libnvmm_x86.c revision 1.6 1 1.6 maxv /* $NetBSD: libnvmm_x86.c,v 1.6 2018/12/27 07:22:31 maxv Exp $ */
2 1.1 maxv
3 1.1 maxv /*
4 1.1 maxv * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 1.1 maxv * All rights reserved.
6 1.1 maxv *
7 1.1 maxv * This code is derived from software contributed to The NetBSD Foundation
8 1.1 maxv * by Maxime Villard.
9 1.1 maxv *
10 1.1 maxv * Redistribution and use in source and binary forms, with or without
11 1.1 maxv * modification, are permitted provided that the following conditions
12 1.1 maxv * are met:
13 1.1 maxv * 1. Redistributions of source code must retain the above copyright
14 1.1 maxv * notice, this list of conditions and the following disclaimer.
15 1.1 maxv * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 maxv * notice, this list of conditions and the following disclaimer in the
17 1.1 maxv * documentation and/or other materials provided with the distribution.
18 1.1 maxv *
19 1.1 maxv * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 maxv * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 maxv * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 maxv * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 maxv * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 maxv * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 maxv * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 maxv * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 maxv * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 maxv * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 maxv * POSSIBILITY OF SUCH DAMAGE.
30 1.1 maxv */
31 1.1 maxv
32 1.1 maxv #include <sys/cdefs.h>
33 1.1 maxv
34 1.1 maxv #include <stdio.h>
35 1.1 maxv #include <stdlib.h>
36 1.1 maxv #include <string.h>
37 1.1 maxv #include <unistd.h>
38 1.1 maxv #include <fcntl.h>
39 1.1 maxv #include <errno.h>
40 1.1 maxv #include <sys/ioctl.h>
41 1.1 maxv #include <sys/mman.h>
42 1.1 maxv #include <machine/vmparam.h>
43 1.1 maxv #include <machine/pte.h>
44 1.1 maxv #include <machine/psl.h>
45 1.1 maxv
46 1.1 maxv #include "nvmm.h"
47 1.1 maxv
48 1.1 maxv #include <x86/specialreg.h>
49 1.1 maxv
50 1.6 maxv extern struct nvmm_callbacks __callbacks;
51 1.6 maxv
52 1.6 maxv /* -------------------------------------------------------------------------- */
53 1.6 maxv
54 1.6 maxv /*
55 1.6 maxv * Undocumented debugging function. Helpful.
56 1.6 maxv */
57 1.6 maxv int
58 1.6 maxv nvmm_vcpu_dump(struct nvmm_machine *mach, nvmm_cpuid_t cpuid)
59 1.6 maxv {
60 1.6 maxv struct nvmm_x64_state state;
61 1.6 maxv size_t i;
62 1.6 maxv int ret;
63 1.6 maxv
64 1.6 maxv const char *segnames[] = {
65 1.6 maxv "CS", "DS", "ES", "FS", "GS", "SS", "GDT", "IDT", "LDT", "TR"
66 1.6 maxv };
67 1.6 maxv
68 1.6 maxv ret = nvmm_vcpu_getstate(mach, cpuid, &state, NVMM_X64_STATE_ALL);
69 1.6 maxv if (ret == -1)
70 1.6 maxv return -1;
71 1.6 maxv
72 1.6 maxv printf("+ VCPU id=%d\n", (int)cpuid);
73 1.6 maxv printf("| -> RIP=%p\n", (void *)state.gprs[NVMM_X64_GPR_RIP]);
74 1.6 maxv printf("| -> RSP=%p\n", (void *)state.gprs[NVMM_X64_GPR_RSP]);
75 1.6 maxv printf("| -> RAX=%p\n", (void *)state.gprs[NVMM_X64_GPR_RAX]);
76 1.6 maxv printf("| -> RBX=%p\n", (void *)state.gprs[NVMM_X64_GPR_RBX]);
77 1.6 maxv printf("| -> RCX=%p\n", (void *)state.gprs[NVMM_X64_GPR_RCX]);
78 1.6 maxv for (i = 0; i < NVMM_X64_NSEG; i++) {
79 1.6 maxv printf("| -> %s: sel=0x%lx base=%p, limit=%p, P=%d\n",
80 1.6 maxv segnames[i],
81 1.6 maxv state.segs[i].selector,
82 1.6 maxv (void *)state.segs[i].base,
83 1.6 maxv (void *)state.segs[i].limit,
84 1.6 maxv state.segs[i].attrib.p);
85 1.6 maxv }
86 1.6 maxv
87 1.6 maxv return 0;
88 1.6 maxv }
89 1.6 maxv
90 1.1 maxv /* -------------------------------------------------------------------------- */
91 1.1 maxv
92 1.1 maxv #define PTE32_L1_SHIFT 12
93 1.1 maxv #define PTE32_L2_SHIFT 22
94 1.1 maxv
95 1.1 maxv #define PTE32_L2_MASK 0xffc00000
96 1.1 maxv #define PTE32_L1_MASK 0x003ff000
97 1.1 maxv
98 1.1 maxv #define PTE32_L2_FRAME (PTE32_L2_MASK)
99 1.1 maxv #define PTE32_L1_FRAME (PTE32_L2_FRAME|PTE32_L1_MASK)
100 1.1 maxv
101 1.1 maxv #define pte32_l1idx(va) (((va) & PTE32_L1_MASK) >> PTE32_L1_SHIFT)
102 1.1 maxv #define pte32_l2idx(va) (((va) & PTE32_L2_MASK) >> PTE32_L2_SHIFT)
103 1.1 maxv
104 1.1 maxv typedef uint32_t pte_32bit_t;
105 1.1 maxv
106 1.1 maxv static int
107 1.1 maxv x86_gva_to_gpa_32bit(struct nvmm_machine *mach, uint64_t cr3,
108 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, bool has_pse, nvmm_prot_t *prot)
109 1.1 maxv {
110 1.1 maxv gpaddr_t L2gpa, L1gpa;
111 1.1 maxv uintptr_t L2hva, L1hva;
112 1.1 maxv pte_32bit_t *pdir, pte;
113 1.1 maxv
114 1.1 maxv /* We begin with an RWXU access. */
115 1.1 maxv *prot = NVMM_PROT_ALL;
116 1.1 maxv
117 1.1 maxv /* Parse L2. */
118 1.1 maxv L2gpa = (cr3 & PG_FRAME);
119 1.1 maxv if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva) == -1)
120 1.1 maxv return -1;
121 1.1 maxv pdir = (pte_32bit_t *)L2hva;
122 1.1 maxv pte = pdir[pte32_l2idx(gva)];
123 1.1 maxv if ((pte & PG_V) == 0)
124 1.1 maxv return -1;
125 1.1 maxv if ((pte & PG_u) == 0)
126 1.1 maxv *prot &= ~NVMM_PROT_USER;
127 1.1 maxv if ((pte & PG_KW) == 0)
128 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
129 1.1 maxv if ((pte & PG_PS) && !has_pse)
130 1.1 maxv return -1;
131 1.1 maxv if (pte & PG_PS) {
132 1.1 maxv *gpa = (pte & PTE32_L2_FRAME);
133 1.1 maxv return 0;
134 1.1 maxv }
135 1.1 maxv
136 1.1 maxv /* Parse L1. */
137 1.1 maxv L1gpa = (pte & PG_FRAME);
138 1.1 maxv if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva) == -1)
139 1.1 maxv return -1;
140 1.1 maxv pdir = (pte_32bit_t *)L1hva;
141 1.1 maxv pte = pdir[pte32_l1idx(gva)];
142 1.1 maxv if ((pte & PG_V) == 0)
143 1.1 maxv return -1;
144 1.1 maxv if ((pte & PG_u) == 0)
145 1.1 maxv *prot &= ~NVMM_PROT_USER;
146 1.1 maxv if ((pte & PG_KW) == 0)
147 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
148 1.1 maxv if (pte & PG_PS)
149 1.1 maxv return -1;
150 1.1 maxv
151 1.1 maxv *gpa = (pte & PG_FRAME);
152 1.1 maxv return 0;
153 1.1 maxv }
154 1.1 maxv
155 1.1 maxv /* -------------------------------------------------------------------------- */
156 1.1 maxv
157 1.1 maxv #define PTE32_PAE_L1_SHIFT 12
158 1.1 maxv #define PTE32_PAE_L2_SHIFT 21
159 1.1 maxv #define PTE32_PAE_L3_SHIFT 30
160 1.1 maxv
161 1.1 maxv #define PTE32_PAE_L3_MASK 0xc0000000
162 1.1 maxv #define PTE32_PAE_L2_MASK 0x3fe00000
163 1.1 maxv #define PTE32_PAE_L1_MASK 0x001ff000
164 1.1 maxv
165 1.1 maxv #define PTE32_PAE_L3_FRAME (PTE32_PAE_L3_MASK)
166 1.1 maxv #define PTE32_PAE_L2_FRAME (PTE32_PAE_L3_FRAME|PTE32_PAE_L2_MASK)
167 1.1 maxv #define PTE32_PAE_L1_FRAME (PTE32_PAE_L2_FRAME|PTE32_PAE_L1_MASK)
168 1.1 maxv
169 1.1 maxv #define pte32_pae_l1idx(va) (((va) & PTE32_PAE_L1_MASK) >> PTE32_PAE_L1_SHIFT)
170 1.1 maxv #define pte32_pae_l2idx(va) (((va) & PTE32_PAE_L2_MASK) >> PTE32_PAE_L2_SHIFT)
171 1.1 maxv #define pte32_pae_l3idx(va) (((va) & PTE32_PAE_L3_MASK) >> PTE32_PAE_L3_SHIFT)
172 1.1 maxv
173 1.1 maxv typedef uint64_t pte_32bit_pae_t;
174 1.1 maxv
175 1.1 maxv static int
176 1.1 maxv x86_gva_to_gpa_32bit_pae(struct nvmm_machine *mach, uint64_t cr3,
177 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, bool has_pse, nvmm_prot_t *prot)
178 1.1 maxv {
179 1.1 maxv gpaddr_t L3gpa, L2gpa, L1gpa;
180 1.1 maxv uintptr_t L3hva, L2hva, L1hva;
181 1.1 maxv pte_32bit_pae_t *pdir, pte;
182 1.1 maxv
183 1.1 maxv /* We begin with an RWXU access. */
184 1.1 maxv *prot = NVMM_PROT_ALL;
185 1.1 maxv
186 1.1 maxv /* Parse L3. */
187 1.1 maxv L3gpa = (cr3 & PG_FRAME);
188 1.1 maxv if (nvmm_gpa_to_hva(mach, L3gpa, &L3hva) == -1)
189 1.1 maxv return -1;
190 1.1 maxv pdir = (pte_32bit_pae_t *)L3hva;
191 1.1 maxv pte = pdir[pte32_pae_l3idx(gva)];
192 1.1 maxv if ((pte & PG_V) == 0)
193 1.1 maxv return -1;
