libnvmm_x86.c revision 1.43 1 1.43 reinoud /* $NetBSD: libnvmm_x86.c,v 1.43 2020/12/27 20:56:14 reinoud Exp $ */
2 1.1 maxv
3 1.1 maxv /*
4 1.40 maxv * Copyright (c) 2018-2020 Maxime Villard, m00nbsd.net
5 1.1 maxv * All rights reserved.
6 1.1 maxv *
7 1.40 maxv * This code is part of the NVMM hypervisor.
8 1.1 maxv *
9 1.1 maxv * Redistribution and use in source and binary forms, with or without
10 1.1 maxv * modification, are permitted provided that the following conditions
11 1.1 maxv * are met:
12 1.1 maxv * 1. Redistributions of source code must retain the above copyright
13 1.1 maxv * notice, this list of conditions and the following disclaimer.
14 1.1 maxv * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 maxv * notice, this list of conditions and the following disclaimer in the
16 1.1 maxv * documentation and/or other materials provided with the distribution.
17 1.1 maxv *
18 1.40 maxv * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 1.40 maxv * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 1.40 maxv * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 1.40 maxv * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 1.40 maxv * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 1.40 maxv * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 1.40 maxv * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 1.40 maxv * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 1.40 maxv * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 1.40 maxv * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 1.40 maxv * SUCH DAMAGE.
29 1.1 maxv */
30 1.1 maxv
31 1.1 maxv #include <sys/cdefs.h>
32 1.1 maxv
33 1.1 maxv #include <stdio.h>
34 1.1 maxv #include <stdlib.h>
35 1.1 maxv #include <string.h>
36 1.1 maxv #include <unistd.h>
37 1.1 maxv #include <fcntl.h>
38 1.1 maxv #include <errno.h>
39 1.1 maxv #include <sys/ioctl.h>
40 1.1 maxv #include <sys/mman.h>
41 1.1 maxv #include <machine/vmparam.h>
42 1.1 maxv #include <machine/pte.h>
43 1.1 maxv #include <machine/psl.h>
44 1.1 maxv
45 1.10 maxv #define MIN(X, Y) (((X) < (Y)) ? (X) : (Y))
46 1.27 maxv #define __cacheline_aligned __attribute__((__aligned__(64)))
47 1.10 maxv
48 1.1 maxv #include <x86/specialreg.h>
49 1.1 maxv
50 1.29 maxv /* -------------------------------------------------------------------------- */
51 1.29 maxv
52 1.6 maxv /*
53 1.6 maxv * Undocumented debugging function. Helpful.
54 1.6 maxv */
55 1.6 maxv int
56 1.31 maxv nvmm_vcpu_dump(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
57 1.6 maxv {
58 1.31 maxv struct nvmm_x64_state *state = vcpu->state;
59 1.26 maxv uint16_t *attr;
60 1.6 maxv size_t i;
61 1.6 maxv int ret;
62 1.6 maxv
63 1.6 maxv const char *segnames[] = {
64 1.26 maxv "ES", "CS", "SS", "DS", "FS", "GS", "GDT", "IDT", "LDT", "TR"
65 1.6 maxv };
66 1.6 maxv
67 1.31 maxv ret = nvmm_vcpu_getstate(mach, vcpu, NVMM_X64_STATE_ALL);
68 1.6 maxv if (ret == -1)
69 1.6 maxv return -1;
70 1.6 maxv
71 1.31 maxv printf("+ VCPU id=%d\n", (int)vcpu->cpuid);
72 1.31 maxv printf("| -> RAX=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RAX]);
73 1.34 maxv printf("| -> RCX=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RCX]);
74 1.34 maxv printf("| -> RDX=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RDX]);
75 1.31 maxv printf("| -> RBX=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RBX]);
76 1.34 maxv printf("| -> RSP=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RSP]);
77 1.34 maxv printf("| -> RBP=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RBP]);
78 1.34 maxv printf("| -> RSI=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RSI]);
79 1.34 maxv printf("| -> RDI=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RDI]);
80 1.34 maxv printf("| -> RIP=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RIP]);
81 1.31 maxv printf("| -> RFLAGS=%p\n", (void *)state->gprs[NVMM_X64_GPR_RFLAGS]);
82 1.6 maxv for (i = 0; i < NVMM_X64_NSEG; i++) {
83 1.31 maxv attr = (uint16_t *)&state->segs[i].attrib;
84 1.34 maxv printf("| -> %s: sel=0x%x base=%"PRIx64", limit=%x, "
85 1.34 maxv "attrib=%x [type=%d,l=%d,def=%d]\n",
86 1.6 maxv segnames[i],
87 1.31 maxv state->segs[i].selector,
88 1.31 maxv state->segs[i].base,
89 1.31 maxv state->segs[i].limit,
90 1.34 maxv *attr,
91 1.34 maxv state->segs[i].attrib.type,
92 1.34 maxv state->segs[i].attrib.l,
93 1.34 maxv state->segs[i].attrib.def);
94 1.26 maxv }
95 1.31 maxv printf("| -> MSR_EFER=%"PRIx64"\n", state->msrs[NVMM_X64_MSR_EFER]);
96 1.31 maxv printf("| -> CR0=%"PRIx64"\n", state->crs[NVMM_X64_CR_CR0]);
97 1.31 maxv printf("| -> CR3=%"PRIx64"\n", state->crs[NVMM_X64_CR_CR3]);
98 1.31 maxv printf("| -> CR4=%"PRIx64"\n", state->crs[NVMM_X64_CR_CR4]);
99 1.31 maxv printf("| -> CR8=%"PRIx64"\n", state->crs[NVMM_X64_CR_CR8]);
100 1.6 maxv
101 1.6 maxv return 0;
102 1.6 maxv }
103 1.6 maxv
104 1.1 maxv /* -------------------------------------------------------------------------- */
105 1.1 maxv
106 1.1 maxv #define PTE32_L1_SHIFT 12
107 1.1 maxv #define PTE32_L2_SHIFT 22
108 1.1 maxv
109 1.1 maxv #define PTE32_L2_MASK 0xffc00000
110 1.1 maxv #define PTE32_L1_MASK 0x003ff000
111 1.1 maxv
112 1.1 maxv #define PTE32_L2_FRAME (PTE32_L2_MASK)
113 1.1 maxv #define PTE32_L1_FRAME (PTE32_L2_FRAME|PTE32_L1_MASK)
114 1.1 maxv
115 1.1 maxv #define pte32_l1idx(va) (((va) & PTE32_L1_MASK) >> PTE32_L1_SHIFT)
116 1.1 maxv #define pte32_l2idx(va) (((va) & PTE32_L2_MASK) >> PTE32_L2_SHIFT)
117 1.1 maxv
118 1.38 maxv #define CR3_FRAME_32BIT __BITS(31, 12)
119 1.19 maxv
120 1.1 maxv typedef uint32_t pte_32bit_t;
121 1.1 maxv
122 1.1 maxv static int
123 1.1 maxv x86_gva_to_gpa_32bit(struct nvmm_machine *mach, uint64_t cr3,
124 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, bool has_pse, nvmm_prot_t *prot)
125 1.1 maxv {
126 1.1 maxv gpaddr_t L2gpa, L1gpa;
127 1.1 maxv uintptr_t L2hva, L1hva;
128 1.1 maxv pte_32bit_t *pdir, pte;
129 1.28 maxv nvmm_prot_t pageprot;
130 1.1 maxv
131 1.1 maxv /* We begin with an RWXU access. */
132 1.1 maxv *prot = NVMM_PROT_ALL;
133 1.1 maxv
134 1.1 maxv /* Parse L2. */
135 1.19 maxv L2gpa = (cr3 & CR3_FRAME_32BIT);
136 1.28 maxv if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva, &pageprot) == -1)
137 1.1 maxv return -1;
138 1.1 maxv pdir = (pte_32bit_t *)L2hva;
139 1.1 maxv pte = pdir[pte32_l2idx(gva)];
140 1.38 maxv if ((pte & PTE_P) == 0)
141 1.1 maxv return -1;
142 1.38 maxv if ((pte & PTE_U) == 0)
143 1.1 maxv *prot &= ~NVMM_PROT_USER;
144 1.38 maxv if ((pte & PTE_W) == 0)
145 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
146 1.38 maxv if ((pte & PTE_PS) && !has_pse)
147 1.1 maxv return -1;
148 1.38 maxv if (pte & PTE_PS) {
149 1.1 maxv *gpa = (pte & PTE32_L2_FRAME);
150 1.10 maxv *gpa = *gpa + (gva & PTE32_L1_MASK);
151 1.1 maxv return 0;
152 1.1 maxv }
153 1.1 maxv
154 1.1 maxv /* Parse L1. */
155 1.38 maxv L1gpa = (pte & PTE_FRAME);
156 1.28 maxv if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva, &pageprot) == -1)
157 1.1 maxv return -1;
158 1.1 maxv pdir = (pte_32bit_t *)L1hva;
159 1.1 maxv pte = pdir[pte32_l1idx(gva)];
160 1.38 maxv if ((pte & PTE_P) == 0)
161 1.1 maxv return -1;
162 1.38 maxv if ((pte & PTE_U) == 0)
163 1.1 maxv *prot &= ~NVMM_PROT_USER;
164 1.38 maxv if ((pte & PTE_W) == 0)
165 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
166 1.38 maxv if (pte & PTE_PS)
167 1.1 maxv return -1;
168 1.1 maxv
169 1.38 maxv *gpa = (pte & PTE_FRAME);
170 1.1 maxv return 0;
171 1.1 maxv }
172 1.1 maxv
173 1.1 maxv /* -------------------------------------------------------------------------- */
174 1.1 maxv
175 1.1 maxv #define PTE32_PAE_L1_SHIFT 12
176 1.1 maxv #define PTE32_PAE_L2_SHIFT 21
177 1.1 maxv #define PTE32_PAE_L3_SHIFT 30
178 1.1 maxv
179 1.1 maxv #define PTE32_PAE_L3_MASK 0xc0000000
180 1.1 maxv #define PTE32_PAE_L2_MASK 0x3fe00000
181 1.1 maxv #define PTE32_PAE_L1_MASK 0x001ff000
182 1.1 maxv
183 1.1 maxv #define PTE32_PAE_L3_FRAME (PTE32_PAE_L3_MASK)
184 1.1 maxv #define PTE32_PAE_L2_FRAME (PTE32_PAE_L3_FRAME|PTE32_PAE_L2_MASK)
185 1.1 maxv #define PTE32_PAE_L1_FRAME (PTE32_PAE_L2_FRAME|PTE32_PAE_L1_MASK)
186 1.1 maxv
187 1.1 maxv #define pte32_pae_l1idx(va) (((va) & PTE32_PAE_L1_MASK) >> PTE32_PAE_L1_SHIFT)
188 1.1 maxv #define pte32_pae_l2idx(va) (((va) & PTE32_PAE_L2_MASK) >> PTE32_PAE_L2_SHIFT)
189 1.1 maxv #define pte32_pae_l3idx(va) (((va) & PTE32_PAE_L3_MASK) >> PTE32_PAE_L3_SHIFT)
190 1.1 maxv
191 1.19 maxv #define CR3_FRAME_32BIT_PAE __BITS(31, 5)
192 1.19 maxv
193 1.1 maxv typedef uint64_t pte_32bit_pae_t;
194 1.1 maxv
195 1.1 maxv static int
196 1.1 maxv x86_gva_to_gpa_32bit_pae(struct nvmm_machine *mach, uint64_t cr3,
197 1.23 maxv gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
198 1.1 maxv {
199 1.1 maxv gpaddr_t L3gpa, L2gpa, L1gpa;
200 1.1 maxv uintptr_t L3hva, L2hva, L1hva;
201 1.1 maxv pte_32bit_pae_t *pdir, pte;
202 1.28 maxv nvmm_prot_t pageprot;
203 1.1 maxv
204 1.1 maxv /* We begin with an RWXU access. */
205 1.1 maxv *prot = NVMM_PROT_ALL;
206 1.1 maxv
207 1.1 maxv /* Parse L3. */
208 1.19 maxv L3gpa = (cr3 & CR3_FRAME_32BIT_PAE);
209 1.28 maxv if (nvmm_gpa_to_hva(mach, L3gpa, &L3hva, &pageprot) == -1)
210 1.1 maxv return -1;
211 1.1 maxv pdir = (pte_32bit_pae_t *)L3hva;
212 1.1 maxv pte = pdir[pte32_pae_l3idx(gva)];
213 1.38 maxv if ((pte & PTE_P) == 0)
214 1.1 maxv return -1;
215 1.38 maxv if (pte & PTE_NX)
216 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
217 1.38 maxv if (pte & PTE_PS)
218 1.1 maxv return -1;
219 1.1 maxv
220 1.1 maxv /* Parse L2. */
221 1.38 maxv L2gpa = (pte & PTE_FRAME);
222 1.28 maxv if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva, &pageprot) == -1)
223 1.1 maxv return -1;
224 1.1 maxv pdir = (pte_32bit_pae_t *)L2hva;
225 1.1 maxv pte = pdir[pte32_pae_l2idx(gva)];
226 1.38 maxv if ((pte & PTE_P) == 0)
227 1.1 maxv return -1;
228 1.38 maxv if ((pte & PTE_U) == 0)
229 1.1 maxv *prot &= ~NVMM_PROT_USER;
230 1.38 maxv if ((pte & PTE_W) == 0)
231 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
232 1.38 maxv if (pte & PTE_NX)
233 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
234 1.38 maxv if (pte & PTE_PS) {
235 1.1 maxv *gpa = (pte & PTE32_PAE_L2_FRAME);
236 1.10 maxv *gpa = *gpa + (gva & PTE32_PAE_L1_MASK);
237 1.1 maxv return 0;
238 1.1 maxv }
239 1.1 maxv
240 1.1 maxv /* Parse L1. */
241 1.38 maxv L1gpa = (pte & PTE_FRAME);
242 1.28 maxv if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva, &pageprot) == -1)
243 1.1 maxv return -1;
244 1.1 maxv pdir = (pte_32bit_pae_t *)L1hva;
245 1.1 maxv pte = pdir[pte32_pae_l1idx(gva)];
246 1.38 maxv if ((pte & PTE_P) == 0)
247 1.1 maxv return -1;
248 1.38 maxv if ((pte & PTE_U) == 0)
249 1.1 maxv *prot &= ~NVMM_PROT_USER;
250 1.38 maxv if ((pte & PTE_W) == 0)
251 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
252 1.38 maxv if (pte & PTE_NX)
253 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
254 1.38 maxv if (pte & PTE_PS)
255 1.1 maxv return -1;
256 1.1 maxv
257 1.38 maxv *gpa = (pte & PTE_FRAME);
258 1.1 maxv return 0;
259 1.1 maxv }
260 1.1 maxv
261 1.1 maxv /* -------------------------------------------------------------------------- */
262 1.1 maxv
263 1.1 maxv #define PTE64_L1_SHIFT 12
264 1.1 maxv #define PTE64_L2_SHIFT 21
265 1.1 maxv #define PTE64_L3_SHIFT 30
266 1.1 maxv #define PTE64_L4_SHIFT 39
267 1.1 maxv
268 1.1 maxv #define PTE64_L4_MASK 0x0000ff8000000000
269 1.1 maxv #define PTE64_L3_MASK 0x0000007fc0000000
270 1.1 maxv #define PTE64_L2_MASK 0x000000003fe00000
271 1.1 maxv #define PTE64_L1_MASK 0x00000000001ff000
272 1.1 maxv
273 1.1 maxv #define PTE64_L4_FRAME PTE64_L4_MASK
274 1.1 maxv #define PTE64_L3_FRAME (PTE64_L4_FRAME|PTE64_L3_MASK)
275 1.1 maxv #define PTE64_L2_FRAME (PTE64_L3_FRAME|PTE64_L2_MASK)
276 1.1 maxv #define PTE64_L1_FRAME (PTE64_L2_FRAME|PTE64_L1_MASK)
277 1.1 maxv
278 1.1 maxv #define pte64_l1idx(va) (((va) & PTE64_L1_MASK) >> PTE64_L1_SHIFT)
279 1.1 maxv #define pte64_l2idx(va) (((va) & PTE64_L2_MASK) >> PTE64_L2_SHIFT)
280 1.1 maxv #define pte64_l3idx(va) (((va) & PTE64_L3_MASK) >> PTE64_L3_SHIFT)
281 1.1 maxv #define pte64_l4idx(va) (((va) & PTE64_L4_MASK) >> PTE64_L4_SHIFT)
282 1.1 maxv
283 1.38 maxv #define CR3_FRAME_64BIT __BITS(51, 12)
284 1.19 maxv
285 1.1 maxv typedef uint64_t pte_64bit_t;
286 1.1 maxv
287 1.1 maxv static inline bool
288 1.1 maxv x86_gva_64bit_canonical(gvaddr_t gva)
289 1.1 maxv {
290 1.1 maxv /* Bits 63:47 must have the same value. */
291 1.1 maxv #define SIGN_EXTEND 0xffff800000000000ULL
292 1.1 maxv return (gva & SIGN_EXTEND) == 0 || (gva & SIGN_EXTEND) == SIGN_EXTEND;
293 1.1 maxv }
294 1.1 maxv
295 1.1 maxv static int
296 1.1 maxv x86_gva_to_gpa_64bit(struct nvmm_machine *mach, uint64_t cr3,
297 1.11 maxv gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
298 1.1 maxv {
299 1.1 maxv gpaddr_t L4gpa, L3gpa, L2gpa, L1gpa;
300 1.1 maxv uintptr_t L4hva, L3hva, L2hva, L1hva;
301 1.1 maxv pte_64bit_t *pdir, pte;
302 1.28 maxv nvmm_prot_t pageprot;
303 1.1 maxv
304 1.1 maxv /* We begin with an RWXU access. */
305 1.1 maxv *prot = NVMM_PROT_ALL;
306 1.1 maxv
307 1.1 maxv if (!x86_gva_64bit_canonical(gva))
308 1.1 maxv return -1;
309 1.1 maxv
310 1.1 maxv /* Parse L4. */
311 1.19 maxv L4gpa = (cr3 & CR3_FRAME_64BIT);
312 1.28 maxv if (nvmm_gpa_to_hva(mach, L4gpa, &L4hva, &pageprot) == -1)
313 1.1 maxv return -1;
314 1.1 maxv pdir = (pte_64bit_t *)L4hva;
315 1.1 maxv pte = pdir[pte64_l4idx(gva)];
316 1.38 maxv if ((pte & PTE_P) == 0)
317 1.1 maxv return -1;
318 1.38 maxv if ((pte & PTE_U) == 0)
319 1.1 maxv *prot &= ~NVMM_PROT_USER;
320 1.38 maxv if ((pte & PTE_W) == 0)
321 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
322 1.38 maxv if (pte & PTE_NX)
323 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
324 1.38 maxv if (pte & PTE_PS)
325 1.1 maxv return -1;
326 1.1 maxv
327 1.1 maxv /* Parse L3. */
328 1.38 maxv L3gpa = (pte & PTE_FRAME);
329 1.28 maxv if (nvmm_gpa_to_hva(mach, L3gpa, &L3hva, &pageprot) == -1)
330 1.1 maxv return -1;
331 1.1 maxv pdir = (pte_64bit_t *)L3hva;
332 1.1 maxv pte = pdir[pte64_l3idx(gva)];
333 1.38 maxv if ((pte & PTE_P) == 0)
334 1.1 maxv return -1;
335 1.38 maxv if ((pte & PTE_U) == 0)
336 1.1 maxv *prot &= ~NVMM_PROT_USER;
337 1.38 maxv if ((pte & PTE_W) == 0)
338 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
339 1.38 maxv if (pte & PTE_NX)
340 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
341 1.38 maxv if (pte & PTE_PS) {
342 1.1 maxv *gpa = (pte & PTE64_L3_FRAME);
343 1.10 maxv *gpa = *gpa + (gva & (PTE64_L2_MASK|PTE64_L1_MASK));
344 1.1 maxv return 0;
345 1.1 maxv }
346 1.1 maxv
347 1.1 maxv /* Parse L2. */
348 1.38 maxv L2gpa = (pte & PTE_FRAME);
349 1.28 maxv if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva, &pageprot) == -1)
350 1.1 maxv return -1;
351 1.1 maxv pdir = (pte_64bit_t *)L2hva;
352 1.1 maxv pte = pdir[pte64_l2idx(gva)];
353 1.38 maxv if ((pte & PTE_P) == 0)
354 1.1 maxv return -1;
355 1.38 maxv if ((pte & PTE_U) == 0)
356 1.1 maxv *prot &= ~NVMM_PROT_USER;
357 1.38 maxv if ((pte & PTE_W) == 0)
358 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
359 1.38 maxv if (pte & PTE_NX)
360 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
361 1.38 maxv if (pte & PTE_PS) {
362 1.1 maxv *gpa = (pte & PTE64_L2_FRAME);
363 1.10 maxv *gpa = *gpa + (gva & PTE64_L1_MASK);
364 1.1 maxv return 0;
365 1.1 maxv }
366 1.1 maxv
367 1.1 maxv /* Parse L1. */
368 1.38 maxv L1gpa = (pte & PTE_FRAME);
369 1.28 maxv if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva, &pageprot) == -1)
370 1.1 maxv return -1;
371 1.1 maxv pdir = (pte_64bit_t *)L1hva;
372 1.1 maxv pte = pdir[pte64_l1idx(gva)];
373 1.38 maxv if ((pte & PTE_P) == 0)
374 1.1 maxv return -1;
375 1.38 maxv if ((pte & PTE_U) == 0)
376 1.1 maxv *prot &= ~NVMM_PROT_USER;
377 1.38 maxv if ((pte & PTE_W) == 0)
378 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
379 1.38 maxv if (pte & PTE_NX)
380 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
381 1.38 maxv if (pte & PTE_PS)
382 1.1 maxv return -1;
383 1.1 maxv
384 1.38 maxv *gpa = (pte & PTE_FRAME);
385 1.1 maxv return 0;
386 1.1 maxv }
387 1.1 maxv
388 1.1 maxv static inline int
389 1.1 maxv x86_gva_to_gpa(struct nvmm_machine *mach, struct nvmm_x64_state *state,
390 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
391 1.1 maxv {
392 1.1 maxv bool is_pae, is_lng, has_pse;
393 1.1 maxv uint64_t cr3;
394 1.6 maxv size_t off;
395 1.1 maxv int ret;
396 1.1 maxv
397 1.1 maxv if ((state->crs[NVMM_X64_CR_CR0] & CR0_PG) == 0) {
398 1.1 maxv /* No paging. */
399 1.4 maxv *prot = NVMM_PROT_ALL;
400 1.1 maxv *gpa = gva;
401 1.1 maxv return 0;
402 1.1 maxv }
403 1.1 maxv
404 1.6 maxv off = (gva & PAGE_MASK);
405 1.6 maxv gva &= ~PAGE_MASK;
406 1.6 maxv
407 1.1 maxv is_pae = (state->crs[NVMM_X64_CR_CR4] & CR4_PAE) != 0;
408 1.15 maxv is_lng = (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) != 0;
409 1.1 maxv has_pse = (state->crs[NVMM_X64_CR_CR4] & CR4_PSE) != 0;
410 1.1 maxv cr3 = state->crs[NVMM_X64_CR_CR3];
411 1.1 maxv
412 1.1 maxv if (is_pae && is_lng) {
413 1.1 maxv /* 64bit */
414 1.11 maxv ret = x86_gva_to_gpa_64bit(mach, cr3, gva, gpa, prot);
415 1.1 maxv } else if (is_pae && !is_lng) {
416 1.1 maxv /* 32bit PAE */
417 1.23 maxv ret = x86_gva_to_gpa_32bit_pae(mach, cr3, gva, gpa, prot);
418 1.1 maxv } else if (!is_pae && !is_lng) {
419 1.1 maxv /* 32bit */
420 1.1 maxv ret = x86_gva_to_gpa_32bit(mach, cr3, gva, gpa, has_pse, prot);
421 1.1 maxv } else {
422 1.1 maxv ret = -1;
423 1.1 maxv }
424 1.1 maxv
425 1.1 maxv if (ret == -1) {
426 1.1 maxv errno = EFAULT;
427 1.1 maxv }
428 1.1 maxv
429 1.6 maxv *gpa = *gpa + off;
430 1.6 maxv
431 1.1 maxv return ret;
432 1.1 maxv }
433 1.1 maxv
434 1.1 maxv int
435 1.31 maxv nvmm_gva_to_gpa(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
436 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
437 1.1 maxv {
438 1.31 maxv struct nvmm_x64_state *state = vcpu->state;
439 1.1 maxv int ret;
440 1.1 maxv
441 1.31 maxv ret = nvmm_vcpu_getstate(mach, vcpu,
442 1.1 maxv NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
443 1.1 maxv if (ret == -1)
444 1.1 maxv return -1;
445 1.1 maxv
446 1.31 maxv return x86_gva_to_gpa(mach, state, gva, gpa, prot);
447 1.1 maxv }
448 1.1 maxv
449 1.1 maxv /* -------------------------------------------------------------------------- */
450 1.1 maxv
451 1.32 maxv #define DISASSEMBLER_BUG() \
452 1.32 maxv do { \
453 1.32 maxv errno = EINVAL; \
454 1.32 maxv return -1; \
455 1.32 maxv } while (0);
456 1.32 maxv
457 1.1 maxv static inline bool
458 1.15 maxv is_long_mode(struct nvmm_x64_state *state)
459 1.15 maxv {
460 1.15 maxv return (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) != 0;
461 1.15 maxv }
462 1.15 maxv
463 1.15 maxv static inline bool
464 1.5 maxv is_64bit(struct nvmm_x64_state *state)
465 1.5 maxv {
466 1.26 maxv return (state->segs[NVMM_X64_SEG_CS].attrib.l != 0);
467 1.5 maxv }
468 1.5 maxv
469 1.5 maxv static inline bool
470 1.5 maxv is_32bit(struct nvmm_x64_state *state)
471 1.5 maxv {
472 1.26 maxv return (state->segs[NVMM_X64_SEG_CS].attrib.l == 0) &&
473 1.26 maxv (state->segs[NVMM_X64_SEG_CS].attrib.def == 1);
474 1.5 maxv }
475 1.5 maxv
476 1.5 maxv static inline bool
477 1.5 maxv is_16bit(struct nvmm_x64_state *state)
478 1.5 maxv {
479 1.26 maxv return (state->segs[NVMM_X64_SEG_CS].attrib.l == 0) &&
480 1.26 maxv (state->segs[NVMM_X64_SEG_CS].attrib.def == 0);
481 1.5 maxv }
482 1.5 maxv
483 1.1 maxv static int
484 1.15 maxv segment_check(struct nvmm_x64_state_seg *seg, gvaddr_t gva, size_t size)
485 1.1 maxv {
486 1.1 maxv uint64_t limit;
487 1.1 maxv
488 1.1 maxv /*
489 1.1 maxv * This is incomplete. We should check topdown, etc, really that's
490 1.1 maxv * tiring.
