libnvmm_x86.c revision 1.5 1 1.5 maxv /* $NetBSD: libnvmm_x86.c,v 1.5 2018/12/15 13:09:02 maxv Exp $ */
2 1.1 maxv
3 1.1 maxv /*
4 1.1 maxv * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 1.1 maxv * All rights reserved.
6 1.1 maxv *
7 1.1 maxv * This code is derived from software contributed to The NetBSD Foundation
8 1.1 maxv * by Maxime Villard.
9 1.1 maxv *
10 1.1 maxv * Redistribution and use in source and binary forms, with or without
11 1.1 maxv * modification, are permitted provided that the following conditions
12 1.1 maxv * are met:
13 1.1 maxv * 1. Redistributions of source code must retain the above copyright
14 1.1 maxv * notice, this list of conditions and the following disclaimer.
15 1.1 maxv * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 maxv * notice, this list of conditions and the following disclaimer in the
17 1.1 maxv * documentation and/or other materials provided with the distribution.
18 1.1 maxv *
19 1.1 maxv * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 maxv * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 maxv * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 maxv * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 maxv * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 maxv * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 maxv * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 maxv * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 maxv * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 maxv * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 maxv * POSSIBILITY OF SUCH DAMAGE.
30 1.1 maxv */
31 1.1 maxv
32 1.1 maxv #include <sys/cdefs.h>
33 1.1 maxv
34 1.1 maxv #include <stdio.h>
35 1.1 maxv #include <stdlib.h>
36 1.1 maxv #include <string.h>
37 1.1 maxv #include <unistd.h>
38 1.1 maxv #include <fcntl.h>
39 1.1 maxv #include <errno.h>
40 1.1 maxv #include <sys/ioctl.h>
41 1.1 maxv #include <sys/mman.h>
42 1.1 maxv #include <machine/vmparam.h>
43 1.1 maxv #include <machine/pte.h>
44 1.1 maxv #include <machine/psl.h>
45 1.1 maxv
46 1.1 maxv #include "nvmm.h"
47 1.1 maxv
48 1.1 maxv #include <x86/specialreg.h>
49 1.1 maxv
50 1.1 maxv /* -------------------------------------------------------------------------- */
51 1.1 maxv
52 1.1 maxv #define PTE32_L1_SHIFT 12
53 1.1 maxv #define PTE32_L2_SHIFT 22
54 1.1 maxv
55 1.1 maxv #define PTE32_L2_MASK 0xffc00000
56 1.1 maxv #define PTE32_L1_MASK 0x003ff000
57 1.1 maxv
58 1.1 maxv #define PTE32_L2_FRAME (PTE32_L2_MASK)
59 1.1 maxv #define PTE32_L1_FRAME (PTE32_L2_FRAME|PTE32_L1_MASK)
60 1.1 maxv
61 1.1 maxv #define pte32_l1idx(va) (((va) & PTE32_L1_MASK) >> PTE32_L1_SHIFT)
62 1.1 maxv #define pte32_l2idx(va) (((va) & PTE32_L2_MASK) >> PTE32_L2_SHIFT)
63 1.1 maxv
64 1.1 maxv typedef uint32_t pte_32bit_t;
65 1.1 maxv
66 1.1 maxv static int
67 1.1 maxv x86_gva_to_gpa_32bit(struct nvmm_machine *mach, uint64_t cr3,
68 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, bool has_pse, nvmm_prot_t *prot)
69 1.1 maxv {
70 1.1 maxv gpaddr_t L2gpa, L1gpa;
71 1.1 maxv uintptr_t L2hva, L1hva;
72 1.1 maxv pte_32bit_t *pdir, pte;
73 1.1 maxv
74 1.1 maxv /* We begin with an RWXU access. */
75 1.1 maxv *prot = NVMM_PROT_ALL;
76 1.1 maxv
77 1.1 maxv /* Parse L2. */
78 1.1 maxv L2gpa = (cr3 & PG_FRAME);
79 1.1 maxv if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva) == -1)
80 1.1 maxv return -1;
81 1.1 maxv pdir = (pte_32bit_t *)L2hva;
82 1.1 maxv pte = pdir[pte32_l2idx(gva)];
83 1.1 maxv if ((pte & PG_V) == 0)
84 1.1 maxv return -1;
85 1.1 maxv if ((pte & PG_u) == 0)
86 1.1 maxv *prot &= ~NVMM_PROT_USER;
87 1.1 maxv if ((pte & PG_KW) == 0)
88 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
89 1.1 maxv if ((pte & PG_PS) && !has_pse)
90 1.1 maxv return -1;
91 1.1 maxv if (pte & PG_PS) {
92 1.1 maxv *gpa = (pte & PTE32_L2_FRAME);
93 1.1 maxv return 0;
94 1.1 maxv }
95 1.1 maxv
96 1.1 maxv /* Parse L1. */
97 1.1 maxv L1gpa = (pte & PG_FRAME);
98 1.1 maxv if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva) == -1)
99 1.1 maxv return -1;
100 1.1 maxv pdir = (pte_32bit_t *)L1hva;
101 1.1 maxv pte = pdir[pte32_l1idx(gva)];
102 1.1 maxv if ((pte & PG_V) == 0)
103 1.1 maxv return -1;
104 1.1 maxv if ((pte & PG_u) == 0)
105 1.1 maxv *prot &= ~NVMM_PROT_USER;
106 1.1 maxv if ((pte & PG_KW) == 0)
107 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
108 1.1 maxv if (pte & PG_PS)
109 1.1 maxv return -1;
110 1.1 maxv
111 1.1 maxv *gpa = (pte & PG_FRAME);
112 1.1 maxv return 0;
113 1.1 maxv }
114 1.1 maxv
115 1.1 maxv /* -------------------------------------------------------------------------- */
116 1.1 maxv
117 1.1 maxv #define PTE32_PAE_L1_SHIFT 12
118 1.1 maxv #define PTE32_PAE_L2_SHIFT 21
119 1.1 maxv #define PTE32_PAE_L3_SHIFT 30
120 1.1 maxv
121 1.1 maxv #define PTE32_PAE_L3_MASK 0xc0000000
122 1.1 maxv #define PTE32_PAE_L2_MASK 0x3fe00000
123 1.1 maxv #define PTE32_PAE_L1_MASK 0x001ff000
124 1.1 maxv
125 1.1 maxv #define PTE32_PAE_L3_FRAME (PTE32_PAE_L3_MASK)
126 1.1 maxv #define PTE32_PAE_L2_FRAME (PTE32_PAE_L3_FRAME|PTE32_PAE_L2_MASK)
127 1.1 maxv #define PTE32_PAE_L1_FRAME (PTE32_PAE_L2_FRAME|PTE32_PAE_L1_MASK)
128 1.1 maxv
129 1.1 maxv #define pte32_pae_l1idx(va) (((va) & PTE32_PAE_L1_MASK) >> PTE32_PAE_L1_SHIFT)
130 1.1 maxv #define pte32_pae_l2idx(va) (((va) & PTE32_PAE_L2_MASK) >> PTE32_PAE_L2_SHIFT)
131 1.1 maxv #define pte32_pae_l3idx(va) (((va) & PTE32_PAE_L3_MASK) >> PTE32_PAE_L3_SHIFT)
132 1.1 maxv
133 1.1 maxv typedef uint64_t pte_32bit_pae_t;
134 1.1 maxv
135 1.1 maxv static int
136 1.1 maxv x86_gva_to_gpa_32bit_pae(struct nvmm_machine *mach, uint64_t cr3,
137 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, bool has_pse, nvmm_prot_t *prot)
138 1.1 maxv {
139 1.1 maxv gpaddr_t L3gpa, L2gpa, L1gpa;
140 1.1 maxv uintptr_t L3hva, L2hva, L1hva;
141 1.1 maxv pte_32bit_pae_t *pdir, pte;
142 1.1 maxv
143 1.1 maxv /* We begin with an RWXU access. */
144 1.1 maxv *prot = NVMM_PROT_ALL;
145 1.1 maxv
146 1.1 maxv /* Parse L3. */
147 1.1 maxv L3gpa = (cr3 & PG_FRAME);
148 1.1 maxv if (nvmm_gpa_to_hva(mach, L3gpa, &L3hva) == -1)
149 1.1 maxv return -1;
150 1.1 maxv pdir = (pte_32bit_pae_t *)L3hva;
151 1.1 maxv pte = pdir[pte32_pae_l3idx(gva)];
152 1.1 maxv if ((pte & PG_V) == 0)
153 1.1 maxv return -1;
154 1.1 maxv if (pte & PG_NX)
155 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
156 1.1 maxv if (pte & PG_PS)
157 1.1 maxv return -1;
158 1.1 maxv
159 1.1 maxv /* Parse L2. */
160 1.1 maxv L2gpa = (pte & PG_FRAME);
161 1.1 maxv if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva) == -1)
162 1.1 maxv return -1;
163 1.1 maxv pdir = (pte_32bit_pae_t *)L2hva;
164 1.1 maxv pte = pdir[pte32_pae_l2idx(gva)];
165 1.1 maxv if ((pte & PG_V) == 0)
166 1.1 maxv return -1;
167 1.1 maxv if ((pte & PG_u) == 0)
168 1.1 maxv *prot &= ~NVMM_PROT_USER;
169 1.1 maxv if ((pte & PG_KW) == 0)
170 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
171 1.1 maxv if (pte & PG_NX)
172 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
173 1.1 maxv if ((pte & PG_PS) && !has_pse)
174 1.1 maxv return -1;
175 1.1 maxv if (pte & PG_PS) {
176 1.1 maxv *gpa = (pte & PTE32_PAE_L2_FRAME);
177 1.1 maxv return 0;
178 1.1 maxv }
179 1.1 maxv
180 1.1 maxv /* Parse L1. */
181 1.1 maxv L1gpa = (pte & PG_FRAME);
182 1.1 maxv if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva) == -1)
183 1.1 maxv return -1;
184 1.1 maxv pdir = (pte_32bit_pae_t *)L1hva;
185 1.1 maxv pte = pdir[pte32_pae_l1idx(gva)];
186 1.1 maxv if ((pte & PG_V) == 0)
187 1.1 maxv return -1;
188 1.1 maxv if ((pte & PG_u) == 0)
189 1.1 maxv *prot &= ~NVMM_PROT_USER;
190 1.1 maxv if ((pte & PG_KW) == 0)
191 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
192 1.1 maxv if (pte & PG_NX)
193 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
194 1.1 maxv if (pte & PG_PS)
195 1.1 maxv return -1;
196 1.1 maxv
197 1.1 maxv *gpa = (pte & PG_FRAME);
198 1.1 maxv return 0;
199 1.1 maxv }
200 1.1 maxv
201 1.1 maxv /* -------------------------------------------------------------------------- */
202 1.1 maxv
203 1.1 maxv #define PTE64_L1_SHIFT 12
204 1.1 maxv #define PTE64_L2_SHIFT 21
205 1.1 maxv #define PTE64_L3_SHIFT 30
206 1.1 maxv #define PTE64_L4_SHIFT 39
207 1.1 maxv
208 1.1 maxv #define PTE64_L4_MASK 0x0000ff8000000000
209 1.1 maxv #define PTE64_L3_MASK 0x0000007fc0000000
210 1.1 maxv #define PTE64_L2_MASK 0x000000003fe00000
211 1.1 maxv #define PTE64_L1_MASK 0x00000000001ff000
212 1.1 maxv
213 1.1 maxv #define PTE64_L4_FRAME PTE64_L4_MASK
214 1.1 maxv #define PTE64_L3_FRAME (PTE64_L4_FRAME|PTE64_L3_MASK)
215 1.1 maxv #define PTE64_L2_FRAME (PTE64_L3_FRAME|PTE64_L2_MASK)
216 1.1 maxv #define PTE64_L1_FRAME (PTE64_L2_FRAME|PTE64_L1_MASK)
217 1.1 maxv
218 1.1 maxv #define pte64_l1idx(va) (((va) & PTE64_L1_MASK) >> PTE64_L1_SHIFT)
219 1.1 maxv #define pte64_l2idx(va) (((va) & PTE64_L2_MASK) >> PTE64_L2_SHIFT)
220 1.1 maxv #define pte64_l3idx(va) (((va) & PTE64_L3_MASK) >> PTE64_L3_SHIFT)
221 1.1 maxv #define pte64_l4idx(va) (((va) & PTE64_L4_MASK) >> PTE64_L4_SHIFT)
222 1.1 maxv
223 1.1 maxv typedef uint64_t pte_64bit_t;
224 1.1 maxv
225 1.1 maxv static inline bool
226 1.1 maxv x86_gva_64bit_canonical(gvaddr_t gva)
227 1.1 maxv {
228 1.1 maxv /* Bits 63:47 must have the same value. */
229 1.1 maxv #define SIGN_EXTEND 0xffff800000000000ULL
230 1.1 maxv return (gva & SIGN_EXTEND) == 0 || (gva & SIGN_EXTEND) == SIGN_EXTEND;
231 1.1 maxv }
232 1.1 maxv
233 1.1 maxv static int
234 1.1 maxv x86_gva_to_gpa_64bit(struct nvmm_machine *mach, uint64_t cr3,
235 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, bool has_pse, nvmm_prot_t *prot)
236 1.1 maxv {
237 1.1 maxv gpaddr_t L4gpa, L3gpa, L2gpa, L1gpa;
238 1.1 maxv uintptr_t L4hva, L3hva, L2hva, L1hva;
239 1.1 maxv pte_64bit_t *pdir, pte;
240 1.1 maxv
241 1.1 maxv /* We begin with an RWXU access. */