194 1.1 maxv if (pte & PG_NX)
195 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
196 1.1 maxv if (pte & PG_PS)
197 1.1 maxv return -1;
198 1.1 maxv
199 1.1 maxv /* Parse L2. */
200 1.1 maxv L2gpa = (pte & PG_FRAME);
201 1.1 maxv if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva) == -1)
202 1.1 maxv return -1;
203 1.1 maxv pdir = (pte_32bit_pae_t *)L2hva;
204 1.1 maxv pte = pdir[pte32_pae_l2idx(gva)];
205 1.1 maxv if ((pte & PG_V) == 0)
206 1.1 maxv return -1;
207 1.1 maxv if ((pte & PG_u) == 0)
208 1.1 maxv *prot &= ~NVMM_PROT_USER;
209 1.1 maxv if ((pte & PG_KW) == 0)
210 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
211 1.1 maxv if (pte & PG_NX)
212 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
213 1.1 maxv if ((pte & PG_PS) && !has_pse)
214 1.1 maxv return -1;
215 1.1 maxv if (pte & PG_PS) {
216 1.1 maxv *gpa = (pte & PTE32_PAE_L2_FRAME);
217 1.1 maxv return 0;
218 1.1 maxv }
219 1.1 maxv
220 1.1 maxv /* Parse L1. */
221 1.1 maxv L1gpa = (pte & PG_FRAME);
222 1.1 maxv if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva) == -1)
223 1.1 maxv return -1;
224 1.1 maxv pdir = (pte_32bit_pae_t *)L1hva;
225 1.1 maxv pte = pdir[pte32_pae_l1idx(gva)];
226 1.1 maxv if ((pte & PG_V) == 0)
227 1.1 maxv return -1;
228 1.1 maxv if ((pte & PG_u) == 0)
229 1.1 maxv *prot &= ~NVMM_PROT_USER;
230 1.1 maxv if ((pte & PG_KW) == 0)
231 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
232 1.1 maxv if (pte & PG_NX)
233 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
234 1.1 maxv if (pte & PG_PS)
235 1.1 maxv return -1;
236 1.1 maxv
237 1.1 maxv *gpa = (pte & PG_FRAME);
238 1.1 maxv return 0;
239 1.1 maxv }
240 1.1 maxv
241 1.1 maxv /* -------------------------------------------------------------------------- */
242 1.1 maxv
243 1.1 maxv #define PTE64_L1_SHIFT 12
244 1.1 maxv #define PTE64_L2_SHIFT 21
245 1.1 maxv #define PTE64_L3_SHIFT 30
246 1.1 maxv #define PTE64_L4_SHIFT 39
247 1.1 maxv
248 1.1 maxv #define PTE64_L4_MASK 0x0000ff8000000000
249 1.1 maxv #define PTE64_L3_MASK 0x0000007fc0000000
250 1.1 maxv #define PTE64_L2_MASK 0x000000003fe00000
251 1.1 maxv #define PTE64_L1_MASK 0x00000000001ff000
252 1.1 maxv
253 1.1 maxv #define PTE64_L4_FRAME PTE64_L4_MASK
254 1.1 maxv #define PTE64_L3_FRAME (PTE64_L4_FRAME|PTE64_L3_MASK)
255 1.1 maxv #define PTE64_L2_FRAME (PTE64_L3_FRAME|PTE64_L2_MASK)
256 1.1 maxv #define PTE64_L1_FRAME (PTE64_L2_FRAME|PTE64_L1_MASK)
257 1.1 maxv
258 1.1 maxv #define pte64_l1idx(va) (((va) & PTE64_L1_MASK) >> PTE64_L1_SHIFT)
259 1.1 maxv #define pte64_l2idx(va) (((va) & PTE64_L2_MASK) >> PTE64_L2_SHIFT)
260 1.1 maxv #define pte64_l3idx(va) (((va) & PTE64_L3_MASK) >> PTE64_L3_SHIFT)
261 1.1 maxv #define pte64_l4idx(va) (((va) & PTE64_L4_MASK) >> PTE64_L4_SHIFT)
262 1.1 maxv
263 1.1 maxv typedef uint64_t pte_64bit_t;
264 1.1 maxv
265 1.1 maxv static inline bool
266 1.1 maxv x86_gva_64bit_canonical(gvaddr_t gva)
267 1.1 maxv {
268 1.1 maxv /* Bits 63:47 must have the same value. */
269 1.1 maxv #define SIGN_EXTEND 0xffff800000000000ULL
270 1.1 maxv return (gva & SIGN_EXTEND) == 0 || (gva & SIGN_EXTEND) == SIGN_EXTEND;
271 1.1 maxv }
272 1.1 maxv
273 1.1 maxv static int
274 1.1 maxv x86_gva_to_gpa_64bit(struct nvmm_machine *mach, uint64_t cr3,
275 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, bool has_pse, nvmm_prot_t *prot)
276 1.1 maxv {
277 1.1 maxv gpaddr_t L4gpa, L3gpa, L2gpa, L1gpa;
278 1.1 maxv uintptr_t L4hva, L3hva, L2hva, L1hva;
279 1.1 maxv pte_64bit_t *pdir, pte;
280 1.1 maxv
281 1.1 maxv /* We begin with an RWXU access. */
282 1.1 maxv *prot = NVMM_PROT_ALL;
283 1.1 maxv
284 1.1 maxv if (!x86_gva_64bit_canonical(gva))
285 1.1 maxv return -1;
286 1.1 maxv
287 1.1 maxv /* Parse L4. */
288 1.1 maxv L4gpa = (cr3 & PG_FRAME);
289 1.1 maxv if (nvmm_gpa_to_hva(mach, L4gpa, &L4hva) == -1)
290 1.1 maxv return -1;
291 1.1 maxv pdir = (pte_64bit_t *)L4hva;
292 1.1 maxv pte = pdir[pte64_l4idx(gva)];
293 1.1 maxv if ((pte & PG_V) == 0)
294 1.1 maxv return -1;
295 1.1 maxv if ((pte & PG_u) == 0)
296 1.1 maxv *prot &= ~NVMM_PROT_USER;
297 1.1 maxv if ((pte & PG_KW) == 0)
298 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
299 1.1 maxv if (pte & PG_NX)
300 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
301 1.1 maxv if (pte & PG_PS)
302 1.1 maxv return -1;
303 1.1 maxv
304 1.1 maxv /* Parse L3. */
305 1.1 maxv L3gpa = (pte & PG_FRAME);
306 1.1 maxv if (nvmm_gpa_to_hva(mach, L3gpa, &L3hva) == -1)
307 1.1 maxv return -1;
308 1.1 maxv pdir = (pte_64bit_t *)L3hva;
309 1.1 maxv pte = pdir[pte64_l3idx(gva)];
310 1.1 maxv if ((pte & PG_V) == 0)
311 1.1 maxv return -1;
312 1.1 maxv if ((pte & PG_u) == 0)
313 1.1 maxv *prot &= ~NVMM_PROT_USER;
314 1.1 maxv if ((pte & PG_KW) == 0)
315 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
316 1.1 maxv if (pte & PG_NX)
317 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
318 1.1 maxv if ((pte & PG_PS) && !has_pse)
319 1.1 maxv return -1;
320 1.1 maxv if (pte & PG_PS) {
321 1.1 maxv *gpa = (pte & PTE64_L3_FRAME);
322 1.1 maxv return 0;
323 1.1 maxv }
324 1.1 maxv
325 1.1 maxv /* Parse L2. */
326 1.1 maxv L2gpa = (pte & PG_FRAME);
327 1.1 maxv if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva) == -1)
328 1.1 maxv return -1;
329 1.1 maxv pdir = (pte_64bit_t *)L2hva;
330 1.1 maxv pte = pdir[pte64_l2idx(gva)];
331 1.1 maxv if ((pte & PG_V) == 0)
332 1.1 maxv return -1;
333 1.1 maxv if ((pte & PG_u) == 0)
334 1.1 maxv *prot &= ~NVMM_PROT_USER;
335 1.1 maxv if ((pte & PG_KW) == 0)
336 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
337 1.1 maxv if (pte & PG_NX)
338 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
339 1.1 maxv if ((pte & PG_PS) && !has_pse)
340 1.1 maxv return -1;
341 1.1 maxv if (pte & PG_PS) {
342 1.1 maxv *gpa = (pte & PTE64_L2_FRAME);
343 1.1 maxv return 0;
344 1.1 maxv }
345 1.1 maxv
346 1.1 maxv /* Parse L1. */
347 1.1 maxv L1gpa = (pte & PG_FRAME);
348 1.1 maxv if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva) == -1)
349 1.1 maxv return -1;
350 1.1 maxv pdir = (pte_64bit_t *)L1hva;
351 1.1 maxv pte = pdir[pte64_l1idx(gva)];
352 1.1 maxv if ((pte & PG_V) == 0)
353 1.1 maxv return -1;
354 1.1 maxv if ((pte & PG_u) == 0)
355 1.1 maxv *prot &= ~NVMM_PROT_USER;
356 1.1 maxv if ((pte & PG_KW) == 0)
357 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
358 1.1 maxv if (pte & PG_NX)
359 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
360 1.1 maxv if (pte & PG_PS)
361 1.1 maxv return -1;
362 1.1 maxv
363 1.1 maxv *gpa = (pte & PG_FRAME);
364 1.1 maxv return 0;
365 1.1 maxv }
366 1.1 maxv
367 1.1 maxv static inline int
368 1.1 maxv x86_gva_to_gpa(struct nvmm_machine *mach, struct nvmm_x64_state *state,
369 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
370 1.1 maxv {
371 1.1 maxv bool is_pae, is_lng, has_pse;
372 1.1 maxv uint64_t cr3;
373 1.6 maxv size_t off;
374 1.1 maxv int ret;
375 1.1 maxv
376 1.1 maxv if ((state->crs[NVMM_X64_CR_CR0] & CR0_PG) == 0) {
377 1.1 maxv /* No paging. */
378 1.4 maxv *prot = NVMM_PROT_ALL;
379 1.1 maxv *gpa = gva;
380 1.1 maxv return 0;
381 1.1 maxv }
382 1.1 maxv
383 1.6 maxv off = (gva & PAGE_MASK);
384 1.6 maxv gva &= ~PAGE_MASK;
385 1.6 maxv
386 1.1 maxv is_pae = (state->crs[NVMM_X64_CR_CR4] & CR4_PAE) != 0;
387 1.1 maxv is_lng = (state->msrs[NVMM_X64_MSR_EFER] & EFER_LME) != 0;
388 1.1 maxv has_pse = (state->crs[NVMM_X64_CR_CR4] & CR4_PSE) != 0;
389 1.1 maxv cr3 = state->crs[NVMM_X64_CR_CR3];
390 1.1 maxv
391 1.1 maxv if (is_pae && is_lng) {
392 1.1 maxv /* 64bit */
393 1.1 maxv ret = x86_gva_to_gpa_64bit(mach, cr3, gva, gpa, has_pse, prot);
394 1.1 maxv } else if (is_pae && !is_lng) {
395 1.1 maxv /* 32bit PAE */
396 1.1 maxv ret = x86_gva_to_gpa_32bit_pae(mach, cr3, gva, gpa, has_pse,
397 1.1 maxv prot);
398 1.1 maxv } else if (!is_pae && !is_lng) {
399 1.1 maxv /* 32bit */