491 1.1 maxv */
492 1.1 maxv if (__predict_false(!seg->attrib.p)) {
493 1.1 maxv goto error;
494 1.1 maxv }
495 1.1 maxv
496 1.26 maxv limit = (uint64_t)seg->limit + 1;
497 1.26 maxv if (__predict_true(seg->attrib.g)) {
498 1.1 maxv limit *= PAGE_SIZE;
499 1.1 maxv }
500 1.1 maxv
501 1.15 maxv if (__predict_false(gva + size > limit)) {
502 1.1 maxv goto error;
503 1.1 maxv }
504 1.1 maxv
505 1.1 maxv return 0;
506 1.1 maxv
507 1.1 maxv error:
508 1.1 maxv errno = EFAULT;
509 1.1 maxv return -1;
510 1.1 maxv }
511 1.1 maxv
512 1.15 maxv static inline void
513 1.15 maxv segment_apply(struct nvmm_x64_state_seg *seg, gvaddr_t *gva)
514 1.15 maxv {
515 1.15 maxv *gva += seg->base;
516 1.15 maxv }
517 1.15 maxv
518 1.15 maxv static inline uint64_t
519 1.15 maxv size_to_mask(size_t size)
520 1.6 maxv {
521 1.15 maxv switch (size) {
522 1.15 maxv case 1:
523 1.15 maxv return 0x00000000000000FF;
524 1.15 maxv case 2:
525 1.15 maxv return 0x000000000000FFFF;
526 1.15 maxv case 4:
527 1.15 maxv return 0x00000000FFFFFFFF;
528 1.6 maxv case 8:
529 1.15 maxv default:
530 1.6 maxv return 0xFFFFFFFFFFFFFFFF;
531 1.6 maxv }
532 1.6 maxv }
533 1.6 maxv
534 1.6 maxv static uint64_t
535 1.10 maxv rep_get_cnt(struct nvmm_x64_state *state, size_t adsize)
536 1.10 maxv {
537 1.10 maxv uint64_t mask, cnt;
538 1.10 maxv
539 1.15 maxv mask = size_to_mask(adsize);
540 1.10 maxv cnt = state->gprs[NVMM_X64_GPR_RCX] & mask;
541 1.10 maxv
542 1.10 maxv return cnt;
543 1.10 maxv }
544 1.10 maxv
545 1.10 maxv static void
546 1.10 maxv rep_set_cnt(struct nvmm_x64_state *state, size_t adsize, uint64_t cnt)
547 1.10 maxv {
548 1.10 maxv uint64_t mask;
549 1.10 maxv
550 1.15 maxv /* XXX: should we zero-extend? */
551 1.15 maxv mask = size_to_mask(adsize);
552 1.10 maxv state->gprs[NVMM_X64_GPR_RCX] &= ~mask;
553 1.10 maxv state->gprs[NVMM_X64_GPR_RCX] |= cnt;
554 1.10 maxv }
555 1.10 maxv
556 1.6 maxv static int
557 1.37 maxv read_guest_memory(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
558 1.6 maxv gvaddr_t gva, uint8_t *data, size_t size)
559 1.6 maxv {
560 1.37 maxv struct nvmm_x64_state *state = vcpu->state;
561 1.6 maxv struct nvmm_mem mem;
562 1.6 maxv nvmm_prot_t prot;
563 1.6 maxv gpaddr_t gpa;
564 1.6 maxv uintptr_t hva;
565 1.6 maxv bool is_mmio;
566 1.6 maxv int ret, remain;
567 1.6 maxv
568 1.6 maxv ret = x86_gva_to_gpa(mach, state, gva, &gpa, &prot);
569 1.6 maxv if (__predict_false(ret == -1)) {
570 1.6 maxv return -1;
571 1.6 maxv }
572 1.6 maxv if (__predict_false(!(prot & NVMM_PROT_READ))) {
573 1.6 maxv errno = EFAULT;
574 1.6 maxv return -1;
575 1.6 maxv }
576 1.6 maxv
577 1.6 maxv if ((gva & PAGE_MASK) + size > PAGE_SIZE) {
578 1.6 maxv remain = ((gva & PAGE_MASK) + size - PAGE_SIZE);
579 1.6 maxv } else {
580 1.6 maxv remain = 0;
581 1.6 maxv }
582 1.6 maxv size -= remain;
583 1.6 maxv
584 1.28 maxv ret = nvmm_gpa_to_hva(mach, gpa, &hva, &prot);
585 1.6 maxv is_mmio = (ret == -1);
586 1.6 maxv
587 1.6 maxv if (is_mmio) {
588 1.37 maxv mem.mach = mach;
589 1.37 maxv mem.vcpu = vcpu;
590 1.11 maxv mem.data = data;
591 1.6 maxv mem.gpa = gpa;
592 1.6 maxv mem.write = false;
593 1.6 maxv mem.size = size;
594 1.37 maxv (*vcpu->cbs.mem)(&mem);
595 1.6 maxv } else {
596 1.28 maxv if (__predict_false(!(prot & NVMM_PROT_READ))) {
597 1.28 maxv errno = EFAULT;
598 1.28 maxv return -1;
599 1.28 maxv }
600 1.6 maxv memcpy(data, (uint8_t *)hva, size);
601 1.6 maxv }
602 1.6 maxv
603 1.6 maxv if (remain > 0) {
604 1.37 maxv ret = read_guest_memory(mach, vcpu, gva + size,
605 1.6 maxv data + size, remain);
606 1.6 maxv } else {
607 1.6 maxv ret = 0;
608 1.6 maxv }
609 1.6 maxv
610 1.6 maxv return ret;
611 1.6 maxv }
612 1.6 maxv
613 1.6 maxv static int
614 1.37 maxv write_guest_memory(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
615 1.6 maxv gvaddr_t gva, uint8_t *data, size_t size)
616 1.6 maxv {
617 1.37 maxv struct nvmm_x64_state *state = vcpu->state;
618 1.6 maxv struct nvmm_mem mem;
619 1.6 maxv nvmm_prot_t prot;
620 1.6 maxv gpaddr_t gpa;
621 1.6 maxv uintptr_t hva;
622 1.6 maxv bool is_mmio;
623 1.6 maxv int ret, remain;
624 1.6 maxv
625 1.6 maxv ret = x86_gva_to_gpa(mach, state, gva, &gpa, &prot);
626 1.6 maxv if (__predict_false(ret == -1)) {
627 1.6 maxv return -1;
628 1.6 maxv }
629 1.6 maxv if (__predict_false(!(prot & NVMM_PROT_WRITE))) {
630 1.6 maxv errno = EFAULT;
631 1.6 maxv return -1;
632 1.6 maxv }
633 1.6 maxv
634 1.6 maxv if ((gva & PAGE_MASK) + size > PAGE_SIZE) {
635 1.6 maxv remain = ((gva & PAGE_MASK) + size - PAGE_SIZE);
636 1.6 maxv } else {
637 1.6 maxv remain = 0;
638 1.6 maxv }
639 1.6 maxv size -= remain;
640 1.6 maxv
641 1.28 maxv ret = nvmm_gpa_to_hva(mach, gpa, &hva, &prot);
642 1.6 maxv is_mmio = (ret == -1);
643 1.6 maxv
644 1.6 maxv if (is_mmio) {
645 1.37 maxv mem.mach = mach;
646 1.37 maxv mem.vcpu = vcpu;
647 1.11 maxv mem.data = data;
648 1.6 maxv mem.gpa = gpa;
649 1.6 maxv mem.write = true;
650 1.6 maxv mem.size = size;
651 1.37 maxv (*vcpu->cbs.mem)(&mem);
652 1.6 maxv } else {
653 1.28 maxv if (__predict_false(!(prot & NVMM_PROT_WRITE))) {
654 1.28 maxv errno = EFAULT;
655 1.28 maxv return -1;
656 1.28 maxv }
657 1.6 maxv memcpy((uint8_t *)hva, data, size);
658 1.6 maxv }
659 1.6 maxv
660 1.6 maxv if (remain > 0) {
661 1.37 maxv ret = write_guest_memory(mach, vcpu, gva + size,
662 1.6 maxv data + size, remain);
663 1.6 maxv } else {
664 1.6 maxv ret = 0;
665 1.6 maxv }
666 1.6 maxv
667 1.6 maxv return ret;
668 1.6 maxv }
669 1.6 maxv
670 1.6 maxv /* -------------------------------------------------------------------------- */
671 1.6 maxv
672 1.37 maxv static int fetch_segment(struct nvmm_machine *, struct nvmm_vcpu *);
673 1.8 maxv
674 1.10 maxv #define NVMM_IO_BATCH_SIZE 32
675 1.10 maxv
676 1.10 maxv static int
677 1.37 maxv assist_io_batch(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
678 1.10 maxv struct nvmm_io *io, gvaddr_t gva, uint64_t cnt)
679 1.10 maxv {
680 1.10 maxv uint8_t iobuf[NVMM_IO_BATCH_SIZE];
681 1.10 maxv size_t i, iosize, iocnt;
682 1.10 maxv int ret;
683 1.10 maxv
684 1.10 maxv cnt = MIN(cnt, NVMM_IO_BATCH_SIZE);
685 1.10 maxv iosize = MIN(io->size * cnt, NVMM_IO_BATCH_SIZE);
686 1.10 maxv iocnt = iosize / io->size;
687 1.10 maxv
688 1.10 maxv io->data = iobuf;
689 1.10 maxv
690 1.10 maxv if (!io->in) {
691 1.37 maxv ret = read_guest_memory(mach, vcpu, gva, iobuf, iosize);
692 1.10 maxv if (ret == -1)
693 1.10 maxv return -1;
694 1.10 maxv }
695 1.10 maxv
696 1.10 maxv for (i = 0; i < iocnt; i++) {
697 1.37 maxv (*vcpu->cbs.io)(io);
698 1.10 maxv io->data += io->size;
699 1.10 maxv }
700 1.10 maxv
701 1.10 maxv if (io->in) {
702 1.37 maxv ret = write_guest_memory(mach, vcpu, gva, iobuf, iosize);
703 1.10 maxv if (ret == -1)
704 1.10 maxv return -1;
705 1.10 maxv }
706 1.10 maxv
707 1.10 maxv return iocnt;
708 1.10 maxv }
709 1.10 maxv
710 1.1 maxv int
711 1.31 maxv nvmm_assist_io(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
712 1.1 maxv {
713 1.31 maxv struct nvmm_x64_state *state = vcpu->state;
714 1.36 maxv struct nvmm_vcpu_exit *exit = vcpu->exit;
715 1.1 maxv struct nvmm_io io;
716 1.10 maxv uint64_t cnt = 0; /* GCC */
717 1.10 maxv uint8_t iobuf[8];
718 1.10 maxv int iocnt = 1;
719 1.15 maxv gvaddr_t gva = 0; /* GCC */
720 1.5 maxv int reg = 0; /* GCC */
721 1.8 maxv int ret, seg;
722 1.10 maxv bool psld = false;
723 1.1 maxv
724 1.36 maxv if (__predict_false(exit->reason != NVMM_VCPU_EXIT_IO)) {
725 1.1 maxv errno = EINVAL;
726 1.1 maxv return -1;
727 1.1 maxv }
728 1.1 maxv
729 1.37 maxv io.mach = mach;
730 1.37 maxv io.vcpu = vcpu;
731 1.1 maxv io.port = exit->u.io.port;
732 1.36 maxv io.in = exit->u.io.in;
733 1.1 maxv io.size = exit->u.io.operand_size;
734 1.10 maxv io.data = iobuf;
735 1.1 maxv
736 1.31 maxv ret = nvmm_vcpu_getstate(mach, vcpu,
737 1.1 maxv NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
738 1.1 maxv NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
739 1.1 maxv if (ret == -1)
740 1.1 maxv return -1;
741 1.1 maxv
742 1.10 maxv if (exit->u.io.rep) {
743 1.31 maxv cnt = rep_get_cnt(state, exit->u.io.address_size);
744 1.10 maxv if (__predict_false(cnt == 0)) {
745 1.31 maxv state->gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
746 1.15 maxv goto out;
747 1.10 maxv }
748 1.10 maxv }
749 1.10 maxv
750 1.31 maxv if (__predict_false(state->gprs[NVMM_X64_GPR_RFLAGS] & PSL_D)) {
751 1.10 maxv psld = true;
752 1.10 maxv }
753 1.10 maxv
754 1.6 maxv /*
755 1.6 maxv * Determine GVA.
