libnvmm_x86.c revision 1.35 1 1.35 maxv /* $NetBSD: libnvmm_x86.c,v 1.35 2019/10/19 19:45:10 maxv Exp $ */
2 1.1 maxv
3 1.1 maxv /*
4 1.32 maxv * Copyright (c) 2018-2019 The NetBSD Foundation, Inc.
5 1.1 maxv * All rights reserved.
6 1.1 maxv *
7 1.1 maxv * This code is derived from software contributed to The NetBSD Foundation
8 1.1 maxv * by Maxime Villard.
9 1.1 maxv *
10 1.1 maxv * Redistribution and use in source and binary forms, with or without
11 1.1 maxv * modification, are permitted provided that the following conditions
12 1.1 maxv * are met:
13 1.1 maxv * 1. Redistributions of source code must retain the above copyright
14 1.1 maxv * notice, this list of conditions and the following disclaimer.
15 1.1 maxv * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 maxv * notice, this list of conditions and the following disclaimer in the
17 1.1 maxv * documentation and/or other materials provided with the distribution.
18 1.1 maxv *
19 1.1 maxv * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 maxv * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 maxv * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 maxv * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 maxv * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 maxv * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 maxv * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 maxv * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 maxv * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 maxv * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 maxv * POSSIBILITY OF SUCH DAMAGE.
30 1.1 maxv */
31 1.1 maxv
32 1.1 maxv #include <sys/cdefs.h>
33 1.1 maxv
34 1.1 maxv #include <stdio.h>
35 1.1 maxv #include <stdlib.h>
36 1.1 maxv #include <string.h>
37 1.1 maxv #include <unistd.h>
38 1.1 maxv #include <fcntl.h>
39 1.1 maxv #include <errno.h>
40 1.1 maxv #include <sys/ioctl.h>
41 1.1 maxv #include <sys/mman.h>
42 1.1 maxv #include <machine/vmparam.h>
43 1.1 maxv #include <machine/pte.h>
44 1.1 maxv #include <machine/psl.h>
45 1.1 maxv
46 1.10 maxv #define MIN(X, Y) (((X) < (Y)) ? (X) : (Y))
47 1.27 maxv #define __cacheline_aligned __attribute__((__aligned__(64)))
48 1.10 maxv
49 1.1 maxv #include <x86/specialreg.h>
50 1.1 maxv
51 1.29 maxv /* -------------------------------------------------------------------------- */
52 1.29 maxv
53 1.6 maxv /*
54 1.6 maxv * Undocumented debugging function. Helpful.
55 1.6 maxv */
56 1.6 maxv int
57 1.31 maxv nvmm_vcpu_dump(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
58 1.6 maxv {
59 1.31 maxv struct nvmm_x64_state *state = vcpu->state;
60 1.26 maxv uint16_t *attr;
61 1.6 maxv size_t i;
62 1.6 maxv int ret;
63 1.6 maxv
64 1.6 maxv const char *segnames[] = {
65 1.26 maxv "ES", "CS", "SS", "DS", "FS", "GS", "GDT", "IDT", "LDT", "TR"
66 1.6 maxv };
67 1.6 maxv
68 1.31 maxv ret = nvmm_vcpu_getstate(mach, vcpu, NVMM_X64_STATE_ALL);
69 1.6 maxv if (ret == -1)
70 1.6 maxv return -1;
71 1.6 maxv
72 1.31 maxv printf("+ VCPU id=%d\n", (int)vcpu->cpuid);
73 1.31 maxv printf("| -> RAX=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RAX]);
74 1.34 maxv printf("| -> RCX=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RCX]);
75 1.34 maxv printf("| -> RDX=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RDX]);
76 1.31 maxv printf("| -> RBX=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RBX]);
77 1.34 maxv printf("| -> RSP=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RSP]);
78 1.34 maxv printf("| -> RBP=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RBP]);
79 1.34 maxv printf("| -> RSI=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RSI]);
80 1.34 maxv printf("| -> RDI=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RDI]);
81 1.34 maxv printf("| -> RIP=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RIP]);
82 1.31 maxv printf("| -> RFLAGS=%p\n", (void *)state->gprs[NVMM_X64_GPR_RFLAGS]);
83 1.6 maxv for (i = 0; i < NVMM_X64_NSEG; i++) {
84 1.31 maxv attr = (uint16_t *)&state->segs[i].attrib;
85 1.34 maxv printf("| -> %s: sel=0x%x base=%"PRIx64", limit=%x, "
86 1.34 maxv "attrib=%x [type=%d,l=%d,def=%d]\n",
87 1.6 maxv segnames[i],
88 1.31 maxv state->segs[i].selector,
89 1.31 maxv state->segs[i].base,
90 1.31 maxv state->segs[i].limit,
91 1.34 maxv *attr,
92 1.34 maxv state->segs[i].attrib.type,
93 1.34 maxv state->segs[i].attrib.l,
94 1.34 maxv state->segs[i].attrib.def);
95 1.26 maxv }
96 1.31 maxv printf("| -> MSR_EFER=%"PRIx64"\n", state->msrs[NVMM_X64_MSR_EFER]);
97 1.31 maxv printf("| -> CR0=%"PRIx64"\n", state->crs[NVMM_X64_CR_CR0]);
98 1.31 maxv printf("| -> CR3=%"PRIx64"\n", state->crs[NVMM_X64_CR_CR3]);
99 1.31 maxv printf("| -> CR4=%"PRIx64"\n", state->crs[NVMM_X64_CR_CR4]);
100 1.31 maxv printf("| -> CR8=%"PRIx64"\n", state->crs[NVMM_X64_CR_CR8]);
101 1.6 maxv
102 1.6 maxv return 0;
103 1.6 maxv }
104 1.6 maxv
105 1.1 maxv /* -------------------------------------------------------------------------- */
106 1.1 maxv
107 1.1 maxv #define PTE32_L1_SHIFT 12
108 1.1 maxv #define PTE32_L2_SHIFT 22
109 1.1 maxv
110 1.1 maxv #define PTE32_L2_MASK 0xffc00000
111 1.1 maxv #define PTE32_L1_MASK 0x003ff000
112 1.1 maxv
113 1.1 maxv #define PTE32_L2_FRAME (PTE32_L2_MASK)
114 1.1 maxv #define PTE32_L1_FRAME (PTE32_L2_FRAME|PTE32_L1_MASK)
115 1.1 maxv
116 1.1 maxv #define pte32_l1idx(va) (((va) & PTE32_L1_MASK) >> PTE32_L1_SHIFT)
117 1.1 maxv #define pte32_l2idx(va) (((va) & PTE32_L2_MASK) >> PTE32_L2_SHIFT)
118 1.1 maxv
119 1.19 maxv #define CR3_FRAME_32BIT PG_FRAME
120 1.19 maxv
121 1.1 maxv typedef uint32_t pte_32bit_t;
122 1.1 maxv
123 1.1 maxv static int
124 1.1 maxv x86_gva_to_gpa_32bit(struct nvmm_machine *mach, uint64_t cr3,
125 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, bool has_pse, nvmm_prot_t *prot)
126 1.1 maxv {
127 1.1 maxv gpaddr_t L2gpa, L1gpa;
128 1.1 maxv uintptr_t L2hva, L1hva;
129 1.1 maxv pte_32bit_t *pdir, pte;
130 1.28 maxv nvmm_prot_t pageprot;
131 1.1 maxv
132 1.1 maxv /* We begin with an RWXU access. */
133 1.1 maxv *prot = NVMM_PROT_ALL;
134 1.1 maxv
135 1.1 maxv /* Parse L2. */
136 1.19 maxv L2gpa = (cr3 & CR3_FRAME_32BIT);
137 1.28 maxv if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva, &pageprot) == -1)
138 1.1 maxv return -1;
139 1.1 maxv pdir = (pte_32bit_t *)L2hva;
140 1.1 maxv pte = pdir[pte32_l2idx(gva)];
141 1.1 maxv if ((pte & PG_V) == 0)
142 1.1 maxv return -1;
143 1.1 maxv if ((pte & PG_u) == 0)
144 1.1 maxv *prot &= ~NVMM_PROT_USER;
145 1.1 maxv if ((pte & PG_KW) == 0)
146 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
147 1.1 maxv if ((pte & PG_PS) && !has_pse)
148 1.1 maxv return -1;
149 1.1 maxv if (pte & PG_PS) {
150 1.1 maxv *gpa = (pte & PTE32_L2_FRAME);
151 1.10 maxv *gpa = *gpa + (gva & PTE32_L1_MASK);
152 1.1 maxv return 0;
153 1.1 maxv }
154 1.1 maxv
155 1.1 maxv /* Parse L1. */
156 1.1 maxv L1gpa = (pte & PG_FRAME);
157 1.28 maxv if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva, &pageprot) == -1)
158 1.1 maxv return -1;
159 1.1 maxv pdir = (pte_32bit_t *)L1hva;
160 1.1 maxv pte = pdir[pte32_l1idx(gva)];
161 1.1 maxv if ((pte & PG_V) == 0)
162 1.1 maxv return -1;
163 1.1 maxv if ((pte & PG_u) == 0)
164 1.1 maxv *prot &= ~NVMM_PROT_USER;
165 1.1 maxv if ((pte & PG_KW) == 0)
166 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
167 1.1 maxv if (pte & PG_PS)
168 1.1 maxv return -1;
169 1.1 maxv
170 1.1 maxv *gpa = (pte & PG_FRAME);
171 1.1 maxv return 0;
172 1.1 maxv }
173 1.1 maxv
174 1.1 maxv /* -------------------------------------------------------------------------- */
175 1.1 maxv
176 1.1 maxv #define PTE32_PAE_L1_SHIFT 12
177 1.1 maxv #define PTE32_PAE_L2_SHIFT 21
178 1.1 maxv #define PTE32_PAE_L3_SHIFT 30
179 1.1 maxv
180 1.1 maxv #define PTE32_PAE_L3_MASK 0xc0000000
181 1.1 maxv #define PTE32_PAE_L2_MASK 0x3fe00000
182 1.1 maxv #define PTE32_PAE_L1_MASK 0x001ff000
183 1.1 maxv
184 1.1 maxv #define PTE32_PAE_L3_FRAME (PTE32_PAE_L3_MASK)
185 1.1 maxv #define PTE32_PAE_L2_FRAME (PTE32_PAE_L3_FRAME|PTE32_PAE_L2_MASK)
186 1.1 maxv #define PTE32_PAE_L1_FRAME (PTE32_PAE_L2_FRAME|PTE32_PAE_L1_MASK)
187 1.1 maxv
188 1.1 maxv #define pte32_pae_l1idx(va) (((va) & PTE32_PAE_L1_MASK) >> PTE32_PAE_L1_SHIFT)
189 1.1 maxv #define pte32_pae_l2idx(va) (((va) & PTE32_PAE_L2_MASK) >> PTE32_PAE_L2_SHIFT)
190 1.1 maxv #define pte32_pae_l3idx(va) (((va) & PTE32_PAE_L3_MASK) >> PTE32_PAE_L3_SHIFT)
191 1.1 maxv
192 1.19 maxv #define CR3_FRAME_32BIT_PAE __BITS(31, 5)
193 1.19 maxv
194 1.1 maxv typedef uint64_t pte_32bit_pae_t;
195 1.1 maxv
196 1.1 maxv static int
197 1.1 maxv x86_gva_to_gpa_32bit_pae(struct nvmm_machine *mach, uint64_t cr3,
198 1.23 maxv gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
199 1.1 maxv {
200 1.1 maxv gpaddr_t L3gpa, L2gpa, L1gpa;
201 1.1 maxv uintptr_t L3hva, L2hva, L1hva;
202 1.1 maxv pte_32bit_pae_t *pdir, pte;
203 1.28 maxv nvmm_prot_t pageprot;
204 1.1 maxv
205 1.1 maxv /* We begin with an RWXU access. */
206 1.1 maxv *prot = NVMM_PROT_ALL;
207 1.1 maxv
208 1.1 maxv /* Parse L3. */
209 1.19 maxv L3gpa = (cr3 & CR3_FRAME_32BIT_PAE);
210 1.28 maxv if (nvmm_gpa_to_hva(mach, L3gpa, &L3hva, &pageprot) == -1)
211 1.1 maxv return -1;
212 1.1 maxv pdir = (pte_32bit_pae_t *)L3hva;
213 1.1 maxv pte = pdir[pte32_pae_l3idx(gva)];
214 1.1 maxv if ((pte & PG_V) == 0)
215 1.1 maxv return -1;
216 1.1 maxv if (pte & PG_NX)
217 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
218 1.1 maxv if (pte & PG_PS)
219 1.1 maxv return -1;
220 1.1 maxv
221 1.1 maxv /* Parse L2. */
222 1.1 maxv L2gpa = (pte & PG_FRAME);
223 1.28 maxv if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva, &pageprot) == -1)
224 1.1 maxv return -1;
225 1.1 maxv pdir = (pte_32bit_pae_t *)L2hva;
226 1.1 maxv pte = pdir[pte32_pae_l2idx(gva)];
227 1.1 maxv if ((pte & PG_V) == 0)
228 1.1 maxv return -1;
229 1.1 maxv if ((pte & PG_u) == 0)
230 1.1 maxv *prot &= ~NVMM_PROT_USER;
231 1.1 maxv if ((pte & PG_KW) == 0)
232 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
233 1.1 maxv if (pte & PG_NX)
234 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
235 1.1 maxv if (pte & PG_PS) {
236 1.1 maxv *gpa = (pte & PTE32_PAE_L2_FRAME);
237 1.10 maxv *gpa = *gpa + (gva & PTE32_PAE_L1_MASK);
238 1.1 maxv return 0;
239 1.1 maxv }
240 1.1 maxv
241 1.1 maxv /* Parse L1. */
242 1.1 maxv L1gpa = (pte & PG_FRAME);
243 1.28 maxv if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva, &pageprot) == -1)
244 1.1 maxv return -1;
245 1.1 maxv pdir = (pte_32bit_pae_t *)L1hva;
246 1.1 maxv pte = pdir[pte32_pae_l1idx(gva)];
247 1.1 maxv if ((pte & PG_V) == 0)
248 1.1 maxv return -1;
249 1.1 maxv if ((pte & PG_u) == 0)
250 1.1 maxv *prot &= ~NVMM_PROT_USER;
251 1.1 maxv if ((pte & PG_KW) == 0)
252 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
253 1.1 maxv if (pte & PG_NX)
254 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
255 1.1 maxv if (pte & PG_PS)
256 1.1 maxv return -1;
257 1.1 maxv
258 1.1 maxv *gpa = (pte & PG_FRAME);
259 1.1 maxv return 0;
260 1.1 maxv }
261 1.1 maxv
262 1.1 maxv /* -------------------------------------------------------------------------- */
263 1.1 maxv
264 1.1 maxv #define PTE64_L1_SHIFT 12
265 1.1 maxv #define PTE64_L2_SHIFT 21
266 1.1 maxv #define PTE64_L3_SHIFT 30
267 1.1 maxv #define PTE64_L4_SHIFT 39
268 1.1 maxv
269 1.1 maxv #define PTE64_L4_MASK 0x0000ff8000000000
270 1.1 maxv #define PTE64_L3_MASK 0x0000007fc0000000
271 1.1 maxv #define PTE64_L2_MASK 0x000000003fe00000
272 1.1 maxv #define PTE64_L1_MASK 0x00000000001ff000
273 1.1 maxv
274 1.1 maxv #define PTE64_L4_FRAME PTE64_L4_MASK
275 1.1 maxv #define PTE64_L3_FRAME (PTE64_L4_FRAME|PTE64_L3_MASK)
276 1.1 maxv #define PTE64_L2_FRAME (PTE64_L3_FRAME|PTE64_L2_MASK)
277 1.1 maxv #define PTE64_L1_FRAME (PTE64_L2_FRAME|PTE64_L1_MASK)
278 1.1 maxv
279 1.1 maxv #define pte64_l1idx(va) (((va) & PTE64_L1_MASK) >> PTE64_L1_SHIFT)
280 1.1 maxv #define pte64_l2idx(va) (((va) & PTE64_L2_MASK) >> PTE64_L2_SHIFT)
281 1.1 maxv #define pte64_l3idx(va) (((va) & PTE64_L3_MASK) >> PTE64_L3_SHIFT)
282 1.1 maxv #define pte64_l4idx(va) (((va) & PTE64_L4_MASK) >> PTE64_L4_SHIFT)
283 1.1 maxv
284 1.19 maxv #define CR3_FRAME_64BIT PG_FRAME
285 1.19 maxv
286 1.1 maxv typedef uint64_t pte_64bit_t;
287 1.1 maxv
288 1.1 maxv static inline bool
289 1.1 maxv x86_gva_64bit_canonical(gvaddr_t gva)
290 1.1 maxv {
291 1.1 maxv /* Bits 63:47 must have the same value. */
292 1.1 maxv #define SIGN_EXTEND 0xffff800000000000ULL
293 1.1 maxv return (gva & SIGN_EXTEND) == 0 || (gva & SIGN_EXTEND) == SIGN_EXTEND;
294 1.1 maxv }
295 1.1 maxv
296 1.1 maxv static int
297 1.1 maxv x86_gva_to_gpa_64bit(struct nvmm_machine *mach, uint64_t cr3,
298 1.11 maxv gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
299 1.1 maxv {
300 1.1 maxv gpaddr_t L4gpa, L3gpa, L2gpa, L1gpa;
301 1.1 maxv uintptr_t L4hva, L3hva, L2hva, L1hva;
302 1.1 maxv pte_64bit_t *pdir, pte;
303 1.28 maxv nvmm_prot_t pageprot;
304 1.1 maxv
305 1.1 maxv /* We begin with an RWXU access. */
306 1.1 maxv *prot = NVMM_PROT_ALL;
307 1.1 maxv
308 1.1 maxv if (!x86_gva_64bit_canonical(gva))
309 1.1 maxv return -1;
310 1.1 maxv
311 1.1 maxv /* Parse L4. */
312 1.19 maxv L4gpa = (cr3 & CR3_FRAME_64BIT);
313 1.28 maxv if (nvmm_gpa_to_hva(mach, L4gpa, &L4hva, &pageprot) == -1)
314 1.1 maxv return -1;
315 1.1 maxv pdir = (pte_64bit_t *)L4hva;
316 1.1 maxv pte = pdir[pte64_l4idx(gva)];
317 1.1 maxv if ((pte & PG_V) == 0)
318 1.1 maxv return -1;
319 1.1 maxv if ((pte & PG_u) == 0)
320 1.1 maxv *prot &= ~NVMM_PROT_USER;
321 1.1 maxv if ((pte & PG_KW) == 0)
322 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
323 1.1 maxv if (pte & PG_NX)
324 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
325 1.1 maxv if (pte & PG_PS)
326 1.1 maxv return -1;
327 1.1 maxv
328 1.1 maxv /* Parse L3. */
329 1.1 maxv L3gpa = (pte & PG_FRAME);
330 1.28 maxv if (nvmm_gpa_to_hva(mach, L3gpa, &L3hva, &pageprot) == -1)
331 1.1 maxv return -1;
332 1.1 maxv pdir = (pte_64bit_t *)L3hva;
333 1.1 maxv pte = pdir[pte64_l3idx(gva)];
334 1.1 maxv if ((pte & PG_V) == 0)
335 1.1 maxv return -1;
336 1.1 maxv if ((pte & PG_u) == 0)
337 1.1 maxv *prot &= ~NVMM_PROT_USER;
338 1.1 maxv if ((pte & PG_KW) == 0)
339 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
340 1.1 maxv if (pte & PG_NX)
341 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
342 1.1 maxv if (pte & PG_PS) {
343 1.1 maxv *gpa = (pte & PTE64_L3_FRAME);
344 1.10 maxv *gpa = *gpa + (gva & (PTE64_L2_MASK|PTE64_L1_MASK));
345 1.1 maxv return 0;
346 1.1 maxv }
347 1.1 maxv
348 1.1 maxv /* Parse L2. */
349 1.1 maxv L2gpa = (pte & PG_FRAME);
350 1.28 maxv if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva, &pageprot) == -1)
351 1.1 maxv return -1;
352 1.1 maxv pdir = (pte_64bit_t *)L2hva;
353 1.1 maxv pte = pdir[pte64_l2idx(gva)];
354 1.1 maxv if ((pte & PG_V) == 0)
355 1.1 maxv return -1;
356 1.1 maxv if ((pte & PG_u) == 0)
357 1.1 maxv *prot &= ~NVMM_PROT_USER;
358 1.1 maxv if ((pte & PG_KW) == 0)
359 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
360 1.1 maxv if (pte & PG_NX)
361 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
362 1.1 maxv if (pte & PG_PS) {
363 1.1 maxv *gpa = (pte & PTE64_L2_FRAME);
364 1.10 maxv *gpa = *gpa + (gva & PTE64_L1_MASK);
365 1.1 maxv return 0;
366 1.1 maxv }
367 1.1 maxv
368 1.1 maxv /* Parse L1. */
369 1.1 maxv L1gpa = (pte & PG_FRAME);
370 1.28 maxv if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva, &pageprot) == -1)
371 1.1 maxv return -1;
372 1.1 maxv pdir = (pte_64bit_t *)L1hva;
373 1.1 maxv pte = pdir[pte64_l1idx(gva)];
374 1.1 maxv if ((pte & PG_V) == 0)
375 1.1 maxv return -1;
376 1.1 maxv if ((pte & PG_u) == 0)
377 1.1 maxv *prot &= ~NVMM_PROT_USER;
378 1.1 maxv if ((pte & PG_KW) == 0)
379 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
380 1.1 maxv if (pte & PG_NX)
381 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
382 1.1 maxv if (pte & PG_PS)
383 1.1 maxv return -1;
384 1.1 maxv
385 1.1 maxv *gpa = (pte & PG_FRAME);
386 1.1 maxv return 0;
387 1.1 maxv }
388 1.1 maxv
389 1.1 maxv static inline int
390 1.1 maxv x86_gva_to_gpa(struct nvmm_machine *mach, struct nvmm_x64_state *state,
391 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
392 1.1 maxv {
393 1.1 maxv bool is_pae, is_lng, has_pse;
394 1.1 maxv uint64_t cr3;
395 1.6 maxv size_t off;
396 1.1 maxv int ret;
397 1.1 maxv
398 1.1 maxv if ((state->crs[NVMM_X64_CR_CR0] & CR0_PG) == 0) {
399 1.1 maxv /* No paging. */
400 1.4 maxv *prot = NVMM_PROT_ALL;
401 1.1 maxv *gpa = gva;
402 1.1 maxv return 0;
403 1.1 maxv }
404 1.1 maxv
405 1.6 maxv off = (gva & PAGE_MASK);
406 1.6 maxv gva &= ~PAGE_MASK;
407 1.6 maxv
408 1.1 maxv is_pae = (state->crs[NVMM_X64_CR_CR4] & CR4_PAE) != 0;
409 1.15 maxv is_lng = (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) != 0;
410 1.1 maxv has_pse = (state->crs[NVMM_X64_CR_CR4] & CR4_PSE) != 0;
411 1.1 maxv cr3 = state->crs[NVMM_X64_CR_CR3];
412 1.1 maxv
413 1.1 maxv if (is_pae && is_lng) {
414 1.1 maxv /* 64bit */
415 1.11 maxv ret = x86_gva_to_gpa_64bit(mach, cr3, gva, gpa, prot);
416 1.1 maxv } else if (is_pae && !is_lng) {
417 1.1 maxv /* 32bit PAE */
418 1.23 maxv ret = x86_gva_to_gpa_32bit_pae(mach, cr3, gva, gpa, prot);
419 1.1 maxv } else if (!is_pae && !is_lng) {
420 1.1 maxv /* 32bit */
421 1.1 maxv ret = x86_gva_to_gpa_32bit(mach, cr3, gva, gpa, has_pse, prot);
422 1.1 maxv } else {
423 1.1 maxv ret = -1;
424 1.1 maxv }
425 1.1 maxv
426 1.1 maxv if (ret == -1) {
427 1.1 maxv errno = EFAULT;
428 1.1 maxv }
429 1.1 maxv
430 1.6 maxv *gpa = *gpa + off;
431 1.6 maxv
432 1.1 maxv return ret;
433 1.1 maxv }
434 1.1 maxv
435 1.1 maxv int
436 1.31 maxv nvmm_gva_to_gpa(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
437 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
438 1.1 maxv {
439 1.31 maxv struct nvmm_x64_state *state = vcpu->state;
440 1.1 maxv int ret;
441 1.1 maxv
442 1.31 maxv ret = nvmm_vcpu_getstate(mach, vcpu,
443 1.1 maxv NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
444 1.1 maxv if (ret == -1)
445 1.1 maxv return -1;
446 1.1 maxv
447 1.31 maxv return x86_gva_to_gpa(mach, state, gva, gpa, prot);
448 1.1 maxv }
449 1.1 maxv
450 1.1 maxv /* -------------------------------------------------------------------------- */
451 1.1 maxv
452 1.32 maxv #define DISASSEMBLER_BUG() \
453 1.32 maxv do { \
454 1.32 maxv errno = EINVAL; \
455 1.32 maxv return -1; \
456 1.32 maxv } while (0);
457 1.32 maxv
458 1.1 maxv static inline bool
459 1.15 maxv is_long_mode(struct nvmm_x64_state *state)
460 1.15 maxv {
461 1.15 maxv return (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) != 0;
462 1.15 maxv }
463 1.15 maxv
464 1.15 maxv static inline bool
465 1.5 maxv is_64bit(struct nvmm_x64_state *state)
466 1.5 maxv {
467 1.26 maxv return (state->segs[NVMM_X64_SEG_CS].attrib.l != 0);
468 1.5 maxv }
469 1.5 maxv
470 1.5 maxv static inline bool
471 1.5 maxv is_32bit(struct nvmm_x64_state *state)
472 1.5 maxv {
473 1.26 maxv return (state->segs[NVMM_X64_SEG_CS].attrib.l == 0) &&
474 1.26 maxv (state->segs[NVMM_X64_SEG_CS].attrib.def == 1);
475 1.5 maxv }
476 1.5 maxv
477 1.5 maxv static inline bool
478 1.5 maxv is_16bit(struct nvmm_x64_state *state)
479 1.5 maxv {
480 1.26 maxv return (state->segs[NVMM_X64_SEG_CS].attrib.l == 0) &&
481 1.26 maxv (state->segs[NVMM_X64_SEG_CS].attrib.def == 0);
482 1.5 maxv }
483 1.5 maxv
484 1.1 maxv static int
485 1.15 maxv segment_check(struct nvmm_x64_state_seg *seg, gvaddr_t gva, size_t size)
486 1.1 maxv {
487 1.1 maxv uint64_t limit;
488 1.1 maxv
489 1.1 maxv /*
490 1.1 maxv * This is incomplete. We should check topdown, etc, really that's
491 1.1 maxv * tiring.