400 1.1 maxv ret = x86_gva_to_gpa_32bit(mach, cr3, gva, gpa, has_pse, prot);
401 1.1 maxv } else {
402 1.1 maxv ret = -1;
403 1.1 maxv }
404 1.1 maxv
405 1.1 maxv if (ret == -1) {
406 1.1 maxv errno = EFAULT;
407 1.1 maxv }
408 1.1 maxv
409 1.6 maxv *gpa = *gpa + off;
410 1.6 maxv
411 1.1 maxv return ret;
412 1.1 maxv }
413 1.1 maxv
414 1.1 maxv int
415 1.1 maxv nvmm_gva_to_gpa(struct nvmm_machine *mach, nvmm_cpuid_t cpuid,
416 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
417 1.1 maxv {
418 1.1 maxv struct nvmm_x64_state state;
419 1.1 maxv int ret;
420 1.1 maxv
421 1.1 maxv ret = nvmm_vcpu_getstate(mach, cpuid, &state,
422 1.1 maxv NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
423 1.1 maxv if (ret == -1)
424 1.1 maxv return -1;
425 1.1 maxv
426 1.1 maxv return x86_gva_to_gpa(mach, &state, gva, gpa, prot);
427 1.1 maxv }
428 1.1 maxv
429 1.1 maxv /* -------------------------------------------------------------------------- */
430 1.1 maxv
431 1.1 maxv static inline bool
432 1.5 maxv is_64bit(struct nvmm_x64_state *state)
433 1.5 maxv {
434 1.5 maxv return (state->segs[NVMM_X64_SEG_CS].attrib.lng != 0);
435 1.5 maxv }
436 1.5 maxv
437 1.5 maxv static inline bool
438 1.5 maxv is_32bit(struct nvmm_x64_state *state)
439 1.5 maxv {
440 1.5 maxv return (state->segs[NVMM_X64_SEG_CS].attrib.lng == 0) &&
441 1.5 maxv (state->segs[NVMM_X64_SEG_CS].attrib.def32 == 1);
442 1.5 maxv }
443 1.5 maxv
444 1.5 maxv static inline bool
445 1.5 maxv is_16bit(struct nvmm_x64_state *state)
446 1.5 maxv {
447 1.5 maxv return (state->segs[NVMM_X64_SEG_CS].attrib.lng == 0) &&
448 1.5 maxv (state->segs[NVMM_X64_SEG_CS].attrib.def32 == 0);
449 1.5 maxv }
450 1.5 maxv
451 1.5 maxv static inline bool
452 1.1 maxv is_long_mode(struct nvmm_x64_state *state)
453 1.1 maxv {
454 1.1 maxv return (state->msrs[NVMM_X64_MSR_EFER] & EFER_LME) != 0;
455 1.1 maxv }
456 1.1 maxv
457 1.1 maxv static int
458 1.1 maxv segment_apply(struct nvmm_x64_state_seg *seg, gvaddr_t *gva, size_t size)
459 1.1 maxv {
460 1.1 maxv uint64_t limit;
461 1.1 maxv
462 1.1 maxv /*
463 1.1 maxv * This is incomplete. We should check topdown, etc, really that's
464 1.1 maxv * tiring.
465 1.1 maxv */
466 1.1 maxv if (__predict_false(!seg->attrib.p)) {
467 1.1 maxv goto error;
468 1.1 maxv }
469 1.1 maxv
470 1.1 maxv limit = (seg->limit + 1);
471 1.1 maxv if (__predict_true(seg->attrib.gran)) {
472 1.1 maxv limit *= PAGE_SIZE;
473 1.1 maxv }
474 1.1 maxv
475 1.1 maxv if (__predict_false(*gva + seg->base + size > limit)) {
476 1.1 maxv goto error;
477 1.1 maxv }
478 1.1 maxv
479 1.1 maxv *gva += seg->base;
480 1.1 maxv return 0;
481 1.1 maxv
482 1.1 maxv error:
483 1.1 maxv errno = EFAULT;
484 1.1 maxv return -1;
485 1.1 maxv }
486 1.1 maxv
487 1.6 maxv static uint64_t
488 1.6 maxv mask_from_adsize(size_t adsize)
489 1.6 maxv {
490 1.6 maxv switch (adsize) {
491 1.6 maxv case 8:
492 1.6 maxv return 0xFFFFFFFFFFFFFFFF;
493 1.6 maxv case 4:
494 1.6 maxv return 0x00000000FFFFFFFF;
495 1.6 maxv case 2:
496 1.6 maxv default: /* impossible */
497 1.6 maxv return 0x000000000000FFFF;
498 1.6 maxv }
499 1.6 maxv }
500 1.6 maxv
501 1.6 maxv static uint64_t
502 1.6 maxv rep_dec_apply(struct nvmm_x64_state *state, size_t adsize)
503 1.6 maxv {
504 1.6 maxv uint64_t mask, cnt;
505 1.6 maxv
506 1.6 maxv mask = mask_from_adsize(adsize);
507 1.6 maxv
508 1.6 maxv cnt = state->gprs[NVMM_X64_GPR_RCX] & mask;
509 1.6 maxv cnt -= 1;
510 1.6 maxv cnt &= mask;
511 1.6 maxv
512 1.6 maxv state->gprs[NVMM_X64_GPR_RCX] &= ~mask;
513 1.6 maxv state->gprs[NVMM_X64_GPR_RCX] |= cnt;
514 1.6 maxv
515 1.6 maxv return cnt;
516 1.6 maxv }
517 1.6 maxv
518 1.6 maxv static int
519 1.6 maxv read_guest_memory(struct nvmm_machine *mach, struct nvmm_x64_state *state,
520 1.6 maxv gvaddr_t gva, uint8_t *data, size_t size)
521 1.6 maxv {
522 1.6 maxv struct nvmm_mem mem;
523 1.6 maxv nvmm_prot_t prot;
524 1.6 maxv gpaddr_t gpa;
525 1.6 maxv uintptr_t hva;
526 1.6 maxv bool is_mmio;
527 1.6 maxv int ret, remain;
528 1.6 maxv
529 1.6 maxv ret = x86_gva_to_gpa(mach, state, gva, &gpa, &prot);
530 1.6 maxv if (__predict_false(ret == -1)) {
531 1.6 maxv return -1;
532 1.6 maxv }
533 1.6 maxv if (__predict_false(!(prot & NVMM_PROT_READ))) {
534 1.6 maxv errno = EFAULT;
535 1.6 maxv return -1;
536 1.6 maxv }
537 1.6 maxv
538 1.6 maxv if ((gva & PAGE_MASK) + size > PAGE_SIZE) {
539 1.6 maxv remain = ((gva & PAGE_MASK) + size - PAGE_SIZE);
540 1.6 maxv } else {
541 1.6 maxv remain = 0;
542 1.6 maxv }
543 1.6 maxv size -= remain;
544 1.6 maxv
545 1.6 maxv ret = nvmm_gpa_to_hva(mach, gpa, &hva);
546 1.6 maxv is_mmio = (ret == -1);
547 1.6 maxv
548 1.6 maxv if (is_mmio) {
549 1.6 maxv mem.gva = gva;
550 1.6 maxv mem.gpa = gpa;
551 1.6 maxv mem.write = false;
552 1.6 maxv mem.size = size;
553 1.6 maxv (*__callbacks.mem)(&mem);
554 1.6 maxv memcpy(data, mem.data, size);
555 1.6 maxv } else {
556 1.6 maxv memcpy(data, (uint8_t *)hva, size);
557 1.6 maxv }
558 1.6 maxv
559 1.6 maxv if (remain > 0) {
560 1.6 maxv ret = read_guest_memory(mach, state, gva + size,
561 1.6 maxv data + size, remain);
562 1.6 maxv } else {
563 1.6 maxv ret = 0;
564 1.6 maxv }
565 1.6 maxv
566 1.6 maxv return ret;
567 1.6 maxv }
568 1.6 maxv
569 1.6 maxv static int
570 1.6 maxv write_guest_memory(struct nvmm_machine *mach, struct nvmm_x64_state *state,
571 1.6 maxv gvaddr_t gva, uint8_t *data, size_t size)
572 1.6 maxv {
573 1.6 maxv struct nvmm_mem mem;
574 1.6 maxv nvmm_prot_t prot;
575 1.6 maxv gpaddr_t gpa;
576 1.6 maxv uintptr_t hva;
577 1.6 maxv bool is_mmio;
578 1.6 maxv int ret, remain;
579 1.6 maxv
580 1.6 maxv ret = x86_gva_to_gpa(mach, state, gva, &gpa, &prot);
581 1.6 maxv if (__predict_false(ret == -1)) {
582 1.6 maxv return -1;
583 1.6 maxv }
584 1.6 maxv if (__predict_false(!(prot & NVMM_PROT_WRITE))) {
585 1.6 maxv errno = EFAULT;
586 1.6 maxv return -1;
587 1.6 maxv }
588 1.6 maxv
589 1.6 maxv if ((gva & PAGE_MASK) + size > PAGE_SIZE) {
590 1.6 maxv remain = ((gva & PAGE_MASK) + size - PAGE_SIZE);
591 1.6 maxv } else {
592 1.6 maxv remain = 0;
593 1.6 maxv }
594 1.6 maxv size -= remain;
595 1.6 maxv
596 1.6 maxv ret = nvmm_gpa_to_hva(mach, gpa, &hva);
597 1.6 maxv is_mmio = (ret == -1);
598 1.6 maxv
599 1.6 maxv if (is_mmio) {
600 1.6 maxv mem.gva = gva;
601 1.6 maxv mem.gpa = gpa;
602 1.6 maxv mem.write = true;
603 1.6 maxv memcpy(mem.data, data, size);
604 1.6 maxv mem.size = size;
605 1.6 maxv (*__callbacks.mem)(&mem);
606 1.6 maxv } else {
607 1.6 maxv memcpy((uint8_t *)hva, data, size);
608 1.6 maxv }
609 1.6 maxv
610 1.6 maxv if (remain > 0) {
611 1.6 maxv ret = write_guest_memory(mach, state, gva + size,
612 1.6 maxv data + size, remain);
613 1.6 maxv } else {
614 1.6 maxv ret = 0;
615 1.6 maxv }
616 1.6 maxv
617 1.6 maxv return ret;
618 1.6 maxv }
619 1.6 maxv
620 1.6 maxv /* -------------------------------------------------------------------------- */
621 1.6 maxv
622 1.1 maxv int
623 1.1 maxv nvmm_assist_io(struct nvmm_machine *mach, nvmm_cpuid_t cpuid,
624 1.6 maxv struct nvmm_exit *exit)
625 1.1 maxv {
626 1.1 maxv struct nvmm_x64_state state;
627 1.1 maxv struct nvmm_io io;
628 1.6 maxv uint64_t cnt;
629 1.6 maxv gvaddr_t gva;
630 1.5 maxv int reg = 0; /* GCC */
631 1.1 maxv int ret;
632 1.1 maxv
633 1.1 maxv if (__predict_false(exit->reason != NVMM_EXIT_IO)) {
634 1.1 maxv errno = EINVAL;
635 1.1 maxv return -1;
636 1.1 maxv }
637 1.1 maxv
638 1.1 maxv io.port = exit->u.io.port;
639 1.1 maxv io.in = (exit->u.io.type == NVMM_EXIT_IO_IN);
640 1.1 maxv io.size = exit->u.io.operand_size;
641 1.1 maxv
642 1.1 maxv ret = nvmm_vcpu_getstate(mach, cpuid, &state,
643 1.1 maxv NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
644 1.1 maxv NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
645 1.1 maxv if (ret == -1)
646 1.1 maxv return -1;
647 1.1 maxv
648 1.6 maxv /*
649 1.6 maxv * Determine GVA.