242 1.1 maxv *prot = NVMM_PROT_ALL;
243 1.1 maxv
244 1.1 maxv if (!x86_gva_64bit_canonical(gva))
245 1.1 maxv return -1;
246 1.1 maxv
247 1.1 maxv /* Parse L4. */
248 1.1 maxv L4gpa = (cr3 & PG_FRAME);
249 1.1 maxv if (nvmm_gpa_to_hva(mach, L4gpa, &L4hva) == -1)
250 1.1 maxv return -1;
251 1.1 maxv pdir = (pte_64bit_t *)L4hva;
252 1.1 maxv pte = pdir[pte64_l4idx(gva)];
253 1.1 maxv if ((pte & PG_V) == 0)
254 1.1 maxv return -1;
255 1.1 maxv if ((pte & PG_u) == 0)
256 1.1 maxv *prot &= ~NVMM_PROT_USER;
257 1.1 maxv if ((pte & PG_KW) == 0)
258 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
259 1.1 maxv if (pte & PG_NX)
260 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
261 1.1 maxv if (pte & PG_PS)
262 1.1 maxv return -1;
263 1.1 maxv
264 1.1 maxv /* Parse L3. */
265 1.1 maxv L3gpa = (pte & PG_FRAME);
266 1.1 maxv if (nvmm_gpa_to_hva(mach, L3gpa, &L3hva) == -1)
267 1.1 maxv return -1;
268 1.1 maxv pdir = (pte_64bit_t *)L3hva;
269 1.1 maxv pte = pdir[pte64_l3idx(gva)];
270 1.1 maxv if ((pte & PG_V) == 0)
271 1.1 maxv return -1;
272 1.1 maxv if ((pte & PG_u) == 0)
273 1.1 maxv *prot &= ~NVMM_PROT_USER;
274 1.1 maxv if ((pte & PG_KW) == 0)
275 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
276 1.1 maxv if (pte & PG_NX)
277 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
278 1.1 maxv if ((pte & PG_PS) && !has_pse)
279 1.1 maxv return -1;
280 1.1 maxv if (pte & PG_PS) {
281 1.1 maxv *gpa = (pte & PTE64_L3_FRAME);
282 1.1 maxv return 0;
283 1.1 maxv }
284 1.1 maxv
285 1.1 maxv /* Parse L2. */
286 1.1 maxv L2gpa = (pte & PG_FRAME);
287 1.1 maxv if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva) == -1)
288 1.1 maxv return -1;
289 1.1 maxv pdir = (pte_64bit_t *)L2hva;
290 1.1 maxv pte = pdir[pte64_l2idx(gva)];
291 1.1 maxv if ((pte & PG_V) == 0)
292 1.1 maxv return -1;
293 1.1 maxv if ((pte & PG_u) == 0)
294 1.1 maxv *prot &= ~NVMM_PROT_USER;
295 1.1 maxv if ((pte & PG_KW) == 0)
296 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
297 1.1 maxv if (pte & PG_NX)
298 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
299 1.1 maxv if ((pte & PG_PS) && !has_pse)
300 1.1 maxv return -1;
301 1.1 maxv if (pte & PG_PS) {
302 1.1 maxv *gpa = (pte & PTE64_L2_FRAME);
303 1.1 maxv return 0;
304 1.1 maxv }
305 1.1 maxv
306 1.1 maxv /* Parse L1. */
307 1.1 maxv L1gpa = (pte & PG_FRAME);
308 1.1 maxv if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva) == -1)
309 1.1 maxv return -1;
310 1.1 maxv pdir = (pte_64bit_t *)L1hva;
311 1.1 maxv pte = pdir[pte64_l1idx(gva)];
312 1.1 maxv if ((pte & PG_V) == 0)
313 1.1 maxv return -1;
314 1.1 maxv if ((pte & PG_u) == 0)
315 1.1 maxv *prot &= ~NVMM_PROT_USER;
316 1.1 maxv if ((pte & PG_KW) == 0)
317 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
318 1.1 maxv if (pte & PG_NX)
319 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
320 1.1 maxv if (pte & PG_PS)
321 1.1 maxv return -1;
322 1.1 maxv
323 1.1 maxv *gpa = (pte & PG_FRAME);
324 1.1 maxv return 0;
325 1.1 maxv }
326 1.1 maxv
327 1.1 maxv static inline int
328 1.1 maxv x86_gva_to_gpa(struct nvmm_machine *mach, struct nvmm_x64_state *state,
329 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
330 1.1 maxv {
331 1.1 maxv bool is_pae, is_lng, has_pse;
332 1.1 maxv uint64_t cr3;
333 1.1 maxv int ret;
334 1.1 maxv
335 1.1 maxv if ((state->crs[NVMM_X64_CR_CR0] & CR0_PG) == 0) {
336 1.1 maxv /* No paging. */
337 1.4 maxv *prot = NVMM_PROT_ALL;
338 1.1 maxv *gpa = gva;
339 1.1 maxv return 0;
340 1.1 maxv }
341 1.1 maxv
342 1.1 maxv is_pae = (state->crs[NVMM_X64_CR_CR4] & CR4_PAE) != 0;
343 1.1 maxv is_lng = (state->msrs[NVMM_X64_MSR_EFER] & EFER_LME) != 0;
344 1.1 maxv has_pse = (state->crs[NVMM_X64_CR_CR4] & CR4_PSE) != 0;
345 1.1 maxv cr3 = state->crs[NVMM_X64_CR_CR3];
346 1.1 maxv
347 1.1 maxv if (is_pae && is_lng) {
348 1.1 maxv /* 64bit */
349 1.1 maxv ret = x86_gva_to_gpa_64bit(mach, cr3, gva, gpa, has_pse, prot);
350 1.1 maxv } else if (is_pae && !is_lng) {
351 1.1 maxv /* 32bit PAE */
352 1.1 maxv ret = x86_gva_to_gpa_32bit_pae(mach, cr3, gva, gpa, has_pse,
353 1.1 maxv prot);
354 1.1 maxv } else if (!is_pae && !is_lng) {
355 1.1 maxv /* 32bit */
356 1.1 maxv ret = x86_gva_to_gpa_32bit(mach, cr3, gva, gpa, has_pse, prot);
357 1.1 maxv } else {
358 1.1 maxv ret = -1;
359 1.1 maxv }
360 1.1 maxv
361 1.1 maxv if (ret == -1) {
362 1.1 maxv errno = EFAULT;
363 1.1 maxv }
364 1.1 maxv
365 1.1 maxv return ret;
366 1.1 maxv }
367 1.1 maxv
368 1.1 maxv int
369 1.1 maxv nvmm_gva_to_gpa(struct nvmm_machine *mach, nvmm_cpuid_t cpuid,
370 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
371 1.1 maxv {
372 1.1 maxv struct nvmm_x64_state state;
373 1.1 maxv int ret;
374 1.1 maxv
375 1.1 maxv if (gva & PAGE_MASK) {
376 1.1 maxv errno = EINVAL;
377 1.1 maxv return -1;
378 1.1 maxv }
379 1.1 maxv
380 1.1 maxv ret = nvmm_vcpu_getstate(mach, cpuid, &state,
381 1.1 maxv NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
382 1.1 maxv if (ret == -1)
383 1.1 maxv return -1;
384 1.1 maxv
385 1.1 maxv return x86_gva_to_gpa(mach, &state, gva, gpa, prot);
386 1.1 maxv }
387 1.1 maxv
388 1.1 maxv /* -------------------------------------------------------------------------- */
389 1.1 maxv
390 1.1 maxv static inline bool
391 1.5 maxv is_64bit(struct nvmm_x64_state *state)
392 1.5 maxv {
393 1.5 maxv return (state->segs[NVMM_X64_SEG_CS].attrib.lng != 0);
394 1.5 maxv }
395 1.5 maxv
396 1.5 maxv static inline bool
397 1.5 maxv is_32bit(struct nvmm_x64_state *state)
398 1.5 maxv {
399 1.5 maxv return (state->segs[NVMM_X64_SEG_CS].attrib.lng == 0) &&
400 1.5 maxv (state->segs[NVMM_X64_SEG_CS].attrib.def32 == 1);
401 1.5 maxv }
402 1.5 maxv
403 1.5 maxv static inline bool
404 1.5 maxv is_16bit(struct nvmm_x64_state *state)
405 1.5 maxv {
406 1.5 maxv return (state->segs[NVMM_X64_SEG_CS].attrib.lng == 0) &&
407 1.5 maxv (state->segs[NVMM_X64_SEG_CS].attrib.def32 == 0);
408 1.5 maxv }
409 1.5 maxv
410 1.5 maxv static inline bool
411 1.1 maxv is_long_mode(struct nvmm_x64_state *state)
412 1.1 maxv {
413 1.1 maxv return (state->msrs[NVMM_X64_MSR_EFER] & EFER_LME) != 0;
414 1.1 maxv }
415 1.1 maxv
416 1.1 maxv static inline bool
417 1.1 maxv is_illegal(struct nvmm_io *io, nvmm_prot_t prot)
418 1.1 maxv {
419 1.1 maxv return (io->in && !(prot & NVMM_PROT_WRITE));
420 1.1 maxv }
421 1.1 maxv
422 1.1 maxv static int
423 1.1 maxv segment_apply(struct nvmm_x64_state_seg *seg, gvaddr_t *gva, size_t size)
424 1.1 maxv {
425 1.1 maxv uint64_t limit;
426 1.1 maxv
427 1.1 maxv /*
428 1.1 maxv * This is incomplete. We should check topdown, etc, really that's
429 1.1 maxv * tiring.
430 1.1 maxv */
431 1.1 maxv if (__predict_false(!seg->attrib.p)) {
432 1.1 maxv goto error;
433 1.1 maxv }
434 1.1 maxv
435 1.1 maxv limit = (seg->limit + 1);
436 1.1 maxv if (__predict_true(seg->attrib.gran)) {
437 1.1 maxv limit *= PAGE_SIZE;
438 1.1 maxv }
439 1.1 maxv
440 1.1 maxv if (__predict_false(*gva + seg->base + size > limit)) {
441 1.1 maxv goto error;
442 1.1 maxv }
443 1.1 maxv
444 1.1 maxv *gva += seg->base;
445 1.1 maxv return 0;
446 1.1 maxv
447 1.1 maxv error:
448 1.1 maxv errno = EFAULT;
449 1.1 maxv return -1;
450 1.1 maxv }
451 1.1 maxv
452 1.1 maxv int
453 1.1 maxv nvmm_assist_io(struct nvmm_machine *mach, nvmm_cpuid_t cpuid,
454 1.1 maxv struct nvmm_exit *exit, void (*cb)(struct nvmm_io *))
455 1.1 maxv {
456 1.1 maxv struct nvmm_x64_state state;
457 1.1 maxv struct nvmm_io io;
458 1.1 maxv nvmm_prot_t prot;
459 1.1 maxv size_t remain, done;
460 1.1 maxv uintptr_t hva;
461 1.1 maxv gvaddr_t gva, off;
462 1.1 maxv gpaddr_t gpa;
463 1.1 maxv uint8_t tmp[8];
464 1.1 maxv uint8_t *ptr, *ptr2;
465 1.5 maxv int reg = 0; /* GCC */
466 1.1 maxv bool cross;
467 1.1 maxv int ret;
468 1.1 maxv
469 1.1 maxv if (__predict_false(exit->reason != NVMM_EXIT_IO)) {
470 1.1 maxv errno = EINVAL;
471 1.1 maxv return -1;
472 1.1 maxv }
473 1.1 maxv
474 1.1 maxv io.port = exit->u.io.port;
475 1.1 maxv io.in = (exit->u.io.type == NVMM_EXIT_IO_IN);
476 1.1 maxv io.size = exit->u.io.operand_size;
477 1.1 maxv
478 1.1 maxv ret = nvmm_vcpu_getstate(mach, cpuid, &state,
479 1.1 maxv NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
480 1.1 maxv NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
481 1.1 maxv if (ret == -1)
482 1.1 maxv return -1;
483 1.1 maxv
484 1.1 maxv cross = false;
485 1.1 maxv
486 1.1 maxv if (!exit->u.io.str) {
487 1.1 maxv ptr = (uint8_t *)&state.gprs[NVMM_X64_GPR_RAX];
488 1.1 maxv } else {
489 1.5 maxv if (io.in) {
490 1.5 maxv reg = NVMM_X64_GPR_RDI;
491 1.5 maxv } else {
492 1.5 maxv reg = NVMM_X64_GPR_RSI;
493 1.5 maxv }
494 1.1 maxv
495 1.1 maxv switch (exit->u.io.address_size) {
496 1.1 maxv case 8:
497 1.5 maxv gva = state.gprs[reg];
498 1.1 maxv break;
499 1.1 maxv case 4:
500 1.5 maxv gva = (state.gprs[reg] & 0x00000000FFFFFFFF);
501 1.1 maxv break;
502 1.1 maxv case 2:
503 1.1 maxv default: /* impossible */
504 1.5 maxv gva = (state.gprs[reg] & 0x000000000000FFFF);
505 1.1 maxv break;
506 1.1 maxv }
507 1.1 maxv
508 1.1 maxv if (!is_long_mode(&state)) {
509 1.1 maxv ret = segment_apply(&state.segs[exit->u.io.seg], &gva,
510 1.1 maxv io.size);
511 1.1 maxv if (ret == -1)
512 1.1 maxv return -1;
513 1.1 maxv }
514 1.1 maxv
515 1.1 maxv off = (gva & PAGE_MASK);
516 1.1 maxv gva &= ~PAGE_MASK;
517 1.1 maxv
518 1.1 maxv ret = x86_gva_to_gpa(mach, &state, gva, &gpa, &prot);
519 1.1 maxv if (ret == -1)
520 1.1 maxv return -1;
521 1.1 maxv if (__predict_false(is_illegal(&io, prot))) {
522 1.1 maxv errno = EFAULT;
523 1.1 maxv return -1;
524 1.1 maxv }
525 1.1 maxv ret = nvmm_gpa_to_hva(mach, gpa, &hva);
526 1.1 maxv if (ret == -1)
527 1.1 maxv return -1;
528 1.1 maxv
529 1.1 maxv ptr = (uint8_t *)hva + off;
530 1.1 maxv
531 1.1 maxv /*
532 1.1 maxv * Special case. If the buffer is in between two pages, we
533 1.1 maxv * need to retrieve data from the next page.