492 1.1 maxv */
493 1.1 maxv if (__predict_false(!seg->attrib.p)) {
494 1.1 maxv goto error;
495 1.1 maxv }
496 1.1 maxv
497 1.26 maxv limit = (uint64_t)seg->limit + 1;
498 1.26 maxv if (__predict_true(seg->attrib.g)) {
499 1.1 maxv limit *= PAGE_SIZE;
500 1.1 maxv }
501 1.1 maxv
502 1.15 maxv if (__predict_false(gva + size > limit)) {
503 1.1 maxv goto error;
504 1.1 maxv }
505 1.1 maxv
506 1.1 maxv return 0;
507 1.1 maxv
508 1.1 maxv error:
509 1.1 maxv errno = EFAULT;
510 1.1 maxv return -1;
511 1.1 maxv }
512 1.1 maxv
513 1.15 maxv static inline void
514 1.15 maxv segment_apply(struct nvmm_x64_state_seg *seg, gvaddr_t *gva)
515 1.15 maxv {
516 1.15 maxv *gva += seg->base;
517 1.15 maxv }
518 1.15 maxv
519 1.15 maxv static inline uint64_t
520 1.15 maxv size_to_mask(size_t size)
521 1.6 maxv {
522 1.15 maxv switch (size) {
523 1.15 maxv case 1:
524 1.15 maxv return 0x00000000000000FF;
525 1.15 maxv case 2:
526 1.15 maxv return 0x000000000000FFFF;
527 1.15 maxv case 4:
528 1.15 maxv return 0x00000000FFFFFFFF;
529 1.6 maxv case 8:
530 1.15 maxv default:
531 1.6 maxv return 0xFFFFFFFFFFFFFFFF;
532 1.6 maxv }
533 1.6 maxv }
534 1.6 maxv
535 1.6 maxv static uint64_t
536 1.10 maxv rep_get_cnt(struct nvmm_x64_state *state, size_t adsize)
537 1.10 maxv {
538 1.10 maxv uint64_t mask, cnt;
539 1.10 maxv
540 1.15 maxv mask = size_to_mask(adsize);
541 1.10 maxv cnt = state->gprs[NVMM_X64_GPR_RCX] & mask;
542 1.10 maxv
543 1.10 maxv return cnt;
544 1.10 maxv }
545 1.10 maxv
546 1.10 maxv static void
547 1.10 maxv rep_set_cnt(struct nvmm_x64_state *state, size_t adsize, uint64_t cnt)
548 1.10 maxv {
549 1.10 maxv uint64_t mask;
550 1.10 maxv
551 1.15 maxv /* XXX: should we zero-extend? */
552 1.15 maxv mask = size_to_mask(adsize);
553 1.10 maxv state->gprs[NVMM_X64_GPR_RCX] &= ~mask;
554 1.10 maxv state->gprs[NVMM_X64_GPR_RCX] |= cnt;
555 1.10 maxv }
556 1.10 maxv
557 1.6 maxv static int
558 1.6 maxv read_guest_memory(struct nvmm_machine *mach, struct nvmm_x64_state *state,
559 1.6 maxv gvaddr_t gva, uint8_t *data, size_t size)
560 1.6 maxv {
561 1.6 maxv struct nvmm_mem mem;
562 1.6 maxv nvmm_prot_t prot;
563 1.6 maxv gpaddr_t gpa;
564 1.6 maxv uintptr_t hva;
565 1.6 maxv bool is_mmio;
566 1.6 maxv int ret, remain;
567 1.6 maxv
568 1.6 maxv ret = x86_gva_to_gpa(mach, state, gva, &gpa, &prot);
569 1.6 maxv if (__predict_false(ret == -1)) {
570 1.6 maxv return -1;
571 1.6 maxv }
572 1.6 maxv if (__predict_false(!(prot & NVMM_PROT_READ))) {
573 1.6 maxv errno = EFAULT;
574 1.6 maxv return -1;
575 1.6 maxv }
576 1.6 maxv
577 1.6 maxv if ((gva & PAGE_MASK) + size > PAGE_SIZE) {
578 1.6 maxv remain = ((gva & PAGE_MASK) + size - PAGE_SIZE);
579 1.6 maxv } else {
580 1.6 maxv remain = 0;
581 1.6 maxv }
582 1.6 maxv size -= remain;
583 1.6 maxv
584 1.28 maxv ret = nvmm_gpa_to_hva(mach, gpa, &hva, &prot);
585 1.6 maxv is_mmio = (ret == -1);
586 1.6 maxv
587 1.6 maxv if (is_mmio) {
588 1.11 maxv mem.data = data;
589 1.6 maxv mem.gpa = gpa;
590 1.6 maxv mem.write = false;
591 1.6 maxv mem.size = size;
592 1.30 maxv (*mach->cbs.mem)(&mem);
593 1.6 maxv } else {
594 1.28 maxv if (__predict_false(!(prot & NVMM_PROT_READ))) {
595 1.28 maxv errno = EFAULT;
596 1.28 maxv return -1;
597 1.28 maxv }
598 1.6 maxv memcpy(data, (uint8_t *)hva, size);
599 1.6 maxv }
600 1.6 maxv
601 1.6 maxv if (remain > 0) {
602 1.6 maxv ret = read_guest_memory(mach, state, gva + size,
603 1.6 maxv data + size, remain);
604 1.6 maxv } else {
605 1.6 maxv ret = 0;
606 1.6 maxv }
607 1.6 maxv
608 1.6 maxv return ret;
609 1.6 maxv }
610 1.6 maxv
611 1.6 maxv static int
612 1.6 maxv write_guest_memory(struct nvmm_machine *mach, struct nvmm_x64_state *state,
613 1.6 maxv gvaddr_t gva, uint8_t *data, size_t size)
614 1.6 maxv {
615 1.6 maxv struct nvmm_mem mem;
616 1.6 maxv nvmm_prot_t prot;
617 1.6 maxv gpaddr_t gpa;
618 1.6 maxv uintptr_t hva;
619 1.6 maxv bool is_mmio;
620 1.6 maxv int ret, remain;
621 1.6 maxv
622 1.6 maxv ret = x86_gva_to_gpa(mach, state, gva, &gpa, &prot);
623 1.6 maxv if (__predict_false(ret == -1)) {
624 1.6 maxv return -1;
625 1.6 maxv }
626 1.6 maxv if (__predict_false(!(prot & NVMM_PROT_WRITE))) {
627 1.6 maxv errno = EFAULT;
628 1.6 maxv return -1;
629 1.6 maxv }
630 1.6 maxv
631 1.6 maxv if ((gva & PAGE_MASK) + size > PAGE_SIZE) {
632 1.6 maxv remain = ((gva & PAGE_MASK) + size - PAGE_SIZE);
633 1.6 maxv } else {
634 1.6 maxv remain = 0;
635 1.6 maxv }
636 1.6 maxv size -= remain;
637 1.6 maxv
638 1.28 maxv ret = nvmm_gpa_to_hva(mach, gpa, &hva, &prot);
639 1.6 maxv is_mmio = (ret == -1);
640 1.6 maxv
641 1.6 maxv if (is_mmio) {
642 1.11 maxv mem.data = data;
643 1.6 maxv mem.gpa = gpa;
644 1.6 maxv mem.write = true;
645 1.6 maxv mem.size = size;
646 1.30 maxv (*mach->cbs.mem)(&mem);
647 1.6 maxv } else {
648 1.28 maxv if (__predict_false(!(prot & NVMM_PROT_WRITE))) {
649 1.28 maxv errno = EFAULT;
650 1.28 maxv return -1;
651 1.28 maxv }
652 1.6 maxv memcpy((uint8_t *)hva, data, size);
653 1.6 maxv }
654 1.6 maxv
655 1.6 maxv if (remain > 0) {
656 1.6 maxv ret = write_guest_memory(mach, state, gva + size,
657 1.6 maxv data + size, remain);
658 1.6 maxv } else {
659 1.6 maxv ret = 0;
660 1.6 maxv }
661 1.6 maxv
662 1.6 maxv return ret;
663 1.6 maxv }
664 1.6 maxv
665 1.6 maxv /* -------------------------------------------------------------------------- */
666 1.6 maxv
667 1.8 maxv static int fetch_segment(struct nvmm_machine *, struct nvmm_x64_state *);
668 1.8 maxv
669 1.10 maxv #define NVMM_IO_BATCH_SIZE 32
670 1.10 maxv
671 1.10 maxv static int
672 1.10 maxv assist_io_batch(struct nvmm_machine *mach, struct nvmm_x64_state *state,
673 1.10 maxv struct nvmm_io *io, gvaddr_t gva, uint64_t cnt)
674 1.10 maxv {
675 1.10 maxv uint8_t iobuf[NVMM_IO_BATCH_SIZE];
676 1.10 maxv size_t i, iosize, iocnt;
677 1.10 maxv int ret;
678 1.10 maxv
679 1.10 maxv cnt = MIN(cnt, NVMM_IO_BATCH_SIZE);
680 1.10 maxv iosize = MIN(io->size * cnt, NVMM_IO_BATCH_SIZE);
681 1.10 maxv iocnt = iosize / io->size;
682 1.10 maxv
683 1.10 maxv io->data = iobuf;
684 1.10 maxv
685 1.10 maxv if (!io->in) {
686 1.10 maxv ret = read_guest_memory(mach, state, gva, iobuf, iosize);
687 1.10 maxv if (ret == -1)
688 1.10 maxv return -1;
689 1.10 maxv }
690 1.10 maxv
691 1.10 maxv for (i = 0; i < iocnt; i++) {
692 1.30 maxv (*mach->cbs.io)(io);
693 1.10 maxv io->data += io->size;
694 1.10 maxv }
695 1.10 maxv
696 1.10 maxv if (io->in) {
697 1.10 maxv ret = write_guest_memory(mach, state, gva, iobuf, iosize);
698 1.10 maxv if (ret == -1)
699 1.10 maxv return -1;
700 1.10 maxv }
701 1.10 maxv
702 1.10 maxv return iocnt;
703 1.10 maxv }
704 1.10 maxv
705 1.1 maxv int
706 1.31 maxv nvmm_assist_io(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
707 1.1 maxv {
708 1.31 maxv struct nvmm_x64_state *state = vcpu->state;
709 1.31 maxv struct nvmm_exit *exit = vcpu->exit;
710 1.1 maxv struct nvmm_io io;
711 1.10 maxv uint64_t cnt = 0; /* GCC */
712 1.10 maxv uint8_t iobuf[8];
713 1.10 maxv int iocnt = 1;
714 1.15 maxv gvaddr_t gva = 0; /* GCC */
715 1.5 maxv int reg = 0; /* GCC */
716 1.8 maxv int ret, seg;
717 1.10 maxv bool psld = false;
718 1.1 maxv
719 1.1 maxv if (__predict_false(exit->reason != NVMM_EXIT_IO)) {
720 1.1 maxv errno = EINVAL;
721 1.1 maxv return -1;
722 1.1 maxv }
723 1.1 maxv
724 1.1 maxv io.port = exit->u.io.port;
725 1.1 maxv io.in = (exit->u.io.type == NVMM_EXIT_IO_IN);
726 1.1 maxv io.size = exit->u.io.operand_size;
727 1.10 maxv io.data = iobuf;
728 1.1 maxv
729 1.31 maxv ret = nvmm_vcpu_getstate(mach, vcpu,
730 1.1 maxv NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
731 1.1 maxv NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
732 1.1 maxv if (ret == -1)
733 1.1 maxv return -1;
734 1.1 maxv
735 1.10 maxv if (exit->u.io.rep) {
736 1.31 maxv cnt = rep_get_cnt(state, exit->u.io.address_size);
737 1.10 maxv if (__predict_false(cnt == 0)) {
738 1.31 maxv state->gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
739 1.15 maxv goto out;
740 1.10 maxv }
741 1.10 maxv }
742 1.10 maxv
743 1.31 maxv if (__predict_false(state->gprs[NVMM_X64_GPR_RFLAGS] & PSL_D)) {
744 1.10 maxv psld = true;
745 1.10 maxv }
746 1.10 maxv
747 1.6 maxv /*
748 1.6 maxv * Determine GVA.
