF }, /* R12W */
1709 1.5 maxv [2] = { -1, 0 },
1710 1.5 maxv [3] = { NVMM_X64_GPR_R12, 0x00000000FFFFFFFF }, /* R12D */
1711 1.5 maxv [4] = { -1, 0 },
1712 1.5 maxv [5] = { -1, 0 },
1713 1.5 maxv [6] = { -1, 0 },
1714 1.18 maxv [7] = { NVMM_X64_GPR_R12, 0xFFFFFFFFFFFFFFFF }, /* R12 */
1715 1.5 maxv },
1716 1.5 maxv [0b101] = {
1717 1.5 maxv [0] = { NVMM_X64_GPR_R13, 0x00000000000000FF }, /* R13B */
1718 1.5 maxv [1] = { NVMM_X64_GPR_R13, 0x000000000000FFFF }, /* R13W */
1719 1.5 maxv [2] = { -1, 0 },
1720 1.5 maxv [3] = { NVMM_X64_GPR_R13, 0x00000000FFFFFFFF }, /* R13D */
1721 1.5 maxv [4] = { -1, 0 },
1722 1.5 maxv [5] = { -1, 0 },
1723 1.5 maxv [6] = { -1, 0 },
1724 1.18 maxv [7] = { NVMM_X64_GPR_R13, 0xFFFFFFFFFFFFFFFF }, /* R13 */
1725 1.5 maxv },
1726 1.5 maxv [0b110] = {
1727 1.5 maxv [0] = { NVMM_X64_GPR_R14, 0x00000000000000FF }, /* R14B */
1728 1.5 maxv [1] = { NVMM_X64_GPR_R14, 0x000000000000FFFF }, /* R14W */
1729 1.5 maxv [2] = { -1, 0 },
1730 1.5 maxv [3] = { NVMM_X64_GPR_R14, 0x00000000FFFFFFFF }, /* R14D */
1731 1.5 maxv [4] = { -1, 0 },
1732 1.5 maxv [5] = { -1, 0 },
1733 1.5 maxv [6] = { -1, 0 },
1734 1.18 maxv [7] = { NVMM_X64_GPR_R14, 0xFFFFFFFFFFFFFFFF }, /* R14 */
1735 1.5 maxv },
1736 1.5 maxv [0b111] = {
1737 1.5 maxv [0] = { NVMM_X64_GPR_R15, 0x00000000000000FF }, /* R15B */
1738 1.5 maxv [1] = { NVMM_X64_GPR_R15, 0x000000000000FFFF }, /* R15W */
1739 1.5 maxv [2] = { -1, 0 },
1740 1.5 maxv [3] = { NVMM_X64_GPR_R15, 0x00000000FFFFFFFF }, /* R15D */
1741 1.5 maxv [4] = { -1, 0 },
1742 1.5 maxv [5] = { -1, 0 },
1743 1.5 maxv [6] = { -1, 0 },
1744 1.18 maxv [7] = { NVMM_X64_GPR_R15, 0xFFFFFFFFFFFFFFFF }, /* R15 */
1745 1.5 maxv },
1746 1.5 maxv }
1747 1.5 maxv };
1748 1.5 maxv
1749 1.32 maxv /* [enc] */
1750 1.32 maxv static const int gpr_dual_reg1_rm[8] __cacheline_aligned = {
1751 1.32 maxv [0b000] = NVMM_X64_GPR_RBX, /* BX (+SI) */
1752 1.32 maxv [0b001] = NVMM_X64_GPR_RBX, /* BX (+DI) */
1753 1.32 maxv [0b010] = NVMM_X64_GPR_RBP, /* BP (+SI) */
1754 1.32 maxv [0b011] = NVMM_X64_GPR_RBP, /* BP (+DI) */
1755 1.32 maxv [0b100] = NVMM_X64_GPR_RSI, /* SI */
1756 1.32 maxv [0b101] = NVMM_X64_GPR_RDI, /* DI */
1757 1.32 maxv [0b110] = NVMM_X64_GPR_RBP, /* BP */
1758 1.32 maxv [0b111] = NVMM_X64_GPR_RBX, /* BX */
1759 1.32 maxv };
1760 1.32 maxv
1761 1.5 maxv static int
1762 1.5 maxv node_overflow(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1763 1.5 maxv {
1764 1.5 maxv fsm->fn = NULL;
1765 1.5 maxv return -1;
1766 1.5 maxv }
1767 1.5 maxv
1768 1.5 maxv static int
1769 1.5 maxv fsm_read(struct x86_decode_fsm *fsm, uint8_t *bytes, size_t n)
1770 1.5 maxv {
1771 1.5 maxv if (fsm->buf + n > fsm->end) {
1772 1.5 maxv return -1;
1773 1.5 maxv }
1774 1.5 maxv memcpy(bytes, fsm->buf, n);
1775 1.5 maxv return 0;
1776 1.5 maxv }
1777 1.5 maxv
1778 1.27 maxv static inline void
1779 1.5 maxv fsm_advance(struct x86_decode_fsm *fsm, size_t n,
1780 1.5 maxv int (*fn)(struct x86_decode_fsm *, struct x86_instr *))
1781 1.5 maxv {
1782 1.5 maxv fsm->buf += n;
1783 1.5 maxv if (fsm->buf > fsm->end) {
1784 1.5 maxv fsm->fn = node_overflow;
1785 1.5 maxv } else {
1786 1.5 maxv fsm->fn = fn;
1787 1.5 maxv }
1788 1.5 maxv }
1789 1.5 maxv
1790 1.5 maxv static const struct x86_reg *
1791 1.5 maxv resolve_special_register(struct x86_instr *instr, uint8_t enc, size_t regsize)
1792 1.5 maxv {
1793 1.5 maxv enc &= 0b11;
1794 1.5 maxv if (regsize == 8) {
1795 1.5 maxv /* May be 64bit without REX */
1796 1.5 maxv return &gpr_map__special[1][enc][regsize-1];
1797 1.5 maxv }
1798 1.5 maxv return &gpr_map__special[instr->rexpref.present][enc][regsize-1];
1799 1.5 maxv }
1800 1.5 maxv
1801 1.5 maxv /*
1802 1.6 maxv * Special node, for MOVS. Fake two displacements of zero on the source and
1803 1.6 maxv * destination registers.
1804 1.6 maxv */
1805 1.6 maxv static int
1806 1.6 maxv node_movs(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1807 1.6 maxv {
1808 1.6 maxv size_t adrsize;
1809 1.6 maxv
1810 1.6 maxv adrsize = instr->address_size;
1811 1.6 maxv
1812 1.6 maxv /* DS:RSI */
1813 1.6 maxv instr->src.type = STORE_REG;
1814 1.6 maxv instr->src.u.reg = &gpr_map__special[1][2][adrsize-1];
1815 1.6 maxv instr->src.disp.type = DISP_0;
1816 1.6 maxv
1817 1.6 maxv /* ES:RDI, force ES */
1818 1.6 maxv instr->dst.type = STORE_REG;
1819 1.6 maxv instr->dst.u.reg = &gpr_map__special[1][3][adrsize-1];
1820 1.6 maxv instr->dst.disp.type = DISP_0;
1821 1.6 maxv instr->dst.hardseg = NVMM_X64_SEG_ES;
1822 1.6 maxv
1823 1.6 maxv fsm_advance(fsm, 0, NULL);
1824 1.6 maxv
1825 1.6 maxv return 0;
1826 1.6 maxv }
1827 1.6 maxv
1828 1.6 maxv /*
1829 1.5 maxv * Special node, for STOS and LODS. Fake a displacement of zero on the
1830 1.5 maxv * destination register.