534 1.1 maxv */
535 1.1 maxv if (__predict_false(off + io.size > PAGE_SIZE)) {
536 1.1 maxv cross = true;
537 1.1 maxv remain = off + io.size - PAGE_SIZE;
538 1.1 maxv done = PAGE_SIZE - off;
539 1.1 maxv
540 1.1 maxv memcpy(tmp, ptr, done);
541 1.1 maxv
542 1.1 maxv ret = x86_gva_to_gpa(mach, &state, gva + PAGE_SIZE,
543 1.1 maxv &gpa, &prot);
544 1.1 maxv if (ret == -1)
545 1.1 maxv return -1;
546 1.1 maxv if (__predict_false(is_illegal(&io, prot))) {
547 1.1 maxv errno = EFAULT;
548 1.1 maxv return -1;
549 1.1 maxv }
550 1.1 maxv ret = nvmm_gpa_to_hva(mach, gpa, &hva);
551 1.1 maxv if (ret == -1)
552 1.1 maxv return -1;
553 1.1 maxv
554 1.1 maxv memcpy(&tmp[done], (uint8_t *)hva, remain);
555 1.1 maxv ptr2 = &tmp[done];
556 1.1 maxv }
557 1.1 maxv }
558 1.1 maxv
559 1.1 maxv if (io.in) {
560 1.1 maxv /* nothing to do */
561 1.1 maxv } else {
562 1.1 maxv memcpy(io.data, ptr, io.size);
563 1.1 maxv }
564 1.1 maxv
565 1.1 maxv (*cb)(&io);
566 1.1 maxv
567 1.1 maxv if (io.in) {
568 1.1 maxv if (!exit->u.io.str)
569 1.1 maxv state.gprs[NVMM_X64_GPR_RAX] = 0;
570 1.1 maxv if (__predict_false(cross)) {
571 1.1 maxv memcpy(ptr, io.data, done);
572 1.1 maxv memcpy(ptr2, &io.data[done], remain);
573 1.1 maxv } else {
574 1.1 maxv memcpy(ptr, io.data, io.size);
575 1.1 maxv }
576 1.1 maxv } else {
577 1.1 maxv /* nothing to do */
578 1.1 maxv }
579 1.1 maxv
580 1.5 maxv if (exit->u.io.str) {
581 1.5 maxv if (state.gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
582 1.5 maxv state.gprs[reg] -= io.size;
583 1.5 maxv } else {
584 1.5 maxv state.gprs[reg] += io.size;
585 1.5 maxv }
586 1.5 maxv }
587 1.5 maxv
588 1.1 maxv if (exit->u.io.rep) {
589 1.1 maxv state.gprs[NVMM_X64_GPR_RCX] -= 1;
590 1.1 maxv if (state.gprs[NVMM_X64_GPR_RCX] == 0) {
591 1.1 maxv state.gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
592 1.1 maxv }
593 1.1 maxv } else {
594 1.1 maxv state.gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
595 1.1 maxv }
596 1.1 maxv
597 1.1 maxv ret = nvmm_vcpu_setstate(mach, cpuid, &state, NVMM_X64_STATE_GPRS);
598 1.1 maxv if (ret == -1)
599 1.1 maxv return -1;
600 1.1 maxv
601 1.1 maxv return 0;
602 1.1 maxv }
603 1.1 maxv
604 1.1 maxv /* -------------------------------------------------------------------------- */
605 1.1 maxv
606 1.5 maxv static void x86_emul_or(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
607 1.5 maxv static void x86_emul_and(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
608 1.5 maxv static void x86_emul_xor(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
609 1.5 maxv static void x86_emul_mov(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
610 1.5 maxv static void x86_emul_stos(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
611 1.5 maxv static void x86_emul_lods(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
612 1.5 maxv
613 1.5 maxv enum x86_legpref {
614 1.5 maxv /* Group 1 */
615 1.5 maxv LEG_LOCK = 0,
616 1.5 maxv LEG_REPN, /* REPNE/REPNZ */
617 1.5 maxv LEG_REP, /* REP/REPE/REPZ */
618 1.5 maxv /* Group 2 */
619 1.5 maxv LEG_OVR_CS,
620 1.5 maxv LEG_OVR_SS,
621 1.5 maxv LEG_OVR_DS,
622 1.5 maxv LEG_OVR_ES,
623 1.5 maxv LEG_OVR_FS,
624 1.5 maxv LEG_OVR_GS,
625 1.5 maxv LEG_BRN_TAKEN,
626 1.5 maxv LEG_BRN_NTAKEN,
627 1.5 maxv /* Group 3 */
628 1.5 maxv LEG_OPR_OVR,
629 1.5 maxv /* Group 4 */
630 1.5 maxv LEG_ADR_OVR,
631 1.5 maxv
632 1.5 maxv NLEG
633 1.5 maxv };
634 1.5 maxv
635 1.5 maxv struct x86_rexpref {
636 1.5 maxv bool present;
637 1.5 maxv bool w;
638 1.5 maxv bool r;
639 1.5 maxv bool x;
640 1.5 maxv bool b;
641 1.5 maxv };
642 1.5 maxv
643 1.5 maxv struct x86_reg {
644 1.5 maxv int num; /* NVMM GPR state index */
645 1.5 maxv uint64_t mask;
646 1.5 maxv };
647 1.5 maxv
648 1.5 maxv enum x86_disp_type {
649 1.5 maxv DISP_NONE,
650 1.5 maxv DISP_0,
651 1.5 maxv DISP_1,
652 1.5 maxv DISP_4
653 1.5 maxv };
654 1.5 maxv
655 1.5 maxv struct x86_disp {
656 1.5 maxv enum x86_disp_type type;
657 1.5 maxv uint8_t data[4];
658 1.5 maxv };
659 1.5 maxv
660 1.5 maxv enum REGMODRM__Mod {
661 1.5 maxv MOD_DIS0, /* also, register indirect */
662 1.5 maxv MOD_DIS1,
663 1.5 maxv MOD_DIS4,
664 1.5 maxv MOD_REG
665 1.5 maxv };
666 1.5 maxv
667 1.5 maxv enum REGMODRM__Reg {
668 1.5 maxv REG_000, /* these fields are indexes to the register map */
669 1.5 maxv REG_001,
670 1.5 maxv REG_010,
671 1.5 maxv REG_011,
672 1.5 maxv REG_100,
673 1.5 maxv REG_101,
674 1.5 maxv REG_110,
675 1.5 maxv REG_111
676 1.5 maxv };
677 1.5 maxv
678 1.5 maxv enum REGMODRM__Rm {
679 1.5 maxv RM_000, /* reg */
680 1.5 maxv RM_001, /* reg */
681 1.5 maxv RM_010, /* reg */
682 1.5 maxv RM_011, /* reg */
683 1.5 maxv RM_RSP_SIB, /* reg or SIB, depending on the MOD */
684 1.5 maxv RM_RBP_DISP32, /* reg or displacement-only (= RIP-relative on amd64) */
685 1.5 maxv RM_110,
686 1.5 maxv RM_111
687 1.5 maxv };
688 1.5 maxv
689 1.5 maxv struct x86_regmodrm {
690 1.5 maxv bool present;
691 1.5 maxv enum REGMODRM__Mod mod;
692 1.5 maxv enum REGMODRM__Reg reg;
693 1.5 maxv enum REGMODRM__Rm rm;
694 1.5 maxv };
695 1.5 maxv
696 1.5 maxv struct x86_immediate {
697 1.5 maxv size_t size; /* 1/2/4/8 */
698 1.5 maxv uint8_t data[8];
699 1.5 maxv };
700 1.5 maxv
701 1.5 maxv struct x86_sib {
702 1.5 maxv uint8_t scale;
703 1.5 maxv const struct x86_reg *idx;
704 1.5 maxv const struct x86_reg *bas;
705 1.5 maxv };
706 1.5 maxv
707 1.5 maxv enum x86_store_type {
708 1.5 maxv STORE_NONE,
709 1.5 maxv STORE_REG,
710 1.5 maxv STORE_IMM,
711 1.5 maxv STORE_SIB,
712 1.5 maxv STORE_DMO
713 1.5 maxv };
714 1.5 maxv
715 1.5 maxv struct x86_store {
716 1.5 maxv enum x86_store_type type;
717 1.5 maxv union {
718 1.5 maxv const struct x86_reg *reg;
719 1.5 maxv struct x86_immediate imm;
720 1.5 maxv struct x86_sib sib;
721 1.5 maxv uint64_t dmo;
722 1.5 maxv } u;
723 1.5 maxv struct x86_disp disp;
724 1.5 maxv };
725 1.5 maxv
726 1.5 maxv struct x86_instr {
727 1.5 maxv size_t len;
728 1.5 maxv bool legpref[NLEG];
729 1.5 maxv struct x86_rexpref rexpref;
730 1.5 maxv size_t operand_size;
731 1.5 maxv size_t address_size;
732 1.5 maxv
733 1.5 maxv struct x86_regmodrm regmodrm;
734 1.5 maxv
735 1.5 maxv const struct x86_opcode *opcode;
736 1.5 maxv
737 1.5 maxv struct x86_store src;
738 1.5 maxv struct x86_store dst;
739 1.5 maxv
740 1.5 maxv struct x86_store *strm;
741 1.5 maxv
742 1.5 maxv void (*emul)(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
743 1.5 maxv };
744 1.5 maxv
745 1.5 maxv struct x86_decode_fsm {
746 1.5 maxv /* vcpu */
747 1.5 maxv bool is64bit;
748 1.5 maxv bool is32bit;
749 1.5 maxv bool is16bit;
750 1.5 maxv
751 1.5 maxv /* fsm */
752 1.5 maxv int (*fn)(struct x86_decode_fsm *, struct x86_instr *);
753 1.5 maxv uint8_t *buf;
754 1.5 maxv uint8_t *end;
755 1.5 maxv };
756 1.5 maxv
757 1.5 maxv struct x86_opcode {
758 1.5 maxv uint8_t byte;
759 1.5 maxv bool regmodrm;
760 1.5 maxv bool regtorm;
761 1.5 maxv bool dmo;
762 1.5 maxv bool todmo;
763 1.5 maxv bool stos;
764 1.5 maxv bool lods;
765 1.5 maxv bool szoverride;
766 1.5 maxv int defsize;
767 1.5 maxv int allsize;
768 1.5 maxv bool group11;
769 1.5 maxv bool immediate;
770 1.5 maxv int immsize;
771 1.5 maxv int flags;
772 1.5 maxv void (*emul)(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
773 1.5 maxv };
774 1.5 maxv
775 1.5 maxv struct x86_group_entry {
776 1.5 maxv void (*emul)(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
777 1.5 maxv };
778 1.5 maxv
779 1.5 maxv #define OPSIZE_BYTE 0x01
780 1.5 maxv #define OPSIZE_WORD 0x02 /* 2 bytes */
781 1.5 maxv #define OPSIZE_DOUB 0x04 /* 4 bytes */
782 1.5 maxv #define OPSIZE_QUAD 0x08 /* 8 bytes */
783 1.5 maxv
784 1.5 maxv #define FLAG_z 0x02
785 1.5 maxv
786 1.5 maxv static const struct x86_group_entry group11[8] = {
787 1.5 maxv [0] = { .emul = x86_emul_mov }
788 1.5 maxv };
789 1.5 maxv
790 1.5 maxv static const struct x86_opcode primary_opcode_table[] = {
791 1.5 maxv /*
792 1.5 maxv * Group11
793 1.5 maxv */
794 1.5 maxv {
795 1.5 maxv .byte = 0xC6,
796 1.5 maxv .regmodrm = true,
797 1.5 maxv .regtorm = true,
798 1.5 maxv .szoverride = false,
799 1.5 maxv .defsize = OPSIZE_BYTE,
800 1.5 maxv .allsize = -1,
801 1.5 maxv .group11 = true,
802 1.5 maxv .immediate = true,
803 1.5 maxv .immsize = OPSIZE_BYTE,
804 1.5 maxv .emul = NULL /* group11 */
805 1.5 maxv },
806 1.5 maxv {
807 1.5 maxv .byte = 0xC7,
808 1.5 maxv .regmodrm = true,
809 1.5 maxv .regtorm = true,
810 1.5 maxv .szoverride = true,
811 1.5 maxv .defsize = -1,
812 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
813 1.5 maxv .group11 = true,
814 1.5 maxv .immediate = true,
815 1.5 maxv .immsize = -1, /* special, Z */
816 1.5 maxv .flags = FLAG_z,
817 1.5 maxv .emul = NULL /* group11 */
818 1.5 maxv },
819 1.5 maxv
820 1.5 maxv /*
821 1.5 maxv * OR
822 1.5 maxv */
823 1.5 maxv {
824 1.5 maxv /* Eb, Gb */
825 1.5 maxv .byte = 0x08,
826 1.5 maxv .regmodrm = true,
827 1.5 maxv .regtorm = true,
828 1.5 maxv .szoverride = false,
829 1.5 maxv .defsize = OPSIZE_BYTE,
830 1.5 maxv .allsize = -1,
831 1.5 maxv .emul = x86_emul_or
832 1.5 maxv },
833 1.5 maxv {
834 1.5 maxv /* Ev, Gv */
835 1.5 maxv .byte = 0x09,
836 1.5 maxv .regmodrm = true,
837 1.5 maxv .regtorm = true,
838 1.5 maxv .szoverride = true,
839 1.5 maxv .defsize = -1,
840 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
841 1.5 maxv .emul = x86_emul_or
842 1.5 maxv },
843 1.5 maxv {
844 1.5 maxv /* Gb, Eb */
845 1.5 maxv .byte = 0x0A,
846 1.5 maxv .regmodrm = true,
847 1.5 maxv .regtorm = false,
848 1.5 maxv .szoverride = false,
849 1.5 maxv .defsize = OPSIZE_BYTE,
850 1.5 maxv .allsize = -1,
851 1.5 maxv .emul = x86_emul_or
852 1.5 maxv },
853 1.5 maxv {
854 1.5 maxv /* Gv, Ev */
855 1.5 maxv .byte = 0x0B,
856 1.5 maxv .regmodrm = true,
857 1.5 maxv .regtorm = false,
858 1.5 maxv .szoverride = true,
859 1.5 maxv .defsize = -1,
860 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
861 1.5 maxv .emul = x86_emul_or
862 1.5 maxv },
863 1.5 maxv
864 1.5 maxv /*
865 1.5 maxv * AND
866 1.5 maxv */
867 1.5 maxv {
868 1.5 maxv /* Eb, Gb */
869 1.5 maxv .byte = 0x20,
870 1.5 maxv .regmodrm = true,
871 1.5 maxv .regtorm = true,
872 1.5 maxv .szoverride = false,
873 1.5 maxv .defsize = OPSIZE_BYTE,
874 1.5 maxv .allsize = -1,
875 1.5 maxv .emul = x86_emul_and
876 1.5 maxv },
877 1.5 maxv {
878 1.5 maxv /* Ev, Gv */
879 1.5 maxv .byte = 0x21,
880 1.5 maxv .regmodrm = true,
881 1.5 maxv .regtorm = true,
882 1.5 maxv .szoverride = true,
883 1.5 maxv .defsize = -1,
884 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
885 1.5 maxv .emul = x86_emul_and
886 1.5 maxv },
887 1.5 maxv {
888 1.5 maxv /* Gb, Eb */
889 1.5 maxv .byte = 0x22,
890 1.5 maxv .regmodrm = true,
891 1.5 maxv .regtorm = false,
892 1.5 maxv .szoverride = false,
893 1.5 maxv .defsize = OPSIZE_BYTE,
894 1.5 maxv .allsize = -1,
895 1.5 maxv .emul = x86_emul_and
896 1.5 maxv },
897 1.5 maxv {
898 1.5 maxv /* Gv, Ev */
899 1.5 maxv .byte = 0x23,
900 1.5 maxv .regmodrm = true,
901 1.5 maxv .regtorm = false,
902 1.5 maxv .szoverride = true,
903 1.5 maxv .defsize = -1,
904 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
905 1.5 maxv .emul = x86_emul_and
906 1.5 maxv },
907 1.5 maxv
908 1.5 maxv /*
909 1.5 maxv * XOR
910 1.5 maxv */
911 1.5 maxv {
912 1.5 maxv /* Eb, Gb */
913 1.5 maxv .byte = 0x30,
914 1.5 maxv .regmodrm = true,