749 1.6 maxv */
750 1.6 maxv if (exit->u.io.str) {
751 1.5 maxv if (io.in) {
752 1.5 maxv reg = NVMM_X64_GPR_RDI;
753 1.5 maxv } else {
754 1.5 maxv reg = NVMM_X64_GPR_RSI;
755 1.5 maxv }
756 1.1 maxv
757 1.31 maxv gva = state->gprs[reg];
758 1.15 maxv gva &= size_to_mask(exit->u.io.address_size);
759 1.1 maxv
760 1.15 maxv if (exit->u.io.seg != -1) {
761 1.15 maxv seg = exit->u.io.seg;
762 1.15 maxv } else {
763 1.15 maxv if (io.in) {
764 1.15 maxv seg = NVMM_X64_SEG_ES;
765 1.8 maxv } else {
766 1.31 maxv seg = fetch_segment(mach, state);
767 1.15 maxv if (seg == -1)
768 1.15 maxv return -1;
769 1.8 maxv }
770 1.15 maxv }
771 1.8 maxv
772 1.31 maxv if (__predict_true(is_long_mode(state))) {
773 1.15 maxv if (seg == NVMM_X64_SEG_GS || seg == NVMM_X64_SEG_FS) {
774 1.31 maxv segment_apply(&state->segs[seg], &gva);
775 1.15 maxv }
776 1.15 maxv } else {
777 1.31 maxv ret = segment_check(&state->segs[seg], gva, io.size);
778 1.1 maxv if (ret == -1)
779 1.1 maxv return -1;
780 1.31 maxv segment_apply(&state->segs[seg], &gva);
781 1.1 maxv }
782 1.10 maxv
783 1.10 maxv if (exit->u.io.rep && !psld) {
784 1.31 maxv iocnt = assist_io_batch(mach, state, &io, gva, cnt);
785 1.10 maxv if (iocnt == -1)
786 1.10 maxv return -1;
787 1.10 maxv goto done;
788 1.10 maxv }
789 1.6 maxv }
790 1.1 maxv
791 1.6 maxv if (!io.in) {
792 1.6 maxv if (!exit->u.io.str) {
793 1.31 maxv memcpy(io.data, &state->gprs[NVMM_X64_GPR_RAX], io.size);
794 1.6 maxv } else {
795 1.31 maxv ret = read_guest_memory(mach, state, gva, io.data,
796 1.6 maxv io.size);
797 1.1 maxv if (ret == -1)
798 1.1 maxv return -1;
799 1.1 maxv }
800 1.1 maxv }
801 1.1 maxv
802 1.30 maxv (*mach->cbs.io)(&io);
803 1.1 maxv
804 1.1 maxv if (io.in) {
805 1.6 maxv if (!exit->u.io.str) {
806 1.31 maxv memcpy(&state->gprs[NVMM_X64_GPR_RAX], io.data, io.size);
807 1.15 maxv if (io.size == 4) {
808 1.15 maxv /* Zero-extend to 64 bits. */
809 1.31 maxv state->gprs[NVMM_X64_GPR_RAX] &= size_to_mask(4);
810 1.15 maxv }
811 1.1 maxv } else {
812 1.31 maxv ret = write_guest_memory(mach, state, gva, io.data,
813 1.6 maxv io.size);
814 1.6 maxv if (ret == -1)
815 1.6 maxv return -1;
816 1.1 maxv }
817 1.1 maxv }
818 1.1 maxv
819 1.10 maxv done:
820 1.5 maxv if (exit->u.io.str) {
821 1.10 maxv if (__predict_false(psld)) {
822 1.31 maxv state->gprs[reg] -= iocnt * io.size;
823 1.5 maxv } else {
824 1.31 maxv state->gprs[reg] += iocnt * io.size;
825 1.5 maxv }
826 1.5 maxv }
827 1.5 maxv
828 1.1 maxv if (exit->u.io.rep) {
829 1.10 maxv cnt -= iocnt;
830 1.31 maxv rep_set_cnt(state, exit->u.io.address_size, cnt);
831 1.6 maxv if (cnt == 0) {
832 1.31 maxv state->gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
833 1.1 maxv }
834 1.1 maxv } else {
835 1.31 maxv state->gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
836 1.1 maxv }
837 1.1 maxv
838 1.15 maxv out:
839 1.31 maxv ret = nvmm_vcpu_setstate(mach, vcpu, NVMM_X64_STATE_GPRS);
840 1.1 maxv if (ret == -1)
841 1.1 maxv return -1;
842 1.1 maxv
843 1.1 maxv return 0;
844 1.1 maxv }
845 1.1 maxv
846 1.1 maxv /* -------------------------------------------------------------------------- */
847 1.1 maxv
848 1.19 maxv struct x86_emul {
849 1.33 maxv bool readreg;
850 1.33 maxv bool backprop;
851 1.19 maxv bool notouch;
852 1.30 maxv void (*func)(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
853 1.19 maxv };
854 1.19 maxv
855 1.30 maxv static void x86_func_or(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
856 1.30 maxv static void x86_func_and(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
857 1.33 maxv static void x86_func_xchg(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
858 1.30 maxv static void x86_func_sub(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
859 1.30 maxv static void x86_func_xor(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
860 1.30 maxv static void x86_func_cmp(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
861 1.30 maxv static void x86_func_test(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
862 1.30 maxv static void x86_func_mov(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
863 1.30 maxv static void x86_func_stos(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
864 1.30 maxv static void x86_func_lods(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
865 1.30 maxv static void x86_func_movs(struct nvmm_machine *, struct nvmm_mem *, uint64_t *);
866 1.19 maxv
867 1.19 maxv static const struct x86_emul x86_emul_or = {
868 1.33 maxv .readreg = true,
869 1.19 maxv .func = x86_func_or
870 1.19 maxv };
871 1.19 maxv
872 1.19 maxv static const struct x86_emul x86_emul_and = {
873 1.33 maxv .readreg = true,
874 1.19 maxv .func = x86_func_and
875 1.19 maxv };
876 1.19 maxv
877 1.33 maxv static const struct x86_emul x86_emul_xchg = {
878 1.33 maxv .readreg = true,
879 1.33 maxv .backprop = true,
880 1.33 maxv .func = x86_func_xchg
881 1.33 maxv };
882 1.33 maxv
883 1.19 maxv static const struct x86_emul x86_emul_sub = {
884 1.33 maxv .readreg = true,
885 1.19 maxv .func = x86_func_sub
886 1.19 maxv };
887 1.19 maxv
888 1.19 maxv static const struct x86_emul x86_emul_xor = {
889 1.33 maxv .readreg = true,
890 1.19 maxv .func = x86_func_xor
891 1.19 maxv };
892 1.19 maxv
893 1.19 maxv static const struct x86_emul x86_emul_cmp = {
894 1.19 maxv .notouch = true,
895 1.19 maxv .func = x86_func_cmp
896 1.19 maxv };
897 1.19 maxv
898 1.19 maxv static const struct x86_emul x86_emul_test = {
899 1.19 maxv .notouch = true,
900 1.19 maxv .func = x86_func_test
901 1.19 maxv };
902 1.19 maxv
903 1.19 maxv static const struct x86_emul x86_emul_mov = {
904 1.19 maxv .func = x86_func_mov
905 1.19 maxv };
906 1.19 maxv
907 1.19 maxv static const struct x86_emul x86_emul_stos = {
908 1.19 maxv .func = x86_func_stos
909 1.19 maxv };
910 1.19 maxv
911 1.19 maxv static const struct x86_emul x86_emul_lods = {
912 1.19 maxv .func = x86_func_lods
913 1.19 maxv };
914 1.19 maxv
915 1.19 maxv static const struct x86_emul x86_emul_movs = {
916 1.19 maxv .func = x86_func_movs
917 1.19 maxv };
918 1.5 maxv
919 1.13 maxv /* Legacy prefixes. */
920 1.13 maxv #define LEG_LOCK 0xF0
921 1.13 maxv #define LEG_REPN 0xF2
922 1.13 maxv #define LEG_REP 0xF3
923 1.13 maxv #define LEG_OVR_CS 0x2E
924 1.13 maxv #define LEG_OVR_SS 0x36
925 1.13 maxv #define LEG_OVR_DS 0x3E
926 1.13 maxv #define LEG_OVR_ES 0x26
927 1.13 maxv #define LEG_OVR_FS 0x64
928 1.13 maxv #define LEG_OVR_GS 0x65
929 1.13 maxv #define LEG_OPR_OVR 0x66
930 1.13 maxv #define LEG_ADR_OVR 0x67
931 1.13 maxv
932 1.13 maxv struct x86_legpref {
933 1.13 maxv bool opr_ovr:1;
934 1.13 maxv bool adr_ovr:1;
935 1.13 maxv bool rep:1;
936 1.13 maxv bool repn:1;
937 1.27 maxv int8_t seg;
938 1.5 maxv };
939 1.5 maxv
940 1.5 maxv struct x86_rexpref {
941 1.27 maxv bool b:1;
942 1.27 maxv bool x:1;
943 1.27 maxv bool r:1;
944 1.27 maxv bool w:1;
945 1.27 maxv bool present:1;
946 1.5 maxv };
947 1.5 maxv
948 1.5 maxv struct x86_reg {
949 1.5 maxv int num; /* NVMM GPR state index */
950 1.5 maxv uint64_t mask;
951 1.5 maxv };
952 1.5 maxv
953 1.32 maxv struct x86_dualreg {
954 1.32 maxv int reg1;
955 1.32 maxv int reg2;
956 1.32 maxv };
957 1.32 maxv
958 1.5 maxv enum x86_disp_type {
959 1.5 maxv DISP_NONE,
960 1.5 maxv DISP_0,
961 1.5 maxv DISP_1,
962 1.32 maxv DISP_2,
963 1.5 maxv DISP_4
964 1.5 maxv };
965 1.5 maxv
966 1.5 maxv struct x86_disp {
967 1.5 maxv enum x86_disp_type type;
968 1.11 maxv uint64_t data; /* 4 bytes, but can be sign-extended */
969 1.5 maxv };
970 1.5 maxv
971 1.5 maxv struct x86_regmodrm {
972 1.27 maxv uint8_t mod:2;
973 1.27 maxv uint8_t reg:3;
974 1.27 maxv uint8_t rm:3;
975 1.5 maxv };
976 1.5 maxv
977 1.5 maxv struct x86_immediate {
978 1.11 maxv uint64_t data;
979 1.5 maxv };
980 1.5 maxv
981 1.5 maxv struct x86_sib {
982 1.5 maxv uint8_t scale;
983 1.5 maxv const struct x86_reg *idx;
984 1.5 maxv const struct x86_reg *bas;
985 1.5 maxv };
986 1.5 maxv
987 1.5 maxv enum x86_store_type {
988 1.5 maxv STORE_NONE,
989 1.5 maxv STORE_REG,
990 1.32 maxv STORE_DUALREG,
991 1.5 maxv STORE_IMM,
992 1.5 maxv STORE_SIB,
993 1.5 maxv STORE_DMO
994 1.5 maxv };
995 1.5 maxv
996 1.5 maxv struct x86_store {
997 1.5 maxv enum x86_store_type type;
998 1.5 maxv union {
999 1.5 maxv const struct x86_reg *reg;
1000 1.32 maxv struct x86_dualreg dualreg;
1001 1.5 maxv struct x86_immediate imm;
1002 1.5 maxv struct x86_sib sib;
1003 1.5 maxv uint64_t dmo;
1004 1.5 maxv } u;
1005 1.5 maxv struct x86_disp disp;
1006 1.6 maxv int hardseg;
1007 1.5 maxv };
1008 1.5 maxv
1009 1.5 maxv struct x86_instr {
1010 1.27 maxv uint8_t len;
1011 1.13 maxv struct x86_legpref legpref;
1012 1.5 maxv struct x86_rexpref rexpref;
1013 1.27 maxv struct x86_regmodrm regmodrm;
1014 1.27 maxv uint8_t operand_size;
1015 1.27 maxv uint8_t address_size;
1016 1.10 maxv uint64_t zeroextend_mask;
1017 1.5 maxv
1018 1.5 maxv const struct x86_opcode *opcode;
1019 1.27 maxv const struct x86_emul *emul;
1020 1.5 maxv
1021 1.5 maxv struct x86_store src;
1022 1.5 maxv struct x86_store dst;
1023 1.5 maxv struct x86_store *strm;
1024 1.5 maxv };
1025 1.5 maxv
1026 1.5 maxv struct x86_decode_fsm {
1027 1.5 maxv /* vcpu */
1028 1.5 maxv bool is64bit;
1029 1.5 maxv bool is32bit;
1030 1.5 maxv bool is16bit;
1031 1.5 maxv
1032 1.5 maxv /* fsm */
1033 1.5 maxv int (*fn)(struct x86_decode_fsm *, struct x86_instr *);
1034 1.5 maxv uint8_t *buf;
1035 1.5 maxv uint8_t *end;
1036 1.5 maxv };
1037 1.5 maxv
1038 1.5 maxv struct x86_opcode {
1039 1.27 maxv bool valid:1;
1040 1.27 maxv bool regmodrm:1;
1041 1.27 maxv bool regtorm:1;
1042 1.27 maxv bool dmo:1;
1043 1.27 maxv bool todmo:1;
1044 1.27 maxv bool movs:1;
1045 1.27 maxv bool stos:1;
1046 1.27 maxv bool lods:1;
1047 1.27 maxv bool szoverride:1;
1048 1.27 maxv bool group1:1;
1049 1.27 maxv bool group3:1;
1050 1.27 maxv bool group11:1;
1051 1.27 maxv bool immediate:1;
1052 1.27 maxv uint8_t defsize;
1053 1.27 maxv uint8_t flags;
1054 1.19 maxv const struct x86_emul *emul;
1055 1.5 maxv };
1056 1.5 maxv
1057 1.5 maxv struct x86_group_entry {
1058 1.19 maxv const struct x86_emul *emul;
1059 1.5 maxv };
1060 1.5 maxv
1061 1.5 maxv #define OPSIZE_BYTE 0x01
1062 1.5 maxv #define OPSIZE_WORD 0x02 /* 2 bytes */
1063 1.5 maxv #define OPSIZE_DOUB 0x04 /* 4 bytes */
1064 1.5 maxv #define OPSIZE_QUAD 0x08 /* 8 bytes */
1065 1.5 maxv
1066 1.11 maxv #define FLAG_imm8 0x01
1067 1.11 maxv #define FLAG_immz 0x02
1068 1.11 maxv #define FLAG_ze 0x04
1069 1.11 maxv
1070 1.27 maxv static const struct x86_group_entry group1[8] __cacheline_aligned = {
1071 1.19 maxv [1] = { .emul = &x86_emul_or },
1072 1.19 maxv [4] = { .emul = &x86_emul_and },
1073 1.19 maxv [6] = { .emul = &x86_emul_xor },
1074 1.19 maxv [7] = { .emul = &x86_emul_cmp }
1075 1.19 maxv };
1076 1.19 maxv
1077 1.27 maxv static const struct x86_group_entry group3[8] __cacheline_aligned = {
1078 1.19 maxv [0] = { .emul = &x86_emul_test },
1079 1.19 maxv [1] = { .emul = &x86_emul_test }
1080 1.11 maxv };
1081 1.5 maxv
1082 1.27 maxv static const struct x86_group_entry group11[8] __cacheline_aligned = {
1083 1.19 maxv [0] = { .emul = &x86_emul_mov }
1084 1.5 maxv };
1085 1.5 maxv
1086 1.27 maxv static const struct x86_opcode primary_opcode_table[256] __cacheline_aligned = {
1087 1.5 maxv /*
1088 1.11 maxv * Group1
1089 1.11 maxv */
1090 1.27 maxv [0x80] = {
1091 1.19 maxv /* Eb, Ib */
1092 1.27 maxv .valid = true,
1093 1.19 maxv .regmodrm = true,
1094 1.19 maxv .regtorm = true,
1095 1.19 maxv .szoverride = false,
1096 1.19 maxv .defsize = OPSIZE_BYTE,
1097 1.19 maxv .group1 = true,
1098 1.19 maxv .immediate = true,
1099 1.19 maxv .emul = NULL /* group1 */
1100 1.19 maxv },
1101 1.27 maxv [0x81] = {
1102 1.15 maxv /* Ev, Iz */
1103 1.27 maxv .valid = true,
1104 1.15 maxv .regmodrm = true,
1105 1.15 maxv .regtorm = true,
1106 1.15 maxv .szoverride = true,
1107 1.15 maxv .defsize = -1,
1108 1.15 maxv .group1 = true,
1109 1.15 maxv .immediate = true,
1110 1.15 maxv .flags = FLAG_immz,
1111 1.15 maxv .emul = NULL /* group1 */
1112 1.15 maxv },
1113 1.27 maxv [0x83] = {
1114 1.11 maxv /* Ev, Ib */
1115 1.27 maxv .valid = true,
1116 1.11 maxv .regmodrm = true,
1117 1.11 maxv .regtorm = true,
1118 1.11 maxv .szoverride = true,
1119 1.11 maxv .defsize = -1,
1120 1.11 maxv .group1 = true,
1121 1.11 maxv .immediate = true,
1122 1.11 maxv .flags = FLAG_imm8,
1123 1.11 maxv .emul = NULL /* group1 */
1124 1.11 maxv },
1125 1.11 maxv
1126 1.11 maxv /*
1127 1.19 maxv * Group3
1128 1.19 maxv */
1129 1.27 maxv [0xF6] = {
1130 1.19 maxv /* Eb, Ib */
1131 1.27 maxv .valid = true,
1132 1.19 maxv .regmodrm = true,
1133 1.19 maxv .regtorm = true,
1134 1.19 maxv .szoverride = false,
1135 1.19 maxv .defsize = OPSIZE_BYTE,
1136 1.19 maxv .group3 = true,
1137 1.19 maxv .immediate = true,
1138 1.19 maxv .emul = NULL /* group3 */
1139 1.19 maxv },
1140 1.27 maxv [0xF7] = {
1141 1.19 maxv /* Ev, Iz */
1142 1.27 maxv .valid = true,
1143 1.19 maxv .regmodrm = true,
1144 1.19 maxv .regtorm = true,
1145 1.19 maxv .szoverride = true,
1146 1.19 maxv .defsize = -1,
1147 1.19 maxv .group3 = true,
1148 1.19 maxv .immediate = true,
1149 1.19 maxv .flags = FLAG_immz,
1150 1.19 maxv .emul = NULL /* group3 */
1151 1.19 maxv },
1152 1.19 maxv
1153 1.19 maxv /*
1154 1.5 maxv * Group11
1155 1.5 maxv */
1156 1.27 maxv [0xC6] = {
1157 1.11 maxv /* Eb, Ib */
1158 1.27 maxv .valid = true,
1159 1.5 maxv .regmodrm = true,
1160 1.5 maxv .regtorm = true,
1161 1.5 maxv .szoverride = false,
1162 1.5 maxv .defsize = OPSIZE_BYTE,
1163 1.5 maxv .group11 = true,
1164 1.5 maxv .immediate = true,
1165 1.5 maxv .emul = NULL /* group11 */
1166 1.5 maxv },
1167 1.27 maxv [0xC7] = {
1168 1.11 maxv /* Ev, Iz */
1169 1.27 maxv .valid = true,
1170 1.5 maxv .regmodrm = true,
1171 1.5 maxv .regtorm = true,
1172 1.5 maxv .szoverride = true,
1173 1.5 maxv .defsize = -1,
1174 1.5 maxv .group11 = true,
1175 1.5 maxv .immediate = true,
1176 1.11 maxv .flags = FLAG_immz,
1177 1.5 maxv .emul = NULL /* group11 */
1178 1.5 maxv },
1179 1.5 maxv
1180 1.5 maxv /*
1181 1.5 maxv * OR
1182 1.5 maxv */
1183 1.27 maxv [0x08] = {
1184 1.5 maxv /* Eb, Gb */
1185 1.27 maxv .valid = true,
1186 1.5 maxv .regmodrm = true,
1187 1.5 maxv .regtorm = true,
1188 1.5 maxv .szoverride = false,
1189 1.5 maxv .defsize = OPSIZE_BYTE,
1190 1.19 maxv .emul = &x86_emul_or
1191 1.5 maxv },
1192 1.27 maxv [0x09] = {
1193 1.5 maxv /* Ev, Gv */
1194 1.27 maxv .valid = true,
1195 1.5 maxv .regmodrm = true,