756 1.6 maxv */
757 1.6 maxv if (exit->u.io.str) {
758 1.5 maxv if (io.in) {
759 1.5 maxv reg = NVMM_X64_GPR_RDI;
760 1.5 maxv } else {
761 1.5 maxv reg = NVMM_X64_GPR_RSI;
762 1.5 maxv }
763 1.1 maxv
764 1.31 maxv gva = state->gprs[reg];
765 1.15 maxv gva &= size_to_mask(exit->u.io.address_size);
766 1.1 maxv
767 1.15 maxv if (exit->u.io.seg != -1) {
768 1.15 maxv seg = exit->u.io.seg;
769 1.15 maxv } else {
770 1.15 maxv if (io.in) {
771 1.15 maxv seg = NVMM_X64_SEG_ES;
772 1.8 maxv } else {
773 1.37 maxv seg = fetch_segment(mach, vcpu);
774 1.15 maxv if (seg == -1)
775 1.15 maxv return -1;
776 1.8 maxv }
777 1.15 maxv }
778 1.8 maxv
779 1.31 maxv if (__predict_true(is_long_mode(state))) {
780 1.15 maxv if (seg == NVMM_X64_SEG_GS || seg == NVMM_X64_SEG_FS) {
781 1.31 maxv segment_apply(&state->segs[seg], &gva);
782 1.15 maxv }
783 1.15 maxv } else {
784 1.31 maxv ret = segment_check(&state->segs[seg], gva, io.size);
785 1.1 maxv if (ret == -1)
786 1.1 maxv return -1;
787 1.31 maxv segment_apply(&state->segs[seg], &gva);
788 1.1 maxv }
789 1.10 maxv
790 1.10 maxv if (exit->u.io.rep && !psld) {
791 1.37 maxv iocnt = assist_io_batch(mach, vcpu, &io, gva, cnt);
792 1.10 maxv if (iocnt == -1)
793 1.10 maxv return -1;
794 1.10 maxv goto done;
795 1.10 maxv }
796 1.6 maxv }
797 1.1 maxv
798 1.6 maxv if (!io.in) {
799 1.6 maxv if (!exit->u.io.str) {
800 1.31 maxv memcpy(io.data, &state->gprs[NVMM_X64_GPR_RAX], io.size);
801 1.6 maxv } else {
802 1.37 maxv ret = read_guest_memory(mach, vcpu, gva, io.data,
803 1.6 maxv io.size);
804 1.1 maxv if (ret == -1)
805 1.1 maxv return -1;
806 1.1 maxv }
807 1.1 maxv }
808 1.1 maxv
809 1.37 maxv (*vcpu->cbs.io)(&io);
810 1.1 maxv
811 1.1 maxv if (io.in) {
812 1.6 maxv if (!exit->u.io.str) {
813 1.31 maxv memcpy(&state->gprs[NVMM_X64_GPR_RAX], io.data, io.size);
814 1.15 maxv if (io.size == 4) {
815 1.15 maxv /* Zero-extend to 64 bits. */
816 1.31 maxv state->gprs[NVMM_X64_GPR_RAX] &= size_to_mask(4);
817 1.15 maxv }
818 1.1 maxv } else {
819 1.37 maxv ret = write_guest_memory(mach, vcpu, gva, io.data,
820 1.6 maxv io.size);
821 1.6 maxv if (ret == -1)
822 1.6 maxv return -1;
823 1.1 maxv }
824 1.1 maxv }
825 1.1 maxv
826 1.10 maxv done:
827 1.5 maxv if (exit->u.io.str) {
828 1.10 maxv if (__predict_false(psld)) {
829 1.31 maxv state->gprs[reg] -= iocnt * io.size;
830 1.5 maxv } else {
831 1.31 maxv state->gprs[reg] += iocnt * io.size;
832 1.5 maxv }
833 1.5 maxv }
834 1.5 maxv
835 1.1 maxv if (exit->u.io.rep) {
836 1.10 maxv cnt -= iocnt;
837 1.31 maxv rep_set_cnt(state, exit->u.io.address_size, cnt);
838 1.6 maxv if (cnt == 0) {
839 1.31 maxv state->gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
840 1.1 maxv }
841 1.1 maxv } else {
842 1.31 maxv state->gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
843 1.1 maxv }
844 1.1 maxv
845 1.15 maxv out:
846 1.31 maxv ret = nvmm_vcpu_setstate(mach, vcpu, NVMM_X64_STATE_GPRS);
847 1.1 maxv if (ret == -1)
848 1.1 maxv return -1;
849 1.1 maxv
850 1.1 maxv return 0;
851 1.1 maxv }
852 1.1 maxv
853 1.1 maxv /* -------------------------------------------------------------------------- */
854 1.1 maxv
855 1.19 maxv struct x86_emul {
856 1.33 maxv bool readreg;
857 1.33 maxv bool backprop;
858 1.19 maxv bool notouch;
859 1.37 maxv void (*func)(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
860 1.19 maxv };
861 1.19 maxv
862 1.37 maxv static void x86_func_or(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
863 1.37 maxv static void x86_func_and(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
864 1.37 maxv static void x86_func_xchg(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
865 1.37 maxv static void x86_func_sub(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
866 1.37 maxv static void x86_func_xor(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
867 1.37 maxv static void x86_func_cmp(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
868 1.37 maxv static void x86_func_test(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
869 1.37 maxv static void x86_func_mov(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
870 1.37 maxv static void x86_func_stos(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
871 1.37 maxv static void x86_func_lods(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
872 1.19 maxv
873 1.19 maxv static const struct x86_emul x86_emul_or = {
874 1.33 maxv .readreg = true,
875 1.19 maxv .func = x86_func_or
876 1.19 maxv };
877 1.19 maxv
878 1.19 maxv static const struct x86_emul x86_emul_and = {
879 1.33 maxv .readreg = true,
880 1.19 maxv .func = x86_func_and
881 1.19 maxv };
882 1.19 maxv
883 1.33 maxv static const struct x86_emul x86_emul_xchg = {
884 1.33 maxv .readreg = true,
885 1.33 maxv .backprop = true,
886 1.33 maxv .func = x86_func_xchg
887 1.33 maxv };
888 1.33 maxv
889 1.19 maxv static const struct x86_emul x86_emul_sub = {
890 1.33 maxv .readreg = true,
891 1.19 maxv .func = x86_func_sub
892 1.19 maxv };
893 1.19 maxv
894 1.19 maxv static const struct x86_emul x86_emul_xor = {
895 1.33 maxv .readreg = true,
896 1.19 maxv .func = x86_func_xor
897 1.19 maxv };
898 1.19 maxv
899 1.19 maxv static const struct x86_emul x86_emul_cmp = {
900 1.19 maxv .notouch = true,
901 1.19 maxv .func = x86_func_cmp
902 1.19 maxv };
903 1.19 maxv
904 1.19 maxv static const struct x86_emul x86_emul_test = {
905 1.19 maxv .notouch = true,
906 1.19 maxv .func = x86_func_test
907 1.19 maxv };
908 1.19 maxv
909 1.19 maxv static const struct x86_emul x86_emul_mov = {
910 1.19 maxv .func = x86_func_mov
911 1.19 maxv };
912 1.19 maxv
913 1.19 maxv static const struct x86_emul x86_emul_stos = {
914 1.19 maxv .func = x86_func_stos
915 1.19 maxv };
916 1.19 maxv
917 1.19 maxv static const struct x86_emul x86_emul_lods = {
918 1.19 maxv .func = x86_func_lods
919 1.19 maxv };
920 1.19 maxv
921 1.13 maxv /* Legacy prefixes. */
922 1.13 maxv #define LEG_LOCK 0xF0
923 1.13 maxv #define LEG_REPN 0xF2
924 1.13 maxv #define LEG_REP 0xF3
925 1.13 maxv #define LEG_OVR_CS 0x2E
926 1.13 maxv #define LEG_OVR_SS 0x36
927 1.13 maxv #define LEG_OVR_DS 0x3E
928 1.13 maxv #define LEG_OVR_ES 0x26
929 1.13 maxv #define LEG_OVR_FS 0x64
930 1.13 maxv #define LEG_OVR_GS 0x65
931 1.13 maxv #define LEG_OPR_OVR 0x66
932 1.13 maxv #define LEG_ADR_OVR 0x67
933 1.13 maxv
934 1.13 maxv struct x86_legpref {
935 1.13 maxv bool opr_ovr:1;
936 1.13 maxv bool adr_ovr:1;
937 1.13 maxv bool rep:1;
938 1.13 maxv bool repn:1;
939 1.43 reinoud bool repe:1;
940 1.27 maxv int8_t seg;
941 1.5 maxv };
942 1.5 maxv
943 1.5 maxv struct x86_rexpref {
944 1.27 maxv bool b:1;
945 1.27 maxv bool x:1;
946 1.27 maxv bool r:1;
947 1.27 maxv bool w:1;
948 1.27 maxv bool present:1;
949 1.5 maxv };
950 1.5 maxv
951 1.5 maxv struct x86_reg {
952 1.5 maxv int num; /* NVMM GPR state index */
953 1.5 maxv uint64_t mask;
954 1.5 maxv };
955 1.5 maxv
956 1.32 maxv struct x86_dualreg {
957 1.32 maxv int reg1;
958 1.32 maxv int reg2;
959 1.32 maxv };
960 1.32 maxv
961 1.5 maxv enum x86_disp_type {
962 1.5 maxv DISP_NONE,
963 1.5 maxv DISP_0,
964 1.5 maxv DISP_1,
965 1.32 maxv DISP_2,
966 1.5 maxv DISP_4
967 1.5 maxv };
968 1.5 maxv
969 1.5 maxv struct x86_disp {
970 1.5 maxv enum x86_disp_type type;
971 1.11 maxv uint64_t data; /* 4 bytes, but can be sign-extended */
972 1.5 maxv };
973 1.5 maxv
974 1.5 maxv struct x86_regmodrm {
975 1.27 maxv uint8_t mod:2;
976 1.27 maxv uint8_t reg:3;
977 1.27 maxv uint8_t rm:3;
978 1.5 maxv };
979 1.5 maxv
980 1.5 maxv struct x86_immediate {
981 1.11 maxv uint64_t data;
982 1.5 maxv };
983 1.5 maxv
984 1.5 maxv struct x86_sib {
985 1.5 maxv uint8_t scale;
986 1.5 maxv const struct x86_reg *idx;
987 1.5 maxv const struct x86_reg *bas;
988 1.5 maxv };
989 1.5 maxv
990 1.5 maxv enum x86_store_type {
991 1.5 maxv STORE_NONE,
992 1.5 maxv STORE_REG,
993 1.32 maxv STORE_DUALREG,
994 1.5 maxv STORE_IMM,
995 1.5 maxv STORE_SIB,
996 1.5 maxv STORE_DMO
997 1.5 maxv };
998 1.5 maxv
999 1.5 maxv struct x86_store {
1000 1.5 maxv enum x86_store_type type;
1001 1.5 maxv union {
1002 1.5 maxv const struct x86_reg *reg;
1003 1.32 maxv struct x86_dualreg dualreg;
1004 1.5 maxv struct x86_immediate imm;
1005 1.5 maxv struct x86_sib sib;
1006 1.5 maxv uint64_t dmo;
1007 1.5 maxv } u;
1008 1.5 maxv struct x86_disp disp;
1009 1.6 maxv int hardseg;
1010 1.5 maxv };
1011 1.5 maxv
1012 1.5 maxv struct x86_instr {
1013 1.27 maxv uint8_t len;
1014 1.13 maxv struct x86_legpref legpref;
1015 1.5 maxv struct x86_rexpref rexpref;
1016 1.27 maxv struct x86_regmodrm regmodrm;
1017 1.27 maxv uint8_t operand_size;
1018 1.27 maxv uint8_t address_size;
1019 1.10 maxv uint64_t zeroextend_mask;
1020 1.5 maxv
1021 1.5 maxv const struct x86_opcode *opcode;
1022 1.27 maxv const struct x86_emul *emul;
1023 1.5 maxv
1024 1.5 maxv struct x86_store src;
1025 1.5 maxv struct x86_store dst;
1026 1.5 maxv struct x86_store *strm;
1027 1.5 maxv };
1028 1.5 maxv
1029 1.5 maxv struct x86_decode_fsm {
1030 1.5 maxv /* vcpu */
1031 1.5 maxv bool is64bit;
1032 1.5 maxv bool is32bit;
1033 1.5 maxv bool is16bit;
1034 1.5 maxv
1035 1.5 maxv /* fsm */
1036 1.5 maxv int (*fn)(struct x86_decode_fsm *, struct x86_instr *);
1037 1.5 maxv uint8_t *buf;
1038 1.5 maxv uint8_t *end;
1039 1.5 maxv };
1040 1.5 maxv
1041 1.5 maxv struct x86_opcode {
1042 1.27 maxv bool valid:1;
1043 1.27 maxv bool regmodrm:1;
1044 1.27 maxv bool regtorm:1;
1045 1.27 maxv bool dmo:1;
1046 1.27 maxv bool todmo:1;
1047 1.27 maxv bool movs:1;
1048 1.43 reinoud bool cmps:1;
1049 1.27 maxv bool stos:1;
1050 1.27 maxv bool lods:1;
1051 1.27 maxv bool szoverride:1;
1052 1.27 maxv bool group1:1;
1053 1.27 maxv bool group3:1;
1054 1.27 maxv bool group11:1;
1055 1.27 maxv bool immediate:1;
1056 1.27 maxv uint8_t defsize;
1057 1.27 maxv uint8_t flags;
1058 1.19 maxv const struct x86_emul *emul;
1059 1.5 maxv };
1060 1.5 maxv
1061 1.5 maxv struct x86_group_entry {
1062 1.19 maxv const struct x86_emul *emul;
1063 1.5 maxv };
1064 1.5 maxv
1065 1.5 maxv #define OPSIZE_BYTE 0x01
1066 1.5 maxv #define OPSIZE_WORD 0x02 /* 2 bytes */
1067 1.5 maxv #define OPSIZE_DOUB 0x04 /* 4 bytes */
1068 1.5 maxv #define OPSIZE_QUAD 0x08 /* 8 bytes */
1069 1.5 maxv
1070 1.11 maxv #define FLAG_imm8 0x01
1071 1.11 maxv #define FLAG_immz 0x02
1072 1.11 maxv #define FLAG_ze 0x04
1073 1.11 maxv
1074 1.27 maxv static const struct x86_group_entry group1[8] __cacheline_aligned = {
1075 1.19 maxv [1] = { .emul = &x86_emul_or },
1076 1.19 maxv [4] = { .emul = &x86_emul_and },
1077 1.19 maxv [6] = { .emul = &x86_emul_xor },
1078 1.19 maxv [7] = { .emul = &x86_emul_cmp }
1079 1.19 maxv };
1080 1.19 maxv
1081 1.27 maxv static const struct x86_group_entry group3[8] __cacheline_aligned = {
1082 1.19 maxv [0] = { .emul = &x86_emul_test },
1083 1.19 maxv [1] = { .emul = &x86_emul_test }
1084 1.11 maxv };
1085 1.5 maxv
1086 1.27 maxv static const struct x86_group_entry group11[8] __cacheline_aligned = {
1087 1.19 maxv [0] = { .emul = &x86_emul_mov }
1088 1.5 maxv };
1089 1.5 maxv
1090 1.27 maxv static const struct x86_opcode primary_opcode_table[256] __cacheline_aligned = {
1091 1.5 maxv /*
1092 1.11 maxv * Group1
1093 1.11 maxv */
1094 1.27 maxv [0x80] = {
1095 1.19 maxv /* Eb, Ib */
1096 1.27 maxv .valid = true,
1097 1.19 maxv .regmodrm = true,
1098 1.19 maxv .regtorm = true,
1099 1.19 maxv .szoverride = false,
1100 1.19 maxv .defsize = OPSIZE_BYTE,
1101 1.19 maxv .group1 = true,
1102 1.19 maxv .immediate = true,
1103 1.19 maxv .emul = NULL /* group1 */
1104 1.19 maxv },
1105 1.27 maxv [0x81] = {
1106 1.15 maxv /* Ev, Iz */
1107 1.27 maxv .valid = true,
1108 1.15 maxv .regmodrm = true,
1109 1.15 maxv .regtorm = true,
1110 1.15 maxv .szoverride = true,
1111 1.15 maxv .defsize = -1,
1112 1.15 maxv .group1 = true,
1113 1.15 maxv .immediate = true,
1114 1.15 maxv .flags = FLAG_immz,
1115 1.15 maxv .emul = NULL /* group1 */
1116 1.15 maxv },
1117 1.27 maxv [0x83] = {
1118 1.11 maxv /* Ev, Ib */
1119 1.27 maxv .valid = true,
1120 1.11 maxv .regmodrm = true,
1121 1.11 maxv .regtorm = true,
1122 1.11 maxv .szoverride = true,
1123 1.11 maxv .defsize = -1,
1124 1.11 maxv .group1 = true,
1125 1.11 maxv .immediate = true,
1126 1.11 maxv .flags = FLAG_imm8,
1127 1.11 maxv .emul = NULL /* group1 */
1128 1.11 maxv },
1129 1.11 maxv
1130 1.11 maxv /*
1131 1.19 maxv * Group3
1132 1.19 maxv */
1133 1.27 maxv [0xF6] = {
1134 1.19 maxv /* Eb, Ib */
1135 1.27 maxv .valid = true,
1136 1.19 maxv .regmodrm = true,
1137 1.19 maxv .regtorm = true,
1138 1.19 maxv .szoverride = false,
1139 1.19 maxv .defsize = OPSIZE_BYTE,
1140 1.19 maxv .group3 = true,
1141 1.19 maxv .immediate = true,
1142 1.19 maxv .emul = NULL /* group3 */
1143 1.19 maxv },
1144 1.27 maxv [0xF7] = {
1145 1.19 maxv /* Ev, Iz */
1146 1.27 maxv .valid = true,
1147 1.19 maxv .regmodrm = true,
1148 1.19 maxv .regtorm = true,
1149 1.19 maxv .szoverride = true,
1150 1.19 maxv .defsize = -1,
1151 1.19 maxv .group3 = true,
1152 1.19 maxv .immediate = true,
1153 1.19 maxv .flags = FLAG_immz,
1154 1.19 maxv .emul = NULL /* group3 */
1155 1.19 maxv },
1156 1.19 maxv
1157 1.19 maxv /*
1158 1.5 maxv * Group11
1159 1.5 maxv */
1160 1.27 maxv [0xC6] = {
1161 1.11 maxv /* Eb, Ib */
1162 1.27 maxv .valid = true,
1163 1.5 maxv .regmodrm = true,
1164 1.5 maxv .regtorm = true,
1165 1.5 maxv .szoverride = false,
1166 1.5 maxv .defsize = OPSIZE_BYTE,
1167 1.5 maxv .group11 = true,
1168 1.5 maxv .immediate = true,
1169 1.5 maxv .emul = NULL /* group11 */
1170 1.5 maxv },
1171 1.27 maxv [0xC7] = {
1172 1.11 maxv /* Ev, Iz */
1173 1.27 maxv .valid = true,
1174 1.5 maxv .regmodrm = true,
1175 1.5 maxv .regtorm = true,
1176 1.5 maxv .szoverride = true,
1177 1.5 maxv .defsize = -1,
1178 1.5 maxv .group11 = true,
1179 1.5 maxv .immediate = true,
1180 1.11 maxv .flags = FLAG_immz,
1181 1.5 maxv .emul = NULL /* group11 */
1182 1.5 maxv },
1183 1.5 maxv
1184 1.5 maxv /*
1185 1.5 maxv * OR
1186 1.5 maxv */
1187 1.27 maxv [0x08] = {
1188 1.5 maxv /* Eb, Gb */
1189 1.27 maxv .valid = true,
1190 1.5 maxv .regmodrm = true,
1191 1.5 maxv .regtorm = true,
1192 1.5 maxv .szoverride = false,
1193 1.5 maxv .defsize = OPSIZE_BYTE,
1194 1.19 maxv .emul = &x86_emul_or
1195 1.5 maxv },
1196 1.27 maxv [0x09] = {
1197 1.5 maxv /* Ev, Gv */
1198 1.27 maxv .valid = true,
1199 1.5 maxv .regmodrm = true,
1200 1.5 maxv .regtorm = true,
1201 1.5 maxv .szoverride = true,
1202 1.5 maxv .defsize = -1,
1203 1.19 maxv .emul = &x86_emul_or
1204 1.5 maxv },
1205 1.27 maxv [0x0A] = {
1206 1.5 maxv /* Gb, Eb */
1207 1.27 maxv .valid = true,
1208 1.5 maxv .regmodrm = true,
1209 1.5 maxv .regtorm = false,
1210 1.5 maxv .szoverride = false,
1211 1.5 maxv .defsize = OPSIZE_BYTE,
1212 1.19 maxv .emul = &x86_emul_or
1213 1.5 maxv },
1214 1.27 maxv [0x0B] = {
1215 1.5 maxv /* Gv, Ev */
1216 1.27 maxv .valid = true,
1217 1.5 maxv .regmodrm = true,
1218 1.5 maxv .regtorm = false,
1219 1.5 maxv .szoverride = true,
1220 1.5 maxv .defsize = -1,
1221 1.19 maxv .emul = &x86_emul_or
1222 1.5 maxv },
1223 1.5 maxv
1224 1.5 maxv /*