915 1.5 maxv .regtorm = true,
916 1.5 maxv .szoverride = false,
917 1.5 maxv .defsize = OPSIZE_BYTE,
918 1.5 maxv .allsize = -1,
919 1.5 maxv .emul = x86_emul_xor
920 1.5 maxv },
921 1.5 maxv {
922 1.5 maxv /* Ev, Gv */
923 1.5 maxv .byte = 0x31,
924 1.5 maxv .regmodrm = true,
925 1.5 maxv .regtorm = true,
926 1.5 maxv .szoverride = true,
927 1.5 maxv .defsize = -1,
928 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
929 1.5 maxv .emul = x86_emul_xor
930 1.5 maxv },
931 1.5 maxv {
932 1.5 maxv /* Gb, Eb */
933 1.5 maxv .byte = 0x32,
934 1.5 maxv .regmodrm = true,
935 1.5 maxv .regtorm = false,
936 1.5 maxv .szoverride = false,
937 1.5 maxv .defsize = OPSIZE_BYTE,
938 1.5 maxv .allsize = -1,
939 1.5 maxv .emul = x86_emul_xor
940 1.5 maxv },
941 1.5 maxv {
942 1.5 maxv /* Gv, Ev */
943 1.5 maxv .byte = 0x33,
944 1.5 maxv .regmodrm = true,
945 1.5 maxv .regtorm = false,
946 1.5 maxv .szoverride = true,
947 1.5 maxv .defsize = -1,
948 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
949 1.5 maxv .emul = x86_emul_xor
950 1.5 maxv },
951 1.5 maxv
952 1.5 maxv /*
953 1.5 maxv * MOV
954 1.5 maxv */
955 1.5 maxv {
956 1.5 maxv /* Eb, Gb */
957 1.5 maxv .byte = 0x88,
958 1.5 maxv .regmodrm = true,
959 1.5 maxv .regtorm = true,
960 1.5 maxv .szoverride = false,
961 1.5 maxv .defsize = OPSIZE_BYTE,
962 1.5 maxv .allsize = -1,
963 1.5 maxv .emul = x86_emul_mov
964 1.5 maxv },
965 1.5 maxv {
966 1.5 maxv /* Ev, Gv */
967 1.5 maxv .byte = 0x89,
968 1.5 maxv .regmodrm = true,
969 1.5 maxv .regtorm = true,
970 1.5 maxv .szoverride = true,
971 1.5 maxv .defsize = -1,
972 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
973 1.5 maxv .emul = x86_emul_mov
974 1.5 maxv },
975 1.5 maxv {
976 1.5 maxv /* Gb, Eb */
977 1.5 maxv .byte = 0x8A,
978 1.5 maxv .regmodrm = true,
979 1.5 maxv .regtorm = false,
980 1.5 maxv .szoverride = false,
981 1.5 maxv .defsize = OPSIZE_BYTE,
982 1.5 maxv .allsize = -1,
983 1.5 maxv .emul = x86_emul_mov
984 1.5 maxv },
985 1.5 maxv {
986 1.5 maxv /* Gv, Ev */
987 1.5 maxv .byte = 0x8B,
988 1.5 maxv .regmodrm = true,
989 1.5 maxv .regtorm = false,
990 1.5 maxv .szoverride = true,
991 1.5 maxv .defsize = -1,
992 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
993 1.5 maxv .emul = x86_emul_mov
994 1.5 maxv },
995 1.5 maxv {
996 1.5 maxv /* AL, Ob */
997 1.5 maxv .byte = 0xA0,
998 1.5 maxv .dmo = true,
999 1.5 maxv .todmo = false,
1000 1.5 maxv .szoverride = false,
1001 1.5 maxv .defsize = OPSIZE_BYTE,
1002 1.5 maxv .allsize = -1,
1003 1.5 maxv .emul = x86_emul_mov
1004 1.5 maxv },
1005 1.5 maxv {
1006 1.5 maxv /* rAX, Ov */
1007 1.5 maxv .byte = 0xA1,
1008 1.5 maxv .dmo = true,
1009 1.5 maxv .todmo = false,
1010 1.5 maxv .szoverride = true,
1011 1.5 maxv .defsize = -1,
1012 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1013 1.5 maxv .emul = x86_emul_mov
1014 1.5 maxv },
1015 1.5 maxv {
1016 1.5 maxv /* Ob, AL */
1017 1.5 maxv .byte = 0xA2,
1018 1.5 maxv .dmo = true,
1019 1.5 maxv .todmo = true,
1020 1.5 maxv .szoverride = false,
1021 1.5 maxv .defsize = OPSIZE_BYTE,
1022 1.5 maxv .allsize = -1,
1023 1.5 maxv .emul = x86_emul_mov
1024 1.5 maxv },
1025 1.5 maxv {
1026 1.5 maxv /* Ov, rAX */
1027 1.5 maxv .byte = 0xA3,
1028 1.5 maxv .dmo = true,
1029 1.5 maxv .todmo = true,
1030 1.5 maxv .szoverride = true,
1031 1.5 maxv .defsize = -1,
1032 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1033 1.5 maxv .emul = x86_emul_mov
1034 1.5 maxv },
1035 1.5 maxv
1036 1.5 maxv /*
1037 1.5 maxv * STOS
1038 1.5 maxv */
1039 1.5 maxv {
1040 1.5 maxv /* Yb, AL */
1041 1.5 maxv .byte = 0xAA,
1042 1.5 maxv .stos = true,
1043 1.5 maxv .szoverride = false,
1044 1.5 maxv .defsize = OPSIZE_BYTE,
1045 1.5 maxv .allsize = -1,
1046 1.5 maxv .emul = x86_emul_stos
1047 1.5 maxv },
1048 1.5 maxv {
1049 1.5 maxv /* Yv, rAX */
1050 1.5 maxv .byte = 0xAB,
1051 1.5 maxv .stos = true,
1052 1.5 maxv .szoverride = true,
1053 1.5 maxv .defsize = -1,
1054 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1055 1.5 maxv .emul = x86_emul_stos
1056 1.5 maxv },
1057 1.5 maxv
1058 1.5 maxv /*
1059 1.5 maxv * LODS
1060 1.5 maxv */
1061 1.5 maxv {
1062 1.5 maxv /* AL, Xb */
1063 1.5 maxv .byte = 0xAC,
1064 1.5 maxv .lods = true,
1065 1.5 maxv .szoverride = false,
1066 1.5 maxv .defsize = OPSIZE_BYTE,
1067 1.5 maxv .allsize = -1,
1068 1.5 maxv .emul = x86_emul_lods
1069 1.5 maxv },
1070 1.5 maxv {
1071 1.5 maxv /* rAX, Xv */
1072 1.5 maxv .byte = 0xAD,
1073 1.5 maxv .lods = true,
1074 1.5 maxv .szoverride = true,
1075 1.5 maxv .defsize = -1,
1076 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1077 1.5 maxv .emul = x86_emul_lods
1078 1.5 maxv },
1079 1.5 maxv };
1080 1.5 maxv
1081 1.5 maxv static const struct x86_reg gpr_map__rip = { NVMM_X64_GPR_RIP, 0xFFFFFFFFFFFFFFFF };
1082 1.5 maxv
1083 1.5 maxv /* [REX-present][enc][opsize] */
1084 1.5 maxv static const struct x86_reg gpr_map__special[2][4][8] = {
1085 1.5 maxv [false] = {
1086 1.5 maxv /* No REX prefix. */
1087 1.5 maxv [0b00] = {
1088 1.5 maxv [0] = { NVMM_X64_GPR_RAX, 0x000000000000FF00 }, /* AH */
1089 1.5 maxv [1] = { NVMM_X64_GPR_RSP, 0x000000000000FFFF }, /* SP */
1090 1.5 maxv [2] = { -1, 0 },
1091 1.5 maxv [3] = { NVMM_X64_GPR_RSP, 0x00000000FFFFFFFF }, /* ESP */
1092 1.5 maxv [4] = { -1, 0 },
1093 1.5 maxv [5] = { -1, 0 },
1094 1.5 maxv [6] = { -1, 0 },
1095 1.5 maxv [7] = { -1, 0 },
1096 1.5 maxv },
1097 1.5 maxv [0b01] = {
1098 1.5 maxv [0] = { NVMM_X64_GPR_RCX, 0x000000000000FF00 }, /* CH */
1099 1.5 maxv [1] = { NVMM_X64_GPR_RBP, 0x000000000000FFFF }, /* BP */
1100 1.5 maxv [2] = { -1, 0 },
1101 1.5 maxv [3] = { NVMM_X64_GPR_RBP, 0x00000000FFFFFFFF }, /* EBP */
1102 1.5 maxv [4] = { -1, 0 },
1103 1.5 maxv [5] = { -1, 0 },
1104 1.5 maxv [6] = { -1, 0 },
1105 1.5 maxv [7] = { -1, 0 },
1106 1.5 maxv },
1107 1.5 maxv [0b10] = {
1108 1.5 maxv [0] = { NVMM_X64_GPR_RDX, 0x000000000000FF00 }, /* DH */
1109 1.5 maxv [1] = { NVMM_X64_GPR_RSI, 0x000000000000FFFF }, /* SI */
1110 1.5 maxv [2] = { -1, 0 },
1111 1.5 maxv [3] = { NVMM_X64_GPR_RSI, 0x00000000FFFFFFFF }, /* ESI */
1112 1.5 maxv [4] = { -1, 0 },
1113 1.5 maxv [5] = { -1, 0 },
1114 1.5 maxv [6] = { -1, 0 },
1115 1.5 maxv [7] = { -1, 0 },
1116 1.5 maxv },
1117 1.5 maxv [0b11] = {
1118 1.5 maxv [0] = { NVMM_X64_GPR_RBX, 0x000000000000FF00 }, /* BH */
1119 1.5 maxv [1] = { NVMM_X64_GPR_RDI, 0x000000000000FFFF }, /* DI */
1120 1.5 maxv [2] = { -1, 0 },
1121 1.5 maxv [3] = { NVMM_X64_GPR_RDI, 0x00000000FFFFFFFF }, /* EDI */
1122 1.5 maxv [4] = { -1, 0 },
1123 1.5 maxv [5] = { -1, 0 },
1124 1.5 maxv [6] = { -1, 0 },
1125 1.5 maxv [7] = { -1, 0 },
1126 1.5 maxv }
1127 1.5 maxv },
1128 1.5 maxv [true] = {
1129 1.5 maxv /* Has REX prefix. */
1130 1.5 maxv [0b00] = {
1131 1.5 maxv [0] = { NVMM_X64_GPR_RSP, 0x00000000000000FF }, /* SPL */
1132 1.5 maxv [1] = { NVMM_X64_GPR_RSP, 0x000000000000FFFF }, /* SP */
1133 1.5 maxv [2] = { -1, 0 },
1134 1.5 maxv [3] = { NVMM_X64_GPR_RSP, 0x00000000FFFFFFFF }, /* ESP */
1135 1.5 maxv [4] = { -1, 0 },
1136 1.5 maxv [5] = { -1, 0 },
1137 1.5 maxv [6] = { -1, 0 },
1138 1.5 maxv [7] = { NVMM_X64_GPR_RSP, 0xFFFFFFFFFFFFFFFF }, /* RSP */
1139 1.5 maxv },
1140 1.5 maxv [0b01] = {
1141 1.5 maxv [0] = { NVMM_X64_GPR_RBP, 0x00000000000000FF }, /* BPL */
1142 1.5 maxv [1] = { NVMM_X64_GPR_RBP, 0x000000000000FFFF }, /* BP */
1143 1.5 maxv [2] = { -1, 0 },
1144 1.5 maxv [3] = { NVMM_X64_GPR_RBP, 0x00000000FFFFFFFF }, /* EBP */
1145 1.5 maxv [4] = { -1, 0 },
1146 1.5 maxv [5] = { -1, 0 },
1147 1.5 maxv [6] = { -1, 0 },
1148 1.5 maxv [7] = { NVMM_X64_GPR_RBP, 0xFFFFFFFFFFFFFFFF }, /* RBP */
1149 1.5 maxv },
1150 1.5 maxv [0b10] = {
1151 1.5 maxv [0] = { NVMM_X64_GPR_RSI, 0x00000000000000FF }, /* SIL */
1152 1.5 maxv [1] = { NVMM_X64_GPR_RSI, 0x000000000000FFFF }, /* SI */
1153 1.5 maxv [2] = { -1, 0 },
1154 1.5 maxv [3] = { NVMM_X64_GPR_RSI, 0x00000000FFFFFFFF }, /* ESI */
1155 1.5 maxv [4] = { -1, 0 },
1156 1.5 maxv [5] = { -1, 0 },
1157 1.5 maxv [6] = { -1, 0 },
1158 1.5 maxv [7] = { NVMM_X64_GPR_RSI, 0xFFFFFFFFFFFFFFFF }, /* RSI */
1159 1.5 maxv },
1160 1.5 maxv [0b11] = {
1161 1.5 maxv [0] = { NVMM_X64_GPR_RDI, 0x00000000000000FF }, /* DIL */
1162 1.5 maxv [1] = { NVMM_X64_GPR_RDI, 0x000000000000FFFF }, /* DI */
1163 1.5 maxv [2] = { -1, 0 },
1164 1.5 maxv [3] = { NVMM_X64_GPR_RDI, 0x00000000FFFFFFFF }, /* EDI */
1165 1.5 maxv [4] = { -1, 0 },
1166 1.5 maxv [5] = { -1, 0 },
1167 1.5 maxv [6] = { -1, 0 },
1168 1.5 maxv [7] = { NVMM_X64_GPR_RDI, 0xFFFFFFFFFFFFFFFF }, /* RDI */
1169 1.5 maxv }
1170 1.5 maxv }
1171 1.5 maxv };
1172 1.5 maxv
1173 1.5 maxv /* [depends][enc][size] */
1174 1.5 maxv static const struct x86_reg gpr_map[2][8][8] = {
1175 1.5 maxv [false] = {
1176 1.5 maxv /* Not extended. */
1177 1.5 maxv [0b000] = {
1178 1.5 maxv [0] = { NVMM_X64_GPR_RAX, 0x00000000000000FF }, /* AL */
1179 1.5 maxv [1] = { NVMM_X64_GPR_RAX, 0x000000000000FFFF }, /* AX */
1180 1.5 maxv [2] = { -1, 0 },
1181 1.5 maxv [3] = { NVMM_X64_GPR_RAX, 0x00000000FFFFFFFF }, /* EAX */
1182 1.5 maxv [4] = { -1, 0 },
1183 1.5 maxv [5] = { -1, 0 },
1184 1.5 maxv [6] = { -1, 0 },
1185 1.5 maxv [7] = { NVMM_X64_GPR_RAX, 0x00000000FFFFFFFF }, /* RAX */
1186 1.5 maxv },
1187 1.5 maxv [0b001] = {
1188 1.5 maxv [0] = { NVMM_X64_GPR_RCX, 0x00000000000000FF }, /* CL */
1189 1.5 maxv [1] = { NVMM_X64_GPR_RCX, 0x000000000000FFFF }, /* CX */
1190 1.5 maxv [2] = { -1, 0 },
1191 1.5 maxv [3] = { NVMM_X64_GPR_RCX, 0x00000000FFFFFFFF }, /* ECX */
1192 1.5 maxv [4] = { -1, 0 },
1193 1.5 maxv [5] = { -1, 0 },
1194 1.5 maxv [6] = { -1, 0 },
1195 1.5 maxv [7] = { NVMM_X64_GPR_RCX, 0x00000000FFFFFFFF }, /* RCX */
1196 1.5 maxv },
1197 1.5 maxv [0b010] = {
1198 1.5 maxv [0] = { NVMM_X64_GPR_RDX, 0x00000000000000FF }, /* DL */
1199 1.5 maxv [1] = { NVMM_X64_GPR_RDX, 0x000000000000FFFF }, /* DX */
1200 1.5 maxv [2] = { -1, 0 },
1201 1.5 maxv [3] = { NVMM_X64_GPR_RDX, 0x00000000FFFFFFFF }, /* EDX */
1202 1.5 maxv [4] = { -1, 0 },
1203 1.5 maxv [5] = { -1, 0 },
1204 1.5 maxv [6] = { -1, 0 },
1205 1.5 maxv [7] = { NVMM_X64_GPR_RDX, 0x00000000FFFFFFFF }, /* RDX */
1206 1.5 maxv },
1207 1.5 maxv [0b011] = {
1208 1.5 maxv [0] = { NVMM_X64_GPR_RBX, 0x00000000000000FF }, /* BL */
1209 1.5 maxv [1] = { NVMM_X64_GPR_RBX, 0x000000000000FFFF }, /* BX */
1210 1.5 maxv [2] = { -1, 0 },
1211 1.5 maxv [3] = { NVMM_X64_GPR_RBX, 0x00000000FFFFFFFF }, /* EBX */
1212 1.5 maxv [4] = { -1, 0 },
1213 1.5 maxv [5] = { -1, 0 },
1214 1.5 maxv [6] = { -1, 0 },
1215 1.5 maxv [7] = { NVMM_X64_GPR_RBX, 0x00000000FFFFFFFF }, /* RBX */
1216 1.5 maxv },
1217 1.5 maxv [0b100] = {
1218 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1219 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1220 1.5 maxv [2] = { -1, 0 },
1221 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1222 1.5 maxv [4] = { -1, 0 },
1223 1.5 maxv [5] = { -1, 0 },
1224 1.5 maxv [6] = { -1, 0 },
1225 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1226 1.5 maxv },
1227 1.5 maxv [0b101] = {
1228 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1229 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1230 1.5 maxv [2] = { -1, 0 },
1231 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1232 1.5 maxv [4] = { -1, 0 },
1233 1.5 maxv [5] = { -1, 0 },
1234 1.5 maxv [6] = { -1, 0 },
1235 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1236 1.5 maxv },