1196 1.5 maxv .regtorm = true,
1197 1.5 maxv .szoverride = true,
1198 1.5 maxv .defsize = -1,
1199 1.19 maxv .emul = &x86_emul_or
1200 1.5 maxv },
1201 1.27 maxv [0x0A] = {
1202 1.5 maxv /* Gb, Eb */
1203 1.27 maxv .valid = true,
1204 1.5 maxv .regmodrm = true,
1205 1.5 maxv .regtorm = false,
1206 1.5 maxv .szoverride = false,
1207 1.5 maxv .defsize = OPSIZE_BYTE,
1208 1.19 maxv .emul = &x86_emul_or
1209 1.5 maxv },
1210 1.27 maxv [0x0B] = {
1211 1.5 maxv /* Gv, Ev */
1212 1.27 maxv .valid = true,
1213 1.5 maxv .regmodrm = true,
1214 1.5 maxv .regtorm = false,
1215 1.5 maxv .szoverride = true,
1216 1.5 maxv .defsize = -1,
1217 1.19 maxv .emul = &x86_emul_or
1218 1.5 maxv },
1219 1.5 maxv
1220 1.5 maxv /*
1221 1.5 maxv * AND
1222 1.5 maxv */
1223 1.27 maxv [0x20] = {
1224 1.5 maxv /* Eb, Gb */
1225 1.27 maxv .valid = true,
1226 1.5 maxv .regmodrm = true,
1227 1.5 maxv .regtorm = true,
1228 1.5 maxv .szoverride = false,
1229 1.5 maxv .defsize = OPSIZE_BYTE,
1230 1.19 maxv .emul = &x86_emul_and
1231 1.5 maxv },
1232 1.27 maxv [0x21] = {
1233 1.5 maxv /* Ev, Gv */
1234 1.27 maxv .valid = true,
1235 1.5 maxv .regmodrm = true,
1236 1.5 maxv .regtorm = true,
1237 1.5 maxv .szoverride = true,
1238 1.5 maxv .defsize = -1,
1239 1.19 maxv .emul = &x86_emul_and
1240 1.5 maxv },
1241 1.27 maxv [0x22] = {
1242 1.5 maxv /* Gb, Eb */
1243 1.27 maxv .valid = true,
1244 1.5 maxv .regmodrm = true,
1245 1.5 maxv .regtorm = false,
1246 1.5 maxv .szoverride = false,
1247 1.5 maxv .defsize = OPSIZE_BYTE,
1248 1.19 maxv .emul = &x86_emul_and
1249 1.5 maxv },
1250 1.27 maxv [0x23] = {
1251 1.5 maxv /* Gv, Ev */
1252 1.27 maxv .valid = true,
1253 1.5 maxv .regmodrm = true,
1254 1.5 maxv .regtorm = false,
1255 1.5 maxv .szoverride = true,
1256 1.5 maxv .defsize = -1,
1257 1.19 maxv .emul = &x86_emul_and
1258 1.19 maxv },
1259 1.19 maxv
1260 1.19 maxv /*
1261 1.19 maxv * SUB
1262 1.19 maxv */
1263 1.27 maxv [0x28] = {
1264 1.19 maxv /* Eb, Gb */
1265 1.27 maxv .valid = true,
1266 1.19 maxv .regmodrm = true,
1267 1.19 maxv .regtorm = true,
1268 1.19 maxv .szoverride = false,
1269 1.19 maxv .defsize = OPSIZE_BYTE,
1270 1.19 maxv .emul = &x86_emul_sub
1271 1.19 maxv },
1272 1.27 maxv [0x29] = {
1273 1.19 maxv /* Ev, Gv */
1274 1.27 maxv .valid = true,
1275 1.19 maxv .regmodrm = true,
1276 1.19 maxv .regtorm = true,
1277 1.19 maxv .szoverride = true,
1278 1.19 maxv .defsize = -1,
1279 1.19 maxv .emul = &x86_emul_sub
1280 1.19 maxv },
1281 1.27 maxv [0x2A] = {
1282 1.19 maxv /* Gb, Eb */
1283 1.27 maxv .valid = true,
1284 1.19 maxv .regmodrm = true,
1285 1.19 maxv .regtorm = false,
1286 1.19 maxv .szoverride = false,
1287 1.19 maxv .defsize = OPSIZE_BYTE,
1288 1.19 maxv .emul = &x86_emul_sub
1289 1.19 maxv },
1290 1.27 maxv [0x2B] = {
1291 1.19 maxv /* Gv, Ev */
1292 1.27 maxv .valid = true,
1293 1.19 maxv .regmodrm = true,
1294 1.19 maxv .regtorm = false,
1295 1.19 maxv .szoverride = true,
1296 1.19 maxv .defsize = -1,
1297 1.19 maxv .emul = &x86_emul_sub
1298 1.5 maxv },
1299 1.5 maxv
1300 1.5 maxv /*
1301 1.5 maxv * XOR
1302 1.5 maxv */
1303 1.27 maxv [0x30] = {
1304 1.5 maxv /* Eb, Gb */
1305 1.27 maxv .valid = true,
1306 1.5 maxv .regmodrm = true,
1307 1.5 maxv .regtorm = true,
1308 1.5 maxv .szoverride = false,
1309 1.5 maxv .defsize = OPSIZE_BYTE,
1310 1.19 maxv .emul = &x86_emul_xor
1311 1.5 maxv },
1312 1.27 maxv [0x31] = {
1313 1.5 maxv /* Ev, Gv */
1314 1.27 maxv .valid = true,
1315 1.5 maxv .regmodrm = true,
1316 1.5 maxv .regtorm = true,
1317 1.5 maxv .szoverride = true,
1318 1.5 maxv .defsize = -1,
1319 1.19 maxv .emul = &x86_emul_xor
1320 1.5 maxv },
1321 1.27 maxv [0x32] = {
1322 1.5 maxv /* Gb, Eb */
1323 1.27 maxv .valid = true,
1324 1.5 maxv .regmodrm = true,
1325 1.5 maxv .regtorm = false,
1326 1.5 maxv .szoverride = false,
1327 1.5 maxv .defsize = OPSIZE_BYTE,
1328 1.19 maxv .emul = &x86_emul_xor
1329 1.5 maxv },
1330 1.27 maxv [0x33] = {
1331 1.5 maxv /* Gv, Ev */
1332 1.27 maxv .valid = true,
1333 1.5 maxv .regmodrm = true,
1334 1.5 maxv .regtorm = false,
1335 1.5 maxv .szoverride = true,
1336 1.5 maxv .defsize = -1,
1337 1.19 maxv .emul = &x86_emul_xor
1338 1.5 maxv },
1339 1.5 maxv
1340 1.5 maxv /*
1341 1.33 maxv * XCHG
1342 1.33 maxv */
1343 1.33 maxv [0x86] = {
1344 1.33 maxv /* Eb, Gb */
1345 1.33 maxv .valid = true,
1346 1.33 maxv .regmodrm = true,
1347 1.33 maxv .regtorm = true,
1348 1.33 maxv .szoverride = false,
1349 1.33 maxv .defsize = OPSIZE_BYTE,
1350 1.33 maxv .emul = &x86_emul_xchg
1351 1.33 maxv },
1352 1.33 maxv [0x87] = {
1353 1.33 maxv /* Ev, Gv */
1354 1.33 maxv .valid = true,
1355 1.33 maxv .regmodrm = true,
1356 1.33 maxv .regtorm = true,
1357 1.33 maxv .szoverride = true,
1358 1.33 maxv .defsize = -1,
1359 1.33 maxv .emul = &x86_emul_xchg
1360 1.33 maxv },
1361 1.33 maxv
1362 1.33 maxv /*
1363 1.5 maxv * MOV
1364 1.5 maxv */
1365 1.27 maxv [0x88] = {
1366 1.5 maxv /* Eb, Gb */
1367 1.27 maxv .valid = true,
1368 1.5 maxv .regmodrm = true,
1369 1.5 maxv .regtorm = true,
1370 1.5 maxv .szoverride = false,
1371 1.5 maxv .defsize = OPSIZE_BYTE,
1372 1.19 maxv .emul = &x86_emul_mov
1373 1.5 maxv },
1374 1.27 maxv [0x89] = {
1375 1.5 maxv /* Ev, Gv */
1376 1.27 maxv .valid = true,
1377 1.5 maxv .regmodrm = true,
1378 1.5 maxv .regtorm = true,
1379 1.5 maxv .szoverride = true,
1380 1.5 maxv .defsize = -1,
1381 1.19 maxv .emul = &x86_emul_mov
1382 1.5 maxv },
1383 1.27 maxv [0x8A] = {
1384 1.5 maxv /* Gb, Eb */
1385 1.27 maxv .valid = true,
1386 1.5 maxv .regmodrm = true,
1387 1.5 maxv .regtorm = false,
1388 1.5 maxv .szoverride = false,
1389 1.5 maxv .defsize = OPSIZE_BYTE,
1390 1.19 maxv .emul = &x86_emul_mov
1391 1.5 maxv },
1392 1.27 maxv [0x8B] = {
1393 1.5 maxv /* Gv, Ev */
1394 1.27 maxv .valid = true,
1395 1.5 maxv .regmodrm = true,
1396 1.5 maxv .regtorm = false,
1397 1.5 maxv .szoverride = true,
1398 1.5 maxv .defsize = -1,
1399 1.19 maxv .emul = &x86_emul_mov
1400 1.5 maxv },
1401 1.27 maxv [0xA0] = {
1402 1.5 maxv /* AL, Ob */
1403 1.27 maxv .valid = true,
1404 1.5 maxv .dmo = true,
1405 1.5 maxv .todmo = false,
1406 1.5 maxv .szoverride = false,
1407 1.5 maxv .defsize = OPSIZE_BYTE,
1408 1.19 maxv .emul = &x86_emul_mov
1409 1.5 maxv },
1410 1.27 maxv [0xA1] = {
1411 1.5 maxv /* rAX, Ov */
1412 1.27 maxv .valid = true,
1413 1.5 maxv .dmo = true,
1414 1.5 maxv .todmo = false,
1415 1.5 maxv .szoverride = true,
1416 1.5 maxv .defsize = -1,
1417 1.19 maxv .emul = &x86_emul_mov
1418 1.5 maxv },
1419 1.27 maxv [0xA2] = {
1420 1.5 maxv /* Ob, AL */
1421 1.27 maxv .valid = true,
1422 1.5 maxv .dmo = true,
1423 1.5 maxv .todmo = true,
1424 1.5 maxv .szoverride = false,
1425 1.5 maxv .defsize = OPSIZE_BYTE,
1426 1.19 maxv .emul = &x86_emul_mov
1427 1.5 maxv },
1428 1.27 maxv [0xA3] = {
1429 1.5 maxv /* Ov, rAX */
1430 1.27 maxv .valid = true,
1431 1.5 maxv .dmo = true,
1432 1.5 maxv .todmo = true,
1433 1.5 maxv .szoverride = true,
1434 1.5 maxv .defsize = -1,
1435 1.19 maxv .emul = &x86_emul_mov
1436 1.5 maxv },
1437 1.5 maxv
1438 1.5 maxv /*
1439 1.6 maxv * MOVS
1440 1.6 maxv */
1441 1.27 maxv [0xA4] = {
1442 1.6 maxv /* Yb, Xb */
1443 1.27 maxv .valid = true,
1444 1.6 maxv .movs = true,
1445 1.6 maxv .szoverride = false,
1446 1.6 maxv .defsize = OPSIZE_BYTE,
1447 1.19 maxv .emul = &x86_emul_movs
1448 1.6 maxv },
1449 1.27 maxv [0xA5] = {
1450 1.6 maxv /* Yv, Xv */
1451 1.27 maxv .valid = true,
1452 1.6 maxv .movs = true,
1453 1.6 maxv .szoverride = true,
1454 1.6 maxv .defsize = -1,
1455 1.19 maxv .emul = &x86_emul_movs
1456 1.6 maxv },
1457 1.6 maxv
1458 1.6 maxv /*
1459 1.5 maxv * STOS
1460 1.5 maxv */
1461 1.27 maxv [0xAA] = {
1462 1.5 maxv /* Yb, AL */
1463 1.27 maxv .valid = true,
1464 1.5 maxv .stos = true,
1465 1.5 maxv .szoverride = false,
1466 1.5 maxv .defsize = OPSIZE_BYTE,
1467 1.19 maxv .emul = &x86_emul_stos
1468 1.5 maxv },
1469 1.27 maxv [0xAB] = {
1470 1.5 maxv /* Yv, rAX */
1471 1.27 maxv .valid = true,
1472 1.5 maxv .stos = true,
1473 1.5 maxv .szoverride = true,
1474 1.5 maxv .defsize = -1,
1475 1.19 maxv .emul = &x86_emul_stos
1476 1.5 maxv },
1477 1.5 maxv
1478 1.5 maxv /*
1479 1.5 maxv * LODS
1480 1.5 maxv */
1481 1.27 maxv [0xAC] = {
1482 1.5 maxv /* AL, Xb */
1483 1.27 maxv .valid = true,
1484 1.5 maxv .lods = true,
1485 1.5 maxv .szoverride = false,
1486 1.5 maxv .defsize = OPSIZE_BYTE,
1487 1.19 maxv .emul = &x86_emul_lods
1488 1.5 maxv },
1489 1.27 maxv [0xAD] = {
1490 1.5 maxv /* rAX, Xv */
1491 1.27 maxv .valid = true,
1492 1.5 maxv .lods = true,
1493 1.5 maxv .szoverride = true,
1494 1.5 maxv .defsize = -1,
1495 1.19 maxv .emul = &x86_emul_lods
1496 1.5 maxv },
1497 1.5 maxv };
1498 1.5 maxv
1499 1.27 maxv static const struct x86_opcode secondary_opcode_table[256] __cacheline_aligned = {
1500 1.10 maxv /*
1501 1.10 maxv * MOVZX
1502 1.10 maxv */
1503 1.27 maxv [0xB6] = {
1504 1.10 maxv /* Gv, Eb */
1505 1.27 maxv .valid = true,
1506 1.10 maxv .regmodrm = true,
1507 1.10 maxv .regtorm = false,
1508 1.10 maxv .szoverride = true,
1509 1.10 maxv .defsize = OPSIZE_BYTE,
1510 1.11 maxv .flags = FLAG_ze,
1511 1.19 maxv .emul = &x86_emul_mov
1512 1.10 maxv },
1513 1.27 maxv [0xB7] = {
1514 1.10 maxv /* Gv, Ew */
1515 1.27 maxv .valid = true,
1516 1.10 maxv .regmodrm = true,
1517 1.10 maxv .regtorm = false,
1518 1.10 maxv .szoverride = true,
1519 1.10 maxv .defsize = OPSIZE_WORD,
1520 1.11 maxv .flags = FLAG_ze,
1521 1.19 maxv .emul = &x86_emul_mov
1522 1.10 maxv },
1523 1.10 maxv };
1524 1.10 maxv
1525 1.5 maxv static const struct x86_reg gpr_map__rip = { NVMM_X64_GPR_RIP, 0xFFFFFFFFFFFFFFFF };
1526 1.5 maxv
1527 1.5 maxv /* [REX-present][enc][opsize] */
1528 1.27 maxv static const struct x86_reg gpr_map__special[2][4][8] __cacheline_aligned = {
1529 1.5 maxv [false] = {
1530 1.5 maxv /* No REX prefix. */
1531 1.5 maxv [0b00] = {
1532 1.5 maxv [0] = { NVMM_X64_GPR_RAX, 0x000000000000FF00 }, /* AH */
1533 1.5 maxv [1] = { NVMM_X64_GPR_RSP, 0x000000000000FFFF }, /* SP */
1534 1.5 maxv [2] = { -1, 0 },
1535 1.5 maxv [3] = { NVMM_X64_GPR_RSP, 0x00000000FFFFFFFF }, /* ESP */
1536 1.5 maxv [4] = { -1, 0 },
1537 1.5 maxv [5] = { -1, 0 },
1538 1.5 maxv [6] = { -1, 0 },
1539 1.5 maxv [7] = { -1, 0 },
1540 1.5 maxv },
1541 1.5 maxv [0b01] = {
1542 1.5 maxv [0] = { NVMM_X64_GPR_RCX, 0x000000000000FF00 }, /* CH */
1543 1.5 maxv [1] = { NVMM_X64_GPR_RBP, 0x000000000000FFFF }, /* BP */
1544 1.5 maxv [2] = { -1, 0 },
1545 1.5 maxv [3] = { NVMM_X64_GPR_RBP, 0x00000000FFFFFFFF }, /* EBP */
1546 1.5 maxv [4] = { -1, 0 },
1547 1.5 maxv [5] = { -1, 0 },
1548 1.5 maxv [6] = { -1, 0 },
1549 1.5 maxv [7] = { -1, 0 },
1550 1.5 maxv },
1551 1.5 maxv [0b10] = {
1552 1.5 maxv [0] = { NVMM_X64_GPR_RDX, 0x000000000000FF00 }, /* DH */
1553 1.5 maxv [1] = { NVMM_X64_GPR_RSI, 0x000000000000FFFF }, /* SI */
1554 1.5 maxv [2] = { -1, 0 },
1555 1.5 maxv [3] = { NVMM_X64_GPR_RSI, 0x00000000FFFFFFFF }, /* ESI */
1556 1.5 maxv [4] = { -1, 0 },
1557 1.5 maxv [5] = { -1, 0 },
1558 1.5 maxv [6] = { -1, 0 },
1559 1.5 maxv [7] = { -1, 0 },
1560 1.5 maxv },
1561 1.5 maxv [0b11] = {
1562 1.5 maxv [0] = { NVMM_X64_GPR_RBX, 0x000000000000FF00 }, /* BH */
1563 1.5 maxv [1] = { NVMM_X64_GPR_RDI, 0x000000000000FFFF }, /* DI */
1564 1.5 maxv [2] = { -1, 0 },
1565 1.5 maxv [3] = { NVMM_X64_GPR_RDI, 0x00000000FFFFFFFF }, /* EDI */
1566 1.5 maxv [4] = { -1, 0 },
1567 1.5 maxv [5] = { -1, 0 },
1568 1.5 maxv [6] = { -1, 0 },
1569 1.5 maxv [7] = { -1, 0 },
1570 1.5 maxv }
1571 1.5 maxv },
1572 1.5 maxv [true] = {
1573 1.5 maxv /* Has REX prefix. */
1574 1.5 maxv [0b00] = {
1575 1.5 maxv [0] = { NVMM_X64_GPR_RSP, 0x00000000000000FF }, /* SPL */
1576 1.5 maxv [1] = { NVMM_X64_GPR_RSP, 0x000000000000FFFF }, /* SP */
1577 1.5 maxv [2] = { -1, 0 },
1578 1.5 maxv [3] = { NVMM_X64_GPR_RSP, 0x00000000FFFFFFFF }, /* ESP */
1579 1.5 maxv [4] = { -1, 0 },
1580 1.5 maxv [5] = { -1, 0 },
1581 1.5 maxv [6] = { -1, 0 },
1582 1.5 maxv [7] = { NVMM_X64_GPR_RSP, 0xFFFFFFFFFFFFFFFF }, /* RSP */
1583 1.5 maxv },
1584 1.5 maxv [0b01] = {
1585 1.5 maxv [0] = { NVMM_X64_GPR_RBP, 0x00000000000000FF }, /* BPL */
1586 1.5 maxv [1] = { NVMM_X64_GPR_RBP, 0x000000000000FFFF }, /* BP */
1587 1.5 maxv [2] = { -1, 0 },
1588 1.5 maxv [3] = { NVMM_X64_GPR_RBP, 0x00000000FFFFFFFF }, /* EBP */
1589 1.5 maxv [4] = { -1, 0 },
1590 1.5 maxv [5] = { -1, 0 },
1591 1.5 maxv [6] = { -1, 0 },
1592 1.5 maxv [7] = { NVMM_X64_GPR_RBP, 0xFFFFFFFFFFFFFFFF }, /* RBP */
1593 1.5 maxv },
1594 1.5 maxv [0b10] = {
1595 1.5 maxv [0] = { NVMM_X64_GPR_RSI, 0x00000000000000FF }, /* SIL */
1596 1.5 maxv [1] = { NVMM_X64_GPR_RSI, 0x000000000000FFFF }, /* SI */
1597 1.5 maxv [2] = { -1, 0 },
1598 1.5 maxv [3] = { NVMM_X64_GPR_RSI, 0x00000000FFFFFFFF }, /* ESI */
1599 1.5 maxv [4] = { -1, 0 },
1600 1.5 maxv [5] = { -1, 0 },
1601 1.5 maxv [6] = { -1, 0 },
1602 1.5 maxv [7] = { NVMM_X64_GPR_RSI, 0xFFFFFFFFFFFFFFFF }, /* RSI */
1603 1.5 maxv },
1604 1.5 maxv [0b11] = {
1605 1.5 maxv [0] = { NVMM_X64_GPR_RDI, 0x00000000000000FF }, /* DIL */
1606 1.5 maxv [1] = { NVMM_X64_GPR_RDI, 0x000000000000FFFF }, /* DI */
1607 1.5 maxv [2] = { -1, 0 },
1608 1.5 maxv [3] = { NVMM_X64_GPR_RDI, 0x00000000FFFFFFFF }, /* EDI */
1609 1.5 maxv [4] = { -1, 0 },
1610 1.5 maxv [5] = { -1, 0 },
1611 1.5 maxv [6] = { -1, 0 },
1612 1.5 maxv [7] = { NVMM_X64_GPR_RDI, 0xFFFFFFFFFFFFFFFF }, /* RDI */
1613 1.5 maxv }
1614 1.5 maxv }
1615 1.5 maxv };
1616 1.5 maxv
1617 1.5 maxv /* [depends][enc][size] */
1618 1.27 maxv static const struct x86_reg gpr_map[2][8][8] __cacheline_aligned = {
1619 1.5 maxv [false] = {
1620 1.5 maxv /* Not extended. */
1621 1.5 maxv [0b000] = {
1622 1.5 maxv [0] = { NVMM_X64_GPR_RAX, 0x00000000000000FF }, /* AL */
1623 1.5 maxv [1] = { NVMM_X64_GPR_RAX, 0x000000000000FFFF }, /* AX */
1624 1.5 maxv [2] = { -1, 0 },
1625 1.5 maxv [3] = { NVMM_X64_GPR_RAX, 0x00000000FFFFFFFF }, /* EAX */
1626 1.5 maxv [4] = { -1, 0 },
1627 1.5 maxv [5] = { -1, 0 },
1628 1.5 maxv [6] = { -1, 0 },
1629 1.18 maxv [7] = { NVMM_X64_GPR_RAX, 0xFFFFFFFFFFFFFFFF }, /* RAX */
1630 1.5 maxv },
1631 1.5 maxv [0b001] = {
1632 1.5 maxv [0] = { NVMM_X64_GPR_RCX, 0x00000000000000FF }, /* CL */
1633 1.5 maxv [1] = { NVMM_X64_GPR_RCX, 0x000000000000FFFF }, /* CX */
1634 1.5 maxv [2] = { -1, 0 },
1635 1.5 maxv [3] = { NVMM_X64_GPR_RCX, 0x00000000FFFFFFFF }, /* ECX */
1636 1.5 maxv [4] = { -1, 0 },
1637 1.5 maxv [5] = { -1, 0 },
1638 1.5 maxv [6] = { -1, 0 },
1639 1.18 maxv [7] = { NVMM_X64_GPR_RCX, 0xFFFFFFFFFFFFFFFF }, /* RCX */
1640 1.5 maxv },
1641 1.5 maxv [0b010] = {