1831 1.5 maxv */
1832 1.5 maxv static int
1833 1.5 maxv node_stlo(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1834 1.5 maxv {
1835 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1836 1.5 maxv struct x86_store *stlo, *streg;
1837 1.5 maxv size_t adrsize, regsize;
1838 1.5 maxv
1839 1.5 maxv adrsize = instr->address_size;
1840 1.5 maxv regsize = instr->operand_size;
1841 1.5 maxv
1842 1.5 maxv if (opcode->stos) {
1843 1.5 maxv streg = &instr->src;
1844 1.5 maxv stlo = &instr->dst;
1845 1.5 maxv } else {
1846 1.5 maxv streg = &instr->dst;
1847 1.5 maxv stlo = &instr->src;
1848 1.5 maxv }
1849 1.5 maxv
1850 1.5 maxv streg->type = STORE_REG;
1851 1.5 maxv streg->u.reg = &gpr_map[0][0][regsize-1]; /* ?AX */
1852 1.5 maxv
1853 1.5 maxv stlo->type = STORE_REG;
1854 1.5 maxv if (opcode->stos) {
1855 1.5 maxv /* ES:RDI, force ES */
1856 1.5 maxv stlo->u.reg = &gpr_map__special[1][3][adrsize-1];
1857 1.6 maxv stlo->hardseg = NVMM_X64_SEG_ES;
1858 1.5 maxv } else {
1859 1.5 maxv /* DS:RSI */
1860 1.5 maxv stlo->u.reg = &gpr_map__special[1][2][adrsize-1];
1861 1.5 maxv }
1862 1.5 maxv stlo->disp.type = DISP_0;
1863 1.5 maxv
1864 1.5 maxv fsm_advance(fsm, 0, NULL);
1865 1.5 maxv
1866 1.5 maxv return 0;
1867 1.5 maxv }
1868 1.5 maxv
1869 1.5 maxv static int
1870 1.5 maxv node_dmo(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1871 1.5 maxv {
1872 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1873 1.5 maxv struct x86_store *stdmo, *streg;
1874 1.5 maxv size_t adrsize, regsize;
1875 1.5 maxv
1876 1.5 maxv adrsize = instr->address_size;
1877 1.5 maxv regsize = instr->operand_size;
1878 1.5 maxv
1879 1.5 maxv if (opcode->todmo) {
1880 1.5 maxv streg = &instr->src;
1881 1.5 maxv stdmo = &instr->dst;
1882 1.5 maxv } else {
1883 1.5 maxv streg = &instr->dst;
1884 1.5 maxv stdmo = &instr->src;
1885 1.5 maxv }
1886 1.5 maxv
1887 1.5 maxv streg->type = STORE_REG;
1888 1.5 maxv streg->u.reg = &gpr_map[0][0][regsize-1]; /* ?AX */
1889 1.5 maxv
1890 1.5 maxv stdmo->type = STORE_DMO;
1891 1.5 maxv if (fsm_read(fsm, (uint8_t *)&stdmo->u.dmo, adrsize) == -1) {
1892 1.5 maxv return -1;
1893 1.5 maxv }
1894 1.5 maxv fsm_advance(fsm, adrsize, NULL);
1895 1.5 maxv
1896 1.5 maxv return 0;
1897 1.5 maxv }
1898 1.5 maxv
1899 1.15 maxv static inline uint64_t
1900 1.11 maxv sign_extend(uint64_t val, int size)
1901 1.11 maxv {
1902 1.11 maxv if (size == 1) {
1903 1.11 maxv if (val & __BIT(7))
1904 1.11 maxv val |= 0xFFFFFFFFFFFFFF00;
1905 1.11 maxv } else if (size == 2) {
1906 1.11 maxv if (val & __BIT(15))
1907 1.11 maxv val |= 0xFFFFFFFFFFFF0000;
1908 1.11 maxv } else if (size == 4) {
1909 1.11 maxv if (val & __BIT(31))
1910 1.11 maxv val |= 0xFFFFFFFF00000000;
1911 1.11 maxv }
1912 1.11 maxv return val;
1913 1.11 maxv }
1914 1.11 maxv
1915 1.5 maxv static int
1916 1.5 maxv node_immediate(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1917 1.5 maxv {
1918 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1919 1.5 maxv struct x86_store *store;
1920 1.5 maxv uint8_t immsize;
1921 1.11 maxv size_t sesize = 0;
1922 1.5 maxv
1923 1.5 maxv /* The immediate is the source */
1924 1.5 maxv store = &instr->src;
1925 1.5 maxv immsize = instr->operand_size;
1926 1.5 maxv
1927 1.11 maxv if (opcode->flags & FLAG_imm8) {
1928 1.11 maxv sesize = immsize;
1929 1.11 maxv immsize = 1;
1930 1.11 maxv } else if ((opcode->flags & FLAG_immz) && (immsize == 8)) {
1931 1.11 maxv sesize = immsize;
1932 1.5 maxv immsize = 4;
1933 1.5 maxv }
1934 1.5 maxv
1935 1.5 maxv store->type = STORE_IMM;
1936 1.11 maxv if (fsm_read(fsm, (uint8_t *)&store->u.imm.data, immsize) == -1) {
1937 1.5 maxv return -1;
1938 1.5 maxv }
1939 1.15 maxv fsm_advance(fsm, immsize, NULL);
1940 1.5 maxv
1941 1.11 maxv if (sesize != 0) {
1942 1.11 maxv store->u.imm.data = sign_extend(store->u.imm.data, sesize);
1943 1.11 maxv }
1944 1.5 maxv
1945 1.5 maxv return 0;
1946 1.5 maxv }
1947 1.5 maxv
1948 1.5 maxv static int
1949 1.5 maxv node_disp(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1950 1.5 maxv {
1951 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1952 1.11 maxv uint64_t data = 0;
1953 1.5 maxv size_t n;
1954 1.5 maxv
1955 1.5 maxv if (instr->strm->disp.type == DISP_1) {
1956 1.5 maxv n = 1;
1957 1.32 maxv } else if (instr->strm->disp.type == DISP_2) {
1958 1.32 maxv n = 2;
1959 1.32 maxv } else if (instr->strm->disp.type == DISP_4) {
1960 1.5 maxv n = 4;
1961 1.32 maxv } else {
1962 1.32 maxv DISASSEMBLER_BUG();
1963 1.5 maxv }
1964 1.5 maxv
1965 1.11 maxv if (fsm_read(fsm, (uint8_t *)&data, n) == -1) {
1966 1.5 maxv return -1;
1967 1.5 maxv }
1968 1.5 maxv
1969 1.11 maxv if (__predict_true(fsm->is64bit)) {
1970 1.11 maxv data = sign_extend(data, n);
1971 1.11 maxv }
1972 1.11 maxv
1973 1.11 maxv instr->strm->disp.data = data;
1974 1.11 maxv
1975 1.5 maxv if (opcode->immediate) {
1976 1.5 maxv fsm_advance(fsm, n, node_immediate);
1977 1.5 maxv } else {
1978 1.5 maxv fsm_advance(fsm, n, NULL);
1979 1.5 maxv }
1980 1.5 maxv
1981 1.5 maxv return 0;
1982 1.5 maxv }
1983 1.5 maxv
1984 1.32 maxv /*
1985 1.32 maxv * Special node to handle 16bit addressing encoding, which can reference two
1986 1.32 maxv * registers at once.
1987 1.32 maxv */
1988 1.32 maxv static int
1989 1.32 maxv node_dual(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1990 1.32 maxv {
1991 1.32 maxv int reg1, reg2;
1992 1.32 maxv
1993 1.32 maxv reg1 = gpr_dual_reg1_rm[instr->regmodrm.rm];
1994 1.32 maxv
1995 1.32 maxv if (instr->regmodrm.rm == 0b000 ||
1996 1.32 maxv instr->regmodrm.rm == 0b010) {
1997 1.32 maxv reg2 = NVMM_X64_GPR_RSI;
1998 1.32 maxv } else if (instr->regmodrm.rm == 0b001 ||
1999 1.32 maxv instr->regmodrm.rm == 0b011) {
2000 1.32 maxv reg2 = NVMM_X64_GPR_RDI;
2001 1.32 maxv } else {
2002 1.32 maxv DISASSEMBLER_BUG();
2003 1.32 maxv }
2004 1.32 maxv
2005 1.32 maxv instr->strm->type = STORE_DUALREG;
2006 1.32 maxv instr->strm->u.dualreg.reg1 = reg1;
2007 1.32 maxv instr->strm->u.dualreg.reg2 = reg2;
2008 1.32 maxv
2009 1.32 maxv if (instr->strm->disp.type == DISP_NONE) {
2010 1.32 maxv DISASSEMBLER_BUG();
2011 1.32 maxv } else if (instr->strm->disp.type == DISP_0) {
2012 1.32 maxv /* Indirect register addressing mode */
2013 1.32 maxv if (instr->opcode->immediate) {
2014 1.32 maxv fsm_advance(fsm, 1, node_immediate);
2015 1.32 maxv } else {
2016 1.32 maxv fsm_advance(fsm, 1, NULL);
2017 1.32 maxv }
2018 1.32 maxv } else {
2019 1.32 maxv fsm_advance(fsm, 1, node_disp);
2020 1.32 maxv }
2021 1.32 maxv
2022 1.32 maxv return 0;
2023 1.32 maxv }
2024 1.32 maxv
2025 1.5 maxv static const struct x86_reg *
2026 1.5 maxv get_register_idx(struct x86_instr *instr, uint8_t index)
2027 1.5 maxv {
2028 1.5 maxv uint8_t enc = index;
2029 1.5 maxv const struct x86_reg *reg;
2030 1.5 maxv size_t regsize;
2031 1.5 maxv
2032 1.5 maxv regsize = instr->address_size;
2033 1.5 maxv reg = &gpr_map[instr->rexpref.x][enc][regsize-1];
2034 1.5 maxv
2035 1.5 maxv if (reg->num == -1) {
2036 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
2037 1.5 maxv }
2038 1.5 maxv
2039 1.5 maxv return reg;
2040 1.5 maxv }
2041 1.5 maxv
2042 1.5 maxv static const struct x86_reg *
2043 1.5 maxv get_register_bas(struct x86_instr *instr, uint8_t base)