1237 1.5 maxv [0b110] = {
1238 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1239 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1240 1.5 maxv [2] = { -1, 0 },
1241 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1242 1.5 maxv [4] = { -1, 0 },
1243 1.5 maxv [5] = { -1, 0 },
1244 1.5 maxv [6] = { -1, 0 },
1245 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1246 1.5 maxv },
1247 1.5 maxv [0b111] = {
1248 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1249 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1250 1.5 maxv [2] = { -1, 0 },
1251 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1252 1.5 maxv [4] = { -1, 0 },
1253 1.5 maxv [5] = { -1, 0 },
1254 1.5 maxv [6] = { -1, 0 },
1255 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1256 1.5 maxv },
1257 1.5 maxv },
1258 1.5 maxv [true] = {
1259 1.5 maxv /* Extended. */
1260 1.5 maxv [0b000] = {
1261 1.5 maxv [0] = { NVMM_X64_GPR_R8, 0x00000000000000FF }, /* R8B */
1262 1.5 maxv [1] = { NVMM_X64_GPR_R8, 0x000000000000FFFF }, /* R8W */
1263 1.5 maxv [2] = { -1, 0 },
1264 1.5 maxv [3] = { NVMM_X64_GPR_R8, 0x00000000FFFFFFFF }, /* R8D */
1265 1.5 maxv [4] = { -1, 0 },
1266 1.5 maxv [5] = { -1, 0 },
1267 1.5 maxv [6] = { -1, 0 },
1268 1.5 maxv [7] = { NVMM_X64_GPR_R8, 0x00000000FFFFFFFF }, /* R8 */
1269 1.5 maxv },
1270 1.5 maxv [0b001] = {
1271 1.5 maxv [0] = { NVMM_X64_GPR_R9, 0x00000000000000FF }, /* R9B */
1272 1.5 maxv [1] = { NVMM_X64_GPR_R9, 0x000000000000FFFF }, /* R9W */
1273 1.5 maxv [2] = { -1, 0 },
1274 1.5 maxv [3] = { NVMM_X64_GPR_R9, 0x00000000FFFFFFFF }, /* R9D */
1275 1.5 maxv [4] = { -1, 0 },
1276 1.5 maxv [5] = { -1, 0 },
1277 1.5 maxv [6] = { -1, 0 },
1278 1.5 maxv [7] = { NVMM_X64_GPR_R9, 0x00000000FFFFFFFF }, /* R9 */
1279 1.5 maxv },
1280 1.5 maxv [0b010] = {
1281 1.5 maxv [0] = { NVMM_X64_GPR_R10, 0x00000000000000FF }, /* R10B */
1282 1.5 maxv [1] = { NVMM_X64_GPR_R10, 0x000000000000FFFF }, /* R10W */
1283 1.5 maxv [2] = { -1, 0 },
1284 1.5 maxv [3] = { NVMM_X64_GPR_R10, 0x00000000FFFFFFFF }, /* R10D */
1285 1.5 maxv [4] = { -1, 0 },
1286 1.5 maxv [5] = { -1, 0 },
1287 1.5 maxv [6] = { -1, 0 },
1288 1.5 maxv [7] = { NVMM_X64_GPR_R10, 0x00000000FFFFFFFF }, /* R10 */
1289 1.5 maxv },
1290 1.5 maxv [0b011] = {
1291 1.5 maxv [0] = { NVMM_X64_GPR_R11, 0x00000000000000FF }, /* R11B */
1292 1.5 maxv [1] = { NVMM_X64_GPR_R11, 0x000000000000FFFF }, /* R11W */
1293 1.5 maxv [2] = { -1, 0 },
1294 1.5 maxv [3] = { NVMM_X64_GPR_R11, 0x00000000FFFFFFFF }, /* R11D */
1295 1.5 maxv [4] = { -1, 0 },
1296 1.5 maxv [5] = { -1, 0 },
1297 1.5 maxv [6] = { -1, 0 },
1298 1.5 maxv [7] = { NVMM_X64_GPR_R11, 0x00000000FFFFFFFF }, /* R11 */
1299 1.5 maxv },
1300 1.5 maxv [0b100] = {
1301 1.5 maxv [0] = { NVMM_X64_GPR_R12, 0x00000000000000FF }, /* R12B */
1302 1.5 maxv [1] = { NVMM_X64_GPR_R12, 0x000000000000FFFF }, /* R12W */
1303 1.5 maxv [2] = { -1, 0 },
1304 1.5 maxv [3] = { NVMM_X64_GPR_R12, 0x00000000FFFFFFFF }, /* R12D */
1305 1.5 maxv [4] = { -1, 0 },
1306 1.5 maxv [5] = { -1, 0 },
1307 1.5 maxv [6] = { -1, 0 },
1308 1.5 maxv [7] = { NVMM_X64_GPR_R12, 0x00000000FFFFFFFF }, /* R12 */
1309 1.5 maxv },
1310 1.5 maxv [0b101] = {
1311 1.5 maxv [0] = { NVMM_X64_GPR_R13, 0x00000000000000FF }, /* R13B */
1312 1.5 maxv [1] = { NVMM_X64_GPR_R13, 0x000000000000FFFF }, /* R13W */
1313 1.5 maxv [2] = { -1, 0 },
1314 1.5 maxv [3] = { NVMM_X64_GPR_R13, 0x00000000FFFFFFFF }, /* R13D */
1315 1.5 maxv [4] = { -1, 0 },
1316 1.5 maxv [5] = { -1, 0 },
1317 1.5 maxv [6] = { -1, 0 },
1318 1.5 maxv [7] = { NVMM_X64_GPR_R13, 0x00000000FFFFFFFF }, /* R13 */
1319 1.5 maxv },
1320 1.5 maxv [0b110] = {
1321 1.5 maxv [0] = { NVMM_X64_GPR_R14, 0x00000000000000FF }, /* R14B */
1322 1.5 maxv [1] = { NVMM_X64_GPR_R14, 0x000000000000FFFF }, /* R14W */
1323 1.5 maxv [2] = { -1, 0 },
1324 1.5 maxv [3] = { NVMM_X64_GPR_R14, 0x00000000FFFFFFFF }, /* R14D */
1325 1.5 maxv [4] = { -1, 0 },
1326 1.5 maxv [5] = { -1, 0 },
1327 1.5 maxv [6] = { -1, 0 },
1328 1.5 maxv [7] = { NVMM_X64_GPR_R14, 0x00000000FFFFFFFF }, /* R14 */
1329 1.5 maxv },
1330 1.5 maxv [0b111] = {
1331 1.5 maxv [0] = { NVMM_X64_GPR_R15, 0x00000000000000FF }, /* R15B */
1332 1.5 maxv [1] = { NVMM_X64_GPR_R15, 0x000000000000FFFF }, /* R15W */
1333 1.5 maxv [2] = { -1, 0 },
1334 1.5 maxv [3] = { NVMM_X64_GPR_R15, 0x00000000FFFFFFFF }, /* R15D */
1335 1.5 maxv [4] = { -1, 0 },
1336 1.5 maxv [5] = { -1, 0 },
1337 1.5 maxv [6] = { -1, 0 },
1338 1.5 maxv [7] = { NVMM_X64_GPR_R15, 0x00000000FFFFFFFF }, /* R15 */
1339 1.5 maxv },
1340 1.5 maxv }
1341 1.5 maxv };
1342 1.5 maxv
1343 1.5 maxv static int
1344 1.5 maxv node_overflow(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1345 1.5 maxv {
1346 1.5 maxv fsm->fn = NULL;
1347 1.5 maxv return -1;
1348 1.5 maxv }
1349 1.5 maxv
1350 1.5 maxv static int
1351 1.5 maxv fsm_read(struct x86_decode_fsm *fsm, uint8_t *bytes, size_t n)
1352 1.5 maxv {
1353 1.5 maxv if (fsm->buf + n > fsm->end) {
1354 1.5 maxv return -1;
1355 1.5 maxv }
1356 1.5 maxv memcpy(bytes, fsm->buf, n);
1357 1.5 maxv return 0;
1358 1.5 maxv }
1359 1.5 maxv
1360 1.5 maxv static void
1361 1.5 maxv fsm_advance(struct x86_decode_fsm *fsm, size_t n,
1362 1.5 maxv int (*fn)(struct x86_decode_fsm *, struct x86_instr *))
1363 1.5 maxv {
1364 1.5 maxv fsm->buf += n;
1365 1.5 maxv if (fsm->buf > fsm->end) {
1366 1.5 maxv fsm->fn = node_overflow;
1367 1.5 maxv } else {
1368 1.5 maxv fsm->fn = fn;
1369 1.5 maxv }
1370 1.5 maxv }
1371 1.5 maxv
1372 1.5 maxv static const struct x86_reg *
1373 1.5 maxv resolve_special_register(struct x86_instr *instr, uint8_t enc, size_t regsize)
1374 1.5 maxv {
1375 1.5 maxv enc &= 0b11;
1376 1.5 maxv if (regsize == 8) {
1377 1.5 maxv /* May be 64bit without REX */
1378 1.5 maxv return &gpr_map__special[1][enc][regsize-1];
1379 1.5 maxv }
1380 1.5 maxv return &gpr_map__special[instr->rexpref.present][enc][regsize-1];
1381 1.5 maxv }
1382 1.5 maxv
1383 1.5 maxv /*
1384 1.5 maxv * Special node, for STOS and LODS. Fake a displacement of zero on the
1385 1.5 maxv * destination register.
1386 1.5 maxv */
1387 1.5 maxv static int
1388 1.5 maxv node_stlo(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1389 1.5 maxv {
1390 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1391 1.5 maxv struct x86_store *stlo, *streg;
1392 1.5 maxv size_t adrsize, regsize;
1393 1.5 maxv
1394 1.5 maxv adrsize = instr->address_size;
1395 1.5 maxv regsize = instr->operand_size;
1396 1.5 maxv
1397 1.5 maxv if (opcode->stos) {
1398 1.5 maxv streg = &instr->src;
1399 1.5 maxv stlo = &instr->dst;
1400 1.5 maxv } else {
1401 1.5 maxv streg = &instr->dst;
1402 1.5 maxv stlo = &instr->src;
1403 1.5 maxv }
1404 1.5 maxv
1405 1.5 maxv streg->type = STORE_REG;
1406 1.5 maxv streg->u.reg = &gpr_map[0][0][regsize-1]; /* ?AX */
1407 1.5 maxv
1408 1.5 maxv stlo->type = STORE_REG;
1409 1.5 maxv if (opcode->stos) {
1410 1.5 maxv /* ES:RDI, force ES */
1411 1.5 maxv stlo->u.reg = &gpr_map__special[1][3][adrsize-1];
1412 1.5 maxv instr->legpref[LEG_OVR_ES] = true;
1413 1.5 maxv } else {
1414 1.5 maxv /* DS:RSI */
1415 1.5 maxv stlo->u.reg = &gpr_map__special[1][2][adrsize-1];
1416 1.5 maxv }
1417 1.5 maxv stlo->disp.type = DISP_0;
1418 1.5 maxv
1419 1.5 maxv fsm_advance(fsm, 0, NULL);
1420 1.5 maxv
1421 1.5 maxv return 0;
1422 1.5 maxv }
1423 1.5 maxv
1424 1.5 maxv static int
1425 1.5 maxv node_dmo(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1426 1.5 maxv {
1427 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1428 1.5 maxv struct x86_store *stdmo, *streg;
1429 1.5 maxv size_t adrsize, regsize;
1430 1.5 maxv
1431 1.5 maxv adrsize = instr->address_size;
1432 1.5 maxv regsize = instr->operand_size;
1433 1.5 maxv
1434 1.5 maxv if (opcode->todmo) {
1435 1.5 maxv streg = &instr->src;
1436 1.5 maxv stdmo = &instr->dst;
1437 1.5 maxv } else {
1438 1.5 maxv streg = &instr->dst;
1439 1.5 maxv stdmo = &instr->src;
1440 1.5 maxv }
1441 1.5 maxv
1442 1.5 maxv streg->type = STORE_REG;
1443 1.5 maxv streg->u.reg = &gpr_map[0][0][regsize-1]; /* ?AX */
1444 1.5 maxv
1445 1.5 maxv stdmo->type = STORE_DMO;
1446 1.5 maxv if (fsm_read(fsm, (uint8_t *)&stdmo->u.dmo, adrsize) == -1) {
1447 1.5 maxv return -1;
1448 1.5 maxv }
1449 1.5 maxv fsm_advance(fsm, adrsize, NULL);
1450 1.5 maxv
1451 1.5 maxv return 0;
1452 1.5 maxv }
1453 1.5 maxv
1454 1.5 maxv static int
1455 1.5 maxv node_immediate(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1456 1.5 maxv {
1457 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1458 1.5 maxv struct x86_store *store;
1459 1.5 maxv uint8_t flags;
1460 1.5 maxv uint8_t immsize;
1461 1.5 maxv
1462 1.5 maxv /* The immediate is the source */
1463 1.5 maxv store = &instr->src;
1464 1.5 maxv immsize = instr->operand_size;
1465 1.5 maxv
1466 1.5 maxv /* Get the correct flags */
1467 1.5 maxv flags = opcode->flags;
1468 1.5 maxv if ((flags & FLAG_z) && (immsize == 8)) {
1469 1.5 maxv /* 'z' operates here */
1470 1.5 maxv immsize = 4;
1471 1.5 maxv }
1472 1.5 maxv
1473 1.5 maxv store->type = STORE_IMM;
1474 1.5 maxv store->u.imm.size = immsize;
1475 1.5 maxv
1476 1.5 maxv if (fsm_read(fsm, store->u.imm.data, store->u.imm.size) == -1) {
1477 1.5 maxv return -1;
1478 1.5 maxv }
1479 1.5 maxv
1480 1.5 maxv fsm_advance(fsm, store->u.imm.size, NULL);
1481 1.5 maxv
1482 1.5 maxv return 0;
1483 1.5 maxv }
1484 1.5 maxv
1485 1.5 maxv static int
1486 1.5 maxv node_disp(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1487 1.5 maxv {
1488 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1489 1.5 maxv size_t n;
1490 1.5 maxv
1491 1.5 maxv if (instr->strm->disp.type == DISP_1) {
1492 1.5 maxv n = 1;
1493 1.5 maxv } else { /* DISP4 */
1494 1.5 maxv n = 4;
1495 1.5 maxv }
1496 1.5 maxv
1497 1.5 maxv if (fsm_read(fsm, instr->strm->disp.data, n) == -1) {
1498 1.5 maxv return -1;
1499 1.5 maxv }
1500 1.5 maxv
1501 1.5 maxv if (opcode->immediate) {
1502 1.5 maxv fsm_advance(fsm, n, node_immediate);
1503 1.5 maxv } else {
1504 1.5 maxv fsm_advance(fsm, n, NULL);
1505 1.5 maxv }
1506 1.5 maxv
1507 1.5 maxv return 0;
1508 1.5 maxv }
1509 1.5 maxv
1510 1.5 maxv static const struct x86_reg *
1511 1.5 maxv get_register_idx(struct x86_instr *instr, uint8_t index)
1512 1.5 maxv {
1513 1.5 maxv uint8_t enc = index;
1514 1.5 maxv const struct x86_reg *reg;
1515 1.5 maxv size_t regsize;
1516 1.5 maxv
1517 1.5 maxv regsize = instr->address_size;
1518 1.5 maxv reg = &gpr_map[instr->rexpref.x][enc][regsize-1];
1519 1.5 maxv
1520 1.5 maxv if (reg->num == -1) {
1521 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
1522 1.5 maxv }
1523 1.5 maxv
1524 1.5 maxv return reg;
1525 1.5 maxv }
1526 1.5 maxv
1527 1.5 maxv static const struct x86_reg *
1528 1.5 maxv get_register_bas(struct x86_instr *instr, uint8_t base)
1529 1.5 maxv {
1530 1.5 maxv uint8_t enc = base;
1531 1.5 maxv const struct x86_reg *reg;
1532 1.5 maxv size_t regsize;
1533 1.5 maxv
1534 1.5 maxv regsize = instr->address_size;
1535 1.5 maxv reg = &gpr_map[instr->rexpref.b][enc][regsize-1];
1536 1.5 maxv if (reg->num == -1) {
1537 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
1538 1.5 maxv }
1539 1.5 maxv
1540 1.5 maxv return reg;
1541 1.5 maxv }
1542 1.5 maxv
1543 1.5 maxv static int
1544 1.5 maxv node_sib(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1545 1.5 maxv {
1546 1.5 maxv const struct x86_opcode *opcode;