1642 1.5 maxv [0] = { NVMM_X64_GPR_RDX, 0x00000000000000FF }, /* DL */
1643 1.5 maxv [1] = { NVMM_X64_GPR_RDX, 0x000000000000FFFF }, /* DX */
1644 1.5 maxv [2] = { -1, 0 },
1645 1.5 maxv [3] = { NVMM_X64_GPR_RDX, 0x00000000FFFFFFFF }, /* EDX */
1646 1.5 maxv [4] = { -1, 0 },
1647 1.5 maxv [5] = { -1, 0 },
1648 1.5 maxv [6] = { -1, 0 },
1649 1.18 maxv [7] = { NVMM_X64_GPR_RDX, 0xFFFFFFFFFFFFFFFF }, /* RDX */
1650 1.5 maxv },
1651 1.5 maxv [0b011] = {
1652 1.5 maxv [0] = { NVMM_X64_GPR_RBX, 0x00000000000000FF }, /* BL */
1653 1.5 maxv [1] = { NVMM_X64_GPR_RBX, 0x000000000000FFFF }, /* BX */
1654 1.5 maxv [2] = { -1, 0 },
1655 1.5 maxv [3] = { NVMM_X64_GPR_RBX, 0x00000000FFFFFFFF }, /* EBX */
1656 1.5 maxv [4] = { -1, 0 },
1657 1.5 maxv [5] = { -1, 0 },
1658 1.5 maxv [6] = { -1, 0 },
1659 1.18 maxv [7] = { NVMM_X64_GPR_RBX, 0xFFFFFFFFFFFFFFFF }, /* RBX */
1660 1.5 maxv },
1661 1.5 maxv [0b100] = {
1662 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1663 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1664 1.5 maxv [2] = { -1, 0 },
1665 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1666 1.5 maxv [4] = { -1, 0 },
1667 1.5 maxv [5] = { -1, 0 },
1668 1.5 maxv [6] = { -1, 0 },
1669 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1670 1.5 maxv },
1671 1.5 maxv [0b101] = {
1672 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1673 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1674 1.5 maxv [2] = { -1, 0 },
1675 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1676 1.5 maxv [4] = { -1, 0 },
1677 1.5 maxv [5] = { -1, 0 },
1678 1.5 maxv [6] = { -1, 0 },
1679 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1680 1.5 maxv },
1681 1.5 maxv [0b110] = {
1682 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1683 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1684 1.5 maxv [2] = { -1, 0 },
1685 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1686 1.5 maxv [4] = { -1, 0 },
1687 1.5 maxv [5] = { -1, 0 },
1688 1.5 maxv [6] = { -1, 0 },
1689 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1690 1.5 maxv },
1691 1.5 maxv [0b111] = {
1692 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1693 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1694 1.5 maxv [2] = { -1, 0 },
1695 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1696 1.5 maxv [4] = { -1, 0 },
1697 1.5 maxv [5] = { -1, 0 },
1698 1.5 maxv [6] = { -1, 0 },
1699 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1700 1.5 maxv },
1701 1.5 maxv },
1702 1.5 maxv [true] = {
1703 1.5 maxv /* Extended. */
1704 1.5 maxv [0b000] = {
1705 1.5 maxv [0] = { NVMM_X64_GPR_R8, 0x00000000000000FF }, /* R8B */
1706 1.5 maxv [1] = { NVMM_X64_GPR_R8, 0x000000000000FFFF }, /* R8W */
1707 1.5 maxv [2] = { -1, 0 },
1708 1.5 maxv [3] = { NVMM_X64_GPR_R8, 0x00000000FFFFFFFF }, /* R8D */
1709 1.5 maxv [4] = { -1, 0 },
1710 1.5 maxv [5] = { -1, 0 },
1711 1.5 maxv [6] = { -1, 0 },
1712 1.18 maxv [7] = { NVMM_X64_GPR_R8, 0xFFFFFFFFFFFFFFFF }, /* R8 */
1713 1.5 maxv },
1714 1.5 maxv [0b001] = {
1715 1.5 maxv [0] = { NVMM_X64_GPR_R9, 0x00000000000000FF }, /* R9B */
1716 1.5 maxv [1] = { NVMM_X64_GPR_R9, 0x000000000000FFFF }, /* R9W */
1717 1.5 maxv [2] = { -1, 0 },
1718 1.5 maxv [3] = { NVMM_X64_GPR_R9, 0x00000000FFFFFFFF }, /* R9D */
1719 1.5 maxv [4] = { -1, 0 },
1720 1.5 maxv [5] = { -1, 0 },
1721 1.5 maxv [6] = { -1, 0 },
1722 1.18 maxv [7] = { NVMM_X64_GPR_R9, 0xFFFFFFFFFFFFFFFF }, /* R9 */
1723 1.5 maxv },
1724 1.5 maxv [0b010] = {
1725 1.5 maxv [0] = { NVMM_X64_GPR_R10, 0x00000000000000FF }, /* R10B */
1726 1.5 maxv [1] = { NVMM_X64_GPR_R10, 0x000000000000FFFF }, /* R10W */
1727 1.5 maxv [2] = { -1, 0 },
1728 1.5 maxv [3] = { NVMM_X64_GPR_R10, 0x00000000FFFFFFFF }, /* R10D */
1729 1.5 maxv [4] = { -1, 0 },
1730 1.5 maxv [5] = { -1, 0 },
1731 1.5 maxv [6] = { -1, 0 },
1732 1.18 maxv [7] = { NVMM_X64_GPR_R10, 0xFFFFFFFFFFFFFFFF }, /* R10 */
1733 1.5 maxv },
1734 1.5 maxv [0b011] = {
1735 1.5 maxv [0] = { NVMM_X64_GPR_R11, 0x00000000000000FF }, /* R11B */
1736 1.5 maxv [1] = { NVMM_X64_GPR_R11, 0x000000000000FFFF }, /* R11W */
1737 1.5 maxv [2] = { -1, 0 },
1738 1.5 maxv [3] = { NVMM_X64_GPR_R11, 0x00000000FFFFFFFF }, /* R11D */
1739 1.5 maxv [4] = { -1, 0 },
1740 1.5 maxv [5] = { -1, 0 },
1741 1.5 maxv [6] = { -1, 0 },
1742 1.18 maxv [7] = { NVMM_X64_GPR_R11, 0xFFFFFFFFFFFFFFFF }, /* R11 */
1743 1.5 maxv },
1744 1.5 maxv [0b100] = {
1745 1.5 maxv [0] = { NVMM_X64_GPR_R12, 0x00000000000000FF }, /* R12B */
1746 1.5 maxv [1] = { NVMM_X64_GPR_R12, 0x000000000000FFFF }, /* R12W */
1747 1.5 maxv [2] = { -1, 0 },
1748 1.5 maxv [3] = { NVMM_X64_GPR_R12, 0x00000000FFFFFFFF }, /* R12D */
1749 1.5 maxv [4] = { -1, 0 },
1750 1.5 maxv [5] = { -1, 0 },
1751 1.5 maxv [6] = { -1, 0 },
1752 1.18 maxv [7] = { NVMM_X64_GPR_R12, 0xFFFFFFFFFFFFFFFF }, /* R12 */
1753 1.5 maxv },
1754 1.5 maxv [0b101] = {
1755 1.5 maxv [0] = { NVMM_X64_GPR_R13, 0x00000000000000FF }, /* R13B */
1756 1.5 maxv [1] = { NVMM_X64_GPR_R13, 0x000000000000FFFF }, /* R13W */
1757 1.5 maxv [2] = { -1, 0 },
1758 1.5 maxv [3] = { NVMM_X64_GPR_R13, 0x00000000FFFFFFFF }, /* R13D */
1759 1.5 maxv [4] = { -1, 0 },
1760 1.5 maxv [5] = { -1, 0 },
1761 1.5 maxv [6] = { -1, 0 },
1762 1.18 maxv [7] = { NVMM_X64_GPR_R13, 0xFFFFFFFFFFFFFFFF }, /* R13 */
1763 1.5 maxv },
1764 1.5 maxv [0b110] = {
1765 1.5 maxv [0] = { NVMM_X64_GPR_R14, 0x00000000000000FF }, /* R14B */
1766 1.5 maxv [1] = { NVMM_X64_GPR_R14, 0x000000000000FFFF }, /* R14W */
1767 1.5 maxv [2] = { -1, 0 },
1768 1.5 maxv [3] = { NVMM_X64_GPR_R14, 0x00000000FFFFFFFF }, /* R14D */
1769 1.5 maxv [4] = { -1, 0 },
1770 1.5 maxv [5] = { -1, 0 },
1771 1.5 maxv [6] = { -1, 0 },
1772 1.18 maxv [7] = { NVMM_X64_GPR_R14, 0xFFFFFFFFFFFFFFFF }, /* R14 */
1773 1.5 maxv },
1774 1.5 maxv [0b111] = {
1775 1.5 maxv [0] = { NVMM_X64_GPR_R15, 0x00000000000000FF }, /* R15B */
1776 1.5 maxv [1] = { NVMM_X64_GPR_R15, 0x000000000000FFFF }, /* R15W */
1777 1.5 maxv [2] = { -1, 0 },
1778 1.5 maxv [3] = { NVMM_X64_GPR_R15, 0x00000000FFFFFFFF }, /* R15D */
1779 1.5 maxv [4] = { -1, 0 },
1780 1.5 maxv [5] = { -1, 0 },
1781 1.5 maxv [6] = { -1, 0 },
1782 1.18 maxv [7] = { NVMM_X64_GPR_R15, 0xFFFFFFFFFFFFFFFF }, /* R15 */
1783 1.5 maxv },
1784 1.5 maxv }
1785 1.5 maxv };
1786 1.5 maxv
1787 1.32 maxv /* [enc] */
1788 1.32 maxv static const int gpr_dual_reg1_rm[8] __cacheline_aligned = {
1789 1.32 maxv [0b000] = NVMM_X64_GPR_RBX, /* BX (+SI) */
1790 1.32 maxv [0b001] = NVMM_X64_GPR_RBX, /* BX (+DI) */
1791 1.32 maxv [0b010] = NVMM_X64_GPR_RBP, /* BP (+SI) */
1792 1.32 maxv [0b011] = NVMM_X64_GPR_RBP, /* BP (+DI) */
1793 1.32 maxv [0b100] = NVMM_X64_GPR_RSI, /* SI */
1794 1.32 maxv [0b101] = NVMM_X64_GPR_RDI, /* DI */
1795 1.32 maxv [0b110] = NVMM_X64_GPR_RBP, /* BP */
1796 1.32 maxv [0b111] = NVMM_X64_GPR_RBX, /* BX */
1797 1.32 maxv };
1798 1.32 maxv
1799 1.5 maxv static int
1800 1.5 maxv node_overflow(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1801 1.5 maxv {
1802 1.5 maxv fsm->fn = NULL;
1803 1.5 maxv return -1;
1804 1.5 maxv }
1805 1.5 maxv
1806 1.5 maxv static int
1807 1.5 maxv fsm_read(struct x86_decode_fsm *fsm, uint8_t *bytes, size_t n)
1808 1.5 maxv {
1809 1.5 maxv if (fsm->buf + n > fsm->end) {
1810 1.5 maxv return -1;
1811 1.5 maxv }
1812 1.5 maxv memcpy(bytes, fsm->buf, n);
1813 1.5 maxv return 0;
1814 1.5 maxv }
1815 1.5 maxv
1816 1.27 maxv static inline void
1817 1.5 maxv fsm_advance(struct x86_decode_fsm *fsm, size_t n,
1818 1.5 maxv int (*fn)(struct x86_decode_fsm *, struct x86_instr *))
1819 1.5 maxv {
1820 1.5 maxv fsm->buf += n;
1821 1.5 maxv if (fsm->buf > fsm->end) {
1822 1.5 maxv fsm->fn = node_overflow;
1823 1.5 maxv } else {
1824 1.5 maxv fsm->fn = fn;
1825 1.5 maxv }
1826 1.5 maxv }
1827 1.5 maxv
1828 1.5 maxv static const struct x86_reg *
1829 1.5 maxv resolve_special_register(struct x86_instr *instr, uint8_t enc, size_t regsize)
1830 1.5 maxv {
1831 1.5 maxv enc &= 0b11;
1832 1.5 maxv if (regsize == 8) {
1833 1.5 maxv /* May be 64bit without REX */
1834 1.5 maxv return &gpr_map__special[1][enc][regsize-1];
1835 1.5 maxv }
1836 1.5 maxv return &gpr_map__special[instr->rexpref.present][enc][regsize-1];
1837 1.5 maxv }
1838 1.5 maxv
1839 1.5 maxv /*
1840 1.6 maxv * Special node, for MOVS. Fake two displacements of zero on the source and
1841 1.6 maxv * destination registers.
1842 1.6 maxv */
1843 1.6 maxv static int
1844 1.6 maxv node_movs(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1845 1.6 maxv {
1846 1.6 maxv size_t adrsize;
1847 1.6 maxv
1848 1.6 maxv adrsize = instr->address_size;
1849 1.6 maxv
1850 1.6 maxv /* DS:RSI */
1851 1.6 maxv instr->src.type = STORE_REG;
1852 1.6 maxv instr->src.u.reg = &gpr_map__special[1][2][adrsize-1];
1853 1.6 maxv instr->src.disp.type = DISP_0;
1854 1.6 maxv
1855 1.6 maxv /* ES:RDI, force ES */
1856 1.6 maxv instr->dst.type = STORE_REG;
1857 1.6 maxv instr->dst.u.reg = &gpr_map__special[1][3][adrsize-1];
1858 1.6 maxv instr->dst.disp.type = DISP_0;
1859 1.6 maxv instr->dst.hardseg = NVMM_X64_SEG_ES;
1860 1.6 maxv
1861 1.6 maxv fsm_advance(fsm, 0, NULL);
1862 1.6 maxv
1863 1.6 maxv return 0;
1864 1.6 maxv }
1865 1.6 maxv
1866 1.6 maxv /*
1867 1.5 maxv * Special node, for STOS and LODS. Fake a displacement of zero on the
1868 1.5 maxv * destination register.
1869 1.5 maxv */
1870 1.5 maxv static int
1871 1.5 maxv node_stlo(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1872 1.5 maxv {
1873 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1874 1.5 maxv struct x86_store *stlo, *streg;
1875 1.5 maxv size_t adrsize, regsize;
1876 1.5 maxv
1877 1.5 maxv adrsize = instr->address_size;
1878 1.5 maxv regsize = instr->operand_size;
1879 1.5 maxv
1880 1.5 maxv if (opcode->stos) {
1881 1.5 maxv streg = &instr->src;
1882 1.5 maxv stlo = &instr->dst;
1883 1.5 maxv } else {
1884 1.5 maxv streg = &instr->dst;
1885 1.5 maxv stlo = &instr->src;
1886 1.5 maxv }
1887 1.5 maxv
1888 1.5 maxv streg->type = STORE_REG;
1889 1.5 maxv streg->u.reg = &gpr_map[0][0][regsize-1]; /* ?AX */
1890 1.5 maxv
1891 1.5 maxv stlo->type = STORE_REG;
1892 1.5 maxv if (opcode->stos) {
1893 1.5 maxv /* ES:RDI, force ES */
1894 1.5 maxv stlo->u.reg = &gpr_map__special[1][3][adrsize-1];
1895 1.6 maxv stlo->hardseg = NVMM_X64_SEG_ES;
1896 1.5 maxv } else {
1897 1.5 maxv /* DS:RSI */
1898 1.5 maxv stlo->u.reg = &gpr_map__special[1][2][adrsize-1];
1899 1.5 maxv }
1900 1.5 maxv stlo->disp.type = DISP_0;
1901 1.5 maxv
1902 1.5 maxv fsm_advance(fsm, 0, NULL);
1903 1.5 maxv
1904 1.5 maxv return 0;
1905 1.5 maxv }
1906 1.5 maxv
1907 1.5 maxv static int
1908 1.5 maxv node_dmo(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1909 1.5 maxv {
1910 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1911 1.5 maxv struct x86_store *stdmo, *streg;
1912 1.5 maxv size_t adrsize, regsize;
1913 1.5 maxv
1914 1.5 maxv adrsize = instr->address_size;
1915 1.5 maxv regsize = instr->operand_size;
1916 1.5 maxv
1917 1.5 maxv if (opcode->todmo) {
1918 1.5 maxv streg = &instr->src;
1919 1.5 maxv stdmo = &instr->dst;
1920 1.5 maxv } else {
1921 1.5 maxv streg = &instr->dst;
1922 1.5 maxv stdmo = &instr->src;
1923 1.5 maxv }
1924 1.5 maxv
1925 1.5 maxv streg->type = STORE_REG;
1926 1.5 maxv streg->u.reg = &gpr_map[0][0][regsize-1]; /* ?AX */
1927 1.5 maxv
1928 1.5 maxv stdmo->type = STORE_DMO;
1929 1.5 maxv if (fsm_read(fsm, (uint8_t *)&stdmo->u.dmo, adrsize) == -1) {
1930 1.5 maxv return -1;
1931 1.5 maxv }
1932 1.5 maxv fsm_advance(fsm, adrsize, NULL);
1933 1.5 maxv
1934 1.5 maxv return 0;
1935 1.5 maxv }
1936 1.5 maxv
1937 1.15 maxv static inline uint64_t
1938 1.11 maxv sign_extend(uint64_t val, int size)
1939 1.11 maxv {
1940 1.11 maxv if (size == 1) {
1941 1.11 maxv if (val & __BIT(7))
1942 1.11 maxv val |= 0xFFFFFFFFFFFFFF00;
1943 1.11 maxv } else if (size == 2) {
1944 1.11 maxv if (val & __BIT(15))
1945 1.11 maxv val |= 0xFFFFFFFFFFFF0000;
1946 1.11 maxv } else if (size == 4) {
1947 1.11 maxv if (val & __BIT(31))
1948 1.11 maxv val |= 0xFFFFFFFF00000000;
1949 1.11 maxv }
1950 1.11 maxv return val;
1951 1.11 maxv }
1952 1.11 maxv
1953 1.5 maxv static int
1954 1.5 maxv node_immediate(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1955 1.5 maxv {
1956 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1957 1.5 maxv struct x86_store *store;
1958 1.5 maxv uint8_t immsize;
1959 1.11 maxv size_t sesize = 0;
1960 1.5 maxv
1961 1.5 maxv /* The immediate is the source */
1962 1.5 maxv store = &instr->src;
1963 1.5 maxv immsize = instr->operand_size;
1964 1.5 maxv
1965 1.11 maxv if (opcode->flags & FLAG_imm8) {
1966 1.11 maxv sesize = immsize;
1967 1.11 maxv immsize = 1;
1968 1.11 maxv } else if ((opcode->flags & FLAG_immz) && (immsize == 8)) {
1969 1.11 maxv sesize = immsize;
1970 1.5 maxv immsize = 4;
1971 1.5 maxv }
1972 1.5 maxv
1973 1.5 maxv store->type = STORE_IMM;
1974 1.11 maxv if (fsm_read(fsm, (uint8_t *)&store->u.imm.data, immsize) == -1) {
1975 1.5 maxv return -1;
1976 1.5 maxv }
1977 1.15 maxv fsm_advance(fsm, immsize, NULL);
1978 1.5 maxv
1979 1.11 maxv if (sesize != 0) {
1980 1.11 maxv store->u.imm.data = sign_extend(store->u.imm.data, sesize);
1981 1.11 maxv }
1982 1.5 maxv
1983 1.5 maxv return 0;
1984 1.5 maxv }
1985 1.5 maxv
1986 1.5 maxv static int
1987 1.5 maxv node_disp(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1988 1.5 maxv {
1989 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1990 1.11 maxv uint64_t data = 0;
1991 1.5 maxv size_t n;
1992 1.5 maxv
1993 1.5 maxv if (instr->strm->disp.type == DISP_1) {
1994 1.5 maxv n = 1;
1995 1.32 maxv } else if (instr->strm->disp.type == DISP_2) {
1996 1.32 maxv n = 2;
1997 1.32 maxv } else if (instr->strm->disp.type == DISP_4) {
1998 1.5 maxv n = 4;
1999 1.32 maxv } else {
2000 1.32 maxv DISASSEMBLER_BUG();
2001 1.5 maxv }
2002 1.5 maxv
2003 1.11 maxv if (fsm_read(fsm, (uint8_t *)&data, n) == -1) {
2004 1.5 maxv return -1;
2005 1.5 maxv }
2006 1.5 maxv
2007 1.11 maxv if (__predict_true(fsm->is64bit)) {
2008 1.11 maxv data = sign_extend(data, n);
2009 1.11 maxv }
2010 1.11 maxv
2011 1.11 maxv instr->strm->disp.data = data;
2012 1.11 maxv
2013 1.5 maxv if (opcode->immediate) {
2014 1.5 maxv fsm_advance(fsm, n, node_immediate);
2015 1.5 maxv } else {
2016 1.5 maxv fsm_advance(fsm, n, NULL);
2017 1.5 maxv }
2018 1.5 maxv
2019 1.5 maxv return 0;
2020 1.5 maxv }
2021 1.5 maxv
2022 1.32 maxv /*
2023 1.32 maxv * Special node to handle 16bit addressing encoding, which can reference two
2024 1.32 maxv * registers at once.