2044 1.5 maxv {
2045 1.5 maxv uint8_t enc = base;
2046 1.5 maxv const struct x86_reg *reg;
2047 1.5 maxv size_t regsize;
2048 1.5 maxv
2049 1.5 maxv regsize = instr->address_size;
2050 1.5 maxv reg = &gpr_map[instr->rexpref.b][enc][regsize-1];
2051 1.5 maxv if (reg->num == -1) {
2052 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
2053 1.5 maxv }
2054 1.5 maxv
2055 1.5 maxv return reg;
2056 1.5 maxv }
2057 1.5 maxv
2058 1.5 maxv static int
2059 1.5 maxv node_sib(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2060 1.5 maxv {
2061 1.5 maxv const struct x86_opcode *opcode;
2062 1.5 maxv uint8_t scale, index, base;
2063 1.5 maxv bool noindex, nobase;
2064 1.5 maxv uint8_t byte;
2065 1.5 maxv
2066 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2067 1.5 maxv return -1;
2068 1.5 maxv }
2069 1.5 maxv
2070 1.5 maxv scale = ((byte & 0b11000000) >> 6);
2071 1.5 maxv index = ((byte & 0b00111000) >> 3);
2072 1.5 maxv base = ((byte & 0b00000111) >> 0);
2073 1.5 maxv
2074 1.5 maxv opcode = instr->opcode;
2075 1.5 maxv
2076 1.5 maxv noindex = false;
2077 1.5 maxv nobase = false;
2078 1.5 maxv
2079 1.5 maxv if (index == 0b100 && !instr->rexpref.x) {
2080 1.5 maxv /* Special case: the index is null */
2081 1.5 maxv noindex = true;
2082 1.5 maxv }
2083 1.5 maxv
2084 1.5 maxv if (instr->regmodrm.mod == 0b00 && base == 0b101) {
2085 1.5 maxv /* Special case: the base is null + disp32 */
2086 1.5 maxv instr->strm->disp.type = DISP_4;
2087 1.5 maxv nobase = true;
2088 1.5 maxv }
2089 1.5 maxv
2090 1.5 maxv instr->strm->type = STORE_SIB;
2091 1.5 maxv instr->strm->u.sib.scale = (1 << scale);
2092 1.5 maxv if (!noindex)
2093 1.5 maxv instr->strm->u.sib.idx = get_register_idx(instr, index);
2094 1.5 maxv if (!nobase)
2095 1.5 maxv instr->strm->u.sib.bas = get_register_bas(instr, base);
2096 1.5 maxv
2097 1.5 maxv /* May have a displacement, or an immediate */
2098 1.32 maxv if (instr->strm->disp.type == DISP_1 ||
2099 1.32 maxv instr->strm->disp.type == DISP_2 ||
2100 1.32 maxv instr->strm->disp.type == DISP_4) {
2101 1.5 maxv fsm_advance(fsm, 1, node_disp);
2102 1.5 maxv } else if (opcode->immediate) {
2103 1.5 maxv fsm_advance(fsm, 1, node_immediate);
2104 1.5 maxv } else {
2105 1.5 maxv fsm_advance(fsm, 1, NULL);
2106 1.5 maxv }
2107 1.5 maxv
2108 1.5 maxv return 0;
2109 1.5 maxv }
2110 1.5 maxv
2111 1.5 maxv static const struct x86_reg *
2112 1.5 maxv get_register_reg(struct x86_instr *instr, const struct x86_opcode *opcode)
2113 1.5 maxv {
2114 1.5 maxv uint8_t enc = instr->regmodrm.reg;
2115 1.5 maxv const struct x86_reg *reg;
2116 1.5 maxv size_t regsize;
2117 1.5 maxv
2118 1.11 maxv regsize = instr->operand_size;
2119 1.5 maxv
2120 1.5 maxv reg = &gpr_map[instr->rexpref.r][enc][regsize-1];
2121 1.5 maxv if (reg->num == -1) {
2122 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
2123 1.5 maxv }
2124 1.5 maxv
2125 1.5 maxv return reg;
2126 1.5 maxv }
2127 1.5 maxv
2128 1.5 maxv static const struct x86_reg *
2129 1.5 maxv get_register_rm(struct x86_instr *instr, const struct x86_opcode *opcode)
2130 1.5 maxv {
2131 1.5 maxv uint8_t enc = instr->regmodrm.rm;
2132 1.5 maxv const struct x86_reg *reg;
2133 1.5 maxv size_t regsize;
2134 1.5 maxv
2135 1.5 maxv if (instr->strm->disp.type == DISP_NONE) {
2136 1.11 maxv regsize = instr->operand_size;
2137 1.5 maxv } else {
2138 1.5 maxv /* Indirect access, the size is that of the address. */
2139 1.5 maxv regsize = instr->address_size;
2140 1.5 maxv }
2141 1.5 maxv
2142 1.5 maxv reg = &gpr_map[instr->rexpref.b][enc][regsize-1];
2143 1.5 maxv if (reg->num == -1) {
2144 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
2145 1.5 maxv }
2146 1.5 maxv
2147 1.5 maxv return reg;
2148 1.5 maxv }
2149 1.5 maxv
2150 1.5 maxv static inline bool
2151 1.5 maxv has_sib(struct x86_instr *instr)
2152 1.5 maxv {
2153 1.32 maxv return (instr->address_size != 2 && /* no SIB in 16bit addressing */
2154 1.32 maxv instr->regmodrm.mod != 0b11 &&
2155 1.32 maxv instr->regmodrm.rm == 0b100);
2156 1.5 maxv }
2157 1.5 maxv
2158 1.5 maxv static inline bool
2159 1.9 maxv is_rip_relative(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2160 1.5 maxv {
2161 1.32 maxv return (fsm->is64bit && /* RIP-relative only in 64bit mode */
2162 1.32 maxv instr->regmodrm.mod == 0b00 &&
2163 1.32 maxv instr->regmodrm.rm == 0b101);
2164 1.9 maxv }
2165 1.9 maxv
2166 1.9 maxv static inline bool
2167 1.9 maxv is_disp32_only(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2168 1.9 maxv {
2169 1.32 maxv return (!fsm->is64bit && /* no disp32-only in 64bit mode */
2170 1.32 maxv instr->address_size != 2 && /* no disp32-only in 16bit addressing */
2171 1.32 maxv instr->regmodrm.mod == 0b00 &&
2172 1.32 maxv instr->regmodrm.rm == 0b101);
2173 1.32 maxv }
2174 1.32 maxv
2175 1.32 maxv static inline bool
2176 1.32 maxv is_disp16_only(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2177 1.32 maxv {
2178 1.32 maxv return (instr->address_size == 2 && /* disp16-only only in 16bit addr */
2179 1.32 maxv instr->regmodrm.mod == 0b00 &&
2180 1.32 maxv instr->regmodrm.rm == 0b110);
2181 1.32 maxv }
2182 1.32 maxv
2183 1.32 maxv static inline bool
2184 1.32 maxv is_dual(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2185 1.32 maxv {
2186 1.32 maxv return (instr->address_size == 2 &&
2187 1.32 maxv instr->regmodrm.mod != 0b11 &&
2188 1.32 maxv instr->regmodrm.rm <= 0b011);
2189 1.5 maxv }
2190 1.5 maxv
2191 1.5 maxv static enum x86_disp_type
2192 1.5 maxv get_disp_type(struct x86_instr *instr)
2193 1.5 maxv {
2194 1.5 maxv switch (instr->regmodrm.mod) {
2195 1.32 maxv case 0b00: /* indirect */
2196 1.5 maxv return DISP_0;
2197 1.32 maxv case 0b01: /* indirect+1 */
2198 1.5 maxv return DISP_1;
2199 1.32 maxv case 0b10: /* indirect+{2,4} */
2200 1.32 maxv if (__predict_false(instr->address_size == 2)) {
2201 1.32 maxv return DISP_2;
2202 1.32 maxv }
2203 1.5 maxv return DISP_4;
2204 1.32 maxv case 0b11: /* direct */
2205 1.5 maxv return DISP_NONE;
2206 1.5 maxv }
2207 1.5 maxv }
2208 1.5 maxv
2209 1.5 maxv static int
2210 1.5 maxv node_regmodrm(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2211 1.5 maxv {
2212 1.5 maxv struct x86_store *strg, *strm;
2213 1.5 maxv const struct x86_opcode *opcode;
2214 1.5 maxv const struct x86_reg *reg;
2215 1.5 maxv uint8_t byte;
2216 1.5 maxv
2217 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2218 1.5 maxv return -1;
2219 1.5 maxv }
2220 1.5 maxv
2221 1.5 maxv opcode = instr->opcode;
2222 1.5 maxv
2223 1.27 maxv instr->regmodrm.rm = ((byte & 0b00000111) >> 0);
2224 1.27 maxv instr->regmodrm.reg = ((byte & 0b00111000) >> 3);
2225 1.5 maxv instr->regmodrm.mod = ((byte & 0b11000000) >> 6);
2226 1.5 maxv
2227 1.5 maxv if (opcode->regtorm) {
2228 1.5 maxv strg = &instr->src;
2229 1.5 maxv strm = &instr->dst;
2230 1.5 maxv } else { /* RM to REG */
2231 1.5 maxv strm = &instr->src;
2232 1.5 maxv strg = &instr->dst;
2233 1.5 maxv }
2234 1.5 maxv
2235 1.5 maxv /* Save for later use. */
2236 1.5 maxv instr->strm = strm;
2237 1.5 maxv
2238 1.5 maxv /*
2239 1.5 maxv * Special cases: Groups. The REG field of REGMODRM is the index in
2240 1.5 maxv * the group. op1 gets overwritten in the Immediate node, if any.