1547 1.5 maxv uint8_t scale, index, base;
1548 1.5 maxv bool noindex, nobase;
1549 1.5 maxv uint8_t byte;
1550 1.5 maxv
1551 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
1552 1.5 maxv return -1;
1553 1.5 maxv }
1554 1.5 maxv
1555 1.5 maxv scale = ((byte & 0b11000000) >> 6);
1556 1.5 maxv index = ((byte & 0b00111000) >> 3);
1557 1.5 maxv base = ((byte & 0b00000111) >> 0);
1558 1.5 maxv
1559 1.5 maxv opcode = instr->opcode;
1560 1.5 maxv
1561 1.5 maxv noindex = false;
1562 1.5 maxv nobase = false;
1563 1.5 maxv
1564 1.5 maxv if (index == 0b100 && !instr->rexpref.x) {
1565 1.5 maxv /* Special case: the index is null */
1566 1.5 maxv noindex = true;
1567 1.5 maxv }
1568 1.5 maxv
1569 1.5 maxv if (instr->regmodrm.mod == 0b00 && base == 0b101) {
1570 1.5 maxv /* Special case: the base is null + disp32 */
1571 1.5 maxv instr->strm->disp.type = DISP_4;
1572 1.5 maxv nobase = true;
1573 1.5 maxv }
1574 1.5 maxv
1575 1.5 maxv instr->strm->type = STORE_SIB;
1576 1.5 maxv instr->strm->u.sib.scale = (1 << scale);
1577 1.5 maxv if (!noindex)
1578 1.5 maxv instr->strm->u.sib.idx = get_register_idx(instr, index);
1579 1.5 maxv if (!nobase)
1580 1.5 maxv instr->strm->u.sib.bas = get_register_bas(instr, base);
1581 1.5 maxv
1582 1.5 maxv /* May have a displacement, or an immediate */
1583 1.5 maxv if (instr->strm->disp.type == DISP_1 || instr->strm->disp.type == DISP_4) {
1584 1.5 maxv fsm_advance(fsm, 1, node_disp);
1585 1.5 maxv } else if (opcode->immediate) {
1586 1.5 maxv fsm_advance(fsm, 1, node_immediate);
1587 1.5 maxv } else {
1588 1.5 maxv fsm_advance(fsm, 1, NULL);
1589 1.5 maxv }
1590 1.5 maxv
1591 1.5 maxv return 0;
1592 1.5 maxv }
1593 1.5 maxv
1594 1.5 maxv static const struct x86_reg *
1595 1.5 maxv get_register_reg(struct x86_instr *instr, const struct x86_opcode *opcode)
1596 1.5 maxv {
1597 1.5 maxv uint8_t enc = instr->regmodrm.reg;
1598 1.5 maxv const struct x86_reg *reg;
1599 1.5 maxv size_t regsize;
1600 1.5 maxv
1601 1.5 maxv if ((opcode->flags & FLAG_z) && (instr->operand_size == 8)) {
1602 1.5 maxv /* 'z' operates here */
1603 1.5 maxv regsize = 4;
1604 1.5 maxv } else {
1605 1.5 maxv regsize = instr->operand_size;
1606 1.5 maxv }
1607 1.5 maxv
1608 1.5 maxv reg = &gpr_map[instr->rexpref.r][enc][regsize-1];
1609 1.5 maxv if (reg->num == -1) {
1610 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
1611 1.5 maxv }
1612 1.5 maxv
1613 1.5 maxv return reg;
1614 1.5 maxv }
1615 1.5 maxv
1616 1.5 maxv static const struct x86_reg *
1617 1.5 maxv get_register_rm(struct x86_instr *instr, const struct x86_opcode *opcode)
1618 1.5 maxv {
1619 1.5 maxv uint8_t enc = instr->regmodrm.rm;
1620 1.5 maxv const struct x86_reg *reg;
1621 1.5 maxv size_t regsize;
1622 1.5 maxv
1623 1.5 maxv if (instr->strm->disp.type == DISP_NONE) {
1624 1.5 maxv if ((opcode->flags & FLAG_z) && (instr->operand_size == 8)) {
1625 1.5 maxv /* 'z' operates here */
1626 1.5 maxv regsize = 4;
1627 1.5 maxv } else {
1628 1.5 maxv regsize = instr->operand_size;
1629 1.5 maxv }
1630 1.5 maxv } else {
1631 1.5 maxv /* Indirect access, the size is that of the address. */
1632 1.5 maxv regsize = instr->address_size;
1633 1.5 maxv }
1634 1.5 maxv
1635 1.5 maxv reg = &gpr_map[instr->rexpref.b][enc][regsize-1];
1636 1.5 maxv if (reg->num == -1) {
1637 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
1638 1.5 maxv }
1639 1.5 maxv
1640 1.5 maxv return reg;
1641 1.5 maxv }
1642 1.5 maxv
1643 1.5 maxv static inline bool
1644 1.5 maxv has_sib(struct x86_instr *instr)
1645 1.5 maxv {
1646 1.5 maxv return (instr->regmodrm.mod != 3 && instr->regmodrm.rm == 4);
1647 1.5 maxv }
1648 1.5 maxv
1649 1.5 maxv static inline bool
1650 1.5 maxv is_rip_relative(struct x86_instr *instr)
1651 1.5 maxv {
1652 1.5 maxv return (instr->strm->disp.type == DISP_0 &&
1653 1.5 maxv instr->regmodrm.rm == RM_RBP_DISP32);
1654 1.5 maxv }
1655 1.5 maxv
1656 1.5 maxv static enum x86_disp_type
1657 1.5 maxv get_disp_type(struct x86_instr *instr)
1658 1.5 maxv {
1659 1.5 maxv switch (instr->regmodrm.mod) {
1660 1.5 maxv case MOD_DIS0: /* indirect */
1661 1.5 maxv return DISP_0;
1662 1.5 maxv case MOD_DIS1: /* indirect+1 */
1663 1.5 maxv return DISP_1;
1664 1.5 maxv case MOD_DIS4: /* indirect+4 */
1665 1.5 maxv return DISP_4;
1666 1.5 maxv case MOD_REG: /* direct */
1667 1.5 maxv default: /* gcc */
1668 1.5 maxv return DISP_NONE;
1669 1.5 maxv }
1670 1.5 maxv }
1671 1.5 maxv
1672 1.5 maxv static int
1673 1.5 maxv node_regmodrm(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1674 1.5 maxv {
1675 1.5 maxv struct x86_store *strg, *strm;
1676 1.5 maxv const struct x86_opcode *opcode;
1677 1.5 maxv const struct x86_reg *reg;
1678 1.5 maxv uint8_t byte;
1679 1.5 maxv
1680 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
1681 1.5 maxv return -1;
1682 1.5 maxv }
1683 1.5 maxv
1684 1.5 maxv opcode = instr->opcode;
1685 1.5 maxv
1686 1.5 maxv instr->regmodrm.present = true;
1687 1.5 maxv instr->regmodrm.mod = ((byte & 0b11000000) >> 6);
1688 1.5 maxv instr->regmodrm.reg = ((byte & 0b00111000) >> 3);
1689 1.5 maxv instr->regmodrm.rm = ((byte & 0b00000111) >> 0);
1690 1.5 maxv
1691 1.5 maxv if (opcode->regtorm) {
1692 1.5 maxv strg = &instr->src;
1693 1.5 maxv strm = &instr->dst;
1694 1.5 maxv } else { /* RM to REG */
1695 1.5 maxv strm = &instr->src;
1696 1.5 maxv strg = &instr->dst;
1697 1.5 maxv }
1698 1.5 maxv
1699 1.5 maxv /* Save for later use. */
1700 1.5 maxv instr->strm = strm;
1701 1.5 maxv
1702 1.5 maxv /*
1703 1.5 maxv * Special cases: Groups. The REG field of REGMODRM is the index in
1704 1.5 maxv * the group. op1 gets overwritten in the Immediate node, if any.
1705 1.5 maxv */
1706 1.5 maxv if (opcode->group11) {
1707 1.5 maxv if (group11[instr->regmodrm.reg].emul == NULL) {
1708 1.5 maxv return -1;
1709 1.5 maxv }
1710 1.5 maxv instr->emul = group11[instr->regmodrm.reg].emul;
1711 1.5 maxv }
1712 1.5 maxv
1713 1.5 maxv reg = get_register_reg(instr, opcode);
1714 1.5 maxv if (reg == NULL) {
1715 1.5 maxv return -1;
1716 1.5 maxv }
1717 1.5 maxv strg->type = STORE_REG;
1718 1.5 maxv strg->u.reg = reg;
1719 1.5 maxv
1720 1.5 maxv if (has_sib(instr)) {
1721 1.5 maxv /* Overwrites RM */
1722 1.5 maxv fsm_advance(fsm, 1, node_sib);
1723 1.5 maxv return 0;
1724 1.5 maxv }
1725 1.5 maxv
1726 1.5 maxv /* The displacement applies to RM. */
1727 1.5 maxv strm->disp.type = get_disp_type(instr);
1728 1.5 maxv
1729 1.5 maxv if (is_rip_relative(instr)) {
1730 1.5 maxv /* Overwrites RM */
1731 1.5 maxv strm->type = STORE_REG;
1732 1.5 maxv strm->u.reg = &gpr_map__rip;
1733 1.5 maxv strm->disp.type = DISP_4;
1734 1.5 maxv fsm_advance(fsm, 1, node_disp);
1735 1.5 maxv return 0;
1736 1.5 maxv }
1737 1.5 maxv
1738 1.5 maxv reg = get_register_rm(instr, opcode);
1739 1.5 maxv if (reg == NULL) {
1740 1.5 maxv return -1;
1741 1.5 maxv }
1742 1.5 maxv strm->type = STORE_REG;
1743 1.5 maxv strm->u.reg = reg;
1744 1.5 maxv
1745 1.5 maxv if (strm->disp.type == DISP_NONE) {
1746 1.5 maxv /* Direct register addressing mode */
1747 1.5 maxv if (opcode->immediate) {
1748 1.5 maxv fsm_advance(fsm, 1, node_immediate);
1749 1.5 maxv } else {
1750 1.5 maxv fsm_advance(fsm, 1, NULL);
1751 1.5 maxv }
1752 1.5 maxv } else if (strm->disp.type == DISP_0) {
1753 1.5 maxv /* Indirect register addressing mode */
1754 1.5 maxv if (opcode->immediate) {
1755 1.5 maxv fsm_advance(fsm, 1, node_immediate);
1756 1.5 maxv } else {
1757 1.5 maxv fsm_advance(fsm, 1, NULL);
1758 1.5 maxv }
1759 1.5 maxv } else {
1760 1.5 maxv fsm_advance(fsm, 1, node_disp);
1761 1.5 maxv }
1762 1.5 maxv
1763 1.5 maxv return 0;
1764 1.5 maxv }
1765 1.5 maxv
1766 1.5 maxv static size_t
1767 1.5 maxv get_operand_size(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1768 1.5 maxv {
1769 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1770 1.5 maxv int opsize;
1771 1.5 maxv
1772 1.5 maxv /* Get the opsize */
1773 1.5 maxv if (!opcode->szoverride) {
1774 1.5 maxv opsize = opcode->defsize;
1775 1.5 maxv } else if (instr->rexpref.present && instr->rexpref.w) {
1776 1.5 maxv opsize = 8;
1777 1.5 maxv } else {
1778 1.5 maxv if (!fsm->is16bit) {
1779 1.5 maxv if (instr->legpref[LEG_OPR_OVR]) {
1780 1.5 maxv opsize = 2;
1781 1.5 maxv } else {
1782 1.5 maxv opsize = 4;
1783 1.5 maxv }
1784 1.5 maxv } else { /* 16bit */
1785 1.5 maxv if (instr->legpref[LEG_OPR_OVR]) {
1786 1.5 maxv opsize = 4;
1787 1.5 maxv } else {
1788 1.5 maxv opsize = 2;
1789 1.5 maxv }
1790 1.5 maxv }
1791 1.5 maxv }
1792 1.5 maxv
1793 1.5 maxv /* See if available */
1794 1.5 maxv if ((opcode->allsize & opsize) == 0) {
1795 1.5 maxv // XXX do we care?
1796 1.5 maxv }
1797 1.5 maxv
1798 1.5 maxv return opsize;
1799 1.5 maxv }
1800 1.5 maxv
1801 1.5 maxv static size_t
1802 1.5 maxv get_address_size(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1803 1.5 maxv {
1804 1.5 maxv if (fsm->is64bit) {
1805 1.5 maxv if (__predict_false(instr->legpref[LEG_ADR_OVR])) {
1806 1.5 maxv return 4;
1807 1.5 maxv }
1808 1.5 maxv return 8;
1809 1.5 maxv }
1810 1.5 maxv
1811 1.5 maxv if (fsm->is32bit) {
1812 1.5 maxv if (__predict_false(instr->legpref[LEG_ADR_OVR])) {
1813 1.5 maxv return 2;
1814 1.5 maxv }
1815 1.5 maxv return 4;
1816 1.5 maxv }
1817 1.5 maxv
1818 1.5 maxv /* 16bit. */
1819 1.5 maxv if (__predict_false(instr->legpref[LEG_ADR_OVR])) {
1820 1.5 maxv return 4;
1821 1.5 maxv }
1822 1.5 maxv return 2;
1823 1.5 maxv }
1824 1.5 maxv
1825 1.5 maxv static int
1826 1.5 maxv node_primary_opcode(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1827 1.1 maxv {
1828 1.5 maxv const struct x86_opcode *opcode;
1829 1.5 maxv uint8_t byte;
1830 1.5 maxv size_t i, n;
1831 1.5 maxv
1832 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
1833 1.5 maxv return -1;
1834 1.5 maxv }
1835 1.5 maxv
1836 1.5 maxv n = sizeof(primary_opcode_table) / sizeof(primary_opcode_table[0]);
1837 1.5 maxv for (i = 0; i < n; i++) {
1838 1.5 maxv if (primary_opcode_table[i].byte == byte)
1839 1.5 maxv break;
1840 1.5 maxv }
1841 1.5 maxv if (i == n) {
1842 1.1 maxv return -1;
1843 1.1 maxv }
1844 1.5 maxv opcode = &primary_opcode_table[i];
1845 1.1 maxv
1846 1.5 maxv instr->opcode = opcode;
1847 1.5 maxv instr->emul = opcode->emul;
1848 1.5 maxv instr->operand_size = get_operand_size(fsm, instr);
1849 1.5 maxv instr->address_size = get_address_size(fsm, instr);
1850 1.5 maxv
1851 1.5 maxv if (opcode->regmodrm) {
1852 1.5 maxv fsm_advance(fsm, 1, node_regmodrm);
1853 1.5 maxv } else if (opcode->dmo) {
1854 1.5 maxv /* Direct-Memory Offsets */
1855 1.5 maxv fsm_advance(fsm, 1, node_dmo);
1856 1.5 maxv } else if (opcode->stos || opcode->lods) {
1857 1.5 maxv fsm_advance(fsm, 1, node_stlo);
1858 1.5 maxv } else {
1859 1.5 maxv return -1;
1860 1.5 maxv }
1861 1.5 maxv
1862 1.5 maxv return 0;
1863 1.5 maxv }
1864 1.5 maxv
1865 1.5 maxv static int
1866 1.5 maxv node_main(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1867 1.5 maxv {
1868 1.5 maxv uint8_t byte;
1869 1.5 maxv
1870 1.5 maxv #define ESCAPE 0x0F
1871 1.5 maxv #define VEX_1 0xC5
1872 1.5 maxv #define VEX_2 0xC4
1873 1.5 maxv #define XOP 0x8F
1874 1.5 maxv
1875 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
1876 1.5 maxv return -1;
1877 1.5 maxv }
1878 1.5 maxv
1879 1.5 maxv /*
1880 1.5 maxv * We don't take XOP. It is AMD-specific, and it was removed shortly
1881 1.5 maxv * after being introduced.