1225 1.5 maxv * AND
1226 1.5 maxv */
1227 1.27 maxv [0x20] = {
1228 1.5 maxv /* Eb, Gb */
1229 1.27 maxv .valid = true,
1230 1.5 maxv .regmodrm = true,
1231 1.5 maxv .regtorm = true,
1232 1.5 maxv .szoverride = false,
1233 1.5 maxv .defsize = OPSIZE_BYTE,
1234 1.19 maxv .emul = &x86_emul_and
1235 1.5 maxv },
1236 1.27 maxv [0x21] = {
1237 1.5 maxv /* Ev, Gv */
1238 1.27 maxv .valid = true,
1239 1.5 maxv .regmodrm = true,
1240 1.5 maxv .regtorm = true,
1241 1.5 maxv .szoverride = true,
1242 1.5 maxv .defsize = -1,
1243 1.19 maxv .emul = &x86_emul_and
1244 1.5 maxv },
1245 1.27 maxv [0x22] = {
1246 1.5 maxv /* Gb, Eb */
1247 1.27 maxv .valid = true,
1248 1.5 maxv .regmodrm = true,
1249 1.5 maxv .regtorm = false,
1250 1.5 maxv .szoverride = false,
1251 1.5 maxv .defsize = OPSIZE_BYTE,
1252 1.19 maxv .emul = &x86_emul_and
1253 1.5 maxv },
1254 1.27 maxv [0x23] = {
1255 1.5 maxv /* Gv, Ev */
1256 1.27 maxv .valid = true,
1257 1.5 maxv .regmodrm = true,
1258 1.5 maxv .regtorm = false,
1259 1.5 maxv .szoverride = true,
1260 1.5 maxv .defsize = -1,
1261 1.19 maxv .emul = &x86_emul_and
1262 1.19 maxv },
1263 1.19 maxv
1264 1.19 maxv /*
1265 1.19 maxv * SUB
1266 1.19 maxv */
1267 1.27 maxv [0x28] = {
1268 1.19 maxv /* Eb, Gb */
1269 1.27 maxv .valid = true,
1270 1.19 maxv .regmodrm = true,
1271 1.19 maxv .regtorm = true,
1272 1.19 maxv .szoverride = false,
1273 1.19 maxv .defsize = OPSIZE_BYTE,
1274 1.19 maxv .emul = &x86_emul_sub
1275 1.19 maxv },
1276 1.27 maxv [0x29] = {
1277 1.19 maxv /* Ev, Gv */
1278 1.27 maxv .valid = true,
1279 1.19 maxv .regmodrm = true,
1280 1.19 maxv .regtorm = true,
1281 1.19 maxv .szoverride = true,
1282 1.19 maxv .defsize = -1,
1283 1.19 maxv .emul = &x86_emul_sub
1284 1.19 maxv },
1285 1.27 maxv [0x2A] = {
1286 1.19 maxv /* Gb, Eb */
1287 1.27 maxv .valid = true,
1288 1.19 maxv .regmodrm = true,
1289 1.19 maxv .regtorm = false,
1290 1.19 maxv .szoverride = false,
1291 1.19 maxv .defsize = OPSIZE_BYTE,
1292 1.19 maxv .emul = &x86_emul_sub
1293 1.19 maxv },
1294 1.27 maxv [0x2B] = {
1295 1.19 maxv /* Gv, Ev */
1296 1.27 maxv .valid = true,
1297 1.19 maxv .regmodrm = true,
1298 1.19 maxv .regtorm = false,
1299 1.19 maxv .szoverride = true,
1300 1.19 maxv .defsize = -1,
1301 1.19 maxv .emul = &x86_emul_sub
1302 1.5 maxv },
1303 1.5 maxv
1304 1.5 maxv /*
1305 1.5 maxv * XOR
1306 1.5 maxv */
1307 1.27 maxv [0x30] = {
1308 1.5 maxv /* Eb, Gb */
1309 1.27 maxv .valid = true,
1310 1.5 maxv .regmodrm = true,
1311 1.5 maxv .regtorm = true,
1312 1.5 maxv .szoverride = false,
1313 1.5 maxv .defsize = OPSIZE_BYTE,
1314 1.19 maxv .emul = &x86_emul_xor
1315 1.5 maxv },
1316 1.27 maxv [0x31] = {
1317 1.5 maxv /* Ev, Gv */
1318 1.27 maxv .valid = true,
1319 1.5 maxv .regmodrm = true,
1320 1.5 maxv .regtorm = true,
1321 1.5 maxv .szoverride = true,
1322 1.5 maxv .defsize = -1,
1323 1.19 maxv .emul = &x86_emul_xor
1324 1.5 maxv },
1325 1.27 maxv [0x32] = {
1326 1.5 maxv /* Gb, Eb */
1327 1.27 maxv .valid = true,
1328 1.5 maxv .regmodrm = true,
1329 1.5 maxv .regtorm = false,
1330 1.5 maxv .szoverride = false,
1331 1.5 maxv .defsize = OPSIZE_BYTE,
1332 1.19 maxv .emul = &x86_emul_xor
1333 1.5 maxv },
1334 1.27 maxv [0x33] = {
1335 1.5 maxv /* Gv, Ev */
1336 1.27 maxv .valid = true,
1337 1.5 maxv .regmodrm = true,
1338 1.5 maxv .regtorm = false,
1339 1.5 maxv .szoverride = true,
1340 1.5 maxv .defsize = -1,
1341 1.19 maxv .emul = &x86_emul_xor
1342 1.5 maxv },
1343 1.5 maxv
1344 1.5 maxv /*
1345 1.33 maxv * XCHG
1346 1.33 maxv */
1347 1.33 maxv [0x86] = {
1348 1.33 maxv /* Eb, Gb */
1349 1.33 maxv .valid = true,
1350 1.33 maxv .regmodrm = true,
1351 1.33 maxv .regtorm = true,
1352 1.33 maxv .szoverride = false,
1353 1.33 maxv .defsize = OPSIZE_BYTE,
1354 1.33 maxv .emul = &x86_emul_xchg
1355 1.33 maxv },
1356 1.33 maxv [0x87] = {
1357 1.33 maxv /* Ev, Gv */
1358 1.33 maxv .valid = true,
1359 1.33 maxv .regmodrm = true,
1360 1.33 maxv .regtorm = true,
1361 1.33 maxv .szoverride = true,
1362 1.33 maxv .defsize = -1,
1363 1.33 maxv .emul = &x86_emul_xchg
1364 1.33 maxv },
1365 1.33 maxv
1366 1.33 maxv /*
1367 1.5 maxv * MOV
1368 1.5 maxv */
1369 1.27 maxv [0x88] = {
1370 1.5 maxv /* Eb, Gb */
1371 1.27 maxv .valid = true,
1372 1.5 maxv .regmodrm = true,
1373 1.5 maxv .regtorm = true,
1374 1.5 maxv .szoverride = false,
1375 1.5 maxv .defsize = OPSIZE_BYTE,
1376 1.19 maxv .emul = &x86_emul_mov
1377 1.5 maxv },
1378 1.27 maxv [0x89] = {
1379 1.5 maxv /* Ev, Gv */
1380 1.27 maxv .valid = true,
1381 1.5 maxv .regmodrm = true,
1382 1.5 maxv .regtorm = true,
1383 1.5 maxv .szoverride = true,
1384 1.5 maxv .defsize = -1,
1385 1.19 maxv .emul = &x86_emul_mov
1386 1.5 maxv },
1387 1.27 maxv [0x8A] = {
1388 1.5 maxv /* Gb, Eb */
1389 1.27 maxv .valid = true,
1390 1.5 maxv .regmodrm = true,
1391 1.5 maxv .regtorm = false,
1392 1.5 maxv .szoverride = false,
1393 1.5 maxv .defsize = OPSIZE_BYTE,
1394 1.19 maxv .emul = &x86_emul_mov
1395 1.5 maxv },
1396 1.27 maxv [0x8B] = {
1397 1.5 maxv /* Gv, Ev */
1398 1.27 maxv .valid = true,
1399 1.5 maxv .regmodrm = true,
1400 1.5 maxv .regtorm = false,
1401 1.5 maxv .szoverride = true,
1402 1.5 maxv .defsize = -1,
1403 1.19 maxv .emul = &x86_emul_mov
1404 1.5 maxv },
1405 1.27 maxv [0xA0] = {
1406 1.5 maxv /* AL, Ob */
1407 1.27 maxv .valid = true,
1408 1.5 maxv .dmo = true,
1409 1.5 maxv .todmo = false,
1410 1.5 maxv .szoverride = false,
1411 1.5 maxv .defsize = OPSIZE_BYTE,
1412 1.19 maxv .emul = &x86_emul_mov
1413 1.5 maxv },
1414 1.27 maxv [0xA1] = {
1415 1.5 maxv /* rAX, Ov */
1416 1.27 maxv .valid = true,
1417 1.5 maxv .dmo = true,
1418 1.5 maxv .todmo = false,
1419 1.5 maxv .szoverride = true,
1420 1.5 maxv .defsize = -1,
1421 1.19 maxv .emul = &x86_emul_mov
1422 1.5 maxv },
1423 1.27 maxv [0xA2] = {
1424 1.5 maxv /* Ob, AL */
1425 1.27 maxv .valid = true,
1426 1.5 maxv .dmo = true,
1427 1.5 maxv .todmo = true,
1428 1.5 maxv .szoverride = false,
1429 1.5 maxv .defsize = OPSIZE_BYTE,
1430 1.19 maxv .emul = &x86_emul_mov
1431 1.5 maxv },
1432 1.27 maxv [0xA3] = {
1433 1.5 maxv /* Ov, rAX */
1434 1.27 maxv .valid = true,
1435 1.5 maxv .dmo = true,
1436 1.5 maxv .todmo = true,
1437 1.5 maxv .szoverride = true,
1438 1.5 maxv .defsize = -1,
1439 1.19 maxv .emul = &x86_emul_mov
1440 1.5 maxv },
1441 1.5 maxv
1442 1.5 maxv /*
1443 1.6 maxv * MOVS
1444 1.6 maxv */
1445 1.27 maxv [0xA4] = {
1446 1.6 maxv /* Yb, Xb */
1447 1.27 maxv .valid = true,
1448 1.6 maxv .movs = true,
1449 1.6 maxv .szoverride = false,
1450 1.6 maxv .defsize = OPSIZE_BYTE,
1451 1.43 reinoud .emul = NULL
1452 1.6 maxv },
1453 1.27 maxv [0xA5] = {
1454 1.6 maxv /* Yv, Xv */
1455 1.27 maxv .valid = true,
1456 1.6 maxv .movs = true,
1457 1.6 maxv .szoverride = true,
1458 1.6 maxv .defsize = -1,
1459 1.43 reinoud .emul = NULL
1460 1.43 reinoud },
1461 1.43 reinoud
1462 1.43 reinoud /*
1463 1.43 reinoud * CMPS
1464 1.43 reinoud */
1465 1.43 reinoud [0xA6] = {
1466 1.43 reinoud /* Yb, Xb */
1467 1.43 reinoud .valid = true,
1468 1.43 reinoud .cmps = true,
1469 1.43 reinoud .szoverride = false,
1470 1.43 reinoud .defsize = OPSIZE_BYTE,
1471 1.43 reinoud .emul = NULL
1472 1.43 reinoud },
1473 1.43 reinoud [0xA7] = {
1474 1.43 reinoud /* Yv, Xv */
1475 1.43 reinoud .valid = true,
1476 1.43 reinoud .cmps = true,
1477 1.43 reinoud .szoverride = true,
1478 1.43 reinoud .defsize = -1,
1479 1.43 reinoud .emul = NULL
1480 1.6 maxv },
1481 1.6 maxv
1482 1.6 maxv /*
1483 1.5 maxv * STOS
1484 1.5 maxv */
1485 1.27 maxv [0xAA] = {
1486 1.5 maxv /* Yb, AL */
1487 1.27 maxv .valid = true,
1488 1.5 maxv .stos = true,
1489 1.5 maxv .szoverride = false,
1490 1.5 maxv .defsize = OPSIZE_BYTE,
1491 1.19 maxv .emul = &x86_emul_stos
1492 1.5 maxv },
1493 1.27 maxv [0xAB] = {
1494 1.5 maxv /* Yv, rAX */
1495 1.27 maxv .valid = true,
1496 1.5 maxv .stos = true,
1497 1.5 maxv .szoverride = true,
1498 1.5 maxv .defsize = -1,
1499 1.19 maxv .emul = &x86_emul_stos
1500 1.5 maxv },
1501 1.5 maxv
1502 1.5 maxv /*
1503 1.5 maxv * LODS
1504 1.5 maxv */
1505 1.27 maxv [0xAC] = {
1506 1.5 maxv /* AL, Xb */
1507 1.27 maxv .valid = true,
1508 1.5 maxv .lods = true,
1509 1.5 maxv .szoverride = false,
1510 1.5 maxv .defsize = OPSIZE_BYTE,
1511 1.19 maxv .emul = &x86_emul_lods
1512 1.5 maxv },
1513 1.27 maxv [0xAD] = {
1514 1.5 maxv /* rAX, Xv */
1515 1.27 maxv .valid = true,
1516 1.5 maxv .lods = true,
1517 1.5 maxv .szoverride = true,
1518 1.5 maxv .defsize = -1,
1519 1.19 maxv .emul = &x86_emul_lods
1520 1.5 maxv },
1521 1.5 maxv };
1522 1.5 maxv
1523 1.27 maxv static const struct x86_opcode secondary_opcode_table[256] __cacheline_aligned = {
1524 1.10 maxv /*
1525 1.10 maxv * MOVZX
1526 1.10 maxv */
1527 1.27 maxv [0xB6] = {
1528 1.10 maxv /* Gv, Eb */
1529 1.27 maxv .valid = true,
1530 1.10 maxv .regmodrm = true,
1531 1.10 maxv .regtorm = false,
1532 1.10 maxv .szoverride = true,
1533 1.10 maxv .defsize = OPSIZE_BYTE,
1534 1.11 maxv .flags = FLAG_ze,
1535 1.19 maxv .emul = &x86_emul_mov
1536 1.10 maxv },
1537 1.27 maxv [0xB7] = {
1538 1.10 maxv /* Gv, Ew */
1539 1.27 maxv .valid = true,
1540 1.10 maxv .regmodrm = true,
1541 1.10 maxv .regtorm = false,
1542 1.10 maxv .szoverride = true,
1543 1.10 maxv .defsize = OPSIZE_WORD,
1544 1.11 maxv .flags = FLAG_ze,
1545 1.19 maxv .emul = &x86_emul_mov
1546 1.10 maxv },
1547 1.10 maxv };
1548 1.10 maxv
1549 1.5 maxv static const struct x86_reg gpr_map__rip = { NVMM_X64_GPR_RIP, 0xFFFFFFFFFFFFFFFF };
1550 1.5 maxv
1551 1.5 maxv /* [REX-present][enc][opsize] */
1552 1.27 maxv static const struct x86_reg gpr_map__special[2][4][8] __cacheline_aligned = {
1553 1.5 maxv [false] = {
1554 1.5 maxv /* No REX prefix. */
1555 1.5 maxv [0b00] = {
1556 1.5 maxv [0] = { NVMM_X64_GPR_RAX, 0x000000000000FF00 }, /* AH */
1557 1.5 maxv [1] = { NVMM_X64_GPR_RSP, 0x000000000000FFFF }, /* SP */
1558 1.5 maxv [2] = { -1, 0 },
1559 1.5 maxv [3] = { NVMM_X64_GPR_RSP, 0x00000000FFFFFFFF }, /* ESP */
1560 1.5 maxv [4] = { -1, 0 },
1561 1.5 maxv [5] = { -1, 0 },
1562 1.5 maxv [6] = { -1, 0 },
1563 1.5 maxv [7] = { -1, 0 },
1564 1.5 maxv },
1565 1.5 maxv [0b01] = {
1566 1.5 maxv [0] = { NVMM_X64_GPR_RCX, 0x000000000000FF00 }, /* CH */
1567 1.5 maxv [1] = { NVMM_X64_GPR_RBP, 0x000000000000FFFF }, /* BP */
1568 1.5 maxv [2] = { -1, 0 },
1569 1.5 maxv [3] = { NVMM_X64_GPR_RBP, 0x00000000FFFFFFFF }, /* EBP */
1570 1.5 maxv [4] = { -1, 0 },
1571 1.5 maxv [5] = { -1, 0 },
1572 1.5 maxv [6] = { -1, 0 },
1573 1.5 maxv [7] = { -1, 0 },
1574 1.5 maxv },
1575 1.5 maxv [0b10] = {
1576 1.5 maxv [0] = { NVMM_X64_GPR_RDX, 0x000000000000FF00 }, /* DH */
1577 1.5 maxv [1] = { NVMM_X64_GPR_RSI, 0x000000000000FFFF }, /* SI */
1578 1.5 maxv [2] = { -1, 0 },
1579 1.5 maxv [3] = { NVMM_X64_GPR_RSI, 0x00000000FFFFFFFF }, /* ESI */
1580 1.5 maxv [4] = { -1, 0 },
1581 1.5 maxv [5] = { -1, 0 },
1582 1.5 maxv [6] = { -1, 0 },
1583 1.5 maxv [7] = { -1, 0 },
1584 1.5 maxv },
1585 1.5 maxv [0b11] = {
1586 1.5 maxv [0] = { NVMM_X64_GPR_RBX, 0x000000000000FF00 }, /* BH */
1587 1.5 maxv [1] = { NVMM_X64_GPR_RDI, 0x000000000000FFFF }, /* DI */
1588 1.5 maxv [2] = { -1, 0 },
1589 1.5 maxv [3] = { NVMM_X64_GPR_RDI, 0x00000000FFFFFFFF }, /* EDI */
1590 1.5 maxv [4] = { -1, 0 },
1591 1.5 maxv [5] = { -1, 0 },
1592 1.5 maxv [6] = { -1, 0 },
1593 1.5 maxv [7] = { -1, 0 },
1594 1.5 maxv }
1595 1.5 maxv },
1596 1.5 maxv [true] = {
1597 1.5 maxv /* Has REX prefix. */
1598 1.5 maxv [0b00] = {
1599 1.5 maxv [0] = { NVMM_X64_GPR_RSP, 0x00000000000000FF }, /* SPL */
1600 1.5 maxv [1] = { NVMM_X64_GPR_RSP, 0x000000000000FFFF }, /* SP */
1601 1.5 maxv [2] = { -1, 0 },
1602 1.5 maxv [3] = { NVMM_X64_GPR_RSP, 0x00000000FFFFFFFF }, /* ESP */
1603 1.5 maxv [4] = { -1, 0 },
1604 1.5 maxv [5] = { -1, 0 },
1605 1.5 maxv [6] = { -1, 0 },
1606 1.5 maxv [7] = { NVMM_X64_GPR_RSP, 0xFFFFFFFFFFFFFFFF }, /* RSP */
1607 1.5 maxv },
1608 1.5 maxv [0b01] = {
1609 1.5 maxv [0] = { NVMM_X64_GPR_RBP, 0x00000000000000FF }, /* BPL */
1610 1.5 maxv [1] = { NVMM_X64_GPR_RBP, 0x000000000000FFFF }, /* BP */
1611 1.5 maxv [2] = { -1, 0 },
1612 1.5 maxv [3] = { NVMM_X64_GPR_RBP, 0x00000000FFFFFFFF }, /* EBP */
1613 1.5 maxv [4] = { -1, 0 },
1614 1.5 maxv [5] = { -1, 0 },
1615 1.5 maxv [6] = { -1, 0 },
1616 1.5 maxv [7] = { NVMM_X64_GPR_RBP, 0xFFFFFFFFFFFFFFFF }, /* RBP */
1617 1.5 maxv },
1618 1.5 maxv [0b10] = {
1619 1.5 maxv [0] = { NVMM_X64_GPR_RSI, 0x00000000000000FF }, /* SIL */
1620 1.5 maxv [1] = { NVMM_X64_GPR_RSI, 0x000000000000FFFF }, /* SI */
1621 1.5 maxv [2] = { -1, 0 },
1622 1.5 maxv [3] = { NVMM_X64_GPR_RSI, 0x00000000FFFFFFFF }, /* ESI */
1623 1.5 maxv [4] = { -1, 0 },
1624 1.5 maxv [5] = { -1, 0 },
1625 1.5 maxv [6] = { -1, 0 },
1626 1.5 maxv [7] = { NVMM_X64_GPR_RSI, 0xFFFFFFFFFFFFFFFF }, /* RSI */
1627 1.5 maxv },
1628 1.5 maxv [0b11] = {
1629 1.5 maxv [0] = { NVMM_X64_GPR_RDI, 0x00000000000000FF }, /* DIL */
1630 1.5 maxv [1] = { NVMM_X64_GPR_RDI, 0x000000000000FFFF }, /* DI */
1631 1.5 maxv [2] = { -1, 0 },
1632 1.5 maxv [3] = { NVMM_X64_GPR_RDI, 0x00000000FFFFFFFF }, /* EDI */
1633 1.5 maxv [4] = { -1, 0 },
1634 1.5 maxv [5] = { -1, 0 },
1635 1.5 maxv [6] = { -1, 0 },
1636 1.5 maxv [7] = { NVMM_X64_GPR_RDI, 0xFFFFFFFFFFFFFFFF }, /* RDI */
1637 1.5 maxv }
1638 1.5 maxv }
1639 1.5 maxv };
1640 1.5 maxv
1641 1.5 maxv /* [depends][enc][size] */
1642 1.27 maxv static const struct x86_reg gpr_map[2][8][8] __cacheline_aligned = {
1643 1.5 maxv [false] = {
1644 1.5 maxv /* Not extended. */
1645 1.5 maxv [0b000] = {
1646 1.5 maxv [0] = { NVMM_X64_GPR_RAX, 0x00000000000000FF }, /* AL */
1647 1.5 maxv [1] = { NVMM_X64_GPR_RAX, 0x000000000000FFFF }, /* AX */
1648 1.5 maxv [2] = { -1, 0 },
1649 1.5 maxv [3] = { NVMM_X64_GPR_RAX, 0x00000000FFFFFFFF }, /* EAX */
1650 1.5 maxv [4] = { -1, 0 },
1651 1.5 maxv [5] = { -1, 0 },
1652 1.5 maxv [6] = { -1, 0 },
1653 1.18 maxv [7] = { NVMM_X64_GPR_RAX, 0xFFFFFFFFFFFFFFFF }, /* RAX */
1654 1.5 maxv },
1655 1.5 maxv [0b001] = {
1656 1.5 maxv [0] = { NVMM_X64_GPR_RCX, 0x00000000000000FF }, /* CL */
1657 1.5 maxv [1] = { NVMM_X64_GPR_RCX, 0x000000000000FFFF }, /* CX */
1658 1.5 maxv [2] = { -1, 0 },
1659 1.5 maxv [3] = { NVMM_X64_GPR_RCX, 0x00000000FFFFFFFF }, /* ECX */
1660 1.5 maxv [4] = { -1, 0 },
1661 1.5 maxv [5] = { -1, 0 },
1662 1.5 maxv [6] = { -1, 0 },
1663 1.18 maxv [7] = { NVMM_X64_GPR_RCX, 0xFFFFFFFFFFFFFFFF }, /* RCX */
1664 1.5 maxv },
1665 1.5 maxv [0b010] = {
1666 1.5 maxv [0] = { NVMM_X64_GPR_RDX, 0x00000000000000FF }, /* DL */
1667 1.5 maxv [1] = { NVMM_X64_GPR_RDX, 0x000000000000FFFF }, /* DX */
1668 1.5 maxv [2] = { -1, 0 },
1669 1.5 maxv [3] = { NVMM_X64_GPR_RDX, 0x00000000FFFFFFFF }, /* EDX */
1670 1.5 maxv [4] = { -1, 0 },
1671 1.5 maxv [5] = { -1, 0 },
1672 1.5 maxv [6] = { -1, 0 },
1673 1.18 maxv [7] = { NVMM_X64_GPR_RDX, 0xFFFFFFFFFFFFFFFF }, /* RDX */
1674 1.5 maxv },
1675 1.5 maxv [0b011] = {
1676 1.5 maxv [0] = { NVMM_X64_GPR_RBX, 0x00000000000000FF }, /* BL */
1677 1.5 maxv [1] = { NVMM_X64_GPR_RBX, 0x000000000000FFFF }, /* BX */
1678 1.5 maxv [2] = { -1, 0 },
1679 1.5 maxv [3] = { NVMM_X64_GPR_RBX, 0x00000000FFFFFFFF }, /* EBX */