2241 1.5 maxv */
2242 1.11 maxv if (opcode->group1) {
2243 1.11 maxv if (group1[instr->regmodrm.reg].emul == NULL) {
2244 1.11 maxv return -1;
2245 1.11 maxv }
2246 1.11 maxv instr->emul = group1[instr->regmodrm.reg].emul;
2247 1.19 maxv } else if (opcode->group3) {
2248 1.19 maxv if (group3[instr->regmodrm.reg].emul == NULL) {
2249 1.19 maxv return -1;
2250 1.19 maxv }
2251 1.19 maxv instr->emul = group3[instr->regmodrm.reg].emul;
2252 1.11 maxv } else if (opcode->group11) {
2253 1.5 maxv if (group11[instr->regmodrm.reg].emul == NULL) {
2254 1.5 maxv return -1;
2255 1.5 maxv }
2256 1.5 maxv instr->emul = group11[instr->regmodrm.reg].emul;
2257 1.5 maxv }
2258 1.5 maxv
2259 1.16 maxv if (!opcode->immediate) {
2260 1.16 maxv reg = get_register_reg(instr, opcode);
2261 1.16 maxv if (reg == NULL) {
2262 1.16 maxv return -1;
2263 1.16 maxv }
2264 1.16 maxv strg->type = STORE_REG;
2265 1.16 maxv strg->u.reg = reg;
2266 1.5 maxv }
2267 1.5 maxv
2268 1.24 maxv /* The displacement applies to RM. */
2269 1.24 maxv strm->disp.type = get_disp_type(instr);
2270 1.24 maxv
2271 1.5 maxv if (has_sib(instr)) {
2272 1.5 maxv /* Overwrites RM */
2273 1.5 maxv fsm_advance(fsm, 1, node_sib);
2274 1.5 maxv return 0;
2275 1.5 maxv }
2276 1.5 maxv
2277 1.9 maxv if (is_rip_relative(fsm, instr)) {
2278 1.5 maxv /* Overwrites RM */
2279 1.5 maxv strm->type = STORE_REG;
2280 1.5 maxv strm->u.reg = &gpr_map__rip;
2281 1.5 maxv strm->disp.type = DISP_4;
2282 1.5 maxv fsm_advance(fsm, 1, node_disp);
2283 1.5 maxv return 0;
2284 1.5 maxv }
2285 1.5 maxv
2286 1.9 maxv if (is_disp32_only(fsm, instr)) {
2287 1.9 maxv /* Overwrites RM */
2288 1.9 maxv strm->type = STORE_REG;
2289 1.9 maxv strm->u.reg = NULL;
2290 1.9 maxv strm->disp.type = DISP_4;
2291 1.9 maxv fsm_advance(fsm, 1, node_disp);
2292 1.9 maxv return 0;
2293 1.9 maxv }
2294 1.9 maxv
2295 1.32 maxv if (__predict_false(is_disp16_only(fsm, instr))) {
2296 1.32 maxv /* Overwrites RM */
2297 1.32 maxv strm->type = STORE_REG;
2298 1.32 maxv strm->u.reg = NULL;
2299 1.32 maxv strm->disp.type = DISP_2;
2300 1.32 maxv fsm_advance(fsm, 1, node_disp);
2301 1.32 maxv return 0;
2302 1.32 maxv }
2303 1.32 maxv
2304 1.32 maxv if (__predict_false(is_dual(fsm, instr))) {
2305 1.32 maxv /* Overwrites RM */
2306 1.32 maxv fsm_advance(fsm, 0, node_dual);
2307 1.32 maxv return 0;
2308 1.32 maxv }
2309 1.32 maxv
2310 1.5 maxv reg = get_register_rm(instr, opcode);
2311 1.5 maxv if (reg == NULL) {
2312 1.5 maxv return -1;
2313 1.5 maxv }
2314 1.5 maxv strm->type = STORE_REG;
2315 1.5 maxv strm->u.reg = reg;
2316 1.5 maxv
2317 1.5 maxv if (strm->disp.type == DISP_NONE) {
2318 1.5 maxv /* Direct register addressing mode */
2319 1.5 maxv if (opcode->immediate) {
2320 1.5 maxv fsm_advance(fsm, 1, node_immediate);
2321 1.5 maxv } else {
2322 1.5 maxv fsm_advance(fsm, 1, NULL);
2323 1.5 maxv }
2324 1.5 maxv } else if (strm->disp.type == DISP_0) {
2325 1.5 maxv /* Indirect register addressing mode */
2326 1.5 maxv if (opcode->immediate) {
2327 1.5 maxv fsm_advance(fsm, 1, node_immediate);
2328 1.5 maxv } else {
2329 1.5 maxv fsm_advance(fsm, 1, NULL);
2330 1.5 maxv }
2331 1.5 maxv } else {
2332 1.5 maxv fsm_advance(fsm, 1, node_disp);
2333 1.5 maxv }
2334 1.5 maxv
2335 1.5 maxv return 0;
2336 1.5 maxv }
2337 1.5 maxv
2338 1.5 maxv static size_t
2339 1.5 maxv get_operand_size(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2340 1.5 maxv {
2341 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
2342 1.5 maxv int opsize;
2343 1.5 maxv
2344 1.5 maxv /* Get the opsize */
2345 1.5 maxv if (!opcode->szoverride) {
2346 1.5 maxv opsize = opcode->defsize;
2347 1.5 maxv } else if (instr->rexpref.present && instr->rexpref.w) {
2348 1.5 maxv opsize = 8;
2349 1.5 maxv } else {
2350 1.5 maxv if (!fsm->is16bit) {
2351 1.13 maxv if (instr->legpref.opr_ovr) {
2352 1.5 maxv opsize = 2;
2353 1.5 maxv } else {
2354 1.5 maxv opsize = 4;
2355 1.5 maxv }
2356 1.5 maxv } else { /* 16bit */
2357 1.13 maxv if (instr->legpref.opr_ovr) {
2358 1.5 maxv opsize = 4;
2359 1.5 maxv } else {
2360 1.5 maxv opsize = 2;
2361 1.5 maxv }
2362 1.5 maxv }
2363 1.5 maxv }
2364 1.5 maxv
2365 1.5 maxv return opsize;
2366 1.5 maxv }
2367 1.5 maxv
2368 1.5 maxv static size_t
2369 1.5 maxv get_address_size(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2370 1.5 maxv {
2371 1.5 maxv if (fsm->is64bit) {
2372 1.13 maxv if (__predict_false(instr->legpref.adr_ovr)) {
2373 1.5 maxv return 4;
2374 1.5 maxv }
2375 1.5 maxv return 8;
2376 1.5 maxv }
2377 1.5 maxv
2378 1.5 maxv if (fsm->is32bit) {
2379 1.13 maxv if (__predict_false(instr->legpref.adr_ovr)) {
2380 1.5 maxv return 2;
2381 1.5 maxv }
2382 1.5 maxv return 4;
2383 1.5 maxv }
2384 1.5 maxv
2385 1.5 maxv /* 16bit. */
2386 1.13 maxv if (__predict_false(instr->legpref.adr_ovr)) {
2387 1.5 maxv return 4;
2388 1.5 maxv }
2389 1.5 maxv return 2;
2390 1.5 maxv }
2391 1.5 maxv
2392 1.5 maxv static int
2393 1.5 maxv node_primary_opcode(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2394 1.1 maxv {
2395 1.5 maxv const struct x86_opcode *opcode;
2396 1.5 maxv uint8_t byte;
2397 1.5 maxv
2398 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2399 1.5 maxv return -1;
2400 1.5 maxv }
2401 1.5 maxv
2402 1.27 maxv opcode = &primary_opcode_table[byte];
2403 1.27 maxv if (__predict_false(!opcode->valid)) {
2404 1.1 maxv return -1;
2405 1.1 maxv }
2406 1.1 maxv
2407 1.5 maxv instr->opcode = opcode;
2408 1.5 maxv instr->emul = opcode->emul;
2409 1.5 maxv instr->operand_size = get_operand_size(fsm, instr);
2410 1.5 maxv instr->address_size = get_address_size(fsm, instr);
2411 1.5 maxv
2412 1.15 maxv if (fsm->is64bit && (instr->operand_size == 4)) {
2413 1.15 maxv /* Zero-extend to 64 bits. */
2414 1.15 maxv instr->zeroextend_mask = ~size_to_mask(4);
2415 1.15 maxv }
2416 1.15 maxv
2417 1.5 maxv if (opcode->regmodrm) {
2418 1.5 maxv fsm_advance(fsm, 1, node_regmodrm);
2419 1.5 maxv } else if (opcode->dmo) {
2420 1.5 maxv /* Direct-Memory Offsets */
2421 1.5 maxv fsm_advance(fsm, 1, node_dmo);
2422 1.5 maxv } else if (opcode->stos || opcode->lods) {
2423 1.5 maxv fsm_advance(fsm, 1, node_stlo);
2424 1.6 maxv } else if (opcode->movs) {
2425 1.6 maxv fsm_advance(fsm, 1, node_movs);
2426 1.5 maxv } else {
2427 1.5 maxv return -1;
2428 1.5 maxv }
2429 1.5 maxv
2430 1.5 maxv return 0;
2431 1.5 maxv }
2432 1.5 maxv
2433 1.10 maxv static int
2434 1.10 maxv node_secondary_opcode(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2435 1.10 maxv {
2436 1.10 maxv const struct x86_opcode *opcode;
2437 1.10 maxv uint8_t byte;
2438 1.10 maxv
2439 1.10 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2440 1.10 maxv return -1;
2441 1.10 maxv }
2442 1.10 maxv
2443 1.27 maxv opcode = &secondary_opcode_table[byte];
2444 1.27 maxv if (__predict_false(!opcode->valid)) {
2445 1.10 maxv return -1;
2446 1.10 maxv }
2447 1.10 maxv
2448 1.10 maxv instr->opcode = opcode;
2449 1.10 maxv instr->emul = opcode->emul;
2450 1.10 maxv instr->operand_size = get_operand_size(fsm, instr);
2451 1.10 maxv instr->address_size = get_address_size(fsm, instr);
2452 1.10 maxv
2453 1.18 maxv if (fsm->is64bit && (instr->operand_size == 4)) {
2454 1.18 maxv /* Zero-extend to 64 bits. */
2455 1.18 maxv instr->zeroextend_mask = ~size_to_mask(4);
2456 1.18 maxv }
2457 1.18 maxv
2458 1.11 maxv if (opcode->flags & FLAG_ze) {
2459 1.10 maxv /*
2460 1.10 maxv * Compute the mask for zero-extend. Update the operand size,
2461 1.10 maxv * we move fewer bytes.
2462 1.10 maxv */
2463 1.18 maxv instr->zeroextend_mask |= size_to_mask(instr->operand_size);
2464 1.10 maxv instr->zeroextend_mask &= ~size_to_mask(opcode->defsize);
2465 1.10 maxv instr->operand_size = opcode->defsize;
2466 1.10 maxv }
2467 1.10 maxv
2468 1.10 maxv if (opcode->regmodrm) {
2469 1.10 maxv fsm_advance(fsm, 1, node_regmodrm);
2470 1.10 maxv } else {
2471 1.10 maxv return -1;
2472 1.10 maxv }
2473 1.10 maxv
2474 1.10 maxv return 0;
2475 1.10 maxv }
2476 1.10 maxv
2477 1.5 maxv static int
2478 1.5 maxv node_main(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2479 1.5 maxv {
2480 1.5 maxv uint8_t byte;
2481 1.5 maxv
2482 1.5 maxv #define ESCAPE 0x0F
2483 1.5 maxv #define VEX_1 0xC5
2484 1.5 maxv #define VEX_2 0xC4
2485 1.5 maxv #define XOP 0x8F
2486 1.5 maxv
2487 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2488 1.5 maxv return -1;
2489 1.5 maxv }
2490 1.5 maxv
2491 1.5 maxv /*
2492 1.5 maxv * We don't take XOP. It is AMD-specific, and it was removed shortly
2493 1.5 maxv * after being introduced.