650 1.6 maxv */
651 1.6 maxv if (exit->u.io.str) {
652 1.5 maxv if (io.in) {
653 1.5 maxv reg = NVMM_X64_GPR_RDI;
654 1.5 maxv } else {
655 1.5 maxv reg = NVMM_X64_GPR_RSI;
656 1.5 maxv }
657 1.1 maxv
658 1.6 maxv gva = state.gprs[reg];
659 1.6 maxv gva &= mask_from_adsize(exit->u.io.address_size);
660 1.1 maxv
661 1.1 maxv if (!is_long_mode(&state)) {
662 1.1 maxv ret = segment_apply(&state.segs[exit->u.io.seg], &gva,
663 1.1 maxv io.size);
664 1.1 maxv if (ret == -1)
665 1.1 maxv return -1;
666 1.1 maxv }
667 1.6 maxv }
668 1.1 maxv
669 1.6 maxv if (!io.in) {
670 1.6 maxv if (!exit->u.io.str) {
671 1.6 maxv memcpy(io.data, &state.gprs[NVMM_X64_GPR_RAX], io.size);
672 1.6 maxv } else {
673 1.6 maxv ret = read_guest_memory(mach, &state, gva, io.data,
674 1.6 maxv io.size);
675 1.1 maxv if (ret == -1)
676 1.1 maxv return -1;
677 1.1 maxv }
678 1.1 maxv }
679 1.1 maxv
680 1.6 maxv (*__callbacks.io)(&io);
681 1.1 maxv
682 1.1 maxv if (io.in) {
683 1.6 maxv if (!exit->u.io.str) {
684 1.6 maxv memcpy(&state.gprs[NVMM_X64_GPR_RAX], io.data, io.size);
685 1.1 maxv } else {
686 1.6 maxv ret = write_guest_memory(mach, &state, gva, io.data,
687 1.6 maxv io.size);
688 1.6 maxv if (ret == -1)
689 1.6 maxv return -1;
690 1.1 maxv }
691 1.1 maxv }
692 1.1 maxv
693 1.5 maxv if (exit->u.io.str) {
694 1.5 maxv if (state.gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
695 1.5 maxv state.gprs[reg] -= io.size;
696 1.5 maxv } else {
697 1.5 maxv state.gprs[reg] += io.size;
698 1.5 maxv }
699 1.5 maxv }
700 1.5 maxv
701 1.1 maxv if (exit->u.io.rep) {
702 1.6 maxv cnt = rep_dec_apply(&state, exit->u.io.address_size);
703 1.6 maxv if (cnt == 0) {
704 1.1 maxv state.gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
705 1.1 maxv }
706 1.1 maxv } else {
707 1.1 maxv state.gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
708 1.1 maxv }
709 1.1 maxv
710 1.1 maxv ret = nvmm_vcpu_setstate(mach, cpuid, &state, NVMM_X64_STATE_GPRS);
711 1.1 maxv if (ret == -1)
712 1.1 maxv return -1;
713 1.1 maxv
714 1.1 maxv return 0;
715 1.1 maxv }
716 1.1 maxv
717 1.1 maxv /* -------------------------------------------------------------------------- */
718 1.1 maxv
719 1.5 maxv static void x86_emul_or(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
720 1.5 maxv static void x86_emul_and(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
721 1.5 maxv static void x86_emul_xor(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
722 1.5 maxv static void x86_emul_mov(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
723 1.5 maxv static void x86_emul_stos(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
724 1.5 maxv static void x86_emul_lods(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
725 1.6 maxv static void x86_emul_movs(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
726 1.5 maxv
727 1.5 maxv enum x86_legpref {
728 1.5 maxv /* Group 1 */
729 1.5 maxv LEG_LOCK = 0,
730 1.5 maxv LEG_REPN, /* REPNE/REPNZ */
731 1.5 maxv LEG_REP, /* REP/REPE/REPZ */
732 1.5 maxv /* Group 2 */
733 1.5 maxv LEG_OVR_CS,
734 1.5 maxv LEG_OVR_SS,
735 1.5 maxv LEG_OVR_DS,
736 1.5 maxv LEG_OVR_ES,
737 1.5 maxv LEG_OVR_FS,
738 1.5 maxv LEG_OVR_GS,
739 1.5 maxv LEG_BRN_TAKEN,
740 1.5 maxv LEG_BRN_NTAKEN,
741 1.5 maxv /* Group 3 */
742 1.5 maxv LEG_OPR_OVR,
743 1.5 maxv /* Group 4 */
744 1.5 maxv LEG_ADR_OVR,
745 1.5 maxv
746 1.5 maxv NLEG
747 1.5 maxv };
748 1.5 maxv
749 1.5 maxv struct x86_rexpref {
750 1.5 maxv bool present;
751 1.5 maxv bool w;
752 1.5 maxv bool r;
753 1.5 maxv bool x;
754 1.5 maxv bool b;
755 1.5 maxv };
756 1.5 maxv
757 1.5 maxv struct x86_reg {
758 1.5 maxv int num; /* NVMM GPR state index */
759 1.5 maxv uint64_t mask;
760 1.5 maxv };
761 1.5 maxv
762 1.5 maxv enum x86_disp_type {
763 1.5 maxv DISP_NONE,
764 1.5 maxv DISP_0,
765 1.5 maxv DISP_1,
766 1.5 maxv DISP_4
767 1.5 maxv };
768 1.5 maxv
769 1.5 maxv struct x86_disp {
770 1.5 maxv enum x86_disp_type type;
771 1.5 maxv uint8_t data[4];
772 1.5 maxv };
773 1.5 maxv
774 1.5 maxv enum REGMODRM__Mod {
775 1.5 maxv MOD_DIS0, /* also, register indirect */
776 1.5 maxv MOD_DIS1,
777 1.5 maxv MOD_DIS4,
778 1.5 maxv MOD_REG
779 1.5 maxv };
780 1.5 maxv
781 1.5 maxv enum REGMODRM__Reg {
782 1.5 maxv REG_000, /* these fields are indexes to the register map */
783 1.5 maxv REG_001,
784 1.5 maxv REG_010,
785 1.5 maxv REG_011,
786 1.5 maxv REG_100,
787 1.5 maxv REG_101,
788 1.5 maxv REG_110,
789 1.5 maxv REG_111
790 1.5 maxv };
791 1.5 maxv
792 1.5 maxv enum REGMODRM__Rm {
793 1.5 maxv RM_000, /* reg */
794 1.5 maxv RM_001, /* reg */
795 1.5 maxv RM_010, /* reg */
796 1.5 maxv RM_011, /* reg */
797 1.5 maxv RM_RSP_SIB, /* reg or SIB, depending on the MOD */
798 1.5 maxv RM_RBP_DISP32, /* reg or displacement-only (= RIP-relative on amd64) */
799 1.5 maxv RM_110,
800 1.5 maxv RM_111
801 1.5 maxv };
802 1.5 maxv
803 1.5 maxv struct x86_regmodrm {
804 1.5 maxv bool present;
805 1.5 maxv enum REGMODRM__Mod mod;
806 1.5 maxv enum REGMODRM__Reg reg;
807 1.5 maxv enum REGMODRM__Rm rm;
808 1.5 maxv };
809 1.5 maxv
810 1.5 maxv struct x86_immediate {
811 1.5 maxv size_t size; /* 1/2/4/8 */
812 1.5 maxv uint8_t data[8];
813 1.5 maxv };
814 1.5 maxv
815 1.5 maxv struct x86_sib {
816 1.5 maxv uint8_t scale;
817 1.5 maxv const struct x86_reg *idx;
818 1.5 maxv const struct x86_reg *bas;
819 1.5 maxv };
820 1.5 maxv
821 1.5 maxv enum x86_store_type {
822 1.5 maxv STORE_NONE,
823 1.5 maxv STORE_REG,
824 1.5 maxv STORE_IMM,
825 1.5 maxv STORE_SIB,
826 1.5 maxv STORE_DMO
827 1.5 maxv };
828 1.5 maxv
829 1.5 maxv struct x86_store {
830 1.5 maxv enum x86_store_type type;
831 1.5 maxv union {
832 1.5 maxv const struct x86_reg *reg;
833 1.5 maxv struct x86_immediate imm;
834 1.5 maxv struct x86_sib sib;
835 1.5 maxv uint64_t dmo;
836 1.5 maxv } u;
837 1.5 maxv struct x86_disp disp;
838 1.6 maxv int hardseg;
839 1.5 maxv };
840 1.5 maxv
841 1.5 maxv struct x86_instr {
842 1.5 maxv size_t len;
843 1.5 maxv bool legpref[NLEG];
844 1.5 maxv struct x86_rexpref rexpref;
845 1.5 maxv size_t operand_size;
846 1.5 maxv size_t address_size;
847 1.5 maxv
848 1.5 maxv struct x86_regmodrm regmodrm;
849 1.5 maxv
850 1.5 maxv const struct x86_opcode *opcode;
851 1.5 maxv
852 1.5 maxv struct x86_store src;
853 1.5 maxv struct x86_store dst;
854 1.5 maxv
855 1.5 maxv struct x86_store *strm;
856 1.5 maxv
857 1.5 maxv void (*emul)(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
858 1.5 maxv };
859 1.5 maxv
860 1.5 maxv struct x86_decode_fsm {
861 1.5 maxv /* vcpu */
862 1.5 maxv bool is64bit;