1680 1.5 maxv [4] = { -1, 0 },
1681 1.5 maxv [5] = { -1, 0 },
1682 1.5 maxv [6] = { -1, 0 },
1683 1.18 maxv [7] = { NVMM_X64_GPR_RBX, 0xFFFFFFFFFFFFFFFF }, /* RBX */
1684 1.5 maxv },
1685 1.5 maxv [0b100] = {
1686 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1687 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1688 1.5 maxv [2] = { -1, 0 },
1689 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1690 1.5 maxv [4] = { -1, 0 },
1691 1.5 maxv [5] = { -1, 0 },
1692 1.5 maxv [6] = { -1, 0 },
1693 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1694 1.5 maxv },
1695 1.5 maxv [0b101] = {
1696 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1697 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1698 1.5 maxv [2] = { -1, 0 },
1699 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1700 1.5 maxv [4] = { -1, 0 },
1701 1.5 maxv [5] = { -1, 0 },
1702 1.5 maxv [6] = { -1, 0 },
1703 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1704 1.5 maxv },
1705 1.5 maxv [0b110] = {
1706 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1707 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1708 1.5 maxv [2] = { -1, 0 },
1709 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1710 1.5 maxv [4] = { -1, 0 },
1711 1.5 maxv [5] = { -1, 0 },
1712 1.5 maxv [6] = { -1, 0 },
1713 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1714 1.5 maxv },
1715 1.5 maxv [0b111] = {
1716 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1717 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1718 1.5 maxv [2] = { -1, 0 },
1719 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1720 1.5 maxv [4] = { -1, 0 },
1721 1.5 maxv [5] = { -1, 0 },
1722 1.5 maxv [6] = { -1, 0 },
1723 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1724 1.5 maxv },
1725 1.5 maxv },
1726 1.5 maxv [true] = {
1727 1.5 maxv /* Extended. */
1728 1.5 maxv [0b000] = {
1729 1.5 maxv [0] = { NVMM_X64_GPR_R8, 0x00000000000000FF }, /* R8B */
1730 1.5 maxv [1] = { NVMM_X64_GPR_R8, 0x000000000000FFFF }, /* R8W */
1731 1.5 maxv [2] = { -1, 0 },
1732 1.5 maxv [3] = { NVMM_X64_GPR_R8, 0x00000000FFFFFFFF }, /* R8D */
1733 1.5 maxv [4] = { -1, 0 },
1734 1.5 maxv [5] = { -1, 0 },
1735 1.5 maxv [6] = { -1, 0 },
1736 1.18 maxv [7] = { NVMM_X64_GPR_R8, 0xFFFFFFFFFFFFFFFF }, /* R8 */
1737 1.5 maxv },
1738 1.5 maxv [0b001] = {
1739 1.5 maxv [0] = { NVMM_X64_GPR_R9, 0x00000000000000FF }, /* R9B */
1740 1.5 maxv [1] = { NVMM_X64_GPR_R9, 0x000000000000FFFF }, /* R9W */
1741 1.5 maxv [2] = { -1, 0 },
1742 1.5 maxv [3] = { NVMM_X64_GPR_R9, 0x00000000FFFFFFFF }, /* R9D */
1743 1.5 maxv [4] = { -1, 0 },
1744 1.5 maxv [5] = { -1, 0 },
1745 1.5 maxv [6] = { -1, 0 },
1746 1.18 maxv [7] = { NVMM_X64_GPR_R9, 0xFFFFFFFFFFFFFFFF }, /* R9 */
1747 1.5 maxv },
1748 1.5 maxv [0b010] = {
1749 1.5 maxv [0] = { NVMM_X64_GPR_R10, 0x00000000000000FF }, /* R10B */
1750 1.5 maxv [1] = { NVMM_X64_GPR_R10, 0x000000000000FFFF }, /* R10W */
1751 1.5 maxv [2] = { -1, 0 },
1752 1.5 maxv [3] = { NVMM_X64_GPR_R10, 0x00000000FFFFFFFF }, /* R10D */
1753 1.5 maxv [4] = { -1, 0 },
1754 1.5 maxv [5] = { -1, 0 },
1755 1.5 maxv [6] = { -1, 0 },
1756 1.18 maxv [7] = { NVMM_X64_GPR_R10, 0xFFFFFFFFFFFFFFFF }, /* R10 */
1757 1.5 maxv },
1758 1.5 maxv [0b011] = {
1759 1.5 maxv [0] = { NVMM_X64_GPR_R11, 0x00000000000000FF }, /* R11B */
1760 1.5 maxv [1] = { NVMM_X64_GPR_R11, 0x000000000000FFFF }, /* R11W */
1761 1.5 maxv [2] = { -1, 0 },
1762 1.5 maxv [3] = { NVMM_X64_GPR_R11, 0x00000000FFFFFFFF }, /* R11D */
1763 1.5 maxv [4] = { -1, 0 },
1764 1.5 maxv [5] = { -1, 0 },
1765 1.5 maxv [6] = { -1, 0 },
1766 1.18 maxv [7] = { NVMM_X64_GPR_R11, 0xFFFFFFFFFFFFFFFF }, /* R11 */
1767 1.5 maxv },
1768 1.5 maxv [0b100] = {
1769 1.5 maxv [0] = { NVMM_X64_GPR_R12, 0x00000000000000FF }, /* R12B */
1770 1.5 maxv [1] = { NVMM_X64_GPR_R12, 0x000000000000FFFF }, /* R12W */
1771 1.5 maxv [2] = { -1, 0 },
1772 1.5 maxv [3] = { NVMM_X64_GPR_R12, 0x00000000FFFFFFFF }, /* R12D */
1773 1.5 maxv [4] = { -1, 0 },
1774 1.5 maxv [5] = { -1, 0 },
1775 1.5 maxv [6] = { -1, 0 },
1776 1.18 maxv [7] = { NVMM_X64_GPR_R12, 0xFFFFFFFFFFFFFFFF }, /* R12 */
1777 1.5 maxv },
1778 1.5 maxv [0b101] = {
1779 1.5 maxv [0] = { NVMM_X64_GPR_R13, 0x00000000000000FF }, /* R13B */
1780 1.5 maxv [1] = { NVMM_X64_GPR_R13, 0x000000000000FFFF }, /* R13W */
1781 1.5 maxv [2] = { -1, 0 },
1782 1.5 maxv [3] = { NVMM_X64_GPR_R13, 0x00000000FFFFFFFF }, /* R13D */
1783 1.5 maxv [4] = { -1, 0 },
1784 1.5 maxv [5] = { -1, 0 },
1785 1.5 maxv [6] = { -1, 0 },
1786 1.18 maxv [7] = { NVMM_X64_GPR_R13, 0xFFFFFFFFFFFFFFFF }, /* R13 */
1787 1.5 maxv },
1788 1.5 maxv [0b110] = {
1789 1.5 maxv [0] = { NVMM_X64_GPR_R14, 0x00000000000000FF }, /* R14B */
1790 1.5 maxv [1] = { NVMM_X64_GPR_R14, 0x000000000000FFFF }, /* R14W */
1791 1.5 maxv [2] = { -1, 0 },
1792 1.5 maxv [3] = { NVMM_X64_GPR_R14, 0x00000000FFFFFFFF }, /* R14D */
1793 1.5 maxv [4] = { -1, 0 },
1794 1.5 maxv [5] = { -1, 0 },
1795 1.5 maxv [6] = { -1, 0 },
1796 1.18 maxv [7] = { NVMM_X64_GPR_R14, 0xFFFFFFFFFFFFFFFF }, /* R14 */
1797 1.5 maxv },
1798 1.5 maxv [0b111] = {
1799 1.5 maxv [0] = { NVMM_X64_GPR_R15, 0x00000000000000FF }, /* R15B */
1800 1.5 maxv [1] = { NVMM_X64_GPR_R15, 0x000000000000FFFF }, /* R15W */
1801 1.5 maxv [2] = { -1, 0 },
1802 1.5 maxv [3] = { NVMM_X64_GPR_R15, 0x00000000FFFFFFFF }, /* R15D */
1803 1.5 maxv [4] = { -1, 0 },
1804 1.5 maxv [5] = { -1, 0 },
1805 1.5 maxv [6] = { -1, 0 },
1806 1.18 maxv [7] = { NVMM_X64_GPR_R15, 0xFFFFFFFFFFFFFFFF }, /* R15 */
1807 1.5 maxv },
1808 1.5 maxv }
1809 1.5 maxv };
1810 1.5 maxv
1811 1.32 maxv /* [enc] */
1812 1.32 maxv static const int gpr_dual_reg1_rm[8] __cacheline_aligned = {
1813 1.32 maxv [0b000] = NVMM_X64_GPR_RBX, /* BX (+SI) */
1814 1.32 maxv [0b001] = NVMM_X64_GPR_RBX, /* BX (+DI) */
1815 1.32 maxv [0b010] = NVMM_X64_GPR_RBP, /* BP (+SI) */
1816 1.32 maxv [0b011] = NVMM_X64_GPR_RBP, /* BP (+DI) */
1817 1.32 maxv [0b100] = NVMM_X64_GPR_RSI, /* SI */
1818 1.32 maxv [0b101] = NVMM_X64_GPR_RDI, /* DI */
1819 1.32 maxv [0b110] = NVMM_X64_GPR_RBP, /* BP */
1820 1.32 maxv [0b111] = NVMM_X64_GPR_RBX, /* BX */
1821 1.32 maxv };
1822 1.32 maxv
1823 1.5 maxv static int
1824 1.5 maxv node_overflow(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1825 1.5 maxv {
1826 1.5 maxv fsm->fn = NULL;
1827 1.5 maxv return -1;
1828 1.5 maxv }
1829 1.5 maxv
1830 1.5 maxv static int
1831 1.5 maxv fsm_read(struct x86_decode_fsm *fsm, uint8_t *bytes, size_t n)
1832 1.5 maxv {
1833 1.5 maxv if (fsm->buf + n > fsm->end) {
1834 1.5 maxv return -1;
1835 1.5 maxv }
1836 1.5 maxv memcpy(bytes, fsm->buf, n);
1837 1.5 maxv return 0;
1838 1.5 maxv }
1839 1.5 maxv
1840 1.27 maxv static inline void
1841 1.5 maxv fsm_advance(struct x86_decode_fsm *fsm, size_t n,
1842 1.5 maxv int (*fn)(struct x86_decode_fsm *, struct x86_instr *))
1843 1.5 maxv {
1844 1.5 maxv fsm->buf += n;
1845 1.5 maxv if (fsm->buf > fsm->end) {
1846 1.5 maxv fsm->fn = node_overflow;
1847 1.5 maxv } else {
1848 1.5 maxv fsm->fn = fn;
1849 1.5 maxv }
1850 1.5 maxv }
1851 1.5 maxv
1852 1.5 maxv static const struct x86_reg *
1853 1.5 maxv resolve_special_register(struct x86_instr *instr, uint8_t enc, size_t regsize)
1854 1.5 maxv {
1855 1.5 maxv enc &= 0b11;
1856 1.5 maxv if (regsize == 8) {
1857 1.5 maxv /* May be 64bit without REX */
1858 1.5 maxv return &gpr_map__special[1][enc][regsize-1];
1859 1.5 maxv }
1860 1.5 maxv return &gpr_map__special[instr->rexpref.present][enc][regsize-1];
1861 1.5 maxv }
1862 1.5 maxv
1863 1.5 maxv /*
1864 1.6 maxv * Special node, for MOVS. Fake two displacements of zero on the source and
1865 1.6 maxv * destination registers.
1866 1.6 maxv */
1867 1.6 maxv static int
1868 1.6 maxv node_movs(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1869 1.6 maxv {
1870 1.6 maxv size_t adrsize;
1871 1.6 maxv
1872 1.6 maxv adrsize = instr->address_size;
1873 1.6 maxv
1874 1.6 maxv /* DS:RSI */
1875 1.6 maxv instr->src.type = STORE_REG;
1876 1.6 maxv instr->src.u.reg = &gpr_map__special[1][2][adrsize-1];
1877 1.6 maxv instr->src.disp.type = DISP_0;
1878 1.6 maxv
1879 1.6 maxv /* ES:RDI, force ES */
1880 1.6 maxv instr->dst.type = STORE_REG;
1881 1.6 maxv instr->dst.u.reg = &gpr_map__special[1][3][adrsize-1];
1882 1.6 maxv instr->dst.disp.type = DISP_0;
1883 1.6 maxv instr->dst.hardseg = NVMM_X64_SEG_ES;
1884 1.6 maxv
1885 1.6 maxv fsm_advance(fsm, 0, NULL);
1886 1.6 maxv
1887 1.6 maxv return 0;
1888 1.6 maxv }
1889 1.6 maxv
1890 1.6 maxv /*
1891 1.43 reinoud * Special node, for CMPS. Fake two displacements of zero on the source and
1892 1.43 reinoud * destination registers.
1893 1.43 reinoud * XXX coded as clone of movs as its similar in register usage
1894 1.43 reinoud * XXX might be merged with node_movs()
1895 1.43 reinoud */
1896 1.43 reinoud static int
1897 1.43 reinoud node_cmps(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1898 1.43 reinoud {
1899 1.43 reinoud size_t adrsize;
1900 1.43 reinoud
1901 1.43 reinoud adrsize = instr->address_size;
1902 1.43 reinoud
1903 1.43 reinoud /* DS:RSI */
1904 1.43 reinoud instr->src.type = STORE_REG;
1905 1.43 reinoud instr->src.u.reg = &gpr_map__special[1][2][adrsize-1];
1906 1.43 reinoud instr->src.disp.type = DISP_0;
1907 1.43 reinoud
1908 1.43 reinoud /* ES:RDI, force ES */
1909 1.43 reinoud instr->dst.type = STORE_REG;
1910 1.43 reinoud instr->dst.u.reg = &gpr_map__special[1][3][adrsize-1];
1911 1.43 reinoud instr->dst.disp.type = DISP_0;
1912 1.43 reinoud instr->dst.hardseg = NVMM_X64_SEG_ES;
1913 1.43 reinoud
1914 1.43 reinoud fsm_advance(fsm, 0, NULL);
1915 1.43 reinoud
1916 1.43 reinoud return 0;
1917 1.43 reinoud }
1918 1.43 reinoud
1919 1.43 reinoud /*
1920 1.5 maxv * Special node, for STOS and LODS. Fake a displacement of zero on the
1921 1.5 maxv * destination register.
1922 1.5 maxv */
1923 1.5 maxv static int
1924 1.5 maxv node_stlo(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1925 1.5 maxv {
1926 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1927 1.5 maxv struct x86_store *stlo, *streg;
1928 1.5 maxv size_t adrsize, regsize;
1929 1.5 maxv
1930 1.5 maxv adrsize = instr->address_size;
1931 1.5 maxv regsize = instr->operand_size;
1932 1.5 maxv
1933 1.5 maxv if (opcode->stos) {
1934 1.5 maxv streg = &instr->src;
1935 1.5 maxv stlo = &instr->dst;
1936 1.5 maxv } else {
1937 1.5 maxv streg = &instr->dst;
1938 1.5 maxv stlo = &instr->src;
1939 1.5 maxv }
1940 1.5 maxv
1941 1.5 maxv streg->type = STORE_REG;
1942 1.5 maxv streg->u.reg = &gpr_map[0][0][regsize-1]; /* ?AX */
1943 1.5 maxv
1944 1.5 maxv stlo->type = STORE_REG;
1945 1.5 maxv if (opcode->stos) {
1946 1.5 maxv /* ES:RDI, force ES */
1947 1.5 maxv stlo->u.reg = &gpr_map__special[1][3][adrsize-1];
1948 1.6 maxv stlo->hardseg = NVMM_X64_SEG_ES;
1949 1.5 maxv } else {
1950 1.5 maxv /* DS:RSI */
1951 1.5 maxv stlo->u.reg = &gpr_map__special[1][2][adrsize-1];
1952 1.5 maxv }
1953 1.5 maxv stlo->disp.type = DISP_0;
1954 1.5 maxv
1955 1.5 maxv fsm_advance(fsm, 0, NULL);
1956 1.5 maxv
1957 1.5 maxv return 0;
1958 1.5 maxv }
1959 1.5 maxv
1960 1.5 maxv static int
1961 1.5 maxv node_dmo(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1962 1.5 maxv {
1963 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1964 1.5 maxv struct x86_store *stdmo, *streg;
1965 1.5 maxv size_t adrsize, regsize;
1966 1.5 maxv
1967 1.5 maxv adrsize = instr->address_size;
1968 1.5 maxv regsize = instr->operand_size;
1969 1.5 maxv
1970 1.5 maxv if (opcode->todmo) {
1971 1.5 maxv streg = &instr->src;
1972 1.5 maxv stdmo = &instr->dst;
1973 1.5 maxv } else {
1974 1.5 maxv streg = &instr->dst;
1975 1.5 maxv stdmo = &instr->src;
1976 1.5 maxv }
1977 1.5 maxv
1978 1.5 maxv streg->type = STORE_REG;
1979 1.5 maxv streg->u.reg = &gpr_map[0][0][regsize-1]; /* ?AX */
1980 1.5 maxv
1981 1.5 maxv stdmo->type = STORE_DMO;
1982 1.5 maxv if (fsm_read(fsm, (uint8_t *)&stdmo->u.dmo, adrsize) == -1) {
1983 1.5 maxv return -1;
1984 1.5 maxv }
1985 1.5 maxv fsm_advance(fsm, adrsize, NULL);
1986 1.5 maxv
1987 1.5 maxv return 0;
1988 1.5 maxv }
1989 1.5 maxv
1990 1.15 maxv static inline uint64_t
1991 1.11 maxv sign_extend(uint64_t val, int size)
1992 1.11 maxv {
1993 1.11 maxv if (size == 1) {
1994 1.11 maxv if (val & __BIT(7))
1995 1.11 maxv val |= 0xFFFFFFFFFFFFFF00;
1996 1.11 maxv } else if (size == 2) {
1997 1.11 maxv if (val & __BIT(15))
1998 1.11 maxv val |= 0xFFFFFFFFFFFF0000;
1999 1.11 maxv } else if (size == 4) {
2000 1.11 maxv if (val & __BIT(31))
2001 1.11 maxv val |= 0xFFFFFFFF00000000;
2002 1.11 maxv }
2003 1.11 maxv return val;
2004 1.11 maxv }
2005 1.11 maxv
2006 1.5 maxv static int
2007 1.5 maxv node_immediate(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2008 1.5 maxv {
2009 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
2010 1.5 maxv struct x86_store *store;
2011 1.5 maxv uint8_t immsize;
2012 1.11 maxv size_t sesize = 0;
2013 1.5 maxv
2014 1.5 maxv /* The immediate is the source */
2015 1.5 maxv store = &instr->src;
2016 1.5 maxv immsize = instr->operand_size;
2017 1.5 maxv
2018 1.11 maxv if (opcode->flags & FLAG_imm8) {
2019 1.11 maxv sesize = immsize;
2020 1.11 maxv immsize = 1;
2021 1.11 maxv } else if ((opcode->flags & FLAG_immz) && (immsize == 8)) {
2022 1.11 maxv sesize = immsize;
2023 1.5 maxv immsize = 4;
2024 1.5 maxv }
2025 1.5 maxv
2026 1.5 maxv store->type = STORE_IMM;
2027 1.11 maxv if (fsm_read(fsm, (uint8_t *)&store->u.imm.data, immsize) == -1) {
2028 1.5 maxv return -1;
2029 1.5 maxv }
2030 1.15 maxv fsm_advance(fsm, immsize, NULL);
2031 1.5 maxv
2032 1.11 maxv if (sesize != 0) {
2033 1.11 maxv store->u.imm.data = sign_extend(store->u.imm.data, sesize);
2034 1.11 maxv }
2035 1.5 maxv
2036 1.5 maxv return 0;
2037 1.5 maxv }
2038 1.5 maxv
2039 1.5 maxv static int
2040 1.5 maxv node_disp(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2041 1.5 maxv {
2042 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
2043 1.11 maxv uint64_t data = 0;
2044 1.5 maxv size_t n;
2045 1.5 maxv
2046 1.5 maxv if (instr->strm->disp.type == DISP_1) {
2047 1.5 maxv n = 1;
2048 1.32 maxv } else if (instr->strm->disp.type == DISP_2) {
2049 1.32 maxv n = 2;
2050 1.32 maxv } else if (instr->strm->disp.type == DISP_4) {
2051 1.5 maxv n = 4;
2052 1.32 maxv } else {
2053 1.32 maxv DISASSEMBLER_BUG();
2054 1.5 maxv }
2055 1.5 maxv
2056 1.11 maxv if (fsm_read(fsm, (uint8_t *)&data, n) == -1) {
2057 1.5 maxv return -1;
2058 1.5 maxv }
2059 1.5 maxv
2060 1.11 maxv if (__predict_true(fsm->is64bit)) {
2061 1.11 maxv data = sign_extend(data, n);
2062 1.11 maxv }
2063 1.11 maxv
2064 1.11 maxv instr->strm->disp.data = data;
2065 1.11 maxv
2066 1.5 maxv if (opcode->immediate) {
2067 1.5 maxv fsm_advance(fsm, n, node_immediate);
2068 1.5 maxv } else {
2069 1.5 maxv fsm_advance(fsm, n, NULL);
2070 1.5 maxv }
2071 1.5 maxv
2072 1.5 maxv return 0;
2073 1.5 maxv }
2074 1.5 maxv
2075 1.32 maxv /*
2076 1.32 maxv * Special node to handle 16bit addressing encoding, which can reference two
2077 1.32 maxv * registers at once.