2494 1.5 maxv */
2495 1.5 maxv if (byte == ESCAPE) {
2496 1.10 maxv fsm_advance(fsm, 1, node_secondary_opcode);
2497 1.5 maxv } else if (!instr->rexpref.present) {
2498 1.5 maxv if (byte == VEX_1) {
2499 1.5 maxv return -1;
2500 1.5 maxv } else if (byte == VEX_2) {
2501 1.5 maxv return -1;
2502 1.5 maxv } else {
2503 1.5 maxv fsm->fn = node_primary_opcode;
2504 1.5 maxv }
2505 1.5 maxv } else {
2506 1.5 maxv fsm->fn = node_primary_opcode;
2507 1.5 maxv }
2508 1.5 maxv
2509 1.5 maxv return 0;
2510 1.5 maxv }
2511 1.5 maxv
2512 1.5 maxv static int
2513 1.5 maxv node_rex_prefix(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2514 1.5 maxv {
2515 1.5 maxv struct x86_rexpref *rexpref = &instr->rexpref;
2516 1.5 maxv uint8_t byte;
2517 1.5 maxv size_t n = 0;
2518 1.5 maxv
2519 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2520 1.5 maxv return -1;
2521 1.5 maxv }
2522 1.5 maxv
2523 1.5 maxv if (byte >= 0x40 && byte <= 0x4F) {
2524 1.5 maxv if (__predict_false(!fsm->is64bit)) {
2525 1.5 maxv return -1;
2526 1.5 maxv }
2527 1.27 maxv rexpref->b = ((byte & 0x1) != 0);
2528 1.27 maxv rexpref->x = ((byte & 0x2) != 0);
2529 1.27 maxv rexpref->r = ((byte & 0x4) != 0);
2530 1.27 maxv rexpref->w = ((byte & 0x8) != 0);
2531 1.5 maxv rexpref->present = true;
2532 1.5 maxv n = 1;
2533 1.5 maxv }
2534 1.5 maxv
2535 1.5 maxv fsm_advance(fsm, n, node_main);
2536 1.5 maxv return 0;
2537 1.5 maxv }
2538 1.5 maxv
2539 1.5 maxv static int
2540 1.5 maxv node_legacy_prefix(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2541 1.5 maxv {
2542 1.5 maxv uint8_t byte;
2543 1.5 maxv
2544 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2545 1.5 maxv return -1;
2546 1.5 maxv }
2547 1.5 maxv
2548 1.13 maxv if (byte == LEG_OPR_OVR) {
2549 1.13 maxv instr->legpref.opr_ovr = 1;
2550 1.13 maxv } else if (byte == LEG_OVR_DS) {
2551 1.13 maxv instr->legpref.seg = NVMM_X64_SEG_DS;
2552 1.13 maxv } else if (byte == LEG_OVR_ES) {
2553 1.13 maxv instr->legpref.seg = NVMM_X64_SEG_ES;
2554 1.13 maxv } else if (byte == LEG_REP) {
2555 1.13 maxv instr->legpref.rep = 1;
2556 1.13 maxv } else if (byte == LEG_OVR_GS) {
2557 1.13 maxv instr->legpref.seg = NVMM_X64_SEG_GS;
2558 1.13 maxv } else if (byte == LEG_OVR_FS) {
2559 1.13 maxv instr->legpref.seg = NVMM_X64_SEG_FS;
2560 1.13 maxv } else if (byte == LEG_ADR_OVR) {
2561 1.13 maxv instr->legpref.adr_ovr = 1;
2562 1.13 maxv } else if (byte == LEG_OVR_CS) {
2563 1.13 maxv instr->legpref.seg = NVMM_X64_SEG_CS;
2564 1.13 maxv } else if (byte == LEG_OVR_SS) {
2565 1.13 maxv instr->legpref.seg = NVMM_X64_SEG_SS;
2566 1.13 maxv } else if (byte == LEG_REPN) {
2567 1.13 maxv instr->legpref.repn = 1;
2568 1.13 maxv } else if (byte == LEG_LOCK) {
2569 1.13 maxv /* ignore */
2570 1.5 maxv } else {
2571 1.13 maxv /* not a legacy prefix */
2572 1.13 maxv fsm_advance(fsm, 0, node_rex_prefix);
2573 1.13 maxv return 0;
2574 1.5 maxv }
2575 1.5 maxv
2576 1.13 maxv fsm_advance(fsm, 1, node_legacy_prefix);
2577 1.5 maxv return 0;
2578 1.5 maxv }
2579 1.5 maxv
2580 1.5 maxv static int
2581 1.5 maxv x86_decode(uint8_t *inst_bytes, size_t inst_len, struct x86_instr *instr,
2582 1.5 maxv struct nvmm_x64_state *state)
2583 1.5 maxv {
2584 1.5 maxv struct x86_decode_fsm fsm;
2585 1.5 maxv int ret;
2586 1.5 maxv
2587 1.5 maxv memset(instr, 0, sizeof(*instr));
2588 1.13 maxv instr->legpref.seg = -1;
2589 1.25 maxv instr->src.hardseg = -1;
2590 1.25 maxv instr->dst.hardseg = -1;
2591 1.5 maxv
2592 1.5 maxv fsm.is64bit = is_64bit(state);
2593 1.5 maxv fsm.is32bit = is_32bit(state);
2594 1.5 maxv fsm.is16bit = is_16bit(state);
2595 1.5 maxv
2596 1.5 maxv fsm.fn = node_legacy_prefix;
2597 1.5 maxv fsm.buf = inst_bytes;
2598 1.5 maxv fsm.end = inst_bytes + inst_len;
2599 1.5 maxv
2600 1.5 maxv while (fsm.fn != NULL) {
2601 1.5 maxv ret = (*fsm.fn)(&fsm, instr);
2602 1.5 maxv if (ret == -1)
2603 1.5 maxv return -1;
2604 1.5 maxv }
2605 1.5 maxv
2606 1.5 maxv instr->len = fsm.buf - inst_bytes;
2607 1.5 maxv
2608 1.5 maxv return 0;
2609 1.5 maxv }
2610 1.5 maxv
2611 1.5 maxv /* -------------------------------------------------------------------------- */
2612 1.5 maxv
2613 1.19 maxv #define EXEC_INSTR(sz, instr) \
2614 1.19 maxv static uint##sz##_t \
2615 1.20 christos exec_##instr##sz(uint##sz##_t op1, uint##sz##_t op2, uint64_t *rflags) \
2616 1.19 maxv { \
2617 1.19 maxv uint##sz##_t res; \
2618 1.19 maxv __asm __volatile ( \
2619 1.19 maxv #instr " %2, %3;" \
2620 1.19 maxv "mov %3, %1;" \
2621 1.19 maxv "pushfq;" \
2622 1.19 maxv "popq %0" \
2623 1.19 maxv : "=r" (*rflags), "=r" (res) \
2624 1.19 maxv : "r" (op1), "r" (op2)); \
2625 1.19 maxv return res; \
2626 1.19 maxv }
2627 1.19 maxv
2628 1.19 maxv #define EXEC_DISPATCHER(instr) \
2629 1.19 maxv static uint64_t \
2630 1.19 maxv exec_##instr(uint64_t op1, uint64_t op2, uint64_t *rflags, size_t opsize) \
2631 1.19 maxv { \
2632 1.19 maxv switch (opsize) { \
2633 1.19 maxv case 1: \
2634 1.19 maxv return exec_##instr##8(op1, op2, rflags); \
2635 1.19 maxv case 2: \
2636 1.19 maxv return exec_##instr##16(op1, op2, rflags); \
2637 1.19 maxv case 4: \
2638 1.19 maxv return exec_##instr##32(op1, op2, rflags); \
2639 1.19 maxv default: \
2640 1.19 maxv return exec_##instr##64(op1, op2, rflags); \
2641 1.19 maxv } \
2642 1.19 maxv }
2643 1.19 maxv
2644 1.19 maxv /* SUB: ret = op1 - op2 */
2645 1.19 maxv #define PSL_SUB_MASK (PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF|PSL_AF)
2646 1.19 maxv EXEC_INSTR(8, sub)
2647 1.19 maxv EXEC_INSTR(16, sub)
2648 1.19 maxv EXEC_INSTR(32, sub)
2649 1.19 maxv EXEC_INSTR(64, sub)
2650 1.19 maxv EXEC_DISPATCHER(sub)
2651 1.19 maxv
2652 1.19 maxv /* OR: ret = op1 | op2 */
2653 1.19 maxv #define PSL_OR_MASK (PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF)
2654 1.19 maxv EXEC_INSTR(8, or)
2655 1.19 maxv EXEC_INSTR(16, or)
2656 1.19 maxv EXEC_INSTR(32, or)
2657 1.19 maxv EXEC_INSTR(64, or)
2658 1.19 maxv EXEC_DISPATCHER(or)
2659 1.19 maxv
2660 1.19 maxv /* AND: ret = op1 & op2 */
2661 1.19 maxv #define PSL_AND_MASK (PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF)
2662 1.19 maxv EXEC_INSTR(8, and)
2663 1.19 maxv EXEC_INSTR(16, and)
2664 1.19 maxv EXEC_INSTR(32, and)
2665 1.19 maxv EXEC_INSTR(64, and)
2666 1.19 maxv EXEC_DISPATCHER(and)
2667 1.19 maxv
2668 1.19 maxv /* XOR: ret = op1 ^ op2 */
2669 1.19 maxv #define PSL_XOR_MASK (PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF)
2670 1.19 maxv EXEC_INSTR(8, xor)
2671 1.19 maxv EXEC_INSTR(16, xor)
2672 1.19 maxv EXEC_INSTR(32, xor)
2673 1.19 maxv EXEC_INSTR(64, xor)
2674 1.19 maxv EXEC_DISPATCHER(xor)
2675 1.19 maxv
2676 1.19 maxv /* -------------------------------------------------------------------------- */
2677 1.5 maxv
2678 1.19 maxv /*
2679 1.19 maxv * Emulation functions. We don't care about the order of the operands, except
2680 1.19 maxv * for SUB, CMP and TEST. For these ones we look at mem->write todetermine who
2681 1.19 maxv * is op1 and who is op2.