863 1.5 maxv bool is32bit;
864 1.5 maxv bool is16bit;
865 1.5 maxv
866 1.5 maxv /* fsm */
867 1.5 maxv int (*fn)(struct x86_decode_fsm *, struct x86_instr *);
868 1.5 maxv uint8_t *buf;
869 1.5 maxv uint8_t *end;
870 1.5 maxv };
871 1.5 maxv
872 1.5 maxv struct x86_opcode {
873 1.5 maxv uint8_t byte;
874 1.5 maxv bool regmodrm;
875 1.5 maxv bool regtorm;
876 1.5 maxv bool dmo;
877 1.5 maxv bool todmo;
878 1.6 maxv bool movs;
879 1.5 maxv bool stos;
880 1.5 maxv bool lods;
881 1.5 maxv bool szoverride;
882 1.5 maxv int defsize;
883 1.5 maxv int allsize;
884 1.5 maxv bool group11;
885 1.5 maxv bool immediate;
886 1.5 maxv int immsize;
887 1.5 maxv int flags;
888 1.5 maxv void (*emul)(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
889 1.5 maxv };
890 1.5 maxv
891 1.5 maxv struct x86_group_entry {
892 1.5 maxv void (*emul)(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
893 1.5 maxv };
894 1.5 maxv
895 1.5 maxv #define OPSIZE_BYTE 0x01
896 1.5 maxv #define OPSIZE_WORD 0x02 /* 2 bytes */
897 1.5 maxv #define OPSIZE_DOUB 0x04 /* 4 bytes */
898 1.5 maxv #define OPSIZE_QUAD 0x08 /* 8 bytes */
899 1.5 maxv
900 1.5 maxv #define FLAG_z 0x02
901 1.5 maxv
902 1.5 maxv static const struct x86_group_entry group11[8] = {
903 1.5 maxv [0] = { .emul = x86_emul_mov }
904 1.5 maxv };
905 1.5 maxv
906 1.5 maxv static const struct x86_opcode primary_opcode_table[] = {
907 1.5 maxv /*
908 1.5 maxv * Group11
909 1.5 maxv */
910 1.5 maxv {
911 1.5 maxv .byte = 0xC6,
912 1.5 maxv .regmodrm = true,
913 1.5 maxv .regtorm = true,
914 1.5 maxv .szoverride = false,
915 1.5 maxv .defsize = OPSIZE_BYTE,
916 1.5 maxv .allsize = -1,
917 1.5 maxv .group11 = true,
918 1.5 maxv .immediate = true,
919 1.5 maxv .immsize = OPSIZE_BYTE,
920 1.5 maxv .emul = NULL /* group11 */
921 1.5 maxv },
922 1.5 maxv {
923 1.5 maxv .byte = 0xC7,
924 1.5 maxv .regmodrm = true,
925 1.5 maxv .regtorm = true,
926 1.5 maxv .szoverride = true,
927 1.5 maxv .defsize = -1,
928 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
929 1.5 maxv .group11 = true,
930 1.5 maxv .immediate = true,
931 1.5 maxv .immsize = -1, /* special, Z */
932 1.5 maxv .flags = FLAG_z,
933 1.5 maxv .emul = NULL /* group11 */
934 1.5 maxv },
935 1.5 maxv
936 1.5 maxv /*
937 1.5 maxv * OR
938 1.5 maxv */
939 1.5 maxv {
940 1.5 maxv /* Eb, Gb */
941 1.5 maxv .byte = 0x08,
942 1.5 maxv .regmodrm = true,
943 1.5 maxv .regtorm = true,
944 1.5 maxv .szoverride = false,
945 1.5 maxv .defsize = OPSIZE_BYTE,
946 1.5 maxv .allsize = -1,
947 1.5 maxv .emul = x86_emul_or
948 1.5 maxv },
949 1.5 maxv {
950 1.5 maxv /* Ev, Gv */
951 1.5 maxv .byte = 0x09,
952 1.5 maxv .regmodrm = true,
953 1.5 maxv .regtorm = true,
954 1.5 maxv .szoverride = true,
955 1.5 maxv .defsize = -1,
956 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
957 1.5 maxv .emul = x86_emul_or
958 1.5 maxv },
959 1.5 maxv {
960 1.5 maxv /* Gb, Eb */
961 1.5 maxv .byte = 0x0A,
962 1.5 maxv .regmodrm = true,
963 1.5 maxv .regtorm = false,
964 1.5 maxv .szoverride = false,
965 1.5 maxv .defsize = OPSIZE_BYTE,
966 1.5 maxv .allsize = -1,
967 1.5 maxv .emul = x86_emul_or
968 1.5 maxv },
969 1.5 maxv {
970 1.5 maxv /* Gv, Ev */
971 1.5 maxv .byte = 0x0B,
972 1.5 maxv .regmodrm = true,
973 1.5 maxv .regtorm = false,
974 1.5 maxv .szoverride = true,
975 1.5 maxv .defsize = -1,
976 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
977 1.5 maxv .emul = x86_emul_or
978 1.5 maxv },
979 1.5 maxv
980 1.5 maxv /*
981 1.5 maxv * AND
982 1.5 maxv */
983 1.5 maxv {
984 1.5 maxv /* Eb, Gb */
985 1.5 maxv .byte = 0x20,
986 1.5 maxv .regmodrm = true,
987 1.5 maxv .regtorm = true,
988 1.5 maxv .szoverride = false,
989 1.5 maxv .defsize = OPSIZE_BYTE,
990 1.5 maxv .allsize = -1,
991 1.5 maxv .emul = x86_emul_and
992 1.5 maxv },
993 1.5 maxv {
994 1.5 maxv /* Ev, Gv */
995 1.5 maxv .byte = 0x21,
996 1.5 maxv .regmodrm = true,
997 1.5 maxv .regtorm = true,
998 1.5 maxv .szoverride = true,
999 1.5 maxv .defsize = -1,
1000 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1001 1.5 maxv .emul = x86_emul_and
1002 1.5 maxv },
1003 1.5 maxv {
1004 1.5 maxv /* Gb, Eb */
1005 1.5 maxv .byte = 0x22,
1006 1.5 maxv .regmodrm = true,
1007 1.5 maxv .regtorm = false,
1008 1.5 maxv .szoverride = false,
1009 1.5 maxv .defsize = OPSIZE_BYTE,
1010 1.5 maxv .allsize = -1,
1011 1.5 maxv .emul = x86_emul_and
1012 1.5 maxv },
1013 1.5 maxv {
1014 1.5 maxv /* Gv, Ev */
1015 1.5 maxv .byte = 0x23,
1016 1.5 maxv .regmodrm = true,
1017 1.5 maxv .regtorm = false,
1018 1.5 maxv .szoverride = true,
1019 1.5 maxv .defsize = -1,
1020 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1021 1.5 maxv .emul = x86_emul_and
1022 1.5 maxv },
1023 1.5 maxv
1024 1.5 maxv /*
1025 1.5 maxv * XOR
1026 1.5 maxv */
1027 1.5 maxv {
1028 1.5 maxv /* Eb, Gb */
1029 1.5 maxv .byte = 0x30,
1030 1.5 maxv .regmodrm = true,
1031 1.5 maxv .regtorm = true,
1032 1.5 maxv .szoverride = false,
1033 1.5 maxv .defsize = OPSIZE_BYTE,
1034 1.5 maxv .allsize = -1,
1035 1.5 maxv .emul = x86_emul_xor
1036 1.5 maxv },
1037 1.5 maxv {
1038 1.5 maxv /* Ev, Gv */
1039 1.5 maxv .byte = 0x31,
1040 1.5 maxv .regmodrm = true,
1041 1.5 maxv .regtorm = true,
1042 1.5 maxv .szoverride = true,
1043 1.5 maxv .defsize = -1,
1044 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1045 1.5 maxv .emul = x86_emul_xor
1046 1.5 maxv },
1047 1.5 maxv {
1048 1.5 maxv /* Gb, Eb */
1049 1.5 maxv .byte = 0x32,
1050 1.5 maxv .regmodrm = true,
1051 1.5 maxv .regtorm = false,
1052 1.5 maxv .szoverride = false,
1053 1.5 maxv .defsize = OPSIZE_BYTE,
1054 1.5 maxv .allsize = -1,
1055 1.5 maxv .emul = x86_emul_xor
1056 1.5 maxv },
1057 1.5 maxv {
1058 1.5 maxv /* Gv, Ev */
1059 1.5 maxv .byte = 0x33,
1060 1.5 maxv .regmodrm = true,
1061 1.5 maxv .regtorm = false,
1062 1.5 maxv .szoverride = true,
1063 1.5 maxv .defsize = -1,
1064 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1065 1.5 maxv .emul = x86_emul_xor
1066 1.5 maxv },
1067 1.5 maxv
1068 1.5 maxv /*
1069 1.5 maxv * MOV
1070 1.5 maxv */
1071 1.5 maxv {
1072 1.5 maxv /* Eb, Gb */
1073 1.5 maxv .byte = 0x88,
1074 1.5 maxv .regmodrm = true,
1075 1.5 maxv .regtorm = true,
1076 1.5 maxv .szoverride = false,
1077 1.5 maxv .defsize = OPSIZE_BYTE,
1078 1.5 maxv .allsize = -1,
1079 1.5 maxv .emul = x86_emul_mov
1080 1.5 maxv },
1081 1.5 maxv {
1082 1.5 maxv /* Ev, Gv */
1083 1.5 maxv .byte = 0x89,
1084 1.5 maxv .regmodrm = true,
1085 1.5 maxv .regtorm = true,
1086 1.5 maxv .szoverride = true,
1087 1.5 maxv .defsize = -1,