1882 1.5 maxv */
1883 1.5 maxv if (byte == ESCAPE) {
1884 1.5 maxv return -1;
1885 1.5 maxv } else if (!instr->rexpref.present) {
1886 1.5 maxv if (byte == VEX_1) {
1887 1.5 maxv return -1;
1888 1.5 maxv } else if (byte == VEX_2) {
1889 1.5 maxv return -1;
1890 1.5 maxv } else {
1891 1.5 maxv fsm->fn = node_primary_opcode;
1892 1.5 maxv }
1893 1.5 maxv } else {
1894 1.5 maxv fsm->fn = node_primary_opcode;
1895 1.5 maxv }
1896 1.5 maxv
1897 1.5 maxv return 0;
1898 1.5 maxv }
1899 1.5 maxv
1900 1.5 maxv static int
1901 1.5 maxv node_rex_prefix(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1902 1.5 maxv {
1903 1.5 maxv struct x86_rexpref *rexpref = &instr->rexpref;
1904 1.5 maxv uint8_t byte;
1905 1.5 maxv size_t n = 0;
1906 1.5 maxv
1907 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
1908 1.5 maxv return -1;
1909 1.5 maxv }
1910 1.5 maxv
1911 1.5 maxv if (byte >= 0x40 && byte <= 0x4F) {
1912 1.5 maxv if (__predict_false(!fsm->is64bit)) {
1913 1.5 maxv return -1;
1914 1.5 maxv }
1915 1.5 maxv rexpref->present = true;
1916 1.5 maxv rexpref->w = ((byte & 0x8) != 0);
1917 1.5 maxv rexpref->r = ((byte & 0x4) != 0);
1918 1.5 maxv rexpref->x = ((byte & 0x2) != 0);
1919 1.5 maxv rexpref->b = ((byte & 0x1) != 0);
1920 1.5 maxv n = 1;
1921 1.5 maxv }
1922 1.5 maxv
1923 1.5 maxv fsm_advance(fsm, n, node_main);
1924 1.5 maxv return 0;
1925 1.5 maxv }
1926 1.5 maxv
1927 1.5 maxv static const uint8_t legpref_table[NLEG] = {
1928 1.5 maxv /* Group 1 */
1929 1.5 maxv [LEG_LOCK] = 0xF0,
1930 1.5 maxv [LEG_REPN] = 0xF2,
1931 1.5 maxv [LEG_REP] = 0xF3,
1932 1.5 maxv /* Group 2 */
1933 1.5 maxv [LEG_OVR_CS] = 0x2E,
1934 1.5 maxv [LEG_OVR_SS] = 0x36,
1935 1.5 maxv [LEG_OVR_DS] = 0x3E,
1936 1.5 maxv [LEG_OVR_ES] = 0x26,
1937 1.5 maxv [LEG_OVR_FS] = 0x64,
1938 1.5 maxv [LEG_OVR_GS] = 0x65,
1939 1.5 maxv [LEG_BRN_TAKEN] = 0x2E,
1940 1.5 maxv [LEG_BRN_NTAKEN] = 0x3E,
1941 1.5 maxv /* Group 3 */
1942 1.5 maxv [LEG_OPR_OVR] = 0x66,
1943 1.5 maxv /* Group 4 */
1944 1.5 maxv [LEG_ADR_OVR] = 0x67
1945 1.5 maxv };
1946 1.5 maxv
1947 1.5 maxv static int
1948 1.5 maxv node_legacy_prefix(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1949 1.5 maxv {
1950 1.5 maxv uint8_t byte;
1951 1.5 maxv size_t i;
1952 1.5 maxv
1953 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
1954 1.5 maxv return -1;
1955 1.5 maxv }
1956 1.5 maxv
1957 1.5 maxv for (i = 0; i < NLEG; i++) {
1958 1.5 maxv if (byte == legpref_table[i])
1959 1.5 maxv break;
1960 1.5 maxv }
1961 1.5 maxv
1962 1.5 maxv if (i == NLEG) {
1963 1.5 maxv fsm->fn = node_rex_prefix;
1964 1.5 maxv } else {
1965 1.5 maxv instr->legpref[i] = true;
1966 1.5 maxv fsm_advance(fsm, 1, node_legacy_prefix);
1967 1.5 maxv }
1968 1.5 maxv
1969 1.5 maxv return 0;
1970 1.5 maxv }
1971 1.5 maxv
1972 1.5 maxv static int
1973 1.5 maxv x86_decode(uint8_t *inst_bytes, size_t inst_len, struct x86_instr *instr,
1974 1.5 maxv struct nvmm_x64_state *state)
1975 1.5 maxv {
1976 1.5 maxv struct x86_decode_fsm fsm;
1977 1.5 maxv int ret;
1978 1.5 maxv
1979 1.5 maxv memset(instr, 0, sizeof(*instr));
1980 1.5 maxv
1981 1.5 maxv fsm.is64bit = is_64bit(state);
1982 1.5 maxv fsm.is32bit = is_32bit(state);
1983 1.5 maxv fsm.is16bit = is_16bit(state);
1984 1.5 maxv
1985 1.5 maxv fsm.fn = node_legacy_prefix;
1986 1.5 maxv fsm.buf = inst_bytes;
1987 1.5 maxv fsm.end = inst_bytes + inst_len;
1988 1.5 maxv
1989 1.5 maxv while (fsm.fn != NULL) {
1990 1.5 maxv ret = (*fsm.fn)(&fsm, instr);
1991 1.5 maxv if (ret == -1)
1992 1.5 maxv return -1;
1993 1.5 maxv }
1994 1.5 maxv
1995 1.5 maxv instr->len = fsm.buf - inst_bytes;
1996 1.5 maxv
1997 1.5 maxv return 0;
1998 1.5 maxv }
1999 1.5 maxv
2000 1.5 maxv /* -------------------------------------------------------------------------- */
2001 1.5 maxv
2002 1.5 maxv static inline uint8_t
2003 1.5 maxv compute_parity(uint8_t *data)
2004 1.5 maxv {
2005 1.5 maxv uint64_t *ptr = (uint64_t *)data;
2006 1.5 maxv uint64_t val = *ptr;
2007 1.5 maxv
2008 1.5 maxv val ^= val >> 32;
2009 1.5 maxv val ^= val >> 16;
2010 1.5 maxv val ^= val >> 8;
2011 1.5 maxv val ^= val >> 4;
2012 1.5 maxv val ^= val >> 2;
2013 1.5 maxv val ^= val >> 1;
2014 1.5 maxv return (~val) & 1;
2015 1.5 maxv }
2016 1.5 maxv
2017 1.5 maxv static void
2018 1.5 maxv x86_emul_or(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2019 1.5 maxv uint64_t *gprs)
2020 1.5 maxv {
2021 1.5 maxv const bool write = mem->write;
2022 1.5 maxv uint64_t fl = gprs[NVMM_X64_GPR_RFLAGS];
2023 1.5 maxv uint8_t data[8];
2024 1.5 maxv size_t i;
2025 1.5 maxv
2026 1.5 maxv fl &= ~(PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF);
2027 1.5 maxv
2028 1.5 maxv memcpy(data, mem->data, sizeof(data));
2029 1.5 maxv
2030 1.5 maxv /* Fetch the value to be OR'ed. */
2031 1.5 maxv mem->write = false;
2032 1.5 maxv (*cb)(mem);
2033 1.5 maxv
2034 1.5 maxv /* Perform the OR. */
2035 1.5 maxv for (i = 0; i < mem->size; i++) {
2036 1.5 maxv mem->data[i] |= data[i];
2037 1.5 maxv if (mem->data[i] != 0)
2038 1.5 maxv fl |= PSL_Z;
2039 1.5 maxv }
2040 1.5 maxv if (mem->data[mem->size-1] & __BIT(7))
2041 1.5 maxv fl |= PSL_N;
2042 1.5 maxv if (compute_parity(mem->data))
2043 1.5 maxv fl |= PSL_PF;
2044 1.5 maxv
2045 1.5 maxv if (write) {
2046 1.5 maxv /* Write back the result. */
2047 1.5 maxv mem->write = true;
2048 1.5 maxv (*cb)(mem);
2049 1.5 maxv }
2050 1.5 maxv
2051 1.5 maxv gprs[NVMM_X64_GPR_RFLAGS] = fl;
2052 1.5 maxv }
2053 1.5 maxv
2054 1.5 maxv static void
2055 1.5 maxv x86_emul_and(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2056 1.5 maxv uint64_t *gprs)
2057 1.5 maxv {
2058 1.5 maxv const bool write = mem->write;
2059 1.5 maxv uint64_t fl = gprs[NVMM_X64_GPR_RFLAGS];
2060 1.5 maxv uint8_t data[8];
2061 1.5 maxv size_t i;
2062 1.5 maxv
2063 1.5 maxv fl &= ~(PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF);
2064 1.5 maxv
2065 1.5 maxv memcpy(data, mem->data, sizeof(data));
2066 1.5 maxv
2067 1.5 maxv /* Fetch the value to be AND'ed. */
2068 1.5 maxv mem->write = false;
2069 1.5 maxv (*cb)(mem);
2070 1.5 maxv
2071 1.5 maxv /* Perform the AND. */
2072 1.5 maxv for (i = 0; i < mem->size; i++) {
2073 1.5 maxv mem->data[i] &= data[i];
2074 1.5 maxv if (mem->data[i] != 0)
2075 1.5 maxv fl |= PSL_Z;
2076 1.5 maxv }
2077 1.5 maxv if (mem->data[mem->size-1] & __BIT(7))
2078 1.5 maxv fl |= PSL_N;
2079 1.5 maxv if (compute_parity(mem->data))
2080 1.5 maxv fl |= PSL_PF;
2081 1.5 maxv
2082 1.5 maxv if (write) {
2083 1.5 maxv /* Write back the result. */
2084 1.5 maxv mem->write = true;
2085 1.5 maxv (*cb)(mem);
2086 1.5 maxv }
2087 1.5 maxv
2088 1.5 maxv gprs[NVMM_X64_GPR_RFLAGS] = fl;
2089 1.5 maxv }
2090 1.5 maxv
2091 1.5 maxv static void
2092 1.5 maxv x86_emul_xor(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2093 1.5 maxv uint64_t *gprs)
2094 1.5 maxv {
2095 1.5 maxv const bool write = mem->write;
2096 1.5 maxv uint64_t fl = gprs[NVMM_X64_GPR_RFLAGS];
2097 1.5 maxv uint8_t data[8];
2098 1.5 maxv size_t i;
2099 1.5 maxv
2100 1.5 maxv fl &= ~(PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF);
2101 1.5 maxv
2102 1.5 maxv memcpy(data, mem->data, sizeof(data));
2103 1.5 maxv
2104 1.5 maxv /* Fetch the value to be XOR'ed. */
2105 1.5 maxv mem->write = false;
2106 1.5 maxv (*cb)(mem);
2107 1.5 maxv
2108 1.5 maxv /* Perform the XOR. */
2109 1.5 maxv for (i = 0; i < mem->size; i++) {
2110 1.5 maxv mem->data[i] ^= data[i];
2111 1.5 maxv if (mem->data[i] != 0)
2112 1.5 maxv fl |= PSL_Z;
2113 1.5 maxv }
2114 1.5 maxv if (mem->data[mem->size-1] & __BIT(7))
2115 1.5 maxv fl |= PSL_N;
2116 1.5 maxv if (compute_parity(mem->data))
2117 1.5 maxv fl |= PSL_PF;
2118 1.5 maxv
2119 1.5 maxv if (write) {
2120 1.5 maxv /* Write back the result. */
2121 1.5 maxv mem->write = true;
2122 1.5 maxv (*cb)(mem);
2123 1.5 maxv }
2124 1.5 maxv
2125 1.5 maxv gprs[NVMM_X64_GPR_RFLAGS] = fl;
2126 1.5 maxv }
2127 1.5 maxv
2128 1.5 maxv static void
2129 1.5 maxv x86_emul_mov(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2130 1.5 maxv uint64_t *gprs)
2131 1.5 maxv {
2132 1.5 maxv /*
2133 1.5 maxv * Nothing special, just move without emulation.
2134 1.5 maxv */
2135 1.5 maxv (*cb)(mem);
2136 1.5 maxv }
2137 1.5 maxv
2138 1.5 maxv static void
2139 1.5 maxv x86_emul_stos(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2140 1.5 maxv uint64_t *gprs)
2141 1.5 maxv {
2142 1.5 maxv /*
2143 1.5 maxv * Just move, and update RDI.
2144 1.5 maxv */
2145 1.5 maxv (*cb)(mem);
2146 1.5 maxv
2147 1.5 maxv if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
2148 1.5 maxv gprs[NVMM_X64_GPR_RDI] -= mem->size;
2149 1.5 maxv } else {
2150 1.5 maxv gprs[NVMM_X64_GPR_RDI] += mem->size;
2151 1.5 maxv }
2152 1.5 maxv }
2153 1.5 maxv
2154 1.5 maxv static void
2155 1.5 maxv x86_emul_lods(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2156 1.5 maxv uint64_t *gprs)
2157 1.5 maxv {
2158 1.5 maxv /*
2159 1.5 maxv * Just move, and update RSI.