2682 1.19 maxv */
2683 1.5 maxv
2684 1.5 maxv static void
2685 1.30 maxv x86_func_or(struct nvmm_machine *mach, struct nvmm_mem *mem, uint64_t *gprs)
2686 1.5 maxv {
2687 1.19 maxv uint64_t *retval = (uint64_t *)mem->data;
2688 1.5 maxv const bool write = mem->write;
2689 1.19 maxv uint64_t *op1, op2, fl, ret;
2690 1.5 maxv
2691 1.19 maxv op1 = (uint64_t *)mem->data;
2692 1.19 maxv op2 = 0;
2693 1.5 maxv
2694 1.19 maxv /* Fetch the value to be OR'ed (op2). */
2695 1.19 maxv mem->data = (uint8_t *)&op2;
2696 1.5 maxv mem->write = false;
2697 1.30 maxv (*mach->cbs.mem)(mem);
2698 1.5 maxv
2699 1.5 maxv /* Perform the OR. */
2700 1.19 maxv ret = exec_or(*op1, op2, &fl, mem->size);
2701 1.5 maxv
2702 1.5 maxv if (write) {
2703 1.5 maxv /* Write back the result. */
2704 1.19 maxv mem->data = (uint8_t *)&ret;
2705 1.5 maxv mem->write = true;
2706 1.30 maxv (*mach->cbs.mem)(mem);
2707 1.19 maxv } else {
2708 1.19 maxv /* Return data to the caller. */
2709 1.19 maxv *retval = ret;
2710 1.5 maxv }
2711 1.5 maxv
2712 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_OR_MASK;
2713 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_OR_MASK);
2714 1.5 maxv }
2715 1.5 maxv
2716 1.5 maxv static void
2717 1.30 maxv x86_func_and(struct nvmm_machine *mach, struct nvmm_mem *mem, uint64_t *gprs)
2718 1.5 maxv {
2719 1.19 maxv uint64_t *retval = (uint64_t *)mem->data;
2720 1.5 maxv const bool write = mem->write;
2721 1.19 maxv uint64_t *op1, op2, fl, ret;
2722 1.5 maxv
2723 1.19 maxv op1 = (uint64_t *)mem->data;
2724 1.19 maxv op2 = 0;
2725 1.5 maxv
2726 1.19 maxv /* Fetch the value to be AND'ed (op2). */
2727 1.19 maxv mem->data = (uint8_t *)&op2;
2728 1.5 maxv mem->write = false;
2729 1.30 maxv (*mach->cbs.mem)(mem);
2730 1.5 maxv
2731 1.5 maxv /* Perform the AND. */
2732 1.19 maxv ret = exec_and(*op1, op2, &fl, mem->size);
2733 1.5 maxv
2734 1.5 maxv if (write) {
2735 1.5 maxv /* Write back the result. */
2736 1.19 maxv mem->data = (uint8_t *)&ret;
2737 1.5 maxv mem->write = true;
2738 1.30 maxv (*mach->cbs.mem)(mem);
2739 1.19 maxv } else {
2740 1.19 maxv /* Return data to the caller. */
2741 1.19 maxv *retval = ret;
2742 1.5 maxv }
2743 1.5 maxv
2744 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_AND_MASK;
2745 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_AND_MASK);
2746 1.5 maxv }
2747 1.5 maxv
2748 1.5 maxv static void
2749 1.30 maxv x86_func_sub(struct nvmm_machine *mach, struct nvmm_mem *mem, uint64_t *gprs)
2750 1.5 maxv {
2751 1.19 maxv uint64_t *retval = (uint64_t *)mem->data;
2752 1.5 maxv const bool write = mem->write;
2753 1.19 maxv uint64_t *op1, *op2, fl, ret;
2754 1.19 maxv uint64_t tmp;
2755 1.19 maxv bool memop1;
2756 1.19 maxv
2757 1.19 maxv memop1 = !mem->write;
2758 1.19 maxv op1 = memop1 ? &tmp : (uint64_t *)mem->data;
2759 1.19 maxv op2 = memop1 ? (uint64_t *)mem->data : &tmp;
2760 1.19 maxv
2761 1.19 maxv /* Fetch the value to be SUB'ed (op1 or op2). */
2762 1.19 maxv mem->data = (uint8_t *)&tmp;
2763 1.19 maxv mem->write = false;
2764 1.30 maxv (*mach->cbs.mem)(mem);
2765 1.19 maxv
2766 1.19 maxv /* Perform the SUB. */
2767 1.19 maxv ret = exec_sub(*op1, *op2, &fl, mem->size);
2768 1.19 maxv
2769 1.19 maxv if (write) {
2770 1.19 maxv /* Write back the result. */
2771 1.19 maxv mem->data = (uint8_t *)&ret;
2772 1.19 maxv mem->write = true;
2773 1.30 maxv (*mach->cbs.mem)(mem);
2774 1.19 maxv } else {
2775 1.19 maxv /* Return data to the caller. */
2776 1.19 maxv *retval = ret;
2777 1.19 maxv }
2778 1.19 maxv
2779 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_SUB_MASK;
2780 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_SUB_MASK);
2781 1.19 maxv }
2782 1.5 maxv
2783 1.19 maxv static void
2784 1.30 maxv x86_func_xor(struct nvmm_machine *mach, struct nvmm_mem *mem, uint64_t *gprs)
2785 1.19 maxv {
2786 1.19 maxv uint64_t *retval = (uint64_t *)mem->data;
2787 1.19 maxv const bool write = mem->write;
2788 1.19 maxv uint64_t *op1, op2, fl, ret;
2789 1.5 maxv
2790 1.19 maxv op1 = (uint64_t *)mem->data;
2791 1.19 maxv op2 = 0;
2792 1.5 maxv
2793 1.19 maxv /* Fetch the value to be XOR'ed (op2). */
2794 1.19 maxv mem->data = (uint8_t *)&op2;
2795 1.5 maxv mem->write = false;
2796 1.30 maxv (*mach->cbs.mem)(mem);
2797 1.5 maxv
2798 1.5 maxv /* Perform the XOR. */
2799 1.19 maxv ret = exec_xor(*op1, op2, &fl, mem->size);
2800 1.5 maxv
2801 1.5 maxv if (write) {
2802 1.5 maxv /* Write back the result. */
2803 1.19 maxv mem->data = (uint8_t *)&ret;
2804 1.5 maxv mem->write = true;
2805 1.30 maxv (*mach->cbs.mem)(mem);
2806 1.19 maxv } else {
2807 1.19 maxv /* Return data to the caller. */
2808 1.19 maxv *retval = ret;
2809 1.5 maxv }
2810 1.5 maxv
2811 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_XOR_MASK;
2812 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_XOR_MASK);
2813 1.5 maxv }
2814 1.5 maxv
2815 1.5 maxv static void
2816 1.30 maxv x86_func_cmp(struct nvmm_machine *mach, struct nvmm_mem *mem, uint64_t *gprs)
2817 1.19 maxv {
2818 1.19 maxv uint64_t *op1, *op2, fl;
2819 1.19 maxv uint64_t tmp;
2820 1.19 maxv bool memop1;
2821 1.19 maxv
2822 1.19 maxv memop1 = !mem->write;
2823 1.19 maxv op1 = memop1 ? &tmp : (uint64_t *)mem->data;
2824 1.19 maxv op2 = memop1 ? (uint64_t *)mem->data : &tmp;
2825 1.19 maxv
2826 1.19 maxv /* Fetch the value to be CMP'ed (op1 or op2). */
2827 1.19 maxv mem->data = (uint8_t *)&tmp;
2828 1.19 maxv mem->write = false;
2829 1.30 maxv (*mach->cbs.mem)(mem);
2830 1.19 maxv
2831 1.19 maxv /* Perform the CMP. */
2832 1.19 maxv exec_sub(*op1, *op2, &fl, mem->size);
2833 1.19 maxv
2834 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_SUB_MASK;
2835 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_SUB_MASK);
2836 1.19 maxv }
2837 1.19 maxv
2838 1.19 maxv static void
2839 1.30 maxv x86_func_test(struct nvmm_machine *mach, struct nvmm_mem *mem, uint64_t *gprs)
2840 1.19 maxv {
2841 1.19 maxv uint64_t *op1, *op2, fl;
2842 1.19 maxv uint64_t tmp;
2843 1.19 maxv bool memop1;
2844 1.19 maxv
2845 1.19 maxv memop1 = !mem->write;
2846 1.19 maxv op1 = memop1 ? &tmp : (uint64_t *)mem->data;
2847 1.19 maxv op2 = memop1 ? (uint64_t *)mem->data : &tmp;
2848 1.19 maxv
2849 1.19 maxv /* Fetch the value to be TEST'ed (op1 or op2). */
2850 1.19 maxv mem->data = (uint8_t *)&tmp;
2851 1.19 maxv mem->write = false;
2852 1.30 maxv (*mach->cbs.mem)(mem);
2853 1.19 maxv
2854 1.19 maxv /* Perform the TEST. */
2855 1.19 maxv exec_and(*op1, *op2, &fl, mem->size);
2856 1.19 maxv
2857 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_AND_MASK;
2858 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_AND_MASK);
2859 1.19 maxv }
2860 1.19 maxv
2861 1.19 maxv static void
2862 1.30 maxv x86_func_mov(struct nvmm_machine *mach, struct nvmm_mem *mem, uint64_t *gprs)
2863 1.5 maxv {
2864 1.5 maxv /*
2865 1.5 maxv * Nothing special, just move without emulation.
2866 1.5 maxv */
2867 1.30 maxv (*mach->cbs.mem)(mem);
2868 1.5 maxv }
2869 1.5 maxv
2870 1.5 maxv static void
2871 1.30 maxv x86_func_stos(struct nvmm_machine *mach, struct nvmm_mem *mem, uint64_t *gprs)
2872 1.5 maxv {
2873 1.5 maxv /*
2874 1.5 maxv * Just move, and update RDI.
2875 1.5 maxv */
2876 1.30 maxv (*mach->cbs.mem)(mem);
2877 1.5 maxv
2878 1.5 maxv if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
2879 1.5 maxv gprs[NVMM_X64_GPR_RDI] -= mem->size;
2880 1.5 maxv } else {
2881 1.5 maxv gprs[NVMM_X64_GPR_RDI] += mem->size;
2882 1.5 maxv }
2883 1.5 maxv }
2884 1.5 maxv
2885 1.5 maxv static void
2886 1.30 maxv x86_func_lods(struct nvmm_machine *mach, struct nvmm_mem *mem, uint64_t *gprs)
2887 1.5 maxv {
2888 1.5 maxv /*
2889 1.5 maxv * Just move, and update RSI.