1088 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1089 1.5 maxv .emul = x86_emul_mov
1090 1.5 maxv },
1091 1.5 maxv {
1092 1.5 maxv /* Gb, Eb */
1093 1.5 maxv .byte = 0x8A,
1094 1.5 maxv .regmodrm = true,
1095 1.5 maxv .regtorm = false,
1096 1.5 maxv .szoverride = false,
1097 1.5 maxv .defsize = OPSIZE_BYTE,
1098 1.5 maxv .allsize = -1,
1099 1.5 maxv .emul = x86_emul_mov
1100 1.5 maxv },
1101 1.5 maxv {
1102 1.5 maxv /* Gv, Ev */
1103 1.5 maxv .byte = 0x8B,
1104 1.5 maxv .regmodrm = true,
1105 1.5 maxv .regtorm = false,
1106 1.5 maxv .szoverride = true,
1107 1.5 maxv .defsize = -1,
1108 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1109 1.5 maxv .emul = x86_emul_mov
1110 1.5 maxv },
1111 1.5 maxv {
1112 1.5 maxv /* AL, Ob */
1113 1.5 maxv .byte = 0xA0,
1114 1.5 maxv .dmo = true,
1115 1.5 maxv .todmo = false,
1116 1.5 maxv .szoverride = false,
1117 1.5 maxv .defsize = OPSIZE_BYTE,
1118 1.5 maxv .allsize = -1,
1119 1.5 maxv .emul = x86_emul_mov
1120 1.5 maxv },
1121 1.5 maxv {
1122 1.5 maxv /* rAX, Ov */
1123 1.5 maxv .byte = 0xA1,
1124 1.5 maxv .dmo = true,
1125 1.5 maxv .todmo = false,
1126 1.5 maxv .szoverride = true,
1127 1.5 maxv .defsize = -1,
1128 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1129 1.5 maxv .emul = x86_emul_mov
1130 1.5 maxv },
1131 1.5 maxv {
1132 1.5 maxv /* Ob, AL */
1133 1.5 maxv .byte = 0xA2,
1134 1.5 maxv .dmo = true,
1135 1.5 maxv .todmo = true,
1136 1.5 maxv .szoverride = false,
1137 1.5 maxv .defsize = OPSIZE_BYTE,
1138 1.5 maxv .allsize = -1,
1139 1.5 maxv .emul = x86_emul_mov
1140 1.5 maxv },
1141 1.5 maxv {
1142 1.5 maxv /* Ov, rAX */
1143 1.5 maxv .byte = 0xA3,
1144 1.5 maxv .dmo = true,
1145 1.5 maxv .todmo = true,
1146 1.5 maxv .szoverride = true,
1147 1.5 maxv .defsize = -1,
1148 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1149 1.5 maxv .emul = x86_emul_mov
1150 1.5 maxv },
1151 1.5 maxv
1152 1.5 maxv /*
1153 1.6 maxv * MOVS
1154 1.6 maxv */
1155 1.6 maxv {
1156 1.6 maxv /* Yb, Xb */
1157 1.6 maxv .byte = 0xA4,
1158 1.6 maxv .movs = true,
1159 1.6 maxv .szoverride = false,
1160 1.6 maxv .defsize = OPSIZE_BYTE,
1161 1.6 maxv .allsize = -1,
1162 1.6 maxv .emul = x86_emul_movs
1163 1.6 maxv },
1164 1.6 maxv {
1165 1.6 maxv /* Yv, Xv */
1166 1.6 maxv .byte = 0xA5,
1167 1.6 maxv .movs = true,
1168 1.6 maxv .szoverride = true,
1169 1.6 maxv .defsize = -1,
1170 1.6 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1171 1.6 maxv .emul = x86_emul_movs
1172 1.6 maxv },
1173 1.6 maxv
1174 1.6 maxv /*
1175 1.5 maxv * STOS
1176 1.5 maxv */
1177 1.5 maxv {
1178 1.5 maxv /* Yb, AL */
1179 1.5 maxv .byte = 0xAA,
1180 1.5 maxv .stos = true,
1181 1.5 maxv .szoverride = false,
1182 1.5 maxv .defsize = OPSIZE_BYTE,
1183 1.5 maxv .allsize = -1,
1184 1.5 maxv .emul = x86_emul_stos
1185 1.5 maxv },
1186 1.5 maxv {
1187 1.5 maxv /* Yv, rAX */
1188 1.5 maxv .byte = 0xAB,
1189 1.5 maxv .stos = true,
1190 1.5 maxv .szoverride = true,
1191 1.5 maxv .defsize = -1,
1192 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1193 1.5 maxv .emul = x86_emul_stos
1194 1.5 maxv },
1195 1.5 maxv
1196 1.5 maxv /*
1197 1.5 maxv * LODS
1198 1.5 maxv */
1199 1.5 maxv {
1200 1.5 maxv /* AL, Xb */
1201 1.5 maxv .byte = 0xAC,
1202 1.5 maxv .lods = true,
1203 1.5 maxv .szoverride = false,
1204 1.5 maxv .defsize = OPSIZE_BYTE,
1205 1.5 maxv .allsize = -1,
1206 1.5 maxv .emul = x86_emul_lods
1207 1.5 maxv },
1208 1.5 maxv {
1209 1.5 maxv /* rAX, Xv */
1210 1.5 maxv .byte = 0xAD,
1211 1.5 maxv .lods = true,
1212 1.5 maxv .szoverride = true,
1213 1.5 maxv .defsize = -1,
1214 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1215 1.5 maxv .emul = x86_emul_lods
1216 1.5 maxv },
1217 1.5 maxv };
1218 1.5 maxv
1219 1.5 maxv static const struct x86_reg gpr_map__rip = { NVMM_X64_GPR_RIP, 0xFFFFFFFFFFFFFFFF };
1220 1.5 maxv
1221 1.5 maxv /* [REX-present][enc][opsize] */
1222 1.5 maxv static const struct x86_reg gpr_map__special[2][4][8] = {
1223 1.5 maxv [false] = {
1224 1.5 maxv /* No REX prefix. */
1225 1.5 maxv [0b00] = {
1226 1.5 maxv [0] = { NVMM_X64_GPR_RAX, 0x000000000000FF00 }, /* AH */
1227 1.5 maxv [1] = { NVMM_X64_GPR_RSP, 0x000000000000FFFF }, /* SP */
1228 1.5 maxv [2] = { -1, 0 },
1229 1.5 maxv [3] = { NVMM_X64_GPR_RSP, 0x00000000FFFFFFFF }, /* ESP */
1230 1.5 maxv [4] = { -1, 0 },
1231 1.5 maxv [5] = { -1, 0 },
1232 1.5 maxv [6] = { -1, 0 },
1233 1.5 maxv [7] = { -1, 0 },
1234 1.5 maxv },
1235 1.5 maxv [0b01] = {
1236 1.5 maxv [0] = { NVMM_X64_GPR_RCX, 0x000000000000FF00 }, /* CH */
1237 1.5 maxv [1] = { NVMM_X64_GPR_RBP, 0x000000000000FFFF }, /* BP */
1238 1.5 maxv [2] = { -1, 0 },
1239 1.5 maxv [3] = { NVMM_X64_GPR_RBP, 0x00000000FFFFFFFF }, /* EBP */
1240 1.5 maxv [4] = { -1, 0 },
1241 1.5 maxv [5] = { -1, 0 },
1242 1.5 maxv [6] = { -1, 0 },
1243 1.5 maxv [7] = { -1, 0 },
1244 1.5 maxv },
1245 1.5 maxv [0b10] = {
1246 1.5 maxv [0] = { NVMM_X64_GPR_RDX, 0x000000000000FF00 }, /* DH */
1247 1.5 maxv [1] = { NVMM_X64_GPR_RSI, 0x000000000000FFFF }, /* SI */
1248 1.5 maxv [2] = { -1, 0 },
1249 1.5 maxv [3] = { NVMM_X64_GPR_RSI, 0x00000000FFFFFFFF }, /* ESI */
1250 1.5 maxv [4] = { -1, 0 },
1251 1.5 maxv [5] = { -1, 0 },
1252 1.5 maxv [6] = { -1, 0 },
1253 1.5 maxv [7] = { -1, 0 },
1254 1.5 maxv },
1255 1.5 maxv [0b11] = {
1256 1.5 maxv [0] = { NVMM_X64_GPR_RBX, 0x000000000000FF00 }, /* BH */
1257 1.5 maxv [1] = { NVMM_X64_GPR_RDI, 0x000000000000FFFF }, /* DI */
1258 1.5 maxv [2] = { -1, 0 },
1259 1.5 maxv [3] = { NVMM_X64_GPR_RDI, 0x00000000FFFFFFFF }, /* EDI */
1260 1.5 maxv [4] = { -1, 0 },
1261 1.5 maxv [5] = { -1, 0 },
1262 1.5 maxv [6] = { -1, 0 },
1263 1.5 maxv [7] = { -1, 0 },
1264 1.5 maxv }
1265 1.5 maxv },
1266 1.5 maxv [true] = {
1267 1.5 maxv /* Has REX prefix. */
1268 1.5 maxv [0b00] = {
1269 1.5 maxv [0] = { NVMM_X64_GPR_RSP, 0x00000000000000FF }, /* SPL */
1270 1.5 maxv [1] = { NVMM_X64_GPR_RSP, 0x000000000000FFFF }, /* SP */
1271 1.5 maxv [2] = { -1, 0 },
1272 1.5 maxv [3] = { NVMM_X64_GPR_RSP, 0x00000000FFFFFFFF }, /* ESP */
1273 1.5 maxv [4] = { -1, 0 },
1274 1.5 maxv [5] = { -1, 0 },
1275 1.5 maxv [6] = { -1, 0 },
1276 1.5 maxv [7] = { NVMM_X64_GPR_RSP, 0xFFFFFFFFFFFFFFFF }, /* RSP */
1277 1.5 maxv },
1278 1.5 maxv [0b01] = {
1279 1.5 maxv [0] = { NVMM_X64_GPR_RBP, 0x00000000000000FF }, /* BPL */
1280 1.5 maxv [1] = { NVMM_X64_GPR_RBP, 0x000000000000FFFF }, /* BP */
1281 1.5 maxv [2] = { -1, 0 },
1282 1.5 maxv [3] = { NVMM_X64_GPR_RBP, 0x00000000FFFFFFFF }, /* EBP */
1283 1.5 maxv [4] = { -1, 0 },
1284 1.5 maxv [5] = { -1, 0 },
1285 1.5 maxv [6] = { -1, 0 },