2160 1.5 maxv */
2161 1.5 maxv (*cb)(mem);
2162 1.5 maxv
2163 1.5 maxv if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
2164 1.5 maxv gprs[NVMM_X64_GPR_RSI] -= mem->size;
2165 1.5 maxv } else {
2166 1.5 maxv gprs[NVMM_X64_GPR_RSI] += mem->size;
2167 1.5 maxv }
2168 1.5 maxv }
2169 1.5 maxv
2170 1.5 maxv /* -------------------------------------------------------------------------- */
2171 1.5 maxv
2172 1.5 maxv static inline uint64_t
2173 1.5 maxv gpr_read_address(struct x86_instr *instr, struct nvmm_x64_state *state, int gpr)
2174 1.5 maxv {
2175 1.5 maxv uint64_t val;
2176 1.5 maxv
2177 1.5 maxv val = state->gprs[gpr];
2178 1.5 maxv if (__predict_false(instr->address_size == 4)) {
2179 1.5 maxv val &= 0x00000000FFFFFFFF;
2180 1.5 maxv } else if (__predict_false(instr->address_size == 2)) {
2181 1.5 maxv val &= 0x000000000000FFFF;
2182 1.5 maxv }
2183 1.5 maxv
2184 1.5 maxv return val;
2185 1.5 maxv }
2186 1.5 maxv
2187 1.5 maxv static int
2188 1.5 maxv store_to_mem(struct nvmm_machine *mach, struct nvmm_x64_state *state,
2189 1.5 maxv struct x86_instr *instr, struct x86_store *store, struct nvmm_mem *mem)
2190 1.5 maxv {
2191 1.5 maxv struct x86_sib *sib;
2192 1.5 maxv nvmm_prot_t prot;
2193 1.5 maxv gvaddr_t gva, off;
2194 1.5 maxv uint64_t reg;
2195 1.5 maxv int ret, seg;
2196 1.5 maxv uint32_t *p;
2197 1.5 maxv
2198 1.5 maxv gva = 0;
2199 1.5 maxv
2200 1.5 maxv if (store->type == STORE_SIB) {
2201 1.5 maxv sib = &store->u.sib;
2202 1.5 maxv if (sib->bas != NULL)
2203 1.5 maxv gva += gpr_read_address(instr, state, sib->bas->num);
2204 1.5 maxv if (sib->idx != NULL) {
2205 1.5 maxv reg = gpr_read_address(instr, state, sib->idx->num);
2206 1.5 maxv gva += sib->scale * reg;
2207 1.5 maxv }
2208 1.5 maxv } else if (store->type == STORE_REG) {
2209 1.5 maxv gva = gpr_read_address(instr, state, store->u.reg->num);
2210 1.5 maxv } else {
2211 1.5 maxv gva = store->u.dmo;
2212 1.5 maxv }
2213 1.5 maxv
2214 1.5 maxv if (store->disp.type != DISP_NONE) {
2215 1.5 maxv p = (uint32_t *)&store->disp.data[0];
2216 1.5 maxv gva += *p;
2217 1.5 maxv }
2218 1.5 maxv
2219 1.5 maxv mem->gva = gva;
2220 1.5 maxv
2221 1.5 maxv if (!is_long_mode(state)) {
2222 1.5 maxv if (instr->legpref[LEG_OVR_CS]) {
2223 1.5 maxv seg = NVMM_X64_SEG_CS;
2224 1.5 maxv } else if (instr->legpref[LEG_OVR_SS]) {
2225 1.5 maxv seg = NVMM_X64_SEG_SS;
2226 1.5 maxv } else if (instr->legpref[LEG_OVR_ES]) {
2227 1.5 maxv seg = NVMM_X64_SEG_ES;
2228 1.5 maxv } else if (instr->legpref[LEG_OVR_FS]) {
2229 1.5 maxv seg = NVMM_X64_SEG_FS;
2230 1.5 maxv } else if (instr->legpref[LEG_OVR_GS]) {
2231 1.5 maxv seg = NVMM_X64_SEG_GS;
2232 1.5 maxv } else {
2233 1.5 maxv seg = NVMM_X64_SEG_DS;
2234 1.5 maxv }
2235 1.5 maxv
2236 1.5 maxv ret = segment_apply(&state->segs[seg], &mem->gva, mem->size);
2237 1.5 maxv if (ret == -1)
2238 1.5 maxv return -1;
2239 1.5 maxv }
2240 1.5 maxv
2241 1.5 maxv if ((mem->gva & PAGE_MASK) + mem->size > PAGE_SIZE) {
2242 1.5 maxv /* Don't allow a cross-page MMIO. */
2243 1.5 maxv errno = EINVAL;
2244 1.5 maxv return -1;
2245 1.5 maxv }
2246 1.5 maxv
2247 1.5 maxv off = (mem->gva & PAGE_MASK);
2248 1.5 maxv mem->gva &= ~PAGE_MASK;
2249 1.5 maxv
2250 1.5 maxv ret = x86_gva_to_gpa(mach, state, mem->gva, &mem->gpa, &prot);
2251 1.5 maxv if (ret == -1)
2252 1.5 maxv return -1;
2253 1.5 maxv
2254 1.5 maxv mem->gva += off;
2255 1.5 maxv mem->gpa += off;
2256 1.5 maxv
2257 1.5 maxv return 0;
2258 1.5 maxv }
2259 1.5 maxv
2260 1.5 maxv static int
2261 1.5 maxv fetch_instruction(struct nvmm_machine *mach, struct nvmm_x64_state *state,
2262 1.5 maxv struct nvmm_exit *exit)
2263 1.5 maxv {
2264 1.5 maxv size_t fetchsize, remain, done;
2265 1.5 maxv gvaddr_t gva, off;
2266 1.5 maxv nvmm_prot_t prot;
2267 1.5 maxv gpaddr_t gpa;
2268 1.5 maxv uintptr_t hva;
2269 1.5 maxv uint8_t *ptr;
2270 1.5 maxv int ret;
2271 1.5 maxv
2272 1.5 maxv fetchsize = sizeof(exit->u.mem.inst_bytes);
2273 1.5 maxv
2274 1.5 maxv gva = state->gprs[NVMM_X64_GPR_RIP];
2275 1.5 maxv if (!is_long_mode(state)) {
2276 1.5 maxv ret = segment_apply(&state->segs[NVMM_X64_SEG_CS], &gva,
2277 1.5 maxv fetchsize);
2278 1.5 maxv if (ret == -1)
2279 1.5 maxv return -1;
2280 1.5 maxv }
2281 1.5 maxv
2282 1.5 maxv off = (gva & PAGE_MASK);
2283 1.5 maxv gva &= ~PAGE_MASK;
2284 1.5 maxv
2285 1.5 maxv ret = x86_gva_to_gpa(mach, state, gva, &gpa, &prot);
2286 1.5 maxv if (ret == -1)
2287 1.5 maxv return -1;
2288 1.5 maxv if (__predict_false((prot & NVMM_PROT_EXEC) == 0)) {
2289 1.5 maxv errno = EFAULT;
2290 1.5 maxv return -1;
2291 1.5 maxv }
2292 1.5 maxv
2293 1.5 maxv ret = nvmm_gpa_to_hva(mach, gpa, &hva);
2294 1.5 maxv if (ret == -1)
2295 1.5 maxv return -1;
2296 1.5 maxv
2297 1.5 maxv ptr = (uint8_t *)hva + off;
2298 1.5 maxv
2299 1.5 maxv /*
2300 1.5 maxv * Special case. If the buffer is in between two pages, we
2301 1.5 maxv * need to retrieve data from the next page.
2302 1.5 maxv */
2303 1.5 maxv if (__predict_false(off + fetchsize > PAGE_SIZE)) {
2304 1.5 maxv remain = off + fetchsize - PAGE_SIZE;
2305 1.5 maxv done = PAGE_SIZE - off;
2306 1.5 maxv
2307 1.5 maxv memcpy(exit->u.mem.inst_bytes, ptr, done);
2308 1.5 maxv
2309 1.5 maxv ret = x86_gva_to_gpa(mach, state, gva + PAGE_SIZE,
2310 1.5 maxv &gpa, &prot);
2311 1.5 maxv if (ret == -1)
2312 1.5 maxv return -1;
2313 1.5 maxv if (__predict_false((prot & NVMM_PROT_EXEC) == 0)) {
2314 1.5 maxv errno = EFAULT;
2315 1.5 maxv return -1;
2316 1.5 maxv }
2317 1.5 maxv ret = nvmm_gpa_to_hva(mach, gpa, &hva);
2318 1.5 maxv if (ret == -1)
2319 1.5 maxv return -1;
2320 1.5 maxv
2321 1.5 maxv memcpy(&exit->u.mem.inst_bytes[done], (uint8_t *)hva, remain);
2322 1.5 maxv } else {
2323 1.5 maxv memcpy(exit->u.mem.inst_bytes, ptr, fetchsize);
2324 1.5 maxv exit->u.mem.inst_len = fetchsize;
2325 1.5 maxv }
2326 1.5 maxv
2327 1.5 maxv return 0;
2328 1.5 maxv }
2329 1.5 maxv
2330 1.5 maxv #define DISASSEMBLER_BUG() \
2331 1.5 maxv do { \
2332 1.5 maxv errno = EINVAL; \
2333 1.5 maxv return -1; \
2334 1.5 maxv } while (0);
2335 1.5 maxv
2336 1.5 maxv int
2337 1.5 maxv nvmm_assist_mem(struct nvmm_machine *mach, nvmm_cpuid_t cpuid,
2338 1.5 maxv struct nvmm_exit *exit, void (*cb)(struct nvmm_mem *))
2339 1.5 maxv {
2340 1.5 maxv struct nvmm_x64_state state;
2341 1.5 maxv struct x86_instr instr;
2342 1.5 maxv struct nvmm_mem mem;
2343 1.5 maxv uint64_t val;
2344 1.5 maxv int ret;
2345 1.5 maxv
2346 1.5 maxv if (__predict_false(exit->reason != NVMM_EXIT_MEMORY)) {
2347 1.5 maxv errno = EINVAL;
2348 1.5 maxv return -1;
2349 1.5 maxv }
2350 1.5 maxv
2351 1.5 maxv ret = nvmm_vcpu_getstate(mach, cpuid, &state,
2352 1.5 maxv NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS | NVMM_X64_STATE_CRS |
2353 1.5 maxv NVMM_X64_STATE_MSRS);
2354 1.5 maxv if (ret == -1)
2355 1.5 maxv return -1;
2356 1.5 maxv
2357 1.5 maxv if (exit->u.mem.inst_len == 0) {
2358 1.5 maxv /*
2359 1.5 maxv * The instruction was not fetched from the kernel. Fetch
2360 1.5 maxv * it ourselves.
2361 1.5 maxv */
2362 1.5 maxv ret = fetch_instruction(mach, &state, exit);
2363 1.5 maxv if (ret == -1)
2364 1.5 maxv return -1;
2365 1.5 maxv }
2366 1.5 maxv
2367 1.5 maxv ret = x86_decode(exit->u.mem.inst_bytes, exit->u.mem.inst_len,
2368 1.5 maxv &instr, &state);
2369 1.5 maxv if (ret == -1) {
2370 1.5 maxv errno = ENODEV;
2371 1.5 maxv return -1;
2372 1.5 maxv }
2373 1.5 maxv
2374 1.5 maxv if (instr.legpref[LEG_REPN]) {
2375 1.5 maxv errno = ENODEV;
2376 1.5 maxv return -1;
2377 1.5 maxv }
2378 1.5 maxv
2379 1.5 maxv memset(&mem, 0, sizeof(mem));
2380 1.5 maxv
2381 1.5 maxv switch (instr.src.type) {
2382 1.5 maxv case STORE_REG:
2383 1.5 maxv if (instr.src.disp.type != DISP_NONE) {
2384 1.5 maxv /* Indirect access. */
2385 1.5 maxv mem.write = false;
2386 1.5 maxv mem.size = instr.operand_size;
2387 1.5 maxv ret = store_to_mem(mach, &state, &instr, &instr.src,
2388 1.5 maxv &mem);
2389 1.5 maxv if (ret == -1)
2390 1.5 maxv return -1;
2391 1.5 maxv } else {
2392 1.5 maxv /* Direct access. */
2393 1.5 maxv mem.write = true;
2394 1.5 maxv mem.size = instr.operand_size;
2395 1.5 maxv val = state.gprs[instr.src.u.reg->num];
2396 1.5 maxv val = __SHIFTOUT(val, instr.src.u.reg->mask);
2397 1.5 maxv memcpy(mem.data, &val, mem.size);
2398 1.5 maxv }
2399 1.5 maxv break;
2400 1.5 maxv
2401 1.5 maxv case STORE_IMM:
2402 1.5 maxv mem.write = true;
2403 1.5 maxv mem.size = instr.src.u.imm.size;
2404 1.5 maxv memcpy(mem.data, instr.src.u.imm.data, mem.size);
2405 1.5 maxv break;
2406 1.5 maxv
2407 1.5 maxv case STORE_SIB:
2408 1.5 maxv mem.write = false;
2409 1.5 maxv mem.size = instr.operand_size;
2410 1.5 maxv ret = store_to_mem(mach, &state, &instr, &instr.src,
2411 1.5 maxv &mem);
2412 1.5 maxv if (ret == -1)
2413 1.5 maxv return -1;
2414 1.5 maxv break;
2415 1.5 maxv
2416 1.5 maxv case STORE_DMO:
2417 1.5 maxv mem.write = false;
2418 1.5 maxv mem.size = instr.operand_size;
2419 1.5 maxv ret = store_to_mem(mach, &state, &instr, &instr.src,
2420 1.5 maxv &mem);
2421 1.5 maxv if (ret == -1)
2422 1.5 maxv return -1;
2423 1.5 maxv break;
2424 1.5 maxv
2425 1.5 maxv default:
2426 1.5 maxv return -1;
2427 1.5 maxv }
2428 1.5 maxv
2429 1.5 maxv switch (instr.dst.type) {
2430 1.5 maxv case STORE_REG:
2431 1.5 maxv if (instr.dst.disp.type != DISP_NONE) {
2432 1.5 maxv if (__predict_false(!mem.write)) {
2433 1.5 maxv DISASSEMBLER_BUG();
2434 1.5 maxv }
2435 1.5 maxv mem.size = instr.operand_size;
2436 1.5 maxv ret = store_to_mem(mach, &state, &instr, &instr.dst,
2437 1.5 maxv &mem);
2438 1.5 maxv if (ret == -1)
2439 1.5 maxv return -1;
2440 1.5 maxv } else {
2441 1.5 maxv /* nothing */
2442 1.5 maxv }
2443 1.5 maxv break;
2444 1.5 maxv
2445 1.5 maxv case STORE_IMM:
2446 1.5 maxv /* The dst can't be an immediate. */
2447 1.5 maxv DISASSEMBLER_BUG();
2448 1.5 maxv
2449 1.5 maxv case STORE_SIB:
2450 1.5 maxv if (__predict_false(!mem.write)) {
2451 1.5 maxv DISASSEMBLER_BUG();
2452 1.5 maxv }
2453 1.5 maxv mem.size = instr.operand_size;
2454 1.5 maxv ret = store_to_mem(mach, &state, &instr, &instr.dst,
2455 1.5 maxv &mem);
2456 1.5 maxv if (ret == -1)
2457 1.5 maxv return -1;
2458 1.5 maxv break;
2459 1.5 maxv
2460 1.5 maxv case STORE_DMO:
2461 1.5 maxv if (__predict_false(!mem.write)) {
2462 1.5 maxv DISASSEMBLER_BUG();
2463 1.5 maxv }
2464 1.5 maxv mem.size = instr.operand_size;
2465 1.5 maxv ret = store_to_mem(mach, &state, &instr, &instr.dst,
2466 1.5 maxv &mem);
2467 1.5 maxv if (ret == -1)
2468 1.5 maxv return -1;
2469 1.5 maxv break;
2470 1.5 maxv
2471 1.5 maxv default:
2472 1.5 maxv return -1;
2473 1.5 maxv }
2474 1.5 maxv
2475 1.5 maxv (*instr.emul)(&mem, cb, state.gprs);
2476 1.5 maxv
2477 1.5 maxv if (!mem.write) {
2478 1.5 maxv /* instr.dst.type == STORE_REG */
2479 1.5 maxv memcpy(&val, mem.data, sizeof(uint64_t));
2480 1.5 maxv val = __SHIFTIN(val, instr.dst.u.reg->mask);
2481 1.5 maxv state.gprs[instr.dst.u.reg->num] &= ~instr.dst.u.reg->mask;
2482 1.5 maxv state.gprs[instr.dst.u.reg->num] |= val;
2483 1.5 maxv }
2484 1.5 maxv
2485 1.5 maxv if (instr.legpref[LEG_REP]) {
2486 1.5 maxv state.gprs[NVMM_X64_GPR_RCX] -= 1;
2487 1.5 maxv if (state.gprs[NVMM_X64_GPR_RCX] == 0) {
2488 1.5 maxv state.gprs[NVMM_X64_GPR_RIP] += instr.len;
2489 1.5 maxv }
2490 1.5 maxv } else {
2491 1.5 maxv state.gprs[NVMM_X64_GPR_RIP] += instr.len;
2492 1.5 maxv }
2493 1.5 maxv
2494 1.5 maxv ret = nvmm_vcpu_setstate(mach, cpuid, &state, NVMM_X64_STATE_GPRS);
2495 1.5 maxv if (ret == -1)
2496 1.5 maxv return -1;
2497 1.5 maxv
2498 1.5 maxv return 0;
2499 1.1 maxv }
2500