2890 1.5 maxv */
2891 1.30 maxv (*mach->cbs.mem)(mem);
2892 1.5 maxv
2893 1.5 maxv if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
2894 1.5 maxv gprs[NVMM_X64_GPR_RSI] -= mem->size;
2895 1.5 maxv } else {
2896 1.5 maxv gprs[NVMM_X64_GPR_RSI] += mem->size;
2897 1.5 maxv }
2898 1.5 maxv }
2899 1.5 maxv
2900 1.6 maxv static void
2901 1.30 maxv x86_func_movs(struct nvmm_machine *mach, struct nvmm_mem *mem, uint64_t *gprs)
2902 1.6 maxv {
2903 1.6 maxv /*
2904 1.6 maxv * Special instruction: double memory operand. Don't call the cb,
2905 1.6 maxv * because the storage has already been performed earlier.
2906 1.6 maxv */
2907 1.6 maxv
2908 1.6 maxv if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
2909 1.6 maxv gprs[NVMM_X64_GPR_RSI] -= mem->size;
2910 1.6 maxv gprs[NVMM_X64_GPR_RDI] -= mem->size;
2911 1.6 maxv } else {
2912 1.6 maxv gprs[NVMM_X64_GPR_RSI] += mem->size;
2913 1.6 maxv gprs[NVMM_X64_GPR_RDI] += mem->size;
2914 1.6 maxv }
2915 1.6 maxv }
2916 1.6 maxv
2917 1.5 maxv /* -------------------------------------------------------------------------- */
2918 1.5 maxv
2919 1.5 maxv static inline uint64_t
2920 1.5 maxv gpr_read_address(struct x86_instr *instr, struct nvmm_x64_state *state, int gpr)
2921 1.5 maxv {
2922 1.5 maxv uint64_t val;
2923 1.5 maxv
2924 1.5 maxv val = state->gprs[gpr];
2925 1.15 maxv val &= size_to_mask(instr->address_size);
2926 1.5 maxv
2927 1.5 maxv return val;
2928 1.5 maxv }
2929 1.5 maxv
2930 1.5 maxv static int
2931 1.6 maxv store_to_gva(struct nvmm_x64_state *state, struct x86_instr *instr,
2932 1.6 maxv struct x86_store *store, gvaddr_t *gvap, size_t size)
2933 1.5 maxv {
2934 1.5 maxv struct x86_sib *sib;
2935 1.6 maxv gvaddr_t gva = 0;
2936 1.5 maxv uint64_t reg;
2937 1.5 maxv int ret, seg;
2938 1.5 maxv
2939 1.5 maxv if (store->type == STORE_SIB) {
2940 1.5 maxv sib = &store->u.sib;
2941 1.5 maxv if (sib->bas != NULL)
2942 1.5 maxv gva += gpr_read_address(instr, state, sib->bas->num);
2943 1.5 maxv if (sib->idx != NULL) {
2944 1.5 maxv reg = gpr_read_address(instr, state, sib->idx->num);
2945 1.5 maxv gva += sib->scale * reg;
2946 1.5 maxv }
2947 1.5 maxv } else if (store->type == STORE_REG) {
2948 1.9 maxv if (store->u.reg == NULL) {
2949 1.32 maxv /* The base is null. Happens with disp32-only and
2950 1.32 maxv * disp16-only. */
2951 1.9 maxv } else {
2952 1.9 maxv gva = gpr_read_address(instr, state, store->u.reg->num);
2953 1.9 maxv }
2954 1.32 maxv } else if (store->type == STORE_DUALREG) {
2955 1.32 maxv gva = gpr_read_address(instr, state, store->u.dualreg.reg1) +
2956 1.32 maxv gpr_read_address(instr, state, store->u.dualreg.reg2);
2957 1.5 maxv } else {
2958 1.5 maxv gva = store->u.dmo;
2959 1.5 maxv }
2960 1.5 maxv
2961 1.5 maxv if (store->disp.type != DISP_NONE) {
2962 1.11 maxv gva += store->disp.data;
2963 1.5 maxv }
2964 1.5 maxv
2965 1.25 maxv if (store->hardseg != -1) {
2966 1.15 maxv seg = store->hardseg;
2967 1.15 maxv } else {
2968 1.15 maxv if (__predict_false(instr->legpref.seg != -1)) {
2969 1.15 maxv seg = instr->legpref.seg;
2970 1.5 maxv } else {
2971 1.15 maxv seg = NVMM_X64_SEG_DS;
2972 1.5 maxv }
2973 1.15 maxv }
2974 1.5 maxv
2975 1.15 maxv if (__predict_true(is_long_mode(state))) {
2976 1.15 maxv if (seg == NVMM_X64_SEG_GS || seg == NVMM_X64_SEG_FS) {
2977 1.15 maxv segment_apply(&state->segs[seg], &gva);
2978 1.15 maxv }
2979 1.15 maxv } else {
2980 1.15 maxv ret = segment_check(&state->segs[seg], gva, size);
2981 1.5 maxv if (ret == -1)
2982 1.5 maxv return -1;
2983 1.15 maxv segment_apply(&state->segs[seg], &gva);
2984 1.5 maxv }
2985 1.5 maxv
2986 1.6 maxv *gvap = gva;
2987 1.6 maxv return 0;
2988 1.6 maxv }
2989 1.6 maxv
2990 1.6 maxv static int
2991 1.8 maxv fetch_segment(struct nvmm_machine *mach, struct nvmm_x64_state *state)
2992 1.8 maxv {
2993 1.21 maxv uint8_t inst_bytes[5], byte;
2994 1.13 maxv size_t i, fetchsize;
2995 1.8 maxv gvaddr_t gva;
2996 1.8 maxv int ret, seg;
2997 1.8 maxv
2998 1.8 maxv fetchsize = sizeof(inst_bytes);
2999 1.8 maxv
3000 1.8 maxv gva = state->gprs[NVMM_X64_GPR_RIP];
3001 1.15 maxv if (__predict_false(!is_long_mode(state))) {
3002 1.15 maxv ret = segment_check(&state->segs[NVMM_X64_SEG_CS], gva,
3003 1.8 maxv fetchsize);
3004 1.8 maxv if (ret == -1)
3005 1.8 maxv return -1;
3006 1.15 maxv segment_apply(&state->segs[NVMM_X64_SEG_CS], &gva);
3007 1.8 maxv }
3008 1.8 maxv
3009 1.8 maxv ret = read_guest_memory(mach, state, gva, inst_bytes, fetchsize);
3010 1.8 maxv if (ret == -1)
3011 1.8 maxv return -1;
3012 1.8 maxv
3013 1.8 maxv seg = NVMM_X64_SEG_DS;
3014 1.13 maxv for (i = 0; i < fetchsize; i++) {
3015 1.13 maxv byte = inst_bytes[i];
3016 1.13 maxv
3017 1.13 maxv if (byte == LEG_OVR_DS) {
3018 1.13 maxv seg = NVMM_X64_SEG_DS;
3019 1.13 maxv } else if (byte == LEG_OVR_ES) {
3020 1.13 maxv seg = NVMM_X64_SEG_ES;
3021 1.13 maxv } else if (byte == LEG_OVR_GS) {
3022 1.13 maxv seg = NVMM_X64_SEG_GS;
3023 1.13 maxv } else if (byte == LEG_OVR_FS) {
3024 1.13 maxv seg = NVMM_X64_SEG_FS;
3025 1.13 maxv } else if (byte == LEG_OVR_CS) {
3026 1.13 maxv seg = NVMM_X64_SEG_CS;
3027 1.13 maxv } else if (byte == LEG_OVR_SS) {
3028 1.13 maxv seg = NVMM_X64_SEG_SS;
3029 1.13 maxv } else if (byte == LEG_OPR_OVR) {
3030 1.13 maxv /* nothing */
3031 1.13 maxv } else if (byte == LEG_ADR_OVR) {
3032 1.13 maxv /* nothing */
3033 1.13 maxv } else if (byte == LEG_REP) {
3034 1.13 maxv /* nothing */
3035 1.13 maxv } else if (byte == LEG_REPN) {
3036 1.13 maxv /* nothing */
3037 1.13 maxv } else if (byte == LEG_LOCK) {
3038 1.13 maxv /* nothing */
3039 1.13 maxv } else {
3040 1.13 maxv return seg;
3041 1.8 maxv }
3042 1.8 maxv }
3043 1.8 maxv
3044 1.8 maxv return seg;
3045 1.8 maxv }
3046 1.8 maxv
3047 1.8 maxv static int
3048 1.5 maxv fetch_instruction(struct nvmm_machine *mach, struct nvmm_x64_state *state,
3049 1.5 maxv struct nvmm_exit *exit)
3050 1.5 maxv {
3051 1.6 maxv size_t fetchsize;
3052 1.6 maxv gvaddr_t gva;
3053 1.5 maxv int ret;
3054 1.5 maxv
3055 1.5 maxv fetchsize = sizeof(exit->u.mem.inst_bytes);
3056 1.5 maxv
3057 1.5 maxv gva = state->gprs[NVMM_X64_GPR_RIP];
3058 1.15 maxv if (__predict_false(!is_long_mode(state))) {
3059 1.15 maxv ret = segment_check(&state->segs[NVMM_X64_SEG_CS], gva,
3060 1.5 maxv fetchsize);
3061 1.5 maxv if (ret == -1)
3062 1.5 maxv return -1;
3063 1.15 maxv segment_apply(&state->segs[NVMM_X64_SEG_CS], &gva);
3064 1.5 maxv }
3065 1.5 maxv
3066 1.6 maxv ret = read_guest_memory(mach, state, gva, exit->u.mem.inst_bytes,
3067 1.6 maxv fetchsize);
3068 1.6 maxv if (ret == -1)
3069 1.6 maxv return -1;
3070 1.6 maxv
3071 1.6 maxv exit->u.mem.inst_len = fetchsize;
3072 1.6 maxv
3073 1.6 maxv return 0;
3074 1.6 maxv }
3075 1.6 maxv
3076 1.6 maxv static int
3077 1.6 maxv assist_mem_double(struct nvmm_machine *mach, struct nvmm_x64_state *state,
3078 1.6 maxv struct x86_instr *instr)