2025 1.32 maxv */
2026 1.32 maxv static int
2027 1.32 maxv node_dual(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2028 1.32 maxv {
2029 1.32 maxv int reg1, reg2;
2030 1.32 maxv
2031 1.32 maxv reg1 = gpr_dual_reg1_rm[instr->regmodrm.rm];
2032 1.32 maxv
2033 1.32 maxv if (instr->regmodrm.rm == 0b000 ||
2034 1.32 maxv instr->regmodrm.rm == 0b010) {
2035 1.32 maxv reg2 = NVMM_X64_GPR_RSI;
2036 1.32 maxv } else if (instr->regmodrm.rm == 0b001 ||
2037 1.32 maxv instr->regmodrm.rm == 0b011) {
2038 1.32 maxv reg2 = NVMM_X64_GPR_RDI;
2039 1.32 maxv } else {
2040 1.32 maxv DISASSEMBLER_BUG();
2041 1.32 maxv }
2042 1.32 maxv
2043 1.32 maxv instr->strm->type = STORE_DUALREG;
2044 1.32 maxv instr->strm->u.dualreg.reg1 = reg1;
2045 1.32 maxv instr->strm->u.dualreg.reg2 = reg2;
2046 1.32 maxv
2047 1.32 maxv if (instr->strm->disp.type == DISP_NONE) {
2048 1.32 maxv DISASSEMBLER_BUG();
2049 1.32 maxv } else if (instr->strm->disp.type == DISP_0) {
2050 1.32 maxv /* Indirect register addressing mode */
2051 1.32 maxv if (instr->opcode->immediate) {
2052 1.32 maxv fsm_advance(fsm, 1, node_immediate);
2053 1.32 maxv } else {
2054 1.32 maxv fsm_advance(fsm, 1, NULL);
2055 1.32 maxv }
2056 1.32 maxv } else {
2057 1.32 maxv fsm_advance(fsm, 1, node_disp);
2058 1.32 maxv }
2059 1.32 maxv
2060 1.32 maxv return 0;
2061 1.32 maxv }
2062 1.32 maxv
2063 1.5 maxv static const struct x86_reg *
2064 1.5 maxv get_register_idx(struct x86_instr *instr, uint8_t index)
2065 1.5 maxv {
2066 1.5 maxv uint8_t enc = index;
2067 1.5 maxv const struct x86_reg *reg;
2068 1.5 maxv size_t regsize;
2069 1.5 maxv
2070 1.5 maxv regsize = instr->address_size;
2071 1.5 maxv reg = &gpr_map[instr->rexpref.x][enc][regsize-1];
2072 1.5 maxv
2073 1.5 maxv if (reg->num == -1) {
2074 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
2075 1.5 maxv }
2076 1.5 maxv
2077 1.5 maxv return reg;
2078 1.5 maxv }
2079 1.5 maxv
2080 1.5 maxv static const struct x86_reg *
2081 1.5 maxv get_register_bas(struct x86_instr *instr, uint8_t base)
2082 1.5 maxv {
2083 1.5 maxv uint8_t enc = base;
2084 1.5 maxv const struct x86_reg *reg;
2085 1.5 maxv size_t regsize;
2086 1.5 maxv
2087 1.5 maxv regsize = instr->address_size;
2088 1.5 maxv reg = &gpr_map[instr->rexpref.b][enc][regsize-1];
2089 1.5 maxv if (reg->num == -1) {
2090 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
2091 1.5 maxv }
2092 1.5 maxv
2093 1.5 maxv return reg;
2094 1.5 maxv }
2095 1.5 maxv
2096 1.5 maxv static int
2097 1.5 maxv node_sib(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2098 1.5 maxv {
2099 1.5 maxv const struct x86_opcode *opcode;
2100 1.5 maxv uint8_t scale, index, base;
2101 1.5 maxv bool noindex, nobase;
2102 1.5 maxv uint8_t byte;
2103 1.5 maxv
2104 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2105 1.5 maxv return -1;
2106 1.5 maxv }
2107 1.5 maxv
2108 1.5 maxv scale = ((byte & 0b11000000) >> 6);
2109 1.5 maxv index = ((byte & 0b00111000) >> 3);
2110 1.5 maxv base = ((byte & 0b00000111) >> 0);
2111 1.5 maxv
2112 1.5 maxv opcode = instr->opcode;
2113 1.5 maxv
2114 1.5 maxv noindex = false;
2115 1.5 maxv nobase = false;
2116 1.5 maxv
2117 1.5 maxv if (index == 0b100 && !instr->rexpref.x) {
2118 1.5 maxv /* Special case: the index is null */
2119 1.5 maxv noindex = true;
2120 1.5 maxv }
2121 1.5 maxv
2122 1.5 maxv if (instr->regmodrm.mod == 0b00 && base == 0b101) {
2123 1.5 maxv /* Special case: the base is null + disp32 */
2124 1.5 maxv instr->strm->disp.type = DISP_4;
2125 1.5 maxv nobase = true;
2126 1.5 maxv }
2127 1.5 maxv
2128 1.5 maxv instr->strm->type = STORE_SIB;
2129 1.5 maxv instr->strm->u.sib.scale = (1 << scale);
2130 1.5 maxv if (!noindex)
2131 1.5 maxv instr->strm->u.sib.idx = get_register_idx(instr, index);
2132 1.5 maxv if (!nobase)
2133 1.5 maxv instr->strm->u.sib.bas = get_register_bas(instr, base);
2134 1.5 maxv
2135 1.5 maxv /* May have a displacement, or an immediate */
2136 1.32 maxv if (instr->strm->disp.type == DISP_1 ||
2137 1.32 maxv instr->strm->disp.type == DISP_2 ||
2138 1.32 maxv instr->strm->disp.type == DISP_4) {
2139 1.5 maxv fsm_advance(fsm, 1, node_disp);
2140 1.5 maxv } else if (opcode->immediate) {
2141 1.5 maxv fsm_advance(fsm, 1, node_immediate);
2142 1.5 maxv } else {
2143 1.5 maxv fsm_advance(fsm, 1, NULL);
2144 1.5 maxv }
2145 1.5 maxv
2146 1.5 maxv return 0;
2147 1.5 maxv }
2148 1.5 maxv
2149 1.5 maxv static const struct x86_reg *
2150 1.5 maxv get_register_reg(struct x86_instr *instr, const struct x86_opcode *opcode)
2151 1.5 maxv {
2152 1.5 maxv uint8_t enc = instr->regmodrm.reg;
2153 1.5 maxv const struct x86_reg *reg;
2154 1.5 maxv size_t regsize;
2155 1.5 maxv
2156 1.11 maxv regsize = instr->operand_size;
2157 1.5 maxv
2158 1.5 maxv reg = &gpr_map[instr->rexpref.r][enc][regsize-1];
2159 1.5 maxv if (reg->num == -1) {
2160 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
2161 1.5 maxv }
2162 1.5 maxv
2163 1.5 maxv return reg;
2164 1.5 maxv }
2165 1.5 maxv
2166 1.5 maxv static const struct x86_reg *
2167 1.5 maxv get_register_rm(struct x86_instr *instr, const struct x86_opcode *opcode)
2168 1.5 maxv {
2169 1.5 maxv uint8_t enc = instr->regmodrm.rm;
2170 1.5 maxv const struct x86_reg *reg;
2171 1.5 maxv size_t regsize;
2172 1.5 maxv
2173 1.5 maxv if (instr->strm->disp.type == DISP_NONE) {
2174 1.11 maxv regsize = instr->operand_size;
2175 1.5 maxv } else {
2176 1.5 maxv /* Indirect access, the size is that of the address. */
2177 1.5 maxv regsize = instr->address_size;
2178 1.5 maxv }
2179 1.5 maxv
2180 1.5 maxv reg = &gpr_map[instr->rexpref.b][enc][regsize-1];
2181 1.5 maxv if (reg->num == -1) {
2182 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
2183 1.5 maxv }
2184 1.5 maxv
2185 1.5 maxv return reg;
2186 1.5 maxv }
2187 1.5 maxv
2188 1.5 maxv static inline bool
2189 1.5 maxv has_sib(struct x86_instr *instr)
2190 1.5 maxv {
2191 1.32 maxv return (instr->address_size != 2 && /* no SIB in 16bit addressing */
2192 1.32 maxv instr->regmodrm.mod != 0b11 &&
2193 1.32 maxv instr->regmodrm.rm == 0b100);
2194 1.5 maxv }
2195 1.5 maxv
2196 1.5 maxv static inline bool
2197 1.9 maxv is_rip_relative(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2198 1.5 maxv {
2199 1.32 maxv return (fsm->is64bit && /* RIP-relative only in 64bit mode */
2200 1.32 maxv instr->regmodrm.mod == 0b00 &&
2201 1.32 maxv instr->regmodrm.rm == 0b101);
2202 1.9 maxv }
2203 1.9 maxv
2204 1.9 maxv static inline bool
2205 1.9 maxv is_disp32_only(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2206 1.9 maxv {
2207 1.32 maxv return (!fsm->is64bit && /* no disp32-only in 64bit mode */
2208 1.32 maxv instr->address_size != 2 && /* no disp32-only in 16bit addressing */
2209 1.32 maxv instr->regmodrm.mod == 0b00 &&
2210 1.32 maxv instr->regmodrm.rm == 0b101);
2211 1.32 maxv }
2212 1.32 maxv
2213 1.32 maxv static inline bool
2214 1.32 maxv is_disp16_only(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2215 1.32 maxv {
2216 1.32 maxv return (instr->address_size == 2 && /* disp16-only only in 16bit addr */
2217 1.32 maxv instr->regmodrm.mod == 0b00 &&
2218 1.32 maxv instr->regmodrm.rm == 0b110);
2219 1.32 maxv }
2220 1.32 maxv
2221 1.32 maxv static inline bool
2222 1.32 maxv is_dual(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2223 1.32 maxv {
2224 1.32 maxv return (instr->address_size == 2 &&
2225 1.32 maxv instr->regmodrm.mod != 0b11 &&
2226 1.32 maxv instr->regmodrm.rm <= 0b011);
2227 1.5 maxv }
2228 1.5 maxv
2229 1.5 maxv static enum x86_disp_type
2230 1.5 maxv get_disp_type(struct x86_instr *instr)
2231 1.5 maxv {
2232 1.5 maxv switch (instr->regmodrm.mod) {
2233 1.32 maxv case 0b00: /* indirect */
2234 1.5 maxv return DISP_0;
2235 1.32 maxv case 0b01: /* indirect+1 */
2236 1.5 maxv return DISP_1;
2237 1.32 maxv case 0b10: /* indirect+{2,4} */
2238 1.32 maxv if (__predict_false(instr->address_size == 2)) {
2239 1.32 maxv return DISP_2;
2240 1.32 maxv }
2241 1.5 maxv return DISP_4;
2242 1.32 maxv case 0b11: /* direct */
2243 1.35 maxv default: /* llvm */
2244 1.5 maxv return DISP_NONE;
2245 1.5 maxv }
2246 1.5 maxv }
2247 1.5 maxv
2248 1.5 maxv static int
2249 1.5 maxv node_regmodrm(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2250 1.5 maxv {
2251 1.5 maxv struct x86_store *strg, *strm;
2252 1.5 maxv const struct x86_opcode *opcode;
2253 1.5 maxv const struct x86_reg *reg;
2254 1.5 maxv uint8_t byte;
2255 1.5 maxv
2256 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2257 1.5 maxv return -1;
2258 1.5 maxv }
2259 1.5 maxv
2260 1.5 maxv opcode = instr->opcode;
2261 1.5 maxv
2262 1.27 maxv instr->regmodrm.rm = ((byte & 0b00000111) >> 0);
2263 1.27 maxv instr->regmodrm.reg = ((byte & 0b00111000) >> 3);
2264 1.5 maxv instr->regmodrm.mod = ((byte & 0b11000000) >> 6);
2265 1.5 maxv
2266 1.5 maxv if (opcode->regtorm) {
2267 1.5 maxv strg = &instr->src;
2268 1.5 maxv strm = &instr->dst;
2269 1.5 maxv } else { /* RM to REG */
2270 1.5 maxv strm = &instr->src;
2271 1.5 maxv strg = &instr->dst;
2272 1.5 maxv }
2273 1.5 maxv
2274 1.5 maxv /* Save for later use. */
2275 1.5 maxv instr->strm = strm;
2276 1.5 maxv
2277 1.5 maxv /*
2278 1.5 maxv * Special cases: Groups. The REG field of REGMODRM is the index in
2279 1.5 maxv * the group. op1 gets overwritten in the Immediate node, if any.
2280 1.5 maxv */
2281 1.11 maxv if (opcode->group1) {
2282 1.11 maxv if (group1[instr->regmodrm.reg].emul == NULL) {
2283 1.11 maxv return -1;
2284 1.11 maxv }
2285 1.11 maxv instr->emul = group1[instr->regmodrm.reg].emul;
2286 1.19 maxv } else if (opcode->group3) {
2287 1.19 maxv if (group3[instr->regmodrm.reg].emul == NULL) {
2288 1.19 maxv return -1;
2289 1.19 maxv }
2290 1.19 maxv instr->emul = group3[instr->regmodrm.reg].emul;
2291 1.11 maxv } else if (opcode->group11) {
2292 1.5 maxv if (group11[instr->regmodrm.reg].emul == NULL) {
2293 1.5 maxv return -1;
2294 1.5 maxv }
2295 1.5 maxv instr->emul = group11[instr->regmodrm.reg].emul;
2296 1.5 maxv }
2297 1.5 maxv
2298 1.16 maxv if (!opcode->immediate) {
2299 1.16 maxv reg = get_register_reg(instr, opcode);
2300 1.16 maxv if (reg == NULL) {
2301 1.16 maxv return -1;
2302 1.16 maxv }
2303 1.16 maxv strg->type = STORE_REG;
2304 1.16 maxv strg->u.reg = reg;
2305 1.5 maxv }
2306 1.5 maxv
2307 1.24 maxv /* The displacement applies to RM. */
2308 1.24 maxv strm->disp.type = get_disp_type(instr);
2309 1.24 maxv
2310 1.5 maxv if (has_sib(instr)) {
2311 1.5 maxv /* Overwrites RM */
2312 1.5 maxv fsm_advance(fsm, 1, node_sib);
2313 1.5 maxv return 0;
2314 1.5 maxv }
2315 1.5 maxv
2316 1.9 maxv if (is_rip_relative(fsm, instr)) {
2317 1.5 maxv /* Overwrites RM */
2318 1.5 maxv strm->type = STORE_REG;
2319 1.5 maxv strm->u.reg = &gpr_map__rip;
2320 1.5 maxv strm->disp.type = DISP_4;
2321 1.5 maxv fsm_advance(fsm, 1, node_disp);
2322 1.5 maxv return 0;
2323 1.5 maxv }
2324 1.5 maxv
2325 1.9 maxv if (is_disp32_only(fsm, instr)) {
2326 1.9 maxv /* Overwrites RM */
2327 1.9 maxv strm->type = STORE_REG;
2328 1.9 maxv strm->u.reg = NULL;
2329 1.9 maxv strm->disp.type = DISP_4;
2330 1.9 maxv fsm_advance(fsm, 1, node_disp);
2331 1.9 maxv return 0;
2332 1.9 maxv }
2333 1.9 maxv
2334 1.32 maxv if (__predict_false(is_disp16_only(fsm, instr))) {
2335 1.32 maxv /* Overwrites RM */
2336 1.32 maxv strm->type = STORE_REG;
2337 1.32 maxv strm->u.reg = NULL;
2338 1.32 maxv strm->disp.type = DISP_2;
2339 1.32 maxv fsm_advance(fsm, 1, node_disp);
2340 1.32 maxv return 0;
2341 1.32 maxv }
2342 1.32 maxv
2343 1.32 maxv if (__predict_false(is_dual(fsm, instr))) {
2344 1.32 maxv /* Overwrites RM */
2345 1.32 maxv fsm_advance(fsm, 0, node_dual);
2346 1.32 maxv return 0;
2347 1.32 maxv }
2348 1.32 maxv
2349 1.5 maxv reg = get_register_rm(instr, opcode);
2350 1.5 maxv if (reg == NULL) {
2351 1.5 maxv return -1;
2352 1.5 maxv }
2353 1.5 maxv strm->type = STORE_REG;
2354 1.5 maxv strm->u.reg = reg;
2355 1.5 maxv
2356 1.5 maxv if (strm->disp.type == DISP_NONE) {
2357 1.5 maxv /* Direct register addressing mode */
2358 1.5 maxv if (opcode->immediate) {
2359 1.5 maxv fsm_advance(fsm, 1, node_immediate);
2360 1.5 maxv } else {
2361 1.5 maxv fsm_advance(fsm, 1, NULL);
2362 1.5 maxv }
2363 1.5 maxv } else if (strm->disp.type == DISP_0) {
2364 1.5 maxv /* Indirect register addressing mode */
2365 1.5 maxv if (opcode->immediate) {
2366 1.5 maxv fsm_advance(fsm, 1, node_immediate);
2367 1.5 maxv } else {
2368 1.5 maxv fsm_advance(fsm, 1, NULL);
2369 1.5 maxv }
2370 1.5 maxv } else {
2371 1.5 maxv fsm_advance(fsm, 1, node_disp);
2372 1.5 maxv }
2373 1.5 maxv
2374 1.5 maxv return 0;
2375 1.5 maxv }
2376 1.5 maxv
2377 1.5 maxv static size_t
2378 1.5 maxv get_operand_size(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2379 1.5 maxv {
2380 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
2381 1.5 maxv int opsize;
2382 1.5 maxv
2383 1.5 maxv /* Get the opsize */
2384 1.5 maxv if (!opcode->szoverride) {
2385 1.5 maxv opsize = opcode->defsize;
2386 1.5 maxv } else if (instr->rexpref.present && instr->rexpref.w) {
2387 1.5 maxv opsize = 8;
2388 1.5 maxv } else {
2389 1.5 maxv if (!fsm->is16bit) {
2390 1.13 maxv if (instr->legpref.opr_ovr) {
2391 1.5 maxv opsize = 2;
2392 1.5 maxv } else {
2393 1.5 maxv opsize = 4;
2394 1.5 maxv }
2395 1.5 maxv } else { /* 16bit */
2396 1.13 maxv if (instr->legpref.opr_ovr) {
2397 1.5 maxv opsize = 4;
2398 1.5 maxv } else {
2399 1.5 maxv opsize = 2;
2400 1.5 maxv }
2401 1.5 maxv }
2402 1.5 maxv }
2403 1.5 maxv
2404 1.5 maxv return opsize;
2405 1.5 maxv }
2406 1.5 maxv
2407 1.5 maxv static size_t
2408 1.5 maxv get_address_size(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2409 1.5 maxv {
2410 1.5 maxv if (fsm->is64bit) {
2411 1.13 maxv if (__predict_false(instr->legpref.adr_ovr)) {
2412 1.5 maxv return 4;
2413 1.5 maxv }
2414 1.5 maxv return 8;
2415 1.5 maxv }
2416 1.5 maxv
2417 1.5 maxv if (fsm->is32bit) {
2418 1.13 maxv if (__predict_false(instr->legpref.adr_ovr)) {
2419 1.5 maxv return 2;
2420 1.5 maxv }
2421 1.5 maxv return 4;
2422 1.5 maxv }
2423 1.5 maxv
2424 1.5 maxv /* 16bit. */
2425 1.13 maxv if (__predict_false(instr->legpref.adr_ovr)) {
2426 1.5 maxv return 4;
2427 1.5 maxv }
2428 1.5 maxv return 2;
2429 1.5 maxv }
2430 1.5 maxv
2431 1.5 maxv static int
2432 1.5 maxv node_primary_opcode(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2433 1.1 maxv {
2434 1.5 maxv const struct x86_opcode *opcode;
2435 1.5 maxv uint8_t byte;
2436 1.5 maxv
2437 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2438 1.5 maxv return -1;
2439 1.5 maxv }
2440 1.5 maxv
2441 1.27 maxv opcode = &primary_opcode_table[byte];
2442 1.27 maxv if (__predict_false(!opcode->valid)) {
2443 1.1 maxv return -1;
2444 1.1 maxv }
2445 1.1 maxv
2446 1.5 maxv instr->opcode = opcode;
2447 1.5 maxv instr->emul = opcode->emul;
2448 1.5 maxv instr->operand_size = get_operand_size(fsm, instr);
2449 1.5 maxv instr->address_size = get_address_size(fsm, instr);
2450 1.5 maxv
2451 1.15 maxv if (fsm->is64bit && (instr->operand_size == 4)) {
2452 1.15 maxv /* Zero-extend to 64 bits. */
2453 1.15 maxv instr->zeroextend_mask = ~size_to_mask(4);
2454 1.15 maxv }
2455 1.15 maxv
2456 1.5 maxv if (opcode->regmodrm) {
2457 1.5 maxv fsm_advance(fsm, 1, node_regmodrm);
2458 1.5 maxv } else if (opcode->dmo) {
2459 1.5 maxv /* Direct-Memory Offsets */
2460 1.5 maxv fsm_advance(fsm, 1, node_dmo);
2461 1.5 maxv } else if (opcode->stos || opcode->lods) {
2462 1.5 maxv fsm_advance(fsm, 1, node_stlo);
2463 1.6 maxv } else if (opcode->movs) {
2464 1.6 maxv fsm_advance(fsm, 1, node_movs);
2465 1.5 maxv } else {
2466 1.5 maxv return -1;
2467 1.5 maxv }
2468 1.5 maxv
2469 1.5 maxv return 0;
2470 1.5 maxv }
2471 1.5 maxv
2472 1.10 maxv static int
2473 1.10 maxv node_secondary_opcode(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2474 1.10 maxv {
2475 1.10 maxv const struct x86_opcode *opcode;
2476 1.10 maxv uint8_t byte;
2477 1.10 maxv
2478 1.10 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2479 1.10 maxv return -1;
2480 1.10 maxv }
2481 1.10 maxv
2482 1.27 maxv opcode = &secondary_opcode_table[byte];
2483 1.27 maxv if (__predict_false(!opcode->valid)) {
2484 1.10 maxv return -1;
2485 1.10 maxv }
2486 1.10 maxv
2487 1.10 maxv instr->opcode = opcode;
2488 1.10 maxv instr->emul = opcode->emul;
2489 1.10 maxv instr->operand_size = get_operand_size(fsm, instr);
2490 1.10 maxv instr->address_size = get_address_size(fsm, instr);
2491 1.10 maxv
2492 1.18 maxv if (fsm->is64bit && (instr->operand_size == 4)) {
2493 1.18 maxv /* Zero-extend to 64 bits. */
2494 1.18 maxv instr->zeroextend_mask = ~size_to_mask(4);
2495 1.18 maxv }
2496 1.18 maxv
2497 1.11 maxv if (opcode->flags & FLAG_ze) {
2498 1.10 maxv /*
2499 1.10 maxv * Compute the mask for zero-extend. Update the operand size,
2500 1.10 maxv * we move fewer bytes.
2501 1.10 maxv */
2502 1.18 maxv instr->zeroextend_mask |= size_to_mask(instr->operand_size);
2503 1.10 maxv instr->zeroextend_mask &= ~size_to_mask(opcode->defsize);
2504 1.10 maxv instr->operand_size = opcode->defsize;
2505 1.10 maxv }
2506 1.10 maxv
2507 1.10 maxv if (opcode->regmodrm) {
2508 1.10 maxv fsm_advance(fsm, 1, node_regmodrm);
2509 1.10 maxv } else {
2510 1.10 maxv return -1;
2511 1.10 maxv }
2512 1.10 maxv
2513 1.10 maxv return 0;
2514 1.10 maxv }
2515 1.10 maxv
2516 1.5 maxv static int
2517 1.5 maxv node_main(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2518 1.5 maxv {
2519 1.5 maxv uint8_t byte;
2520 1.5 maxv
2521 1.5 maxv #define ESCAPE 0x0F
2522 1.5 maxv #define VEX_1 0xC5
2523 1.5 maxv #define VEX_2 0xC4
2524 1.5 maxv #define XOP 0x8F
2525 1.5 maxv
2526 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2527 1.5 maxv return -1;
2528 1.5 maxv }
2529 1.5 maxv
2530 1.5 maxv /*
2531 1.5 maxv * We don't take XOP. It is AMD-specific, and it was removed shortly
2532 1.5 maxv * after being introduced.