2078 1.32 maxv */
2079 1.32 maxv static int
2080 1.32 maxv node_dual(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2081 1.32 maxv {
2082 1.32 maxv int reg1, reg2;
2083 1.32 maxv
2084 1.32 maxv reg1 = gpr_dual_reg1_rm[instr->regmodrm.rm];
2085 1.32 maxv
2086 1.32 maxv if (instr->regmodrm.rm == 0b000 ||
2087 1.32 maxv instr->regmodrm.rm == 0b010) {
2088 1.32 maxv reg2 = NVMM_X64_GPR_RSI;
2089 1.32 maxv } else if (instr->regmodrm.rm == 0b001 ||
2090 1.32 maxv instr->regmodrm.rm == 0b011) {
2091 1.32 maxv reg2 = NVMM_X64_GPR_RDI;
2092 1.32 maxv } else {
2093 1.32 maxv DISASSEMBLER_BUG();
2094 1.32 maxv }
2095 1.32 maxv
2096 1.32 maxv instr->strm->type = STORE_DUALREG;
2097 1.32 maxv instr->strm->u.dualreg.reg1 = reg1;
2098 1.32 maxv instr->strm->u.dualreg.reg2 = reg2;
2099 1.32 maxv
2100 1.32 maxv if (instr->strm->disp.type == DISP_NONE) {
2101 1.32 maxv DISASSEMBLER_BUG();
2102 1.32 maxv } else if (instr->strm->disp.type == DISP_0) {
2103 1.32 maxv /* Indirect register addressing mode */
2104 1.32 maxv if (instr->opcode->immediate) {
2105 1.32 maxv fsm_advance(fsm, 1, node_immediate);
2106 1.32 maxv } else {
2107 1.32 maxv fsm_advance(fsm, 1, NULL);
2108 1.32 maxv }
2109 1.32 maxv } else {
2110 1.32 maxv fsm_advance(fsm, 1, node_disp);
2111 1.32 maxv }
2112 1.32 maxv
2113 1.32 maxv return 0;
2114 1.32 maxv }
2115 1.32 maxv
2116 1.5 maxv static const struct x86_reg *
2117 1.5 maxv get_register_idx(struct x86_instr *instr, uint8_t index)
2118 1.5 maxv {
2119 1.5 maxv uint8_t enc = index;
2120 1.5 maxv const struct x86_reg *reg;
2121 1.5 maxv size_t regsize;
2122 1.5 maxv
2123 1.5 maxv regsize = instr->address_size;
2124 1.5 maxv reg = &gpr_map[instr->rexpref.x][enc][regsize-1];
2125 1.5 maxv
2126 1.5 maxv if (reg->num == -1) {
2127 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
2128 1.5 maxv }
2129 1.5 maxv
2130 1.5 maxv return reg;
2131 1.5 maxv }
2132 1.5 maxv
2133 1.5 maxv static const struct x86_reg *
2134 1.5 maxv get_register_bas(struct x86_instr *instr, uint8_t base)
2135 1.5 maxv {
2136 1.5 maxv uint8_t enc = base;
2137 1.5 maxv const struct x86_reg *reg;
2138 1.5 maxv size_t regsize;
2139 1.5 maxv
2140 1.5 maxv regsize = instr->address_size;
2141 1.5 maxv reg = &gpr_map[instr->rexpref.b][enc][regsize-1];
2142 1.5 maxv if (reg->num == -1) {
2143 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
2144 1.5 maxv }
2145 1.5 maxv
2146 1.5 maxv return reg;
2147 1.5 maxv }
2148 1.5 maxv
2149 1.5 maxv static int
2150 1.5 maxv node_sib(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2151 1.5 maxv {
2152 1.5 maxv const struct x86_opcode *opcode;
2153 1.5 maxv uint8_t scale, index, base;
2154 1.5 maxv bool noindex, nobase;
2155 1.5 maxv uint8_t byte;
2156 1.5 maxv
2157 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2158 1.5 maxv return -1;
2159 1.5 maxv }
2160 1.5 maxv
2161 1.5 maxv scale = ((byte & 0b11000000) >> 6);
2162 1.5 maxv index = ((byte & 0b00111000) >> 3);
2163 1.5 maxv base = ((byte & 0b00000111) >> 0);
2164 1.5 maxv
2165 1.5 maxv opcode = instr->opcode;
2166 1.5 maxv
2167 1.5 maxv noindex = false;
2168 1.5 maxv nobase = false;
2169 1.5 maxv
2170 1.5 maxv if (index == 0b100 && !instr->rexpref.x) {
2171 1.5 maxv /* Special case: the index is null */
2172 1.5 maxv noindex = true;
2173 1.5 maxv }
2174 1.5 maxv
2175 1.5 maxv if (instr->regmodrm.mod == 0b00 && base == 0b101) {
2176 1.5 maxv /* Special case: the base is null + disp32 */
2177 1.5 maxv instr->strm->disp.type = DISP_4;
2178 1.5 maxv nobase = true;
2179 1.5 maxv }
2180 1.5 maxv
2181 1.5 maxv instr->strm->type = STORE_SIB;
2182 1.5 maxv instr->strm->u.sib.scale = (1 << scale);
2183 1.5 maxv if (!noindex)
2184 1.5 maxv instr->strm->u.sib.idx = get_register_idx(instr, index);
2185 1.5 maxv if (!nobase)
2186 1.5 maxv instr->strm->u.sib.bas = get_register_bas(instr, base);
2187 1.5 maxv
2188 1.5 maxv /* May have a displacement, or an immediate */
2189 1.32 maxv if (instr->strm->disp.type == DISP_1 ||
2190 1.32 maxv instr->strm->disp.type == DISP_2 ||
2191 1.32 maxv instr->strm->disp.type == DISP_4) {
2192 1.5 maxv fsm_advance(fsm, 1, node_disp);
2193 1.5 maxv } else if (opcode->immediate) {
2194 1.5 maxv fsm_advance(fsm, 1, node_immediate);
2195 1.5 maxv } else {
2196 1.5 maxv fsm_advance(fsm, 1, NULL);
2197 1.5 maxv }
2198 1.5 maxv
2199 1.5 maxv return 0;
2200 1.5 maxv }
2201 1.5 maxv
2202 1.5 maxv static const struct x86_reg *
2203 1.5 maxv get_register_reg(struct x86_instr *instr, const struct x86_opcode *opcode)
2204 1.5 maxv {
2205 1.5 maxv uint8_t enc = instr->regmodrm.reg;
2206 1.5 maxv const struct x86_reg *reg;
2207 1.5 maxv size_t regsize;
2208 1.5 maxv
2209 1.11 maxv regsize = instr->operand_size;
2210 1.5 maxv
2211 1.5 maxv reg = &gpr_map[instr->rexpref.r][enc][regsize-1];
2212 1.5 maxv if (reg->num == -1) {
2213 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
2214 1.5 maxv }
2215 1.5 maxv
2216 1.5 maxv return reg;
2217 1.5 maxv }
2218 1.5 maxv
2219 1.5 maxv static const struct x86_reg *
2220 1.5 maxv get_register_rm(struct x86_instr *instr, const struct x86_opcode *opcode)
2221 1.5 maxv {
2222 1.5 maxv uint8_t enc = instr->regmodrm.rm;
2223 1.5 maxv const struct x86_reg *reg;
2224 1.5 maxv size_t regsize;
2225 1.5 maxv
2226 1.5 maxv if (instr->strm->disp.type == DISP_NONE) {
2227 1.11 maxv regsize = instr->operand_size;
2228 1.5 maxv } else {
2229 1.5 maxv /* Indirect access, the size is that of the address. */
2230 1.5 maxv regsize = instr->address_size;
2231 1.5 maxv }
2232 1.5 maxv
2233 1.5 maxv reg = &gpr_map[instr->rexpref.b][enc][regsize-1];
2234 1.5 maxv if (reg->num == -1) {
2235 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
2236 1.5 maxv }
2237 1.5 maxv
2238 1.5 maxv return reg;
2239 1.5 maxv }
2240 1.5 maxv
2241 1.5 maxv static inline bool
2242 1.5 maxv has_sib(struct x86_instr *instr)
2243 1.5 maxv {
2244 1.32 maxv return (instr->address_size != 2 && /* no SIB in 16bit addressing */
2245 1.32 maxv instr->regmodrm.mod != 0b11 &&
2246 1.32 maxv instr->regmodrm.rm == 0b100);
2247 1.5 maxv }
2248 1.5 maxv
2249 1.5 maxv static inline bool
2250 1.9 maxv is_rip_relative(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2251 1.5 maxv {
2252 1.32 maxv return (fsm->is64bit && /* RIP-relative only in 64bit mode */
2253 1.32 maxv instr->regmodrm.mod == 0b00 &&
2254 1.32 maxv instr->regmodrm.rm == 0b101);
2255 1.9 maxv }
2256 1.9 maxv
2257 1.9 maxv static inline bool
2258 1.9 maxv is_disp32_only(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2259 1.9 maxv {
2260 1.32 maxv return (!fsm->is64bit && /* no disp32-only in 64bit mode */
2261 1.32 maxv instr->address_size != 2 && /* no disp32-only in 16bit addressing */
2262 1.32 maxv instr->regmodrm.mod == 0b00 &&
2263 1.32 maxv instr->regmodrm.rm == 0b101);
2264 1.32 maxv }
2265 1.32 maxv
2266 1.32 maxv static inline bool
2267 1.32 maxv is_disp16_only(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2268 1.32 maxv {
2269 1.32 maxv return (instr->address_size == 2 && /* disp16-only only in 16bit addr */
2270 1.32 maxv instr->regmodrm.mod == 0b00 &&
2271 1.32 maxv instr->regmodrm.rm == 0b110);
2272 1.32 maxv }
2273 1.32 maxv
2274 1.32 maxv static inline bool
2275 1.32 maxv is_dual(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2276 1.32 maxv {
2277 1.32 maxv return (instr->address_size == 2 &&
2278 1.32 maxv instr->regmodrm.mod != 0b11 &&
2279 1.32 maxv instr->regmodrm.rm <= 0b011);
2280 1.5 maxv }
2281 1.5 maxv
2282 1.5 maxv static enum x86_disp_type
2283 1.5 maxv get_disp_type(struct x86_instr *instr)
2284 1.5 maxv {
2285 1.5 maxv switch (instr->regmodrm.mod) {
2286 1.32 maxv case 0b00: /* indirect */
2287 1.5 maxv return DISP_0;
2288 1.32 maxv case 0b01: /* indirect+1 */
2289 1.5 maxv return DISP_1;
2290 1.32 maxv case 0b10: /* indirect+{2,4} */
2291 1.32 maxv if (__predict_false(instr->address_size == 2)) {
2292 1.32 maxv return DISP_2;
2293 1.32 maxv }
2294 1.5 maxv return DISP_4;
2295 1.32 maxv case 0b11: /* direct */
2296 1.35 maxv default: /* llvm */
2297 1.5 maxv return DISP_NONE;
2298 1.5 maxv }
2299 1.39 joerg __unreachable();
2300 1.5 maxv }
2301 1.5 maxv
2302 1.5 maxv static int
2303 1.5 maxv node_regmodrm(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2304 1.5 maxv {
2305 1.5 maxv struct x86_store *strg, *strm;
2306 1.5 maxv const struct x86_opcode *opcode;
2307 1.5 maxv const struct x86_reg *reg;
2308 1.5 maxv uint8_t byte;
2309 1.5 maxv
2310 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2311 1.5 maxv return -1;
2312 1.5 maxv }
2313 1.5 maxv
2314 1.5 maxv opcode = instr->opcode;
2315 1.5 maxv
2316 1.27 maxv instr->regmodrm.rm = ((byte & 0b00000111) >> 0);
2317 1.27 maxv instr->regmodrm.reg = ((byte & 0b00111000) >> 3);
2318 1.5 maxv instr->regmodrm.mod = ((byte & 0b11000000) >> 6);
2319 1.5 maxv
2320 1.5 maxv if (opcode->regtorm) {
2321 1.5 maxv strg = &instr->src;
2322 1.5 maxv strm = &instr->dst;
2323 1.5 maxv } else { /* RM to REG */
2324 1.5 maxv strm = &instr->src;
2325 1.5 maxv strg = &instr->dst;
2326 1.5 maxv }
2327 1.5 maxv
2328 1.5 maxv /* Save for later use. */
2329 1.5 maxv instr->strm = strm;
2330 1.5 maxv
2331 1.5 maxv /*
2332 1.5 maxv * Special cases: Groups. The REG field of REGMODRM is the index in
2333 1.5 maxv * the group. op1 gets overwritten in the Immediate node, if any.
2334 1.5 maxv */
2335 1.11 maxv if (opcode->group1) {
2336 1.11 maxv if (group1[instr->regmodrm.reg].emul == NULL) {
2337 1.11 maxv return -1;
2338 1.11 maxv }
2339 1.11 maxv instr->emul = group1[instr->regmodrm.reg].emul;
2340 1.19 maxv } else if (opcode->group3) {
2341 1.19 maxv if (group3[instr->regmodrm.reg].emul == NULL) {
2342 1.19 maxv return -1;
2343 1.19 maxv }
2344 1.19 maxv instr->emul = group3[instr->regmodrm.reg].emul;
2345 1.11 maxv } else if (opcode->group11) {
2346 1.5 maxv if (group11[instr->regmodrm.reg].emul == NULL) {
2347 1.5 maxv return -1;
2348 1.5 maxv }
2349 1.5 maxv instr->emul = group11[instr->regmodrm.reg].emul;
2350 1.5 maxv }
2351 1.5 maxv
2352 1.16 maxv if (!opcode->immediate) {
2353 1.16 maxv reg = get_register_reg(instr, opcode);
2354 1.16 maxv if (reg == NULL) {
2355 1.16 maxv return -1;
2356 1.16 maxv }
2357 1.16 maxv strg->type = STORE_REG;
2358 1.16 maxv strg->u.reg = reg;
2359 1.5 maxv }
2360 1.5 maxv
2361 1.24 maxv /* The displacement applies to RM. */
2362 1.24 maxv strm->disp.type = get_disp_type(instr);
2363 1.24 maxv
2364 1.5 maxv if (has_sib(instr)) {
2365 1.5 maxv /* Overwrites RM */
2366 1.5 maxv fsm_advance(fsm, 1, node_sib);
2367 1.5 maxv return 0;
2368 1.5 maxv }
2369 1.5 maxv
2370 1.9 maxv if (is_rip_relative(fsm, instr)) {
2371 1.5 maxv /* Overwrites RM */
2372 1.5 maxv strm->type = STORE_REG;
2373 1.5 maxv strm->u.reg = &gpr_map__rip;
2374 1.5 maxv strm->disp.type = DISP_4;
2375 1.5 maxv fsm_advance(fsm, 1, node_disp);
2376 1.5 maxv return 0;
2377 1.5 maxv }
2378 1.5 maxv
2379 1.9 maxv if (is_disp32_only(fsm, instr)) {
2380 1.9 maxv /* Overwrites RM */
2381 1.9 maxv strm->type = STORE_REG;
2382 1.9 maxv strm->u.reg = NULL;
2383 1.9 maxv strm->disp.type = DISP_4;
2384 1.9 maxv fsm_advance(fsm, 1, node_disp);
2385 1.9 maxv return 0;
2386 1.9 maxv }
2387 1.9 maxv
2388 1.32 maxv if (__predict_false(is_disp16_only(fsm, instr))) {
2389 1.32 maxv /* Overwrites RM */
2390 1.32 maxv strm->type = STORE_REG;
2391 1.32 maxv strm->u.reg = NULL;
2392 1.32 maxv strm->disp.type = DISP_2;
2393 1.32 maxv fsm_advance(fsm, 1, node_disp);
2394 1.32 maxv return 0;
2395 1.32 maxv }
2396 1.32 maxv
2397 1.32 maxv if (__predict_false(is_dual(fsm, instr))) {
2398 1.32 maxv /* Overwrites RM */
2399 1.32 maxv fsm_advance(fsm, 0, node_dual);
2400 1.32 maxv return 0;
2401 1.32 maxv }
2402 1.32 maxv
2403 1.5 maxv reg = get_register_rm(instr, opcode);
2404 1.5 maxv if (reg == NULL) {
2405 1.5 maxv return -1;
2406 1.5 maxv }
2407 1.5 maxv strm->type = STORE_REG;
2408 1.5 maxv strm->u.reg = reg;
2409 1.5 maxv
2410 1.5 maxv if (strm->disp.type == DISP_NONE) {
2411 1.5 maxv /* Direct register addressing mode */
2412 1.5 maxv if (opcode->immediate) {
2413 1.5 maxv fsm_advance(fsm, 1, node_immediate);
2414 1.5 maxv } else {
2415 1.5 maxv fsm_advance(fsm, 1, NULL);
2416 1.5 maxv }
2417 1.5 maxv } else if (strm->disp.type == DISP_0) {
2418 1.5 maxv /* Indirect register addressing mode */
2419 1.5 maxv if (opcode->immediate) {
2420 1.5 maxv fsm_advance(fsm, 1, node_immediate);
2421 1.5 maxv } else {
2422 1.5 maxv fsm_advance(fsm, 1, NULL);
2423 1.5 maxv }
2424 1.5 maxv } else {
2425 1.5 maxv fsm_advance(fsm, 1, node_disp);
2426 1.5 maxv }
2427 1.5 maxv
2428 1.5 maxv return 0;
2429 1.5 maxv }
2430 1.5 maxv
2431 1.5 maxv static size_t
2432 1.5 maxv get_operand_size(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2433 1.5 maxv {
2434 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
2435 1.5 maxv int opsize;
2436 1.5 maxv
2437 1.5 maxv /* Get the opsize */
2438 1.5 maxv if (!opcode->szoverride) {
2439 1.5 maxv opsize = opcode->defsize;
2440 1.5 maxv } else if (instr->rexpref.present && instr->rexpref.w) {
2441 1.5 maxv opsize = 8;
2442 1.5 maxv } else {
2443 1.5 maxv if (!fsm->is16bit) {
2444 1.13 maxv if (instr->legpref.opr_ovr) {
2445 1.5 maxv opsize = 2;
2446 1.5 maxv } else {
2447 1.5 maxv opsize = 4;
2448 1.5 maxv }
2449 1.5 maxv } else { /* 16bit */
2450 1.13 maxv if (instr->legpref.opr_ovr) {
2451 1.5 maxv opsize = 4;
2452 1.5 maxv } else {
2453 1.5 maxv opsize = 2;
2454 1.5 maxv }
2455 1.5 maxv }
2456 1.5 maxv }
2457 1.5 maxv
2458 1.5 maxv return opsize;
2459 1.5 maxv }
2460 1.5 maxv
2461 1.5 maxv static size_t
2462 1.5 maxv get_address_size(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2463 1.5 maxv {
2464 1.5 maxv if (fsm->is64bit) {
2465 1.13 maxv if (__predict_false(instr->legpref.adr_ovr)) {
2466 1.5 maxv return 4;
2467 1.5 maxv }
2468 1.5 maxv return 8;
2469 1.5 maxv }
2470 1.5 maxv
2471 1.5 maxv if (fsm->is32bit) {
2472 1.13 maxv if (__predict_false(instr->legpref.adr_ovr)) {
2473 1.5 maxv return 2;
2474 1.5 maxv }
2475 1.5 maxv return 4;
2476 1.5 maxv }
2477 1.5 maxv
2478 1.5 maxv /* 16bit. */
2479 1.13 maxv if (__predict_false(instr->legpref.adr_ovr)) {
2480 1.5 maxv return 4;
2481 1.5 maxv }
2482 1.5 maxv return 2;
2483 1.5 maxv }
2484 1.5 maxv
2485 1.5 maxv static int
2486 1.5 maxv node_primary_opcode(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2487 1.1 maxv {
2488 1.5 maxv const struct x86_opcode *opcode;
2489 1.5 maxv uint8_t byte;
2490 1.5 maxv
2491 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2492 1.5 maxv return -1;
2493 1.5 maxv }
2494 1.5 maxv
2495 1.27 maxv opcode = &primary_opcode_table[byte];
2496 1.27 maxv if (__predict_false(!opcode->valid)) {
2497 1.1 maxv return -1;
2498 1.1 maxv }
2499 1.1 maxv
2500 1.5 maxv instr->opcode = opcode;
2501 1.5 maxv instr->emul = opcode->emul;
2502 1.5 maxv instr->operand_size = get_operand_size(fsm, instr);
2503 1.5 maxv instr->address_size = get_address_size(fsm, instr);
2504 1.5 maxv
2505 1.15 maxv if (fsm->is64bit && (instr->operand_size == 4)) {
2506 1.15 maxv /* Zero-extend to 64 bits. */
2507 1.15 maxv instr->zeroextend_mask = ~size_to_mask(4);
2508 1.15 maxv }
2509 1.15 maxv
2510 1.5 maxv if (opcode->regmodrm) {
2511 1.5 maxv fsm_advance(fsm, 1, node_regmodrm);
2512 1.5 maxv } else if (opcode->dmo) {
2513 1.5 maxv /* Direct-Memory Offsets */
2514 1.5 maxv fsm_advance(fsm, 1, node_dmo);
2515 1.5 maxv } else if (opcode->stos || opcode->lods) {
2516 1.5 maxv fsm_advance(fsm, 1, node_stlo);
2517 1.6 maxv } else if (opcode->movs) {
2518 1.6 maxv fsm_advance(fsm, 1, node_movs);
2519 1.43 reinoud } else if (opcode->cmps) {
2520 1.43 reinoud fsm_advance(fsm, 1, node_cmps);
2521 1.5 maxv } else {
2522 1.5 maxv return -1;
2523 1.5 maxv }
2524 1.5 maxv
2525 1.5 maxv return 0;
2526 1.5 maxv }
2527 1.5 maxv
2528 1.10 maxv static int
2529 1.10 maxv node_secondary_opcode(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2530 1.10 maxv {
2531 1.10 maxv const struct x86_opcode *opcode;
2532 1.10 maxv uint8_t byte;
2533 1.10 maxv
2534 1.10 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2535 1.10 maxv return -1;
2536 1.10 maxv }
2537 1.10 maxv
2538 1.27 maxv opcode = &secondary_opcode_table[byte];
2539 1.27 maxv if (__predict_false(!opcode->valid)) {
2540 1.10 maxv return -1;
2541 1.10 maxv }
2542 1.10 maxv
2543 1.10 maxv instr->opcode = opcode;
2544 1.10 maxv instr->emul = opcode->emul;
2545 1.10 maxv instr->operand_size = get_operand_size(fsm, instr);
2546 1.10 maxv instr->address_size = get_address_size(fsm, instr);
2547 1.10 maxv
2548 1.18 maxv if (fsm->is64bit && (instr->operand_size == 4)) {
2549 1.18 maxv /* Zero-extend to 64 bits. */
2550 1.18 maxv instr->zeroextend_mask = ~size_to_mask(4);
2551 1.18 maxv }
2552 1.18 maxv
2553 1.11 maxv if (opcode->flags & FLAG_ze) {
2554 1.10 maxv /*
2555 1.10 maxv * Compute the mask for zero-extend. Update the operand size,
2556 1.10 maxv * we move fewer bytes.
2557 1.10 maxv */
2558 1.18 maxv instr->zeroextend_mask |= size_to_mask(instr->operand_size);
2559 1.10 maxv instr->zeroextend_mask &= ~size_to_mask(opcode->defsize);
2560 1.10 maxv instr->operand_size = opcode->defsize;
2561 1.10 maxv }
2562 1.10 maxv
2563 1.10 maxv if (opcode->regmodrm) {
2564 1.10 maxv fsm_advance(fsm, 1, node_regmodrm);
2565 1.10 maxv } else {
2566 1.10 maxv return -1;
2567 1.10 maxv }
2568 1.10 maxv
2569 1.10 maxv return 0;
2570 1.10 maxv }
2571 1.10 maxv
2572 1.5 maxv static int
2573 1.5 maxv node_main(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2574 1.5 maxv {
2575 1.5 maxv uint8_t byte;
2576 1.5 maxv
2577 1.5 maxv #define ESCAPE 0x0F
2578 1.5 maxv #define VEX_1 0xC5
2579 1.5 maxv #define VEX_2 0xC4
2580 1.5 maxv #define XOP 0x8F
2581 1.5 maxv
2582 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2583 1.5 maxv return -1;
2584 1.5 maxv }
2585 1.5 maxv
2586 1.5 maxv /*
2587 1.5 maxv * We don't take XOP. It is AMD-specific, and it was removed shortly
2588 1.5 maxv * after being introduced.