1286 1.5 maxv [7] = { NVMM_X64_GPR_RBP, 0xFFFFFFFFFFFFFFFF }, /* RBP */
1287 1.5 maxv },
1288 1.5 maxv [0b10] = {
1289 1.5 maxv [0] = { NVMM_X64_GPR_RSI, 0x00000000000000FF }, /* SIL */
1290 1.5 maxv [1] = { NVMM_X64_GPR_RSI, 0x000000000000FFFF }, /* SI */
1291 1.5 maxv [2] = { -1, 0 },
1292 1.5 maxv [3] = { NVMM_X64_GPR_RSI, 0x00000000FFFFFFFF }, /* ESI */
1293 1.5 maxv [4] = { -1, 0 },
1294 1.5 maxv [5] = { -1, 0 },
1295 1.5 maxv [6] = { -1, 0 },
1296 1.5 maxv [7] = { NVMM_X64_GPR_RSI, 0xFFFFFFFFFFFFFFFF }, /* RSI */
1297 1.5 maxv },
1298 1.5 maxv [0b11] = {
1299 1.5 maxv [0] = { NVMM_X64_GPR_RDI, 0x00000000000000FF }, /* DIL */
1300 1.5 maxv [1] = { NVMM_X64_GPR_RDI, 0x000000000000FFFF }, /* DI */
1301 1.5 maxv [2] = { -1, 0 },
1302 1.5 maxv [3] = { NVMM_X64_GPR_RDI, 0x00000000FFFFFFFF }, /* EDI */
1303 1.5 maxv [4] = { -1, 0 },
1304 1.5 maxv [5] = { -1, 0 },
1305 1.5 maxv [6] = { -1, 0 },
1306 1.5 maxv [7] = { NVMM_X64_GPR_RDI, 0xFFFFFFFFFFFFFFFF }, /* RDI */
1307 1.5 maxv }
1308 1.5 maxv }
1309 1.5 maxv };
1310 1.5 maxv
1311 1.5 maxv /* [depends][enc][size] */
1312 1.5 maxv static const struct x86_reg gpr_map[2][8][8] = {
1313 1.5 maxv [false] = {
1314 1.5 maxv /* Not extended. */
1315 1.5 maxv [0b000] = {
1316 1.5 maxv [0] = { NVMM_X64_GPR_RAX, 0x00000000000000FF }, /* AL */
1317 1.5 maxv [1] = { NVMM_X64_GPR_RAX, 0x000000000000FFFF }, /* AX */
1318 1.5 maxv [2] = { -1, 0 },
1319 1.5 maxv [3] = { NVMM_X64_GPR_RAX, 0x00000000FFFFFFFF }, /* EAX */
1320 1.5 maxv [4] = { -1, 0 },
1321 1.5 maxv [5] = { -1, 0 },
1322 1.5 maxv [6] = { -1, 0 },
1323 1.5 maxv [7] = { NVMM_X64_GPR_RAX, 0x00000000FFFFFFFF }, /* RAX */
1324 1.5 maxv },
1325 1.5 maxv [0b001] = {
1326 1.5 maxv [0] = { NVMM_X64_GPR_RCX, 0x00000000000000FF }, /* CL */
1327 1.5 maxv [1] = { NVMM_X64_GPR_RCX, 0x000000000000FFFF }, /* CX */
1328 1.5 maxv [2] = { -1, 0 },
1329 1.5 maxv [3] = { NVMM_X64_GPR_RCX, 0x00000000FFFFFFFF }, /* ECX */
1330 1.5 maxv [4] = { -1, 0 },
1331 1.5 maxv [5] = { -1, 0 },
1332 1.5 maxv [6] = { -1, 0 },
1333 1.5 maxv [7] = { NVMM_X64_GPR_RCX, 0x00000000FFFFFFFF }, /* RCX */
1334 1.5 maxv },
1335 1.5 maxv [0b010] = {
1336 1.5 maxv [0] = { NVMM_X64_GPR_RDX, 0x00000000000000FF }, /* DL */
1337 1.5 maxv [1] = { NVMM_X64_GPR_RDX, 0x000000000000FFFF }, /* DX */
1338 1.5 maxv [2] = { -1, 0 },
1339 1.5 maxv [3] = { NVMM_X64_GPR_RDX, 0x00000000FFFFFFFF }, /* EDX */
1340 1.5 maxv [4] = { -1, 0 },
1341 1.5 maxv [5] = { -1, 0 },
1342 1.5 maxv [6] = { -1, 0 },
1343 1.5 maxv [7] = { NVMM_X64_GPR_RDX, 0x00000000FFFFFFFF }, /* RDX */
1344 1.5 maxv },
1345 1.5 maxv [0b011] = {
1346 1.5 maxv [0] = { NVMM_X64_GPR_RBX, 0x00000000000000FF }, /* BL */
1347 1.5 maxv [1] = { NVMM_X64_GPR_RBX, 0x000000000000FFFF }, /* BX */
1348 1.5 maxv [2] = { -1, 0 },
1349 1.5 maxv [3] = { NVMM_X64_GPR_RBX, 0x00000000FFFFFFFF }, /* EBX */
1350 1.5 maxv [4] = { -1, 0 },
1351 1.5 maxv [5] = { -1, 0 },
1352 1.5 maxv [6] = { -1, 0 },
1353 1.5 maxv [7] = { NVMM_X64_GPR_RBX, 0x00000000FFFFFFFF }, /* RBX */
1354 1.5 maxv },
1355 1.5 maxv [0b100] = {
1356 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1357 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1358 1.5 maxv [2] = { -1, 0 },
1359 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1360 1.5 maxv [4] = { -1, 0 },
1361 1.5 maxv [5] = { -1, 0 },
1362 1.5 maxv [6] = { -1, 0 },
1363 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1364 1.5 maxv },
1365 1.5 maxv [0b101] = {
1366 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1367 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1368 1.5 maxv [2] = { -1, 0 },
1369 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1370 1.5 maxv [4] = { -1, 0 },
1371 1.5 maxv [5] = { -1, 0 },
1372 1.5 maxv [6] = { -1, 0 },
1373 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1374 1.5 maxv },
1375 1.5 maxv [0b110] = {
1376 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1377 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1378 1.5 maxv [2] = { -1, 0 },
1379 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1380 1.5 maxv [4] = { -1, 0 },
1381 1.5 maxv [5] = { -1, 0 },
1382 1.5 maxv [6] = { -1, 0 },
1383 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1384 1.5 maxv },
1385 1.5 maxv [0b111] = {
1386 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1387 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1388 1.5 maxv [2] = { -1, 0 },
1389 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1390 1.5 maxv [4] = { -1, 0 },
1391 1.5 maxv [5] = { -1, 0 },
1392 1.5 maxv [6] = { -1, 0 },
1393 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1394 1.5 maxv },
1395 1.5 maxv },
1396 1.5 maxv [true] = {
1397 1.5 maxv /* Extended. */
1398 1.5 maxv [0b000] = {
1399 1.5 maxv [0] = { NVMM_X64_GPR_R8, 0x00000000000000FF }, /* R8B */
1400 1.5 maxv [1] = { NVMM_X64_GPR_R8, 0x000000000000FFFF }, /* R8W */
1401 1.5 maxv [2] = { -1, 0 },
1402 1.5 maxv [3] = { NVMM_X64_GPR_R8, 0x00000000FFFFFFFF }, /* R8D */
1403 1.5 maxv [4] = { -1, 0 },
1404 1.5 maxv [5] = { -1, 0 },
1405 1.5 maxv [6] = { -1, 0 },
1406 1.5 maxv [7] = { NVMM_X64_GPR_R8, 0x00000000FFFFFFFF }, /* R8 */
1407 1.5 maxv },
1408 1.5 maxv [0b001] = {
1409 1.5 maxv [0] = { NVMM_X64_GPR_R9, 0x00000000000000FF }, /* R9B */
1410 1.5 maxv [1] = { NVMM_X64_GPR_R9, 0x000000000000FFFF }, /* R9W */
1411 1.5 maxv [2] = { -1, 0 },
1412 1.5 maxv [3] = { NVMM_X64_GPR_R9, 0x00000000FFFFFFFF }, /* R9D */
1413 1.5 maxv [4] = { -1, 0 },
1414 1.5 maxv [5] = { -1, 0 },
1415 1.5 maxv [6] = { -1, 0 },
1416 1.5 maxv [7] = { NVMM_X64_GPR_R9, 0x00000000FFFFFFFF }, /* R9 */
1417 1.5 maxv },
1418 1.5 maxv [0b010] = {
1419 1.5 maxv [0] = { NVMM_X64_GPR_R10, 0x00000000000000FF }, /* R10B */
1420 1.5 maxv [1] = { NVMM_X64_GPR_R10, 0x000000000000FFFF }, /* R10W */
1421 1.5 maxv [2] = { -1, 0 },
1422 1.5 maxv [3] = { NVMM_X64_GPR_R10, 0x00000000FFFFFFFF }, /* R10D */
1423 1.5 maxv [4] = { -1, 0 },
1424 1.5 maxv [5] = { -1, 0 },
1425 1.5 maxv [6] = { -1, 0 },
1426 1.5 maxv [7] = { NVMM_X64_GPR_R10, 0x00000000FFFFFFFF }, /* R10 */
1427 1.5 maxv },
1428 1.5 maxv [0b011] = {
1429 1.5 maxv [0] = { NVMM_X64_GPR_R11, 0x00000000000000FF }, /* R11B */
1430 1.5 maxv [1] = { NVMM_X64_GPR_R11, 0x000000000000FFFF }, /* R11W */
1431 1.5 maxv [2] = { -1, 0 },
1432 1.5 maxv [3] = { NVMM_X64_GPR_R11, 0x00000000FFFFFFFF }, /* R11D */
1433 1.5 maxv [4] = { -1, 0 },
1434 1.5 maxv [5] = { -1, 0 },
1435 1.5 maxv [6] = { -1, 0 },
1436 1.5 maxv [7] = { NVMM_X64_GPR_R11, 0x00000000FFFFFFFF }, /* R11 */
1437 1.5 maxv },
1438 1.5 maxv [0b100] = {