2533 1.5 maxv */
2534 1.5 maxv if (byte == ESCAPE) {
2535 1.10 maxv fsm_advance(fsm, 1, node_secondary_opcode);
2536 1.5 maxv } else if (!instr->rexpref.present) {
2537 1.5 maxv if (byte == VEX_1) {
2538 1.5 maxv return -1;
2539 1.5 maxv } else if (byte == VEX_2) {
2540 1.5 maxv return -1;
2541 1.5 maxv } else {
2542 1.5 maxv fsm->fn = node_primary_opcode;
2543 1.5 maxv }
2544 1.5 maxv } else {
2545 1.5 maxv fsm->fn = node_primary_opcode;
2546 1.5 maxv }
2547 1.5 maxv
2548 1.5 maxv return 0;
2549 1.5 maxv }
2550 1.5 maxv
2551 1.5 maxv static int
2552 1.5 maxv node_rex_prefix(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2553 1.5 maxv {
2554 1.5 maxv struct x86_rexpref *rexpref = &instr->rexpref;
2555 1.5 maxv uint8_t byte;
2556 1.5 maxv size_t n = 0;
2557 1.5 maxv
2558 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2559 1.5 maxv return -1;
2560 1.5 maxv }
2561 1.5 maxv
2562 1.5 maxv if (byte >= 0x40 && byte <= 0x4F) {
2563 1.5 maxv if (__predict_false(!fsm->is64bit)) {
2564 1.5 maxv return -1;
2565 1.5 maxv }
2566 1.27 maxv rexpref->b = ((byte & 0x1) != 0);
2567 1.27 maxv rexpref->x = ((byte & 0x2) != 0);
2568 1.27 maxv rexpref->r = ((byte & 0x4) != 0);
2569 1.27 maxv rexpref->w = ((byte & 0x8) != 0);
2570 1.5 maxv rexpref->present = true;
2571 1.5 maxv n = 1;
2572 1.5 maxv }
2573 1.5 maxv
2574 1.5 maxv fsm_advance(fsm, n, node_main);
2575 1.5 maxv return 0;
2576 1.5 maxv }
2577 1.5 maxv
2578 1.5 maxv static int
2579 1.5 maxv node_legacy_prefix(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2580 1.5 maxv {
2581 1.5 maxv uint8_t byte;
2582 1.5 maxv
2583 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2584 1.5 maxv return -1;
2585 1.5 maxv }
2586 1.5 maxv
2587 1.13 maxv if (byte == LEG_OPR_OVR) {
2588 1.13 maxv instr->legpref.opr_ovr = 1;
2589 1.13 maxv } else if (byte == LEG_OVR_DS) {
2590 1.13 maxv instr->legpref.seg = NVMM_X64_SEG_DS;
2591 1.13 maxv } else if (byte == LEG_OVR_ES) {
2592 1.13 maxv instr->legpref.seg = NVMM_X64_SEG_ES;
2593 1.13 maxv } else if (byte == LEG_REP) {
2594 1.13 maxv instr->legpref.rep = 1;
2595 1.13 maxv } else if (byte == LEG_OVR_GS) {
2596 1.13 maxv instr->legpref.seg = NVMM_X64_SEG_GS;
2597 1.13 maxv } else if (byte == LEG_OVR_FS) {
2598 1.13 maxv instr->legpref.seg = NVMM_X64_SEG_FS;
2599 1.13 maxv } else if (byte == LEG_ADR_OVR) {
2600 1.13 maxv instr->legpref.adr_ovr = 1;
2601 1.13 maxv } else if (byte == LEG_OVR_CS) {
2602 1.13 maxv instr->legpref.seg = NVMM_X64_SEG_CS;
2603 1.13 maxv } else if (byte == LEG_OVR_SS) {
2604 1.13 maxv instr->legpref.seg = NVMM_X64_SEG_SS;
2605 1.13 maxv } else if (byte == LEG_REPN) {
2606 1.13 maxv instr->legpref.repn = 1;
2607 1.13 maxv } else if (byte == LEG_LOCK) {
2608 1.13 maxv /* ignore */
2609 1.5 maxv } else {
2610 1.13 maxv /* not a legacy prefix */
2611 1.13 maxv fsm_advance(fsm, 0, node_rex_prefix);
2612 1.13 maxv return 0;
2613 1.5 maxv }
2614 1.5 maxv
2615 1.13 maxv fsm_advance(fsm, 1, node_legacy_prefix);
2616 1.5 maxv return 0;
2617 1.5 maxv }
2618 1.5 maxv
2619 1.5 maxv static int
2620 1.5 maxv x86_decode(uint8_t *inst_bytes, size_t inst_len, struct x86_instr *instr,
2621 1.5 maxv struct nvmm_x64_state *state)
2622 1.5 maxv {
2623 1.5 maxv struct x86_decode_fsm fsm;
2624 1.5 maxv int ret;
2625 1.5 maxv
2626 1.5 maxv memset(instr, 0, sizeof(*instr));
2627 1.13 maxv instr->legpref.seg = -1;
2628 1.25 maxv instr->src.hardseg = -1;
2629 1.25 maxv instr->dst.hardseg = -1;
2630 1.5 maxv
2631 1.5 maxv fsm.is64bit = is_64bit(state);
2632 1.5 maxv fsm.is32bit = is_32bit(state);
2633 1.5 maxv fsm.is16bit = is_16bit(state);
2634 1.5 maxv
2635 1.5 maxv fsm.fn = node_legacy_prefix;
2636 1.5 maxv fsm.buf = inst_bytes;
2637 1.5 maxv fsm.end = inst_bytes + inst_len;
2638 1.5 maxv
2639 1.5 maxv while (fsm.fn != NULL) {
2640 1.5 maxv ret = (*fsm.fn)(&fsm, instr);
2641 1.5 maxv if (ret == -1)
2642 1.5 maxv return -1;
2643 1.5 maxv }
2644 1.5 maxv
2645 1.5 maxv instr->len = fsm.buf - inst_bytes;
2646 1.5 maxv
2647 1.5 maxv return 0;
2648 1.5 maxv }
2649 1.5 maxv
2650 1.5 maxv /* -------------------------------------------------------------------------- */
2651 1.5 maxv
2652 1.19 maxv #define EXEC_INSTR(sz, instr) \
2653 1.19 maxv static uint##sz##_t \
2654 1.20 christos exec_##instr##sz(uint##sz##_t op1, uint##sz##_t op2, uint64_t *rflags) \
2655 1.19 maxv { \
2656 1.19 maxv uint##sz##_t res; \
2657 1.19 maxv __asm __volatile ( \
2658 1.33 maxv #instr" %2, %3;" \
2659 1.33 maxv "mov %3, %1;" \
2660 1.19 maxv "pushfq;" \
2661 1.33 maxv "popq %0" \
2662 1.19 maxv : "=r" (*rflags), "=r" (res) \
2663 1.19 maxv : "r" (op1), "r" (op2)); \
2664 1.19 maxv return res; \
2665 1.19 maxv }
2666 1.19 maxv
2667 1.19 maxv #define EXEC_DISPATCHER(instr) \
2668 1.19 maxv static uint64_t \
2669 1.19 maxv exec_##instr(uint64_t op1, uint64_t op2, uint64_t *rflags, size_t opsize) \
2670 1.19 maxv { \
2671 1.19 maxv switch (opsize) { \
2672 1.19 maxv case 1: \
2673 1.19 maxv return exec_##instr##8(op1, op2, rflags); \
2674 1.19 maxv case 2: \
2675 1.19 maxv return exec_##instr##16(op1, op2, rflags); \
2676 1.19 maxv case 4: \
2677 1.19 maxv return exec_##instr##32(op1, op2, rflags); \
2678 1.19 maxv default: \
2679 1.19 maxv return exec_##instr##64(op1, op2, rflags); \
2680 1.19 maxv } \
2681 1.19 maxv }
2682 1.19 maxv
2683 1.19 maxv /* SUB: ret = op1 - op2 */
2684 1.19 maxv #define PSL_SUB_MASK (PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF|PSL_AF)
2685 1.19 maxv EXEC_INSTR(8, sub)
2686 1.19 maxv EXEC_INSTR(16, sub)
2687 1.19 maxv EXEC_INSTR(32, sub)
2688 1.19 maxv EXEC_INSTR(64, sub)
2689 1.19 maxv EXEC_DISPATCHER(sub)
2690 1.19 maxv
2691 1.19 maxv /* OR: ret = op1 | op2 */
2692 1.19 maxv #define PSL_OR_MASK (PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF)
2693 1.19 maxv EXEC_INSTR(8, or)
2694 1.19 maxv EXEC_INSTR(16, or)
2695 1.19 maxv EXEC_INSTR(32, or)
2696 1.19 maxv EXEC_INSTR(64, or)
2697 1.19 maxv EXEC_DISPATCHER(or)
2698 1.19 maxv
2699 1.19 maxv /* AND: ret = op1 & op2 */
2700 1.19 maxv #define PSL_AND_MASK (PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF)
2701 1.19 maxv EXEC_INSTR(8, and)
2702 1.19 maxv EXEC_INSTR(16, and)
2703 1.19 maxv EXEC_INSTR(32, and)
2704 1.19 maxv EXEC_INSTR(64, and)
2705 1.19 maxv EXEC_DISPATCHER(and)
2706 1.19 maxv
2707 1.19 maxv /* XOR: ret = op1 ^ op2 */
2708 1.19 maxv #define PSL_XOR_MASK (PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF)
2709 1.19 maxv EXEC_INSTR(8, xor)
2710 1.19 maxv EXEC_INSTR(16, xor)
2711 1.19 maxv EXEC_INSTR(32, xor)
2712 1.19 maxv EXEC_INSTR(64, xor)
2713 1.19 maxv EXEC_DISPATCHER(xor)
2714 1.19 maxv
2715 1.19 maxv /* -------------------------------------------------------------------------- */
2716 1.5 maxv
2717 1.19 maxv /*
2718 1.19 maxv * Emulation functions. We don't care about the order of the operands, except
2719 1.33 maxv * for SUB, CMP and TEST. For these ones we look at mem->write to determine who
2720 1.19 maxv * is op1 and who is op2.
2721 1.19 maxv */
2722 1.5 maxv
2723 1.5 maxv static void
2724 1.30 maxv x86_func_or(struct nvmm_machine *mach, struct nvmm_mem *mem, uint64_t *gprs)
2725 1.5 maxv {
2726 1.19 maxv uint64_t *retval = (uint64_t *)mem->data;
2727 1.5 maxv const bool write = mem->write;
2728 1.19 maxv uint64_t *op1, op2, fl, ret;
2729 1.5 maxv
2730 1.19 maxv op1 = (uint64_t *)mem->data;
2731 1.19 maxv op2 = 0;
2732 1.5 maxv
2733 1.19 maxv /* Fetch the value to be OR'ed (op2). */
2734 1.19 maxv mem->data = (uint8_t *)&op2;
2735 1.5 maxv mem->write = false;
2736 1.30 maxv (*mach->cbs.mem)(mem);
2737 1.5 maxv
2738 1.5 maxv /* Perform the OR. */
2739 1.19 maxv ret = exec_or(*op1, op2, &fl, mem->size);
2740 1.5 maxv
2741 1.5 maxv if (write) {
2742 1.5 maxv /* Write back the result. */
2743 1.19 maxv mem->data = (uint8_t *)&ret;
2744 1.5 maxv mem->write = true;
2745 1.30 maxv (*mach->cbs.mem)(mem);
2746 1.19 maxv } else {
2747 1.19 maxv /* Return data to the caller. */
2748 1.19 maxv *retval = ret;
2749 1.5 maxv }
2750 1.5 maxv
2751 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_OR_MASK;
2752 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_OR_MASK);
2753 1.5 maxv }
2754 1.5 maxv
2755 1.5 maxv static void
2756 1.30 maxv x86_func_and(struct nvmm_machine *mach, struct nvmm_mem *mem, uint64_t *gprs)
2757 1.5 maxv {
2758 1.19 maxv uint64_t *retval = (uint64_t *)mem->data;
2759 1.5 maxv const bool write = mem->write;
2760 1.19 maxv uint64_t *op1, op2, fl, ret;
2761 1.5 maxv
2762 1.19 maxv op1 = (uint64_t *)mem->data;
2763 1.19 maxv op2 = 0;
2764 1.5 maxv
2765 1.19 maxv /* Fetch the value to be AND'ed (op2). */
2766 1.19 maxv mem->data = (uint8_t *)&op2;
2767 1.5 maxv mem->write = false;
2768 1.30 maxv (*mach->cbs.mem)(mem);
2769 1.5 maxv
2770 1.5 maxv /* Perform the AND. */
2771 1.19 maxv ret = exec_and(*op1, op2, &fl, mem->size);
2772 1.5 maxv
2773 1.5 maxv if (write) {
2774 1.5 maxv /* Write back the result. */
2775 1.19 maxv mem->data = (uint8_t *)&ret;
2776 1.5 maxv mem->write = true;
2777 1.30 maxv (*mach->cbs.mem)(mem);
2778 1.19 maxv } else {
2779 1.19 maxv /* Return data to the caller. */
2780 1.19 maxv *retval = ret;
2781 1.5 maxv }
2782 1.5 maxv
2783 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_AND_MASK;
2784 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_AND_MASK);
2785 1.5 maxv }
2786 1.5 maxv
2787 1.5 maxv static void
2788 1.33 maxv x86_func_xchg(struct nvmm_machine *mach, struct nvmm_mem *mem, uint64_t *gprs)
2789 1.33 maxv {
2790 1.33 maxv uint64_t *op1, op2;
2791 1.33 maxv
2792 1.33 maxv op1 = (uint64_t *)mem->data;
2793 1.33 maxv op2 = 0;
2794 1.33 maxv
2795 1.33 maxv /* Fetch op2. */
2796 1.33 maxv mem->data = (uint8_t *)&op2;
2797 1.33 maxv mem->write = false;
2798 1.33 maxv (*mach->cbs.mem)(mem);
2799 1.33 maxv
2800 1.33 maxv /* Write op1 in op2. */
2801 1.33 maxv mem->data = (uint8_t *)op1;
2802 1.33 maxv mem->write = true;
2803 1.33 maxv (*mach->cbs.mem)(mem);
2804 1.33 maxv
2805 1.33 maxv /* Write op2 in op1. */
2806 1.33 maxv *op1 = op2;
2807 1.33 maxv }
2808 1.33 maxv
2809 1.33 maxv static void
2810 1.30 maxv x86_func_sub(struct nvmm_machine *mach, struct nvmm_mem *mem, uint64_t *gprs)
2811 1.5 maxv {
2812 1.19 maxv uint64_t *retval = (uint64_t *)mem->data;
2813 1.5 maxv const bool write = mem->write;
2814 1.19 maxv uint64_t *op1, *op2, fl, ret;
2815 1.19 maxv uint64_t tmp;
2816 1.19 maxv bool memop1;
2817 1.19 maxv
2818 1.19 maxv memop1 = !mem->write;
2819 1.19 maxv op1 = memop1 ? &tmp : (uint64_t *)mem->data;
2820 1.19 maxv op2 = memop1 ? (uint64_t *)mem->data : &tmp;
2821 1.19 maxv
2822 1.19 maxv /* Fetch the value to be SUB'ed (op1 or op2). */
2823 1.19 maxv mem->data = (uint8_t *)&tmp;
2824 1.19 maxv mem->write = false;
2825 1.30 maxv (*mach->cbs.mem)(mem);
2826 1.19 maxv
2827 1.19 maxv /* Perform the SUB. */
2828 1.19 maxv ret = exec_sub(*op1, *op2, &fl, mem->size);
2829 1.19 maxv
2830 1.19 maxv if (write) {
2831 1.19 maxv /* Write back the result. */
2832 1.19 maxv mem->data = (uint8_t *)&ret;
2833 1.19 maxv mem->write = true;
2834 1.30 maxv (*mach->cbs.mem)(mem);
2835 1.19 maxv } else {
2836 1.19 maxv /* Return data to the caller. */
2837 1.19 maxv *retval = ret;
2838 1.19 maxv }
2839 1.19 maxv
2840 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_SUB_MASK;
2841 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_SUB_MASK);
2842 1.19 maxv }
2843 1.5 maxv
2844 1.19 maxv static void
2845 1.30 maxv x86_func_xor(struct nvmm_machine *mach, struct nvmm_mem *mem, uint64_t *gprs)
2846 1.19 maxv {
2847 1.19 maxv uint64_t *retval = (uint64_t *)mem->data;
2848 1.19 maxv const bool write = mem->write;
2849 1.19 maxv uint64_t *op1, op2, fl, ret;
2850 1.5 maxv
2851 1.19 maxv op1 = (uint64_t *)mem->data;
2852 1.19 maxv op2 = 0;
2853 1.5 maxv
2854 1.19 maxv /* Fetch the value to be XOR'ed (op2). */
2855 1.19 maxv mem->data = (uint8_t *)&op2;
2856 1.5 maxv mem->write = false;
2857 1.30 maxv (*mach->cbs.mem)(mem);
2858 1.5 maxv
2859 1.5 maxv /* Perform the XOR. */
2860 1.19 maxv ret = exec_xor(*op1, op2, &fl, mem->size);
2861 1.5 maxv
2862 1.5 maxv if (write) {
2863 1.5 maxv /* Write back the result. */
2864 1.19 maxv mem->data = (uint8_t *)&ret;
2865 1.5 maxv mem->write = true;
2866 1.30 maxv (*mach->cbs.mem)(mem);
2867 1.19 maxv } else {
2868 1.19 maxv /* Return data to the caller. */
2869 1.19 maxv *retval = ret;
2870 1.5 maxv }
2871 1.5 maxv
2872 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_XOR_MASK;
2873 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_XOR_MASK);
2874 1.5 maxv }
2875 1.5 maxv
2876 1.5 maxv static void
2877 1.30 maxv x86_func_cmp(struct nvmm_machine *mach, struct nvmm_mem *mem, uint64_t *gprs)
2878 1.19 maxv {
2879 1.19 maxv uint64_t *op1, *op2, fl;
2880 1.19 maxv uint64_t tmp;
2881 1.19 maxv bool memop1;
2882 1.19 maxv
2883 1.19 maxv memop1 = !mem->write;
2884 1.19 maxv op1 = memop1 ? &tmp : (uint64_t *)mem->data;
2885 1.19 maxv op2 = memop1 ? (uint64_t *)mem->data : &tmp;
2886 1.19 maxv
2887 1.19 maxv /* Fetch the value to be CMP'ed (op1 or op2). */
2888 1.19 maxv mem->data = (uint8_t *)&tmp;
2889 1.19 maxv mem->write = false;
2890 1.30 maxv (*mach->cbs.mem)(mem);
2891 1.19 maxv
2892 1.19 maxv /* Perform the CMP. */
2893 1.19 maxv exec_sub(*op1, *op2, &fl, mem->size);
2894 1.19 maxv
2895 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_SUB_MASK;
2896 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_SUB_MASK);
2897 1.19 maxv }
2898 1.19 maxv
2899 1.19 maxv static void
2900 1.30 maxv x86_func_test(struct nvmm_machine *mach, struct nvmm_mem *mem, uint64_t *gprs)
2901 1.19 maxv {
2902 1.19 maxv uint64_t *op1, *op2, fl;
2903 1.19 maxv uint64_t tmp;
2904 1.19 maxv bool memop1;
2905 1.19 maxv
2906 1.19 maxv memop1 = !mem->write;
2907 1.19 maxv op1 = memop1 ? &tmp : (uint64_t *)mem->data;
2908 1.19 maxv op2 = memop1 ? (uint64_t *)mem->data : &tmp;
2909 1.19 maxv
2910 1.19 maxv /* Fetch the value to be TEST'ed (op1 or op2). */
2911 1.19 maxv mem->data = (uint8_t *)&tmp;
2912 1.19 maxv mem->write = false;
2913 1.30 maxv (*mach->cbs.mem)(mem);
2914 1.19 maxv
2915 1.19 maxv /* Perform the TEST. */
2916 1.19 maxv exec_and(*op1, *op2, &fl, mem->size);
2917 1.19 maxv
2918 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_AND_MASK;
2919 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_AND_MASK);
2920 1.19 maxv }
2921 1.19 maxv
2922 1.19 maxv static void
2923 1.30 maxv x86_func_mov(struct nvmm_machine *mach, struct nvmm_mem *mem, uint64_t *gprs)
2924 1.5 maxv {
2925 1.5 maxv /*
2926 1.5 maxv * Nothing special, just move without emulation.
2927 1.5 maxv */
2928 1.30 maxv (*mach->cbs.mem)(mem);
2929 1.5 maxv }
2930 1.5 maxv
2931 1.5 maxv static void
2932 1.30 maxv x86_func_stos(struct nvmm_machine *mach, struct nvmm_mem *mem, uint64_t *gprs)
2933 1.5 maxv {
2934 1.5 maxv /*
2935 1.5 maxv * Just move, and update RDI.
2936 1.5 maxv */
2937 1.30 maxv (*mach->cbs.mem)(mem);
2938 1.5 maxv
2939 1.5 maxv if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
2940 1.5 maxv gprs[NVMM_X64_GPR_RDI] -= mem->size;
2941 1.5 maxv } else {
2942 1.5 maxv gprs[NVMM_X64_GPR_RDI] += mem->size;
2943 1.5 maxv }
2944 1.5 maxv }
2945 1.5 maxv
2946 1.5 maxv static void
2947 1.30 maxv x86_func_lods(struct nvmm_machine *mach, struct nvmm_mem *mem, uint64_t *gprs)
2948 1.5 maxv {
2949 1.5 maxv /*
2950 1.5 maxv * Just move, and update RSI.
2951 1.5 maxv */
2952 1.30 maxv (*mach->cbs.mem)(mem);
2953 1.5 maxv
2954 1.5 maxv if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
2955 1.5 maxv gprs[NVMM_X64_GPR_RSI] -= mem->size;
2956 1.5 maxv } else {
2957 1.5 maxv gprs[NVMM_X64_GPR_RSI] += mem->size;
2958 1.5 maxv }
2959 1.5 maxv }
2960 1.5 maxv
2961 1.6 maxv static void
2962 1.30 maxv x86_func_movs(struct nvmm_machine *mach, struct nvmm_mem *mem, uint64_t *gprs)
2963 1.6 maxv {
2964 1.6 maxv /*
2965 1.6 maxv * Special instruction: double memory operand. Don't call the cb,
2966 1.6 maxv * because the storage has already been performed earlier.