2589 1.5 maxv */
2590 1.5 maxv if (byte == ESCAPE) {
2591 1.10 maxv fsm_advance(fsm, 1, node_secondary_opcode);
2592 1.5 maxv } else if (!instr->rexpref.present) {
2593 1.5 maxv if (byte == VEX_1) {
2594 1.5 maxv return -1;
2595 1.5 maxv } else if (byte == VEX_2) {
2596 1.5 maxv return -1;
2597 1.5 maxv } else {
2598 1.5 maxv fsm->fn = node_primary_opcode;
2599 1.5 maxv }
2600 1.5 maxv } else {
2601 1.5 maxv fsm->fn = node_primary_opcode;
2602 1.5 maxv }
2603 1.5 maxv
2604 1.5 maxv return 0;
2605 1.5 maxv }
2606 1.5 maxv
2607 1.5 maxv static int
2608 1.5 maxv node_rex_prefix(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2609 1.5 maxv {
2610 1.5 maxv struct x86_rexpref *rexpref = &instr->rexpref;
2611 1.5 maxv uint8_t byte;
2612 1.5 maxv size_t n = 0;
2613 1.5 maxv
2614 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2615 1.5 maxv return -1;
2616 1.5 maxv }
2617 1.5 maxv
2618 1.5 maxv if (byte >= 0x40 && byte <= 0x4F) {
2619 1.5 maxv if (__predict_false(!fsm->is64bit)) {
2620 1.5 maxv return -1;
2621 1.5 maxv }
2622 1.27 maxv rexpref->b = ((byte & 0x1) != 0);
2623 1.27 maxv rexpref->x = ((byte & 0x2) != 0);
2624 1.27 maxv rexpref->r = ((byte & 0x4) != 0);
2625 1.27 maxv rexpref->w = ((byte & 0x8) != 0);
2626 1.5 maxv rexpref->present = true;
2627 1.5 maxv n = 1;
2628 1.5 maxv }
2629 1.5 maxv
2630 1.5 maxv fsm_advance(fsm, n, node_main);
2631 1.5 maxv return 0;
2632 1.5 maxv }
2633 1.5 maxv
2634 1.5 maxv static int
2635 1.5 maxv node_legacy_prefix(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2636 1.5 maxv {
2637 1.5 maxv uint8_t byte;
2638 1.5 maxv
2639 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2640 1.5 maxv return -1;
2641 1.5 maxv }
2642 1.5 maxv
2643 1.13 maxv if (byte == LEG_OPR_OVR) {
2644 1.13 maxv instr->legpref.opr_ovr = 1;
2645 1.13 maxv } else if (byte == LEG_OVR_DS) {
2646 1.13 maxv instr->legpref.seg = NVMM_X64_SEG_DS;
2647 1.13 maxv } else if (byte == LEG_OVR_ES) {
2648 1.13 maxv instr->legpref.seg = NVMM_X64_SEG_ES;
2649 1.13 maxv } else if (byte == LEG_REP) {
2650 1.13 maxv instr->legpref.rep = 1;
2651 1.13 maxv } else if (byte == LEG_OVR_GS) {
2652 1.13 maxv instr->legpref.seg = NVMM_X64_SEG_GS;
2653 1.13 maxv } else if (byte == LEG_OVR_FS) {
2654 1.13 maxv instr->legpref.seg = NVMM_X64_SEG_FS;
2655 1.13 maxv } else if (byte == LEG_ADR_OVR) {
2656 1.13 maxv instr->legpref.adr_ovr = 1;
2657 1.13 maxv } else if (byte == LEG_OVR_CS) {
2658 1.13 maxv instr->legpref.seg = NVMM_X64_SEG_CS;
2659 1.13 maxv } else if (byte == LEG_OVR_SS) {
2660 1.13 maxv instr->legpref.seg = NVMM_X64_SEG_SS;
2661 1.13 maxv } else if (byte == LEG_REPN) {
2662 1.13 maxv instr->legpref.repn = 1;
2663 1.13 maxv } else if (byte == LEG_LOCK) {
2664 1.13 maxv /* ignore */
2665 1.5 maxv } else {
2666 1.13 maxv /* not a legacy prefix */
2667 1.13 maxv fsm_advance(fsm, 0, node_rex_prefix);
2668 1.13 maxv return 0;
2669 1.5 maxv }
2670 1.5 maxv
2671 1.13 maxv fsm_advance(fsm, 1, node_legacy_prefix);
2672 1.5 maxv return 0;
2673 1.5 maxv }
2674 1.5 maxv
2675 1.5 maxv static int
2676 1.5 maxv x86_decode(uint8_t *inst_bytes, size_t inst_len, struct x86_instr *instr,
2677 1.5 maxv struct nvmm_x64_state *state)
2678 1.5 maxv {
2679 1.5 maxv struct x86_decode_fsm fsm;
2680 1.5 maxv int ret;
2681 1.5 maxv
2682 1.5 maxv memset(instr, 0, sizeof(*instr));
2683 1.13 maxv instr->legpref.seg = -1;
2684 1.25 maxv instr->src.hardseg = -1;
2685 1.25 maxv instr->dst.hardseg = -1;
2686 1.5 maxv
2687 1.5 maxv fsm.is64bit = is_64bit(state);
2688 1.5 maxv fsm.is32bit = is_32bit(state);
2689 1.5 maxv fsm.is16bit = is_16bit(state);
2690 1.5 maxv
2691 1.5 maxv fsm.fn = node_legacy_prefix;
2692 1.5 maxv fsm.buf = inst_bytes;
2693 1.5 maxv fsm.end = inst_bytes + inst_len;
2694 1.5 maxv
2695 1.5 maxv while (fsm.fn != NULL) {
2696 1.5 maxv ret = (*fsm.fn)(&fsm, instr);
2697 1.43 reinoud if (ret == -1) {
2698 1.43 reinoud #ifdef NVMM_DEBUG
2699 1.43 reinoud printf("\n%s debug: unrecognized instruction found " \
2700 1.43 reinoud "with max length %ld : [ ", __func__, inst_len);
2701 1.43 reinoud for (uint i = 0; i < inst_len; i++)
2702 1.43 reinoud printf("%02x ", inst_bytes[i]);
2703 1.43 reinoud printf("]\n");
2704 1.43 reinoud fflush(stdout);
2705 1.43 reinoud #endif
2706 1.5 maxv return -1;
2707 1.43 reinoud }
2708 1.5 maxv }
2709 1.5 maxv
2710 1.5 maxv instr->len = fsm.buf - inst_bytes;
2711 1.5 maxv
2712 1.5 maxv return 0;
2713 1.5 maxv }
2714 1.5 maxv
2715 1.5 maxv /* -------------------------------------------------------------------------- */
2716 1.5 maxv
2717 1.19 maxv #define EXEC_INSTR(sz, instr) \
2718 1.19 maxv static uint##sz##_t \
2719 1.20 christos exec_##instr##sz(uint##sz##_t op1, uint##sz##_t op2, uint64_t *rflags) \
2720 1.19 maxv { \
2721 1.19 maxv uint##sz##_t res; \
2722 1.19 maxv __asm __volatile ( \
2723 1.33 maxv #instr" %2, %3;" \
2724 1.33 maxv "mov %3, %1;" \
2725 1.19 maxv "pushfq;" \
2726 1.33 maxv "popq %0" \
2727 1.19 maxv : "=r" (*rflags), "=r" (res) \
2728 1.19 maxv : "r" (op1), "r" (op2)); \
2729 1.19 maxv return res; \
2730 1.19 maxv }
2731 1.19 maxv
2732 1.19 maxv #define EXEC_DISPATCHER(instr) \
2733 1.19 maxv static uint64_t \
2734 1.19 maxv exec_##instr(uint64_t op1, uint64_t op2, uint64_t *rflags, size_t opsize) \
2735 1.19 maxv { \
2736 1.19 maxv switch (opsize) { \
2737 1.19 maxv case 1: \
2738 1.19 maxv return exec_##instr##8(op1, op2, rflags); \
2739 1.19 maxv case 2: \
2740 1.19 maxv return exec_##instr##16(op1, op2, rflags); \
2741 1.19 maxv case 4: \
2742 1.19 maxv return exec_##instr##32(op1, op2, rflags); \
2743 1.19 maxv default: \
2744 1.19 maxv return exec_##instr##64(op1, op2, rflags); \
2745 1.19 maxv } \
2746 1.19 maxv }
2747 1.19 maxv
2748 1.19 maxv /* SUB: ret = op1 - op2 */
2749 1.19 maxv #define PSL_SUB_MASK (PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF|PSL_AF)
2750 1.19 maxv EXEC_INSTR(8, sub)
2751 1.19 maxv EXEC_INSTR(16, sub)
2752 1.19 maxv EXEC_INSTR(32, sub)
2753 1.19 maxv EXEC_INSTR(64, sub)
2754 1.19 maxv EXEC_DISPATCHER(sub)
2755 1.19 maxv
2756 1.19 maxv /* OR: ret = op1 | op2 */
2757 1.19 maxv #define PSL_OR_MASK (PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF)
2758 1.19 maxv EXEC_INSTR(8, or)
2759 1.19 maxv EXEC_INSTR(16, or)
2760 1.19 maxv EXEC_INSTR(32, or)
2761 1.19 maxv EXEC_INSTR(64, or)
2762 1.19 maxv EXEC_DISPATCHER(or)
2763 1.19 maxv
2764 1.19 maxv /* AND: ret = op1 & op2 */
2765 1.19 maxv #define PSL_AND_MASK (PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF)
2766 1.19 maxv EXEC_INSTR(8, and)
2767 1.19 maxv EXEC_INSTR(16, and)
2768 1.19 maxv EXEC_INSTR(32, and)
2769 1.19 maxv EXEC_INSTR(64, and)
2770 1.19 maxv EXEC_DISPATCHER(and)
2771 1.19 maxv
2772 1.19 maxv /* XOR: ret = op1 ^ op2 */
2773 1.19 maxv #define PSL_XOR_MASK (PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF)
2774 1.19 maxv EXEC_INSTR(8, xor)
2775 1.19 maxv EXEC_INSTR(16, xor)
2776 1.19 maxv EXEC_INSTR(32, xor)
2777 1.19 maxv EXEC_INSTR(64, xor)
2778 1.19 maxv EXEC_DISPATCHER(xor)
2779 1.19 maxv
2780 1.19 maxv /* -------------------------------------------------------------------------- */
2781 1.5 maxv
2782 1.19 maxv /*
2783 1.19 maxv * Emulation functions. We don't care about the order of the operands, except
2784 1.33 maxv * for SUB, CMP and TEST. For these ones we look at mem->write to determine who
2785 1.19 maxv * is op1 and who is op2.
2786 1.19 maxv */
2787 1.5 maxv
2788 1.5 maxv static void
2789 1.37 maxv x86_func_or(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2790 1.5 maxv {
2791 1.19 maxv uint64_t *retval = (uint64_t *)mem->data;
2792 1.5 maxv const bool write = mem->write;
2793 1.19 maxv uint64_t *op1, op2, fl, ret;
2794 1.5 maxv
2795 1.19 maxv op1 = (uint64_t *)mem->data;
2796 1.19 maxv op2 = 0;
2797 1.5 maxv
2798 1.19 maxv /* Fetch the value to be OR'ed (op2). */
2799 1.19 maxv mem->data = (uint8_t *)&op2;
2800 1.5 maxv mem->write = false;
2801 1.37 maxv (*vcpu->cbs.mem)(mem);
2802 1.5 maxv
2803 1.5 maxv /* Perform the OR. */
2804 1.19 maxv ret = exec_or(*op1, op2, &fl, mem->size);
2805 1.5 maxv
2806 1.5 maxv if (write) {
2807 1.5 maxv /* Write back the result. */
2808 1.19 maxv mem->data = (uint8_t *)&ret;
2809 1.5 maxv mem->write = true;
2810 1.37 maxv (*vcpu->cbs.mem)(mem);
2811 1.19 maxv } else {
2812 1.19 maxv /* Return data to the caller. */
2813 1.19 maxv *retval = ret;
2814 1.5 maxv }
2815 1.5 maxv
2816 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_OR_MASK;
2817 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_OR_MASK);
2818 1.5 maxv }
2819 1.5 maxv
2820 1.5 maxv static void
2821 1.37 maxv x86_func_and(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2822 1.5 maxv {
2823 1.19 maxv uint64_t *retval = (uint64_t *)mem->data;
2824 1.5 maxv const bool write = mem->write;
2825 1.19 maxv uint64_t *op1, op2, fl, ret;
2826 1.5 maxv
2827 1.19 maxv op1 = (uint64_t *)mem->data;
2828 1.19 maxv op2 = 0;
2829 1.5 maxv
2830 1.19 maxv /* Fetch the value to be AND'ed (op2). */
2831 1.19 maxv mem->data = (uint8_t *)&op2;
2832 1.5 maxv mem->write = false;
2833 1.37 maxv (*vcpu->cbs.mem)(mem);
2834 1.5 maxv
2835 1.5 maxv /* Perform the AND. */
2836 1.19 maxv ret = exec_and(*op1, op2, &fl, mem->size);
2837 1.5 maxv
2838 1.5 maxv if (write) {
2839 1.5 maxv /* Write back the result. */
2840 1.19 maxv mem->data = (uint8_t *)&ret;
2841 1.5 maxv mem->write = true;
2842 1.37 maxv (*vcpu->cbs.mem)(mem);
2843 1.19 maxv } else {
2844 1.19 maxv /* Return data to the caller. */
2845 1.19 maxv *retval = ret;
2846 1.5 maxv }
2847 1.5 maxv
2848 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_AND_MASK;
2849 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_AND_MASK);
2850 1.5 maxv }
2851 1.5 maxv
2852 1.5 maxv static void
2853 1.37 maxv x86_func_xchg(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2854 1.33 maxv {
2855 1.33 maxv uint64_t *op1, op2;
2856 1.33 maxv
2857 1.33 maxv op1 = (uint64_t *)mem->data;
2858 1.33 maxv op2 = 0;
2859 1.33 maxv
2860 1.33 maxv /* Fetch op2. */
2861 1.33 maxv mem->data = (uint8_t *)&op2;
2862 1.33 maxv mem->write = false;
2863 1.37 maxv (*vcpu->cbs.mem)(mem);
2864 1.33 maxv
2865 1.33 maxv /* Write op1 in op2. */
2866 1.33 maxv mem->data = (uint8_t *)op1;
2867 1.33 maxv mem->write = true;
2868 1.37 maxv (*vcpu->cbs.mem)(mem);
2869 1.33 maxv
2870 1.33 maxv /* Write op2 in op1. */
2871 1.33 maxv *op1 = op2;
2872 1.33 maxv }
2873 1.33 maxv
2874 1.33 maxv static void
2875 1.37 maxv x86_func_sub(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2876 1.5 maxv {
2877 1.19 maxv uint64_t *retval = (uint64_t *)mem->data;
2878 1.5 maxv const bool write = mem->write;
2879 1.19 maxv uint64_t *op1, *op2, fl, ret;
2880 1.19 maxv uint64_t tmp;
2881 1.19 maxv bool memop1;
2882 1.19 maxv
2883 1.19 maxv memop1 = !mem->write;
2884 1.19 maxv op1 = memop1 ? &tmp : (uint64_t *)mem->data;
2885 1.19 maxv op2 = memop1 ? (uint64_t *)mem->data : &tmp;
2886 1.19 maxv
2887 1.19 maxv /* Fetch the value to be SUB'ed (op1 or op2). */
2888 1.19 maxv mem->data = (uint8_t *)&tmp;
2889 1.19 maxv mem->write = false;
2890 1.37 maxv (*vcpu->cbs.mem)(mem);
2891 1.19 maxv
2892 1.19 maxv /* Perform the SUB. */
2893 1.19 maxv ret = exec_sub(*op1, *op2, &fl, mem->size);
2894 1.19 maxv
2895 1.19 maxv if (write) {
2896 1.19 maxv /* Write back the result. */
2897 1.19 maxv mem->data = (uint8_t *)&ret;
2898 1.19 maxv mem->write = true;
2899 1.37 maxv (*vcpu->cbs.mem)(mem);
2900 1.19 maxv } else {
2901 1.19 maxv /* Return data to the caller. */
2902 1.19 maxv *retval = ret;
2903 1.19 maxv }
2904 1.19 maxv
2905 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_SUB_MASK;
2906 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_SUB_MASK);
2907 1.19 maxv }
2908 1.5 maxv
2909 1.19 maxv static void
2910 1.37 maxv x86_func_xor(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2911 1.19 maxv {
2912 1.19 maxv uint64_t *retval = (uint64_t *)mem->data;
2913 1.19 maxv const bool write = mem->write;
2914 1.19 maxv uint64_t *op1, op2, fl, ret;
2915 1.5 maxv
2916 1.19 maxv op1 = (uint64_t *)mem->data;
2917 1.19 maxv op2 = 0;
2918 1.5 maxv
2919 1.19 maxv /* Fetch the value to be XOR'ed (op2). */
2920 1.19 maxv mem->data = (uint8_t *)&op2;
2921 1.5 maxv mem->write = false;
2922 1.37 maxv (*vcpu->cbs.mem)(mem);
2923 1.5 maxv
2924 1.5 maxv /* Perform the XOR. */
2925 1.19 maxv ret = exec_xor(*op1, op2, &fl, mem->size);
2926 1.5 maxv
2927 1.5 maxv if (write) {
2928 1.5 maxv /* Write back the result. */
2929 1.19 maxv mem->data = (uint8_t *)&ret;
2930 1.5 maxv mem->write = true;
2931 1.37 maxv (*vcpu->cbs.mem)(mem);
2932 1.19 maxv } else {
2933 1.19 maxv /* Return data to the caller. */
2934 1.19 maxv *retval = ret;
2935 1.5 maxv }
2936 1.5 maxv
2937 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_XOR_MASK;
2938 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_XOR_MASK);
2939 1.5 maxv }
2940 1.5 maxv
2941 1.5 maxv static void
2942 1.37 maxv x86_func_cmp(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2943 1.19 maxv {
2944 1.19 maxv uint64_t *op1, *op2, fl;
2945 1.19 maxv uint64_t tmp;
2946 1.19 maxv bool memop1;
2947 1.19 maxv
2948 1.19 maxv memop1 = !mem->write;
2949 1.19 maxv op1 = memop1 ? &tmp : (uint64_t *)mem->data;
2950 1.19 maxv op2 = memop1 ? (uint64_t *)mem->data : &tmp;
2951 1.19 maxv
2952 1.19 maxv /* Fetch the value to be CMP'ed (op1 or op2). */
2953 1.19 maxv mem->data = (uint8_t *)&tmp;
2954 1.19 maxv mem->write = false;
2955 1.37 maxv (*vcpu->cbs.mem)(mem);
2956 1.19 maxv
2957 1.19 maxv /* Perform the CMP. */
2958 1.19 maxv exec_sub(*op1, *op2, &fl, mem->size);
2959 1.19 maxv
2960 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_SUB_MASK;
2961 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_SUB_MASK);
2962 1.19 maxv }
2963 1.19 maxv
2964 1.19 maxv static void
2965 1.37 maxv x86_func_test(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2966 1.19 maxv {
2967 1.19 maxv uint64_t *op1, *op2, fl;
2968 1.19 maxv uint64_t tmp;
2969 1.19 maxv bool memop1;
2970 1.19 maxv
2971 1.19 maxv memop1 = !mem->write;
2972 1.19 maxv op1 = memop1 ? &tmp : (uint64_t *)mem->data;
2973 1.19 maxv op2 = memop1 ? (uint64_t *)mem->data : &tmp;
2974 1.19 maxv
2975 1.19 maxv /* Fetch the value to be TEST'ed (op1 or op2). */
2976 1.19 maxv mem->data = (uint8_t *)&tmp;
2977 1.19 maxv mem->write = false;
2978 1.37 maxv (*vcpu->cbs.mem)(mem);
2979 1.19 maxv
2980 1.19 maxv /* Perform the TEST. */
2981 1.19 maxv exec_and(*op1, *op2, &fl, mem->size);
2982 1.19 maxv
2983 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_AND_MASK;
2984 1.19 maxv gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_AND_MASK);
2985 1.19 maxv }
2986 1.19 maxv
2987 1.19 maxv static void
2988 1.37 maxv x86_func_mov(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2989 1.5 maxv {
2990 1.5 maxv /*
2991 1.5 maxv * Nothing special, just move without emulation.
2992 1.5 maxv */
2993 1.37 maxv (*vcpu->cbs.mem)(mem);
2994 1.5 maxv }
2995 1.5 maxv
2996 1.5 maxv static void
2997 1.37 maxv x86_func_stos(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2998 1.5 maxv {
2999 1.5 maxv /*
3000 1.5 maxv * Just move, and update RDI.
3001 1.5 maxv */
3002 1.37 maxv (*vcpu->cbs.mem)(mem);
3003 1.5 maxv
3004 1.5 maxv if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
3005 1.5 maxv gprs[NVMM_X64_GPR_RDI] -= mem->size;
3006 1.5 maxv } else {
3007 1.5 maxv gprs[NVMM_X64_GPR_RDI] += mem->size;
3008 1.5 maxv }
3009 1.5 maxv }
3010 1.5 maxv
3011 1.5 maxv static void
3012 1.37 maxv x86_func_lods(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
3013 1.5 maxv {
3014 1.5 maxv /*
3015 1.5 maxv * Just move, and update RSI.