3079 1.6 maxv {
3080 1.6 maxv struct nvmm_mem mem;
3081 1.6 maxv uint8_t data[8];
3082 1.6 maxv gvaddr_t gva;
3083 1.6 maxv size_t size;
3084 1.6 maxv int ret;
3085 1.6 maxv
3086 1.6 maxv size = instr->operand_size;
3087 1.5 maxv
3088 1.6 maxv /* Source. */
3089 1.6 maxv ret = store_to_gva(state, instr, &instr->src, &gva, size);
3090 1.5 maxv if (ret == -1)
3091 1.5 maxv return -1;
3092 1.6 maxv ret = read_guest_memory(mach, state, gva, data, size);
3093 1.6 maxv if (ret == -1)
3094 1.5 maxv return -1;
3095 1.5 maxv
3096 1.6 maxv /* Destination. */
3097 1.6 maxv ret = store_to_gva(state, instr, &instr->dst, &gva, size);
3098 1.6 maxv if (ret == -1)
3099 1.6 maxv return -1;
3100 1.6 maxv ret = write_guest_memory(mach, state, gva, data, size);
3101 1.5 maxv if (ret == -1)
3102 1.5 maxv return -1;
3103 1.5 maxv
3104 1.6 maxv mem.size = size;
3105 1.30 maxv (*instr->emul->func)(mach, &mem, state->gprs);
3106 1.5 maxv
3107 1.5 maxv return 0;
3108 1.5 maxv }
3109 1.5 maxv
3110 1.6 maxv static int
3111 1.6 maxv assist_mem_single(struct nvmm_machine *mach, struct nvmm_x64_state *state,
3112 1.12 maxv struct x86_instr *instr, struct nvmm_exit *exit)
3113 1.5 maxv {
3114 1.5 maxv struct nvmm_mem mem;
3115 1.10 maxv uint8_t membuf[8];
3116 1.5 maxv uint64_t val;
3117 1.5 maxv
3118 1.11 maxv memset(membuf, 0, sizeof(membuf));
3119 1.12 maxv
3120 1.12 maxv mem.gpa = exit->u.mem.gpa;
3121 1.12 maxv mem.size = instr->operand_size;
3122 1.10 maxv mem.data = membuf;
3123 1.5 maxv
3124 1.12 maxv /* Determine the direction. */
3125 1.6 maxv switch (instr->src.type) {
3126 1.5 maxv case STORE_REG:
3127 1.6 maxv if (instr->src.disp.type != DISP_NONE) {
3128 1.5 maxv /* Indirect access. */
3129 1.5 maxv mem.write = false;
3130 1.5 maxv } else {
3131 1.5 maxv /* Direct access. */
3132 1.5 maxv mem.write = true;
3133 1.5 maxv }
3134 1.5 maxv break;
3135 1.32 maxv case STORE_DUALREG:
3136 1.32 maxv if (instr->src.disp.type == DISP_NONE) {
3137 1.32 maxv DISASSEMBLER_BUG();
3138 1.32 maxv }
3139 1.32 maxv mem.write = false;
3140 1.32 maxv break;
3141 1.5 maxv case STORE_IMM:
3142 1.5 maxv mem.write = true;
3143 1.5 maxv break;
3144 1.5 maxv case STORE_SIB:
3145 1.5 maxv mem.write = false;
3146 1.5 maxv break;
3147 1.5 maxv case STORE_DMO:
3148 1.5 maxv mem.write = false;
3149 1.5 maxv break;
3150 1.5 maxv default:
3151 1.12 maxv DISASSEMBLER_BUG();
3152 1.5 maxv }
3153 1.5 maxv
3154 1.12 maxv if (mem.write) {
3155 1.12 maxv switch (instr->src.type) {
3156 1.12 maxv case STORE_REG:
3157 1.12 maxv if (instr->src.disp.type != DISP_NONE) {
3158 1.5 maxv DISASSEMBLER_BUG();
3159 1.5 maxv }
3160 1.12 maxv val = state->gprs[instr->src.u.reg->num];
3161 1.12 maxv val = __SHIFTOUT(val, instr->src.u.reg->mask);
3162 1.12 maxv memcpy(mem.data, &val, mem.size);
3163 1.12 maxv break;
3164 1.12 maxv case STORE_IMM:
3165 1.12 maxv memcpy(mem.data, &instr->src.u.imm.data, mem.size);
3166 1.12 maxv break;
3167 1.12 maxv default:
3168 1.5 maxv DISASSEMBLER_BUG();
3169 1.5 maxv }
3170 1.19 maxv } else if (instr->emul->read) {
3171 1.19 maxv if (instr->dst.type != STORE_REG) {
3172 1.19 maxv DISASSEMBLER_BUG();
3173 1.19 maxv }
3174 1.19 maxv if (instr->dst.disp.type != DISP_NONE) {
3175 1.19 maxv DISASSEMBLER_BUG();
3176 1.19 maxv }
3177 1.19 maxv val = state->gprs[instr->dst.u.reg->num];
3178 1.19 maxv val = __SHIFTOUT(val, instr->dst.u.reg->mask);
3179 1.19 maxv memcpy(mem.data, &val, mem.size);
3180 1.5 maxv }
3181 1.5 maxv
3182 1.30 maxv (*instr->emul->func)(mach, &mem, state->gprs);
3183 1.5 maxv
3184 1.19 maxv if (!instr->emul->notouch && !mem.write) {
3185 1.12 maxv if (instr->dst.type != STORE_REG) {
3186 1.12 maxv DISASSEMBLER_BUG();
3187 1.12 maxv }
3188 1.19 maxv memcpy(&val, membuf, sizeof(uint64_t));
3189 1.6 maxv val = __SHIFTIN(val, instr->dst.u.reg->mask);
3190 1.6 maxv state->gprs[instr->dst.u.reg->num] &= ~instr->dst.u.reg->mask;
3191 1.6 maxv state->gprs[instr->dst.u.reg->num] |= val;
3192 1.10 maxv state->gprs[instr->dst.u.reg->num] &= ~instr->zeroextend_mask;
3193 1.6 maxv }
3194 1.6 maxv
3195 1.6 maxv return 0;
3196 1.6 maxv }
3197 1.6 maxv
3198 1.6 maxv int
3199 1.31 maxv nvmm_assist_mem(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
3200 1.6 maxv {
3201 1.31 maxv struct nvmm_x64_state *state = vcpu->state;
3202 1.31 maxv struct nvmm_exit *exit = vcpu->exit;
3203 1.6 maxv struct x86_instr instr;
3204 1.15 maxv uint64_t cnt = 0; /* GCC */
3205 1.6 maxv int ret;
3206 1.6 maxv
3207 1.6 maxv if (__predict_false(exit->reason != NVMM_EXIT_MEMORY)) {
3208 1.6 maxv errno = EINVAL;
3209 1.6 maxv return -1;
3210 1.6 maxv }
3211 1.6 maxv
3212 1.31 maxv ret = nvmm_vcpu_getstate(mach, vcpu,
3213 1.15 maxv NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
3214 1.15 maxv NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
3215 1.6 maxv if (ret == -1)
3216 1.6 maxv return -1;
3217 1.6 maxv
3218 1.6 maxv if (exit->u.mem.inst_len == 0) {
3219 1.6 maxv /*
3220 1.6 maxv * The instruction was not fetched from the kernel. Fetch
3221 1.6 maxv * it ourselves.
3222 1.6 maxv */
3223 1.31 maxv ret = fetch_instruction(mach, state, exit);
3224 1.6 maxv if (ret == -1)
3225 1.6 maxv return -1;
3226 1.6 maxv }
3227 1.6 maxv
3228 1.6 maxv ret = x86_decode(exit->u.mem.inst_bytes, exit->u.mem.inst_len,
3229 1.31 maxv &instr, state);
3230 1.6 maxv if (ret == -1) {
3231 1.6 maxv errno = ENODEV;
3232 1.6 maxv return -1;
3233 1.6 maxv }
3234 1.6 maxv
3235 1.15 maxv if (instr.legpref.rep || instr.legpref.repn) {
3236 1.31 maxv cnt = rep_get_cnt(state, instr.address_size);
3237 1.15 maxv if (__predict_false(cnt == 0)) {
3238 1.31 maxv state->gprs[NVMM_X64_GPR_RIP] += instr.len;
3239 1.15 maxv goto out;
3240 1.15 maxv }
3241 1.15 maxv }
3242 1.15 maxv
3243 1.6 maxv if (instr.opcode->movs) {
3244 1.31 maxv ret = assist_mem_double(mach, state, &instr);
3245 1.6 maxv } else {
3246 1.31 maxv ret = assist_mem_single(mach, state, &instr, exit);
3247 1.6 maxv }
3248 1.6 maxv if (ret == -1) {
3249 1.6 maxv errno = ENODEV;
3250 1.6 maxv return -1;
3251 1.5 maxv }
3252 1.5 maxv
3253 1.14 maxv if (instr.legpref.rep || instr.legpref.repn) {
3254 1.15 maxv cnt -= 1;
3255 1.31 maxv rep_set_cnt(state, instr.address_size, cnt);
3256 1.6 maxv if (cnt == 0) {
3257 1.31 maxv state->gprs[NVMM_X64_GPR_RIP] += instr.len;
3258 1.14 maxv } else if (__predict_false(instr.legpref.repn)) {
3259 1.31 maxv if (state->gprs[NVMM_X64_GPR_RFLAGS] & PSL_Z) {
3260 1.31 maxv state->gprs[NVMM_X64_GPR_RIP] += instr.len;
3261 1.14 maxv }
3262 1.5 maxv }
3263 1.5 maxv } else {
3264 1.31 maxv state->gprs[NVMM_X64_GPR_RIP] += instr.len;
3265 1.5 maxv }
3266 1.5 maxv
3267 1.15 maxv out:
3268 1.31 maxv ret = nvmm_vcpu_setstate(mach, vcpu, NVMM_X64_STATE_GPRS);
3269 1.5 maxv if (ret == -1)
3270 1.5 maxv return -1;
3271 1.5 maxv
3272 1.5 maxv return 0;
3273 1.1 maxv }
3274