2967 1.6 maxv */
2968 1.6 maxv
2969 1.6 maxv if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
2970 1.6 maxv gprs[NVMM_X64_GPR_RSI] -= mem->size;
2971 1.6 maxv gprs[NVMM_X64_GPR_RDI] -= mem->size;
2972 1.6 maxv } else {
2973 1.6 maxv gprs[NVMM_X64_GPR_RSI] += mem->size;
2974 1.6 maxv gprs[NVMM_X64_GPR_RDI] += mem->size;
2975 1.6 maxv }
2976 1.6 maxv }
2977 1.6 maxv
2978 1.5 maxv /* -------------------------------------------------------------------------- */
2979 1.5 maxv
2980 1.5 maxv static inline uint64_t
2981 1.5 maxv gpr_read_address(struct x86_instr *instr, struct nvmm_x64_state *state, int gpr)
2982 1.5 maxv {
2983 1.5 maxv uint64_t val;
2984 1.5 maxv
2985 1.5 maxv val = state->gprs[gpr];
2986 1.15 maxv val &= size_to_mask(instr->address_size);
2987 1.5 maxv
2988 1.5 maxv return val;
2989 1.5 maxv }
2990 1.5 maxv
2991 1.5 maxv static int
2992 1.6 maxv store_to_gva(struct nvmm_x64_state *state, struct x86_instr *instr,
2993 1.6 maxv struct x86_store *store, gvaddr_t *gvap, size_t size)
2994 1.5 maxv {
2995 1.5 maxv struct x86_sib *sib;
2996 1.6 maxv gvaddr_t gva = 0;
2997 1.5 maxv uint64_t reg;
2998 1.5 maxv int ret, seg;
2999 1.5 maxv
3000 1.5 maxv if (store->type == STORE_SIB) {
3001 1.5 maxv sib = &store->u.sib;
3002 1.5 maxv if (sib->bas != NULL)
3003 1.5 maxv gva += gpr_read_address(instr, state, sib->bas->num);
3004 1.5 maxv if (sib->idx != NULL) {
3005 1.5 maxv reg = gpr_read_address(instr, state, sib->idx->num);
3006 1.5 maxv gva += sib->scale * reg;
3007 1.5 maxv }
3008 1.5 maxv } else if (store->type == STORE_REG) {
3009 1.9 maxv if (store->u.reg == NULL) {
3010 1.32 maxv /* The base is null. Happens with disp32-only and
3011 1.32 maxv * disp16-only. */
3012 1.9 maxv } else {
3013 1.9 maxv gva = gpr_read_address(instr, state, store->u.reg->num);
3014 1.9 maxv }
3015 1.32 maxv } else if (store->type == STORE_DUALREG) {
3016 1.32 maxv gva = gpr_read_address(instr, state, store->u.dualreg.reg1) +
3017 1.32 maxv gpr_read_address(instr, state, store->u.dualreg.reg2);
3018 1.5 maxv } else {
3019 1.5 maxv gva = store->u.dmo;
3020 1.5 maxv }
3021 1.5 maxv
3022 1.5 maxv if (store->disp.type != DISP_NONE) {
3023 1.11 maxv gva += store->disp.data;
3024 1.5 maxv }
3025 1.5 maxv
3026 1.25 maxv if (store->hardseg != -1) {
3027 1.15 maxv seg = store->hardseg;
3028 1.15 maxv } else {
3029 1.15 maxv if (__predict_false(instr->legpref.seg != -1)) {
3030 1.15 maxv seg = instr->legpref.seg;
3031 1.5 maxv } else {
3032 1.15 maxv seg = NVMM_X64_SEG_DS;
3033 1.5 maxv }
3034 1.15 maxv }
3035 1.5 maxv
3036 1.15 maxv if (__predict_true(is_long_mode(state))) {
3037 1.15 maxv if (seg == NVMM_X64_SEG_GS || seg == NVMM_X64_SEG_FS) {
3038 1.15 maxv segment_apply(&state->segs[seg], &gva);
3039 1.15 maxv }
3040 1.15 maxv } else {
3041 1.15 maxv ret = segment_check(&state->segs[seg], gva, size);
3042 1.5 maxv if (ret == -1)
3043 1.5 maxv return -1;
3044 1.15 maxv segment_apply(&state->segs[seg], &gva);
3045 1.5 maxv }
3046 1.5 maxv
3047 1.6 maxv *gvap = gva;
3048 1.6 maxv return 0;
3049 1.6 maxv }
3050 1.6 maxv
3051 1.6 maxv static int
3052 1.8 maxv fetch_segment(struct nvmm_machine *mach, struct nvmm_x64_state *state)
3053 1.8 maxv {
3054 1.21 maxv uint8_t inst_bytes[5], byte;
3055 1.13 maxv size_t i, fetchsize;
3056 1.8 maxv gvaddr_t gva;
3057 1.8 maxv int ret, seg;
3058 1.8 maxv
3059 1.8 maxv fetchsize = sizeof(inst_bytes);
3060 1.8 maxv
3061 1.8 maxv gva = state->gprs[NVMM_X64_GPR_RIP];
3062 1.15 maxv if (__predict_false(!is_long_mode(state))) {
3063 1.15 maxv ret = segment_check(&state->segs[NVMM_X64_SEG_CS], gva,
3064 1.8 maxv fetchsize);
3065 1.8 maxv if (ret == -1)
3066 1.8 maxv return -1;
3067 1.15 maxv segment_apply(&state->segs[NVMM_X64_SEG_CS], &gva);
3068 1.8 maxv }
3069 1.8 maxv
3070 1.8 maxv ret = read_guest_memory(mach, state, gva, inst_bytes, fetchsize);
3071 1.8 maxv if (ret == -1)
3072 1.8 maxv return -1;
3073 1.8 maxv
3074 1.8 maxv seg = NVMM_X64_SEG_DS;
3075 1.13 maxv for (i = 0; i < fetchsize; i++) {
3076 1.13 maxv byte = inst_bytes[i];
3077 1.13 maxv
3078 1.13 maxv if (byte == LEG_OVR_DS) {
3079 1.13 maxv seg = NVMM_X64_SEG_DS;
3080 1.13 maxv } else if (byte == LEG_OVR_ES) {
3081 1.13 maxv seg = NVMM_X64_SEG_ES;
3082 1.13 maxv } else if (byte == LEG_OVR_GS) {
3083 1.13 maxv seg = NVMM_X64_SEG_GS;
3084 1.13 maxv } else if (byte == LEG_OVR_FS) {
3085 1.13 maxv seg = NVMM_X64_SEG_FS;
3086 1.13 maxv } else if (byte == LEG_OVR_CS) {
3087 1.13 maxv seg = NVMM_X64_SEG_CS;
3088 1.13 maxv } else if (byte == LEG_OVR_SS) {
3089 1.13 maxv seg = NVMM_X64_SEG_SS;
3090 1.13 maxv } else if (byte == LEG_OPR_OVR) {
3091 1.13 maxv /* nothing */
3092 1.13 maxv } else if (byte == LEG_ADR_OVR) {
3093 1.13 maxv /* nothing */
3094 1.13 maxv } else if (byte == LEG_REP) {
3095 1.13 maxv /* nothing */
3096 1.13 maxv } else if (byte == LEG_REPN) {
3097 1.13 maxv /* nothing */
3098 1.13 maxv } else if (byte == LEG_LOCK) {
3099 1.13 maxv /* nothing */
3100 1.13 maxv } else {
3101 1.13 maxv return seg;
3102 1.8 maxv }
3103 1.8 maxv }
3104 1.8 maxv
3105 1.8 maxv return seg;
3106 1.8 maxv }
3107 1.8 maxv
3108 1.8 maxv static int
3109 1.5 maxv fetch_instruction(struct nvmm_machine *mach, struct nvmm_x64_state *state,
3110 1.5 maxv struct nvmm_exit *exit)
3111 1.5 maxv {
3112 1.6 maxv size_t fetchsize;
3113 1.6 maxv gvaddr_t gva;
3114 1.5 maxv int ret;
3115 1.5 maxv
3116 1.5 maxv fetchsize = sizeof(exit->u.mem.inst_bytes);
3117 1.5 maxv
3118 1.5 maxv gva = state->gprs[NVMM_X64_GPR_RIP];
3119 1.15 maxv if (__predict_false(!is_long_mode(state))) {
3120 1.15 maxv ret = segment_check(&state->segs[NVMM_X64_SEG_CS], gva,
3121 1.5 maxv fetchsize);
3122 1.5 maxv if (ret == -1)
3123 1.5 maxv return -1;
3124 1.15 maxv segment_apply(&state->segs[NVMM_X64_SEG_CS], &gva);
3125 1.5 maxv }
3126 1.5 maxv
3127 1.6 maxv ret = read_guest_memory(mach, state, gva, exit->u.mem.inst_bytes,
3128 1.6 maxv fetchsize);
3129 1.6 maxv if (ret == -1)
3130 1.6 maxv return -1;
3131 1.6 maxv
3132 1.6 maxv exit->u.mem.inst_len = fetchsize;
3133 1.6 maxv
3134 1.6 maxv return 0;
3135 1.6 maxv }
3136 1.6 maxv
3137 1.6 maxv static int
3138 1.6 maxv assist_mem_double(struct nvmm_machine *mach, struct nvmm_x64_state *state,
3139 1.6 maxv struct x86_instr *instr)
3140 1.6 maxv {
3141 1.6 maxv struct nvmm_mem mem;
3142 1.6 maxv uint8_t data[8];
3143 1.6 maxv gvaddr_t gva;
3144 1.6 maxv size_t size;
3145 1.6 maxv int ret;
3146 1.6 maxv
3147 1.6 maxv size = instr->operand_size;
3148 1.5 maxv
3149 1.6 maxv /* Source. */
3150 1.6 maxv ret = store_to_gva(state, instr, &instr->src, &gva, size);
3151 1.5 maxv if (ret == -1)
3152 1.5 maxv return -1;
3153 1.6 maxv ret = read_guest_memory(mach, state, gva, data, size);
3154 1.6 maxv if (ret == -1)
3155 1.5 maxv return -1;
3156 1.5 maxv
3157 1.6 maxv /* Destination. */
3158 1.6 maxv ret = store_to_gva(state, instr, &instr->dst, &gva, size);
3159 1.6 maxv if (ret == -1)
3160 1.6 maxv return -1;
3161 1.6 maxv ret = write_guest_memory(mach, state, gva, data, size);
3162 1.5 maxv if (ret == -1)
3163 1.5 maxv return -1;
3164 1.5 maxv
3165 1.6 maxv mem.size = size;
3166 1.30 maxv (*instr->emul->func)(mach, &mem, state->gprs);
3167 1.5 maxv
3168 1.5 maxv return 0;
3169 1.5 maxv }
3170 1.5 maxv
3171 1.6 maxv static int
3172 1.6 maxv assist_mem_single(struct nvmm_machine *mach, struct nvmm_x64_state *state,
3173 1.12 maxv struct x86_instr *instr, struct nvmm_exit *exit)
3174 1.5 maxv {
3175 1.5 maxv struct nvmm_mem mem;
3176 1.10 maxv uint8_t membuf[8];
3177 1.5 maxv uint64_t val;
3178 1.5 maxv
3179 1.11 maxv memset(membuf, 0, sizeof(membuf));
3180 1.12 maxv
3181 1.12 maxv mem.gpa = exit->u.mem.gpa;
3182 1.12 maxv mem.size = instr->operand_size;
3183 1.10 maxv mem.data = membuf;
3184 1.5 maxv
3185 1.12 maxv /* Determine the direction. */
3186 1.6 maxv switch (instr->src.type) {
3187 1.5 maxv case STORE_REG:
3188 1.6 maxv if (instr->src.disp.type != DISP_NONE) {
3189 1.5 maxv /* Indirect access. */
3190 1.5 maxv mem.write = false;
3191 1.5 maxv } else {
3192 1.5 maxv /* Direct access. */
3193 1.5 maxv mem.write = true;
3194 1.5 maxv }
3195 1.5 maxv break;
3196 1.32 maxv case STORE_DUALREG:
3197 1.32 maxv if (instr->src.disp.type == DISP_NONE) {
3198 1.32 maxv DISASSEMBLER_BUG();
3199 1.32 maxv }
3200 1.32 maxv mem.write = false;
3201 1.32 maxv break;
3202 1.5 maxv case STORE_IMM:
3203 1.5 maxv mem.write = true;
3204 1.5 maxv break;
3205 1.5 maxv case STORE_SIB:
3206 1.5 maxv mem.write = false;
3207 1.5 maxv break;
3208 1.5 maxv case STORE_DMO:
3209 1.5 maxv mem.write = false;
3210 1.5 maxv break;
3211 1.5 maxv default:
3212 1.12 maxv DISASSEMBLER_BUG();
3213 1.5 maxv }
3214 1.5 maxv
3215 1.12 maxv if (mem.write) {
3216 1.12 maxv switch (instr->src.type) {
3217 1.12 maxv case STORE_REG:
3218 1.33 maxv /* The instruction was "reg -> mem". Fetch the register
3219 1.33 maxv * in membuf. */
3220 1.33 maxv if (__predict_false(instr->src.disp.type != DISP_NONE)) {
3221 1.5 maxv DISASSEMBLER_BUG();
3222 1.5 maxv }
3223 1.12 maxv val = state->gprs[instr->src.u.reg->num];
3224 1.12 maxv val = __SHIFTOUT(val, instr->src.u.reg->mask);
3225 1.12 maxv memcpy(mem.data, &val, mem.size);
3226 1.12 maxv break;
3227 1.12 maxv case STORE_IMM:
3228 1.33 maxv /* The instruction was "imm -> mem". Fetch the immediate
3229 1.33 maxv * in membuf. */
3230 1.12 maxv memcpy(mem.data, &instr->src.u.imm.data, mem.size);
3231 1.12 maxv break;
3232 1.12 maxv default:
3233 1.5 maxv DISASSEMBLER_BUG();
3234 1.5 maxv }
3235 1.33 maxv } else if (instr->emul->readreg) {
3236 1.33 maxv /* The instruction was "mem -> reg", but the value of the
3237 1.33 maxv * register matters for the emul func. Fetch it in membuf. */
3238 1.33 maxv if (__predict_false(instr->dst.type != STORE_REG)) {
3239 1.19 maxv DISASSEMBLER_BUG();
3240 1.19 maxv }
3241 1.33 maxv if (__predict_false(instr->dst.disp.type != DISP_NONE)) {
3242 1.19 maxv DISASSEMBLER_BUG();
3243 1.19 maxv }
3244 1.19 maxv val = state->gprs[instr->dst.u.reg->num];
3245 1.19 maxv val = __SHIFTOUT(val, instr->dst.u.reg->mask);
3246 1.19 maxv memcpy(mem.data, &val, mem.size);
3247 1.5 maxv }
3248 1.5 maxv
3249 1.30 maxv (*instr->emul->func)(mach, &mem, state->gprs);
3250 1.5 maxv
3251 1.33 maxv if (instr->emul->notouch) {
3252 1.33 maxv /* We're done. */
3253 1.33 maxv return 0;
3254 1.33 maxv }
3255 1.33 maxv
3256 1.33 maxv if (!mem.write) {
3257 1.33 maxv /* The instruction was "mem -> reg". The emul func has filled
3258 1.33 maxv * membuf with the memory content. Install membuf in the
3259 1.33 maxv * register. */
3260 1.33 maxv if (__predict_false(instr->dst.type != STORE_REG)) {
3261 1.33 maxv DISASSEMBLER_BUG();
3262 1.33 maxv }
3263 1.33 maxv if (__predict_false(instr->dst.disp.type != DISP_NONE)) {
3264 1.12 maxv DISASSEMBLER_BUG();
3265 1.12 maxv }
3266 1.19 maxv memcpy(&val, membuf, sizeof(uint64_t));
3267 1.6 maxv val = __SHIFTIN(val, instr->dst.u.reg->mask);
3268 1.6 maxv state->gprs[instr->dst.u.reg->num] &= ~instr->dst.u.reg->mask;
3269 1.6 maxv state->gprs[instr->dst.u.reg->num] |= val;
3270 1.10 maxv state->gprs[instr->dst.u.reg->num] &= ~instr->zeroextend_mask;
3271 1.33 maxv } else if (instr->emul->backprop) {
3272 1.33 maxv /* The instruction was "reg -> mem", but the memory must be
3273 1.33 maxv * back-propagated to the register. Install membuf in the
3274 1.33 maxv * register. */
3275 1.33 maxv if (__predict_false(instr->src.type != STORE_REG)) {
3276 1.33 maxv DISASSEMBLER_BUG();
3277 1.33 maxv }
3278 1.33 maxv if (__predict_false(instr->src.disp.type != DISP_NONE)) {
3279 1.33 maxv DISASSEMBLER_BUG();
3280 1.33 maxv }
3281 1.33 maxv memcpy(&val, membuf, sizeof(uint64_t));
3282 1.33 maxv val = __SHIFTIN(val, instr->src.u.reg->mask);
3283 1.33 maxv state->gprs[instr->src.u.reg->num] &= ~instr->src.u.reg->mask;
3284 1.33 maxv state->gprs[instr->src.u.reg->num] |= val;
3285 1.33 maxv state->gprs[instr->src.u.reg->num] &= ~instr->zeroextend_mask;
3286 1.6 maxv }
3287 1.6 maxv
3288 1.6 maxv return 0;
3289 1.6 maxv }
3290 1.6 maxv
3291 1.6 maxv int
3292 1.31 maxv nvmm_assist_mem(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
3293 1.6 maxv {
3294 1.31 maxv struct nvmm_x64_state *state = vcpu->state;
3295 1.31 maxv struct nvmm_exit *exit = vcpu->exit;
3296 1.6 maxv struct x86_instr instr;
3297 1.15 maxv uint64_t cnt = 0; /* GCC */
3298 1.6 maxv int ret;
3299 1.6 maxv
3300 1.6 maxv if (__predict_false(exit->reason != NVMM_EXIT_MEMORY)) {
3301 1.6 maxv errno = EINVAL;
3302 1.6 maxv return -1;
3303 1.6 maxv }
3304 1.6 maxv
3305 1.31 maxv ret = nvmm_vcpu_getstate(mach, vcpu,
3306 1.15 maxv NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
3307 1.15 maxv NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
3308 1.6 maxv if (ret == -1)
3309 1.6 maxv return -1;
3310 1.6 maxv
3311 1.6 maxv if (exit->u.mem.inst_len == 0) {
3312 1.6 maxv /*
3313 1.6 maxv * The instruction was not fetched from the kernel. Fetch
3314 1.6 maxv * it ourselves.
3315 1.6 maxv */
3316 1.31 maxv ret = fetch_instruction(mach, state, exit);
3317 1.6 maxv if (ret == -1)
3318 1.6 maxv return -1;
3319 1.6 maxv }
3320 1.6 maxv
3321 1.6 maxv ret = x86_decode(exit->u.mem.inst_bytes, exit->u.mem.inst_len,
3322 1.31 maxv &instr, state);
3323 1.6 maxv if (ret == -1) {
3324 1.6 maxv errno = ENODEV;
3325 1.6 maxv return -1;
3326 1.6 maxv }
3327 1.6 maxv
3328 1.15 maxv if (instr.legpref.rep || instr.legpref.repn) {
3329 1.31 maxv cnt = rep_get_cnt(state, instr.address_size);
3330 1.15 maxv if (__predict_false(cnt == 0)) {
3331 1.31 maxv state->gprs[NVMM_X64_GPR_RIP] += instr.len;
3332 1.15 maxv goto out;
3333 1.15 maxv }
3334 1.15 maxv }
3335 1.15 maxv
3336 1.6 maxv if (instr.opcode->movs) {
3337 1.31 maxv ret = assist_mem_double(mach, state, &instr);
3338 1.6 maxv } else {
3339 1.31 maxv ret = assist_mem_single(mach, state, &instr, exit);
3340 1.6 maxv }
3341 1.6 maxv if (ret == -1) {
3342 1.6 maxv errno = ENODEV;
3343 1.6 maxv return -1;
3344 1.5 maxv }
3345 1.5 maxv
3346 1.14 maxv if (instr.legpref.rep || instr.legpref.repn) {
3347 1.15 maxv cnt -= 1;
3348 1.31 maxv rep_set_cnt(state, instr.address_size, cnt);
3349 1.6 maxv if (cnt == 0) {
3350 1.31 maxv state->gprs[NVMM_X64_GPR_RIP] += instr.len;
3351 1.14 maxv } else if (__predict_false(instr.legpref.repn)) {
3352 1.31 maxv if (state->gprs[NVMM_X64_GPR_RFLAGS] & PSL_Z) {
3353 1.31 maxv state->gprs[NVMM_X64_GPR_RIP] += instr.len;
3354 1.14 maxv }
3355 1.5 maxv }
3356 1.5 maxv } else {
3357 1.31 maxv state->gprs[NVMM_X64_GPR_RIP] += instr.len;
3358 1.5 maxv }
3359 1.5 maxv
3360 1.15 maxv out:
3361 1.31 maxv ret = nvmm_vcpu_setstate(mach, vcpu, NVMM_X64_STATE_GPRS);
3362 1.5 maxv if (ret == -1)
3363 1.5 maxv return -1;
3364 1.5 maxv
3365 1.5 maxv return 0;
3366 1.1 maxv }
3367