3016 1.5 maxv */
3017 1.37 maxv (*vcpu->cbs.mem)(mem);
3018 1.5 maxv
3019 1.5 maxv if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
3020 1.5 maxv gprs[NVMM_X64_GPR_RSI] -= mem->size;
3021 1.5 maxv } else {
3022 1.5 maxv gprs[NVMM_X64_GPR_RSI] += mem->size;
3023 1.5 maxv }
3024 1.5 maxv }
3025 1.5 maxv
3026 1.5 maxv /* -------------------------------------------------------------------------- */
3027 1.5 maxv
3028 1.5 maxv static inline uint64_t
3029 1.5 maxv gpr_read_address(struct x86_instr *instr, struct nvmm_x64_state *state, int gpr)
3030 1.5 maxv {
3031 1.5 maxv uint64_t val;
3032 1.5 maxv
3033 1.5 maxv val = state->gprs[gpr];
3034 1.15 maxv val &= size_to_mask(instr->address_size);
3035 1.5 maxv
3036 1.5 maxv return val;
3037 1.5 maxv }
3038 1.5 maxv
3039 1.5 maxv static int
3040 1.6 maxv store_to_gva(struct nvmm_x64_state *state, struct x86_instr *instr,
3041 1.6 maxv struct x86_store *store, gvaddr_t *gvap, size_t size)
3042 1.5 maxv {
3043 1.5 maxv struct x86_sib *sib;
3044 1.6 maxv gvaddr_t gva = 0;
3045 1.5 maxv uint64_t reg;
3046 1.5 maxv int ret, seg;
3047 1.5 maxv
3048 1.5 maxv if (store->type == STORE_SIB) {
3049 1.5 maxv sib = &store->u.sib;
3050 1.5 maxv if (sib->bas != NULL)
3051 1.5 maxv gva += gpr_read_address(instr, state, sib->bas->num);
3052 1.5 maxv if (sib->idx != NULL) {
3053 1.5 maxv reg = gpr_read_address(instr, state, sib->idx->num);
3054 1.5 maxv gva += sib->scale * reg;
3055 1.5 maxv }
3056 1.5 maxv } else if (store->type == STORE_REG) {
3057 1.9 maxv if (store->u.reg == NULL) {
3058 1.32 maxv /* The base is null. Happens with disp32-only and
3059 1.32 maxv * disp16-only. */
3060 1.9 maxv } else {
3061 1.9 maxv gva = gpr_read_address(instr, state, store->u.reg->num);
3062 1.9 maxv }
3063 1.32 maxv } else if (store->type == STORE_DUALREG) {
3064 1.32 maxv gva = gpr_read_address(instr, state, store->u.dualreg.reg1) +
3065 1.32 maxv gpr_read_address(instr, state, store->u.dualreg.reg2);
3066 1.5 maxv } else {
3067 1.5 maxv gva = store->u.dmo;
3068 1.5 maxv }
3069 1.5 maxv
3070 1.5 maxv if (store->disp.type != DISP_NONE) {
3071 1.11 maxv gva += store->disp.data;
3072 1.5 maxv }
3073 1.5 maxv
3074 1.25 maxv if (store->hardseg != -1) {
3075 1.15 maxv seg = store->hardseg;
3076 1.15 maxv } else {
3077 1.15 maxv if (__predict_false(instr->legpref.seg != -1)) {
3078 1.15 maxv seg = instr->legpref.seg;
3079 1.5 maxv } else {
3080 1.15 maxv seg = NVMM_X64_SEG_DS;
3081 1.5 maxv }
3082 1.15 maxv }
3083 1.5 maxv
3084 1.15 maxv if (__predict_true(is_long_mode(state))) {
3085 1.15 maxv if (seg == NVMM_X64_SEG_GS || seg == NVMM_X64_SEG_FS) {
3086 1.15 maxv segment_apply(&state->segs[seg], &gva);
3087 1.15 maxv }
3088 1.15 maxv } else {
3089 1.15 maxv ret = segment_check(&state->segs[seg], gva, size);
3090 1.5 maxv if (ret == -1)
3091 1.5 maxv return -1;
3092 1.15 maxv segment_apply(&state->segs[seg], &gva);
3093 1.5 maxv }
3094 1.5 maxv
3095 1.6 maxv *gvap = gva;
3096 1.6 maxv return 0;
3097 1.6 maxv }
3098 1.6 maxv
3099 1.6 maxv static int
3100 1.37 maxv fetch_segment(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
3101 1.8 maxv {
3102 1.37 maxv struct nvmm_x64_state *state = vcpu->state;
3103 1.21 maxv uint8_t inst_bytes[5], byte;
3104 1.13 maxv size_t i, fetchsize;
3105 1.8 maxv gvaddr_t gva;
3106 1.8 maxv int ret, seg;
3107 1.8 maxv
3108 1.8 maxv fetchsize = sizeof(inst_bytes);
3109 1.8 maxv
3110 1.8 maxv gva = state->gprs[NVMM_X64_GPR_RIP];
3111 1.15 maxv if (__predict_false(!is_long_mode(state))) {
3112 1.15 maxv ret = segment_check(&state->segs[NVMM_X64_SEG_CS], gva,
3113 1.8 maxv fetchsize);
3114 1.8 maxv if (ret == -1)
3115 1.8 maxv return -1;
3116 1.15 maxv segment_apply(&state->segs[NVMM_X64_SEG_CS], &gva);
3117 1.8 maxv }
3118 1.8 maxv
3119 1.37 maxv ret = read_guest_memory(mach, vcpu, gva, inst_bytes, fetchsize);
3120 1.8 maxv if (ret == -1)
3121 1.8 maxv return -1;
3122 1.8 maxv
3123 1.8 maxv seg = NVMM_X64_SEG_DS;
3124 1.13 maxv for (i = 0; i < fetchsize; i++) {
3125 1.13 maxv byte = inst_bytes[i];
3126 1.13 maxv
3127 1.13 maxv if (byte == LEG_OVR_DS) {
3128 1.13 maxv seg = NVMM_X64_SEG_DS;
3129 1.13 maxv } else if (byte == LEG_OVR_ES) {
3130 1.13 maxv seg = NVMM_X64_SEG_ES;
3131 1.13 maxv } else if (byte == LEG_OVR_GS) {
3132 1.13 maxv seg = NVMM_X64_SEG_GS;
3133 1.13 maxv } else if (byte == LEG_OVR_FS) {
3134 1.13 maxv seg = NVMM_X64_SEG_FS;
3135 1.13 maxv } else if (byte == LEG_OVR_CS) {
3136 1.13 maxv seg = NVMM_X64_SEG_CS;
3137 1.13 maxv } else if (byte == LEG_OVR_SS) {
3138 1.13 maxv seg = NVMM_X64_SEG_SS;
3139 1.13 maxv } else if (byte == LEG_OPR_OVR) {
3140 1.13 maxv /* nothing */
3141 1.13 maxv } else if (byte == LEG_ADR_OVR) {
3142 1.13 maxv /* nothing */
3143 1.13 maxv } else if (byte == LEG_REP) {
3144 1.13 maxv /* nothing */
3145 1.13 maxv } else if (byte == LEG_REPN) {
3146 1.13 maxv /* nothing */
3147 1.13 maxv } else if (byte == LEG_LOCK) {
3148 1.13 maxv /* nothing */
3149 1.13 maxv } else {
3150 1.13 maxv return seg;
3151 1.8 maxv }
3152 1.8 maxv }
3153 1.8 maxv
3154 1.8 maxv return seg;
3155 1.8 maxv }
3156 1.8 maxv
3157 1.8 maxv static int
3158 1.37 maxv fetch_instruction(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
3159 1.36 maxv struct nvmm_vcpu_exit *exit)
3160 1.5 maxv {
3161 1.37 maxv struct nvmm_x64_state *state = vcpu->state;
3162 1.6 maxv size_t fetchsize;
3163 1.6 maxv gvaddr_t gva;
3164 1.5 maxv int ret;
3165 1.5 maxv
3166 1.5 maxv fetchsize = sizeof(exit->u.mem.inst_bytes);
3167 1.5 maxv
3168 1.5 maxv gva = state->gprs[NVMM_X64_GPR_RIP];
3169 1.15 maxv if (__predict_false(!is_long_mode(state))) {
3170 1.15 maxv ret = segment_check(&state->segs[NVMM_X64_SEG_CS], gva,
3171 1.5 maxv fetchsize);
3172 1.5 maxv if (ret == -1)
3173 1.5 maxv return -1;
3174 1.15 maxv segment_apply(&state->segs[NVMM_X64_SEG_CS], &gva);
3175 1.5 maxv }
3176 1.5 maxv
3177 1.37 maxv ret = read_guest_memory(mach, vcpu, gva, exit->u.mem.inst_bytes,
3178 1.6 maxv fetchsize);
3179 1.6 maxv if (ret == -1)
3180 1.6 maxv return -1;
3181 1.6 maxv
3182 1.6 maxv exit->u.mem.inst_len = fetchsize;
3183 1.6 maxv
3184 1.6 maxv return 0;
3185 1.6 maxv }
3186 1.6 maxv
3187 1.6 maxv static int
3188 1.43 reinoud assist_mem_movs(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
3189 1.6 maxv struct x86_instr *instr)
3190 1.6 maxv {
3191 1.37 maxv struct nvmm_x64_state *state = vcpu->state;
3192 1.43 reinoud uint64_t *gprs;
3193 1.6 maxv uint8_t data[8];
3194 1.6 maxv gvaddr_t gva;
3195 1.6 maxv size_t size;
3196 1.6 maxv int ret;
3197 1.6 maxv
3198 1.6 maxv size = instr->operand_size;
3199 1.43 reinoud gprs = state->gprs;
3200 1.5 maxv
3201 1.6 maxv /* Source. */
3202 1.6 maxv ret = store_to_gva(state, instr, &instr->src, &gva, size);
3203 1.5 maxv if (ret == -1)
3204 1.5 maxv return -1;
3205 1.37 maxv ret = read_guest_memory(mach, vcpu, gva, data, size);
3206 1.6 maxv if (ret == -1)
3207 1.5 maxv return -1;
3208 1.5 maxv
3209 1.6 maxv /* Destination. */
3210 1.6 maxv ret = store_to_gva(state, instr, &instr->dst, &gva, size);
3211 1.6 maxv if (ret == -1)
3212 1.6 maxv return -1;
3213 1.37 maxv ret = write_guest_memory(mach, vcpu, gva, data, size);
3214 1.5 maxv if (ret == -1)
3215 1.5 maxv return -1;
3216 1.5 maxv
3217 1.43 reinoud /*
3218 1.43 reinoud * Inlined x86_func_movs() call
3219 1.43 reinoud * (*instr->emul->func)(vcpu, &mem, state->gprs);
3220 1.43 reinoud */
3221 1.43 reinoud
3222 1.43 reinoud if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
3223 1.43 reinoud gprs[NVMM_X64_GPR_RSI] -= size;
3224 1.43 reinoud gprs[NVMM_X64_GPR_RDI] -= size;
3225 1.43 reinoud } else {
3226 1.43 reinoud gprs[NVMM_X64_GPR_RSI] += size;
3227 1.43 reinoud gprs[NVMM_X64_GPR_RDI] += size;
3228 1.43 reinoud }
3229 1.43 reinoud
3230 1.43 reinoud return 0;
3231 1.43 reinoud }
3232 1.43 reinoud
3233 1.43 reinoud static int
3234 1.43 reinoud assist_mem_cmps(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
3235 1.43 reinoud struct x86_instr *instr)
3236 1.43 reinoud {
3237 1.43 reinoud struct nvmm_x64_state *state = vcpu->state;
3238 1.43 reinoud uint64_t *gprs, op1, op2, fl;
3239 1.43 reinoud uint8_t data1[8], data2[8];
3240 1.43 reinoud gvaddr_t gva;
3241 1.43 reinoud size_t size;
3242 1.43 reinoud int ret;
3243 1.43 reinoud
3244 1.43 reinoud size = instr->operand_size;
3245 1.43 reinoud gprs = state->gprs;
3246 1.43 reinoud
3247 1.43 reinoud /* Source 1. */
3248 1.43 reinoud ret = store_to_gva(state, instr, &instr->src, &gva, size);
3249 1.43 reinoud if (ret == -1)
3250 1.43 reinoud return -1;
3251 1.43 reinoud ret = read_guest_memory(mach, vcpu, gva, data1, size);
3252 1.43 reinoud if (ret == -1)
3253 1.43 reinoud return -1;
3254 1.43 reinoud
3255 1.43 reinoud /* Source 2. */
3256 1.43 reinoud ret = store_to_gva(state, instr, &instr->dst, &gva, size);
3257 1.43 reinoud if (ret == -1)
3258 1.43 reinoud return -1;
3259 1.43 reinoud ret = read_guest_memory(mach, vcpu, gva, data2, size);
3260 1.43 reinoud if (ret == -1)
3261 1.43 reinoud return -1;
3262 1.43 reinoud
3263 1.43 reinoud /*
3264 1.43 reinoud * Inlined x86_func_cmps() call
3265 1.43 reinoud * (*instr->emul->func)(vcpu, &mem, state->gprs);
3266 1.43 reinoud */
3267 1.43 reinoud
3268 1.43 reinoud /* Perform the CMP. */
3269 1.43 reinoud op1 = *((uint64_t *) data1);
3270 1.43 reinoud op2 = *((uint64_t *) data2);
3271 1.43 reinoud exec_sub(op1, op2, &fl, size);
3272 1.43 reinoud
3273 1.43 reinoud gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_SUB_MASK;
3274 1.43 reinoud gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_SUB_MASK);
3275 1.43 reinoud
3276 1.43 reinoud if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
3277 1.43 reinoud gprs[NVMM_X64_GPR_RSI] -= size;
3278 1.43 reinoud gprs[NVMM_X64_GPR_RDI] -= size;
3279 1.43 reinoud } else {
3280 1.43 reinoud gprs[NVMM_X64_GPR_RSI] += size;
3281 1.43 reinoud gprs[NVMM_X64_GPR_RDI] += size;
3282 1.43 reinoud }
3283 1.5 maxv
3284 1.5 maxv return 0;
3285 1.5 maxv }
3286 1.5 maxv
3287 1.6 maxv static int
3288 1.37 maxv assist_mem_single(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
3289 1.37 maxv struct x86_instr *instr)
3290 1.5 maxv {
3291 1.37 maxv struct nvmm_x64_state *state = vcpu->state;
3292 1.37 maxv struct nvmm_vcpu_exit *exit = vcpu->exit;
3293 1.5 maxv struct nvmm_mem mem;
3294 1.10 maxv uint8_t membuf[8];
3295 1.5 maxv uint64_t val;
3296 1.5 maxv
3297 1.11 maxv memset(membuf, 0, sizeof(membuf));
3298 1.12 maxv
3299 1.37 maxv mem.mach = mach;
3300 1.37 maxv mem.vcpu = vcpu;
3301 1.12 maxv mem.gpa = exit->u.mem.gpa;
3302 1.12 maxv mem.size = instr->operand_size;
3303 1.10 maxv mem.data = membuf;
3304 1.5 maxv
3305 1.12 maxv /* Determine the direction. */
3306 1.6 maxv switch (instr->src.type) {
3307 1.5 maxv case STORE_REG:
3308 1.6 maxv if (instr->src.disp.type != DISP_NONE) {
3309 1.5 maxv /* Indirect access. */
3310 1.5 maxv mem.write = false;
3311 1.5 maxv } else {
3312 1.5 maxv /* Direct access. */
3313 1.5 maxv mem.write = true;
3314 1.5 maxv }
3315 1.5 maxv break;
3316 1.32 maxv case STORE_DUALREG:
3317 1.32 maxv if (instr->src.disp.type == DISP_NONE) {
3318 1.32 maxv DISASSEMBLER_BUG();
3319 1.32 maxv }
3320 1.32 maxv mem.write = false;
3321 1.32 maxv break;
3322 1.5 maxv case STORE_IMM:
3323 1.5 maxv mem.write = true;
3324 1.5 maxv break;
3325 1.5 maxv case STORE_SIB:
3326 1.5 maxv mem.write = false;
3327 1.5 maxv break;
3328 1.5 maxv case STORE_DMO:
3329 1.5 maxv mem.write = false;
3330 1.5 maxv break;
3331 1.5 maxv default:
3332 1.12 maxv DISASSEMBLER_BUG();
3333 1.5 maxv }
3334 1.5 maxv
3335 1.12 maxv if (mem.write) {
3336 1.12 maxv switch (instr->src.type) {
3337 1.12 maxv case STORE_REG:
3338 1.33 maxv /* The instruction was "reg -> mem". Fetch the register
3339 1.33 maxv * in membuf. */
3340 1.33 maxv if (__predict_false(instr->src.disp.type != DISP_NONE)) {
3341 1.5 maxv DISASSEMBLER_BUG();
3342 1.5 maxv }
3343 1.12 maxv val = state->gprs[instr->src.u.reg->num];
3344 1.12 maxv val = __SHIFTOUT(val, instr->src.u.reg->mask);
3345 1.12 maxv memcpy(mem.data, &val, mem.size);
3346 1.12 maxv break;
3347 1.12 maxv case STORE_IMM:
3348 1.33 maxv /* The instruction was "imm -> mem". Fetch the immediate
3349 1.33 maxv * in membuf. */
3350 1.12 maxv memcpy(mem.data, &instr->src.u.imm.data, mem.size);
3351 1.12 maxv break;
3352 1.12 maxv default:
3353 1.5 maxv DISASSEMBLER_BUG();
3354 1.5 maxv }
3355 1.33 maxv } else if (instr->emul->readreg) {
3356 1.33 maxv /* The instruction was "mem -> reg", but the value of the
3357 1.33 maxv * register matters for the emul func. Fetch it in membuf. */
3358 1.33 maxv if (__predict_false(instr->dst.type != STORE_REG)) {
3359 1.19 maxv DISASSEMBLER_BUG();
3360 1.19 maxv }
3361 1.33 maxv if (__predict_false(instr->dst.disp.type != DISP_NONE)) {
3362 1.19 maxv DISASSEMBLER_BUG();
3363 1.19 maxv }
3364 1.19 maxv val = state->gprs[instr->dst.u.reg->num];
3365 1.19 maxv val = __SHIFTOUT(val, instr->dst.u.reg->mask);
3366 1.19 maxv memcpy(mem.data, &val, mem.size);
3367 1.5 maxv }
3368 1.5 maxv
3369 1.37 maxv (*instr->emul->func)(vcpu, &mem, state->gprs);
3370 1.5 maxv
3371 1.33 maxv if (instr->emul->notouch) {
3372 1.33 maxv /* We're done. */
3373 1.33 maxv return 0;
3374 1.33 maxv }
3375 1.33 maxv
3376 1.33 maxv if (!mem.write) {
3377 1.33 maxv /* The instruction was "mem -> reg". The emul func has filled
3378 1.33 maxv * membuf with the memory content. Install membuf in the
3379 1.33 maxv * register. */
3380 1.33 maxv if (__predict_false(instr->dst.type != STORE_REG)) {
3381 1.33 maxv DISASSEMBLER_BUG();
3382 1.33 maxv }
3383 1.33 maxv if (__predict_false(instr->dst.disp.type != DISP_NONE)) {
3384 1.12 maxv DISASSEMBLER_BUG();
3385 1.12 maxv }
3386 1.19 maxv memcpy(&val, membuf, sizeof(uint64_t));
3387 1.6 maxv val = __SHIFTIN(val, instr->dst.u.reg->mask);
3388 1.6 maxv state->gprs[instr->dst.u.reg->num] &= ~instr->dst.u.reg->mask;
3389 1.6 maxv state->gprs[instr->dst.u.reg->num] |= val;
3390 1.10 maxv state->gprs[instr->dst.u.reg->num] &= ~instr->zeroextend_mask;
3391 1.33 maxv } else if (instr->emul->backprop) {
3392 1.33 maxv /* The instruction was "reg -> mem", but the memory must be
3393 1.33 maxv * back-propagated to the register. Install membuf in the
3394 1.33 maxv * register. */
3395 1.33 maxv if (__predict_false(instr->src.type != STORE_REG)) {
3396 1.33 maxv DISASSEMBLER_BUG();
3397 1.33 maxv }
3398 1.33 maxv if (__predict_false(instr->src.disp.type != DISP_NONE)) {
3399 1.33 maxv DISASSEMBLER_BUG();
3400 1.33 maxv }
3401 1.33 maxv memcpy(&val, membuf, sizeof(uint64_t));
3402 1.33 maxv val = __SHIFTIN(val, instr->src.u.reg->mask);
3403 1.33 maxv state->gprs[instr->src.u.reg->num] &= ~instr->src.u.reg->mask;
3404 1.33 maxv state->gprs[instr->src.u.reg->num] |= val;
3405 1.33 maxv state->gprs[instr->src.u.reg->num] &= ~instr->zeroextend_mask;
3406 1.6 maxv }
3407 1.6 maxv
3408 1.6 maxv return 0;
3409 1.6 maxv }
3410 1.6 maxv
3411 1.6 maxv int
3412 1.31 maxv nvmm_assist_mem(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
3413 1.6 maxv {
3414 1.31 maxv struct nvmm_x64_state *state = vcpu->state;
3415 1.36 maxv struct nvmm_vcpu_exit *exit = vcpu->exit;
3416 1.6 maxv struct x86_instr instr;
3417 1.15 maxv uint64_t cnt = 0; /* GCC */
3418 1.6 maxv int ret;
3419 1.6 maxv
3420 1.36 maxv if (__predict_false(exit->reason != NVMM_VCPU_EXIT_MEMORY)) {
3421 1.6 maxv errno = EINVAL;
3422 1.6 maxv return -1;
3423 1.6 maxv }
3424 1.6 maxv
3425 1.31 maxv ret = nvmm_vcpu_getstate(mach, vcpu,
3426 1.15 maxv NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
3427 1.15 maxv NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
3428 1.6 maxv if (ret == -1)
3429 1.6 maxv return -1;
3430 1.6 maxv
3431 1.6 maxv if (exit->u.mem.inst_len == 0) {
3432 1.6 maxv /*
3433 1.6 maxv * The instruction was not fetched from the kernel. Fetch
3434 1.6 maxv * it ourselves.
3435 1.6 maxv */
3436 1.37 maxv ret = fetch_instruction(mach, vcpu, exit);
3437 1.6 maxv if (ret == -1)
3438 1.6 maxv return -1;
3439 1.6 maxv }
3440 1.6 maxv
3441 1.6 maxv ret = x86_decode(exit->u.mem.inst_bytes, exit->u.mem.inst_len,
3442 1.31 maxv &instr, state);
3443 1.6 maxv if (ret == -1) {
3444 1.6 maxv errno = ENODEV;
3445 1.6 maxv return -1;
3446 1.6 maxv }
3447 1.6 maxv
3448 1.15 maxv if (instr.legpref.rep || instr.legpref.repn) {
3449 1.31 maxv cnt = rep_get_cnt(state, instr.address_size);
3450 1.15 maxv if (__predict_false(cnt == 0)) {
3451 1.31 maxv state->gprs[NVMM_X64_GPR_RIP] += instr.len;
3452 1.15 maxv goto out;
3453 1.15 maxv }
3454 1.15 maxv }
3455 1.15 maxv
3456 1.6 maxv if (instr.opcode->movs) {
3457 1.43 reinoud ret = assist_mem_movs(mach, vcpu, &instr);
3458 1.43 reinoud } else if (instr.opcode->cmps) {
3459 1.43 reinoud instr.legpref.repe = !instr.legpref.repn;
3460 1.43 reinoud ret = assist_mem_cmps(mach, vcpu, &instr);
3461 1.6 maxv } else {
3462 1.37 maxv ret = assist_mem_single(mach, vcpu, &instr);
3463 1.6 maxv }
3464 1.6 maxv if (ret == -1) {
3465 1.6 maxv errno = ENODEV;
3466 1.6 maxv return -1;
3467 1.5 maxv }
3468 1.5 maxv
3469 1.14 maxv if (instr.legpref.rep || instr.legpref.repn) {
3470 1.15 maxv cnt -= 1;
3471 1.31 maxv rep_set_cnt(state, instr.address_size, cnt);
3472 1.6 maxv if (cnt == 0) {
3473 1.31 maxv state->gprs[NVMM_X64_GPR_RIP] += instr.len;
3474 1.14 maxv } else if (__predict_false(instr.legpref.repn)) {
3475 1.43 reinoud /* repn */
3476 1.31 maxv if (state->gprs[NVMM_X64_GPR_RFLAGS] & PSL_Z) {
3477 1.31 maxv state->gprs[NVMM_X64_GPR_RIP] += instr.len;
3478 1.14 maxv }
3479 1.43 reinoud } else if (__predict_false(instr.legpref.repe)) {
3480 1.43 reinoud /* repe */
3481 1.43 reinoud if ((state->gprs[NVMM_X64_GPR_RFLAGS] & PSL_Z) == 0) {
3482 1.43 reinoud state->gprs[NVMM_X64_GPR_RIP] += instr.len;
3483 1.43 reinoud }
3484 1.5 maxv }
3485 1.5 maxv } else {
3486 1.31 maxv state->gprs[NVMM_X64_GPR_RIP] += instr.len;
3487 1.5 maxv }
3488 1.5 maxv
3489 1.15 maxv out:
3490 1.31 maxv ret = nvmm_vcpu_setstate(mach, vcpu, NVMM_X64_STATE_GPRS);
3491 1.5 maxv if (ret == -1)
3492 1.5 maxv return -1;
3493 1.5 maxv
3494 1.5 maxv return 0;
3495 1.1 maxv }
3496