1439 1.5 maxv [0] = { NVMM_X64_GPR_R12, 0x00000000000000FF }, /* R12B */
1440 1.5 maxv [1] = { NVMM_X64_GPR_R12, 0x000000000000FFFF }, /* R12W */
1441 1.5 maxv [2] = { -1, 0 },
1442 1.5 maxv [3] = { NVMM_X64_GPR_R12, 0x00000000FFFFFFFF }, /* R12D */
1443 1.5 maxv [4] = { -1, 0 },
1444 1.5 maxv [5] = { -1, 0 },
1445 1.5 maxv [6] = { -1, 0 },
1446 1.5 maxv [7] = { NVMM_X64_GPR_R12, 0x00000000FFFFFFFF }, /* R12 */
1447 1.5 maxv },
1448 1.5 maxv [0b101] = {
1449 1.5 maxv [0] = { NVMM_X64_GPR_R13, 0x00000000000000FF }, /* R13B */
1450 1.5 maxv [1] = { NVMM_X64_GPR_R13, 0x000000000000FFFF }, /* R13W */
1451 1.5 maxv [2] = { -1, 0 },
1452 1.5 maxv [3] = { NVMM_X64_GPR_R13, 0x00000000FFFFFFFF }, /* R13D */
1453 1.5 maxv [4] = { -1, 0 },
1454 1.5 maxv [5] = { -1, 0 },
1455 1.5 maxv [6] = { -1, 0 },
1456 1.5 maxv [7] = { NVMM_X64_GPR_R13, 0x00000000FFFFFFFF }, /* R13 */
1457 1.5 maxv },
1458 1.5 maxv [0b110] = {
1459 1.5 maxv [0] = { NVMM_X64_GPR_R14, 0x00000000000000FF }, /* R14B */
1460 1.5 maxv [1] = { NVMM_X64_GPR_R14, 0x000000000000FFFF }, /* R14W */
1461 1.5 maxv [2] = { -1, 0 },
1462 1.5 maxv [3] = { NVMM_X64_GPR_R14, 0x00000000FFFFFFFF }, /* R14D */
1463 1.5 maxv [4] = { -1, 0 },
1464 1.5 maxv [5] = { -1, 0 },
1465 1.5 maxv [6] = { -1, 0 },
1466 1.5 maxv [7] = { NVMM_X64_GPR_R14, 0x00000000FFFFFFFF }, /* R14 */
1467 1.5 maxv },
1468 1.5 maxv [0b111] = {
1469 1.5 maxv [0] = { NVMM_X64_GPR_R15, 0x00000000000000FF }, /* R15B */
1470 1.5 maxv [1] = { NVMM_X64_GPR_R15, 0x000000000000FFFF }, /* R15W */
1471 1.5 maxv [2] = { -1, 0 },
1472 1.5 maxv [3] = { NVMM_X64_GPR_R15, 0x00000000FFFFFFFF }, /* R15D */
1473 1.5 maxv [4] = { -1, 0 },
1474 1.5 maxv [5] = { -1, 0 },
1475 1.5 maxv [6] = { -1, 0 },
1476 1.5 maxv [7] = { NVMM_X64_GPR_R15, 0x00000000FFFFFFFF }, /* R15 */
1477 1.5 maxv },
1478 1.5 maxv }
1479 1.5 maxv };
1480 1.5 maxv
1481 1.5 maxv static int
1482 1.5 maxv node_overflow(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1483 1.5 maxv {
1484 1.5 maxv fsm->fn = NULL;
1485 1.5 maxv return -1;
1486 1.5 maxv }
1487 1.5 maxv
1488 1.5 maxv static int
1489 1.5 maxv fsm_read(struct x86_decode_fsm *fsm, uint8_t *bytes, size_t n)
1490 1.5 maxv {
1491 1.5 maxv if (fsm->buf + n > fsm->end) {
1492 1.5 maxv return -1;
1493 1.5 maxv }
1494 1.5 maxv memcpy(bytes, fsm->buf, n);
1495 1.5 maxv return 0;
1496 1.5 maxv }
1497 1.5 maxv
1498 1.5 maxv static void
1499 1.5 maxv fsm_advance(struct x86_decode_fsm *fsm, size_t n,
1500 1.5 maxv int (*fn)(struct x86_decode_fsm *, struct x86_instr *))
1501 1.5 maxv {
1502 1.5 maxv fsm->buf += n;
1503 1.5 maxv if (fsm->buf > fsm->end) {
1504 1.5 maxv fsm->fn = node_overflow;
1505 1.5 maxv } else {
1506 1.5 maxv fsm->fn = fn;
1507 1.5 maxv }
1508 1.5 maxv }
1509 1.5 maxv
1510 1.5 maxv static const struct x86_reg *
1511 1.5 maxv resolve_special_register(struct x86_instr *instr, uint8_t enc, size_t regsize)
1512 1.5 maxv {
1513 1.5 maxv enc &= 0b11;
1514 1.5 maxv if (regsize == 8) {
1515 1.5 maxv /* May be 64bit without REX */
1516 1.5 maxv return &gpr_map__special[1][enc][regsize-1];
1517 1.5 maxv }
1518 1.5 maxv return &gpr_map__special[instr->rexpref.present][enc][regsize-1];
1519 1.5 maxv }
1520 1.5 maxv
1521 1.5 maxv /*
1522 1.6 maxv * Special node, for MOVS. Fake two displacements of zero on the source and
1523 1.6 maxv * destination registers.
1524 1.6 maxv */
1525 1.6 maxv static int
1526 1.6 maxv node_movs(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1527 1.6 maxv {
1528 1.6 maxv size_t adrsize;
1529 1.6 maxv
1530 1.6 maxv adrsize = instr->address_size;
1531 1.6 maxv
1532 1.6 maxv /* DS:RSI */
1533 1.6 maxv instr->src.type = STORE_REG;
1534 1.6 maxv instr->src.u.reg = &gpr_map__special[1][2][adrsize-1];
1535 1.6 maxv instr->src.disp.type = DISP_0;
1536 1.6 maxv
1537 1.6 maxv /* ES:RDI, force ES */
1538 1.6 maxv instr->dst.type = STORE_REG;
1539 1.6 maxv instr->dst.u.reg = &gpr_map__special[1][3][adrsize-1];
1540 1.6 maxv instr->dst.disp.type = DISP_0;
1541 1.6 maxv instr->dst.hardseg = NVMM_X64_SEG_ES;
1542 1.6 maxv
1543 1.6 maxv fsm_advance(fsm, 0, NULL);
1544 1.6 maxv
1545 1.6 maxv return 0;
1546 1.6 maxv }
1547 1.6 maxv
1548 1.6 maxv /*
1549 1.5 maxv * Special node, for STOS and LODS. Fake a displacement of zero on the
1550 1.5 maxv * destination register.
1551 1.5 maxv */
1552 1.5 maxv static int
1553 1.5 maxv node_stlo(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1554 1.5 maxv {
1555 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1556 1.5 maxv struct x86_store *stlo, *streg;
1557 1.5 maxv size_t adrsize, regsize;
1558 1.5 maxv
1559 1.5 maxv adrsize = instr->address_size;
1560 1.5 maxv regsize = instr->operand_size;
1561 1.5 maxv
1562 1.5 maxv if (opcode->stos) {
1563 1.5 maxv streg = &instr->src;
1564 1.5 maxv stlo = &instr->dst;
1565 1.5 maxv } else {
1566 1.5 maxv streg = &instr->dst;
1567 1.5 maxv stlo = &instr->src;
1568 1.5 maxv }
1569 1.5 maxv
1570 1.5 maxv streg->type = STORE_REG;
1571 1.5 maxv streg->u.reg = &gpr_map[0][0][regsize-1]; /* ?AX */
1572 1.5 maxv
1573 1.5 maxv stlo->type = STORE_REG;
1574 1.5 maxv if (opcode->stos) {
1575 1.5 maxv /* ES:RDI, force ES */
1576 1.5 maxv stlo->u.reg = &gpr_map__special[1][3][adrsize-1];
1577 1.6 maxv stlo->hardseg = NVMM_X64_SEG_ES;
1578 1.5 maxv } else {
1579 1.5 maxv /* DS:RSI */
1580 1.5 maxv stlo->u.reg = &gpr_map__special[1][2][adrsize-1];
1581 1.5 maxv }
1582 1.5 maxv stlo->disp.type = DISP_0;
1583 1.5 maxv
1584 1.5 maxv fsm_advance(fsm, 0, NULL);
1585 1.5 maxv
1586 1.5 maxv return 0;
1587 1.5 maxv }
1588 1.5 maxv
1589 1.5 maxv static int
1590 1.5 maxv node_dmo(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1591 1.5 maxv {
1592 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1593 1.5 maxv struct x86_store *stdmo, *streg;
1594 1.5 maxv size_t adrsize, regsize;
1595 1.5 maxv
1596 1.5 maxv adrsize = instr->address_size;
1597 1.5 maxv regsize = instr->operand_size;
1598 1.5 maxv
1599 1.5 maxv if (opcode->todmo) {
1600 1.5 maxv streg = &instr->src;
1601 1.5 maxv stdmo = &instr->dst;
1602 1.5 maxv } else {
1603 1.5 maxv streg = &instr->dst;
1604 1.5 maxv stdmo = &instr->src;
1605 1.5 maxv }
1606 1.5 maxv
1607 1.5 maxv streg->type = STORE_REG;
1608 1.5 maxv streg->u.reg = &gpr_map[0][0][regsize-1]; /* ?AX */
1609 1.5 maxv
1610 1.5 maxv stdmo->type = STORE_DMO;
1611 1.5 maxv if (fsm_read(fsm, (uint8_t *)&stdmo->u.dmo, adrsize) == -1) {
1612 1.5 maxv return -1;
1613 1.5 maxv }
1614 1.5 maxv fsm_advance(fsm, adrsize, NULL);
1615 1.5 maxv
1616 1.5 maxv return 0;
1617 1.5 maxv }
1618 1.5 maxv
1619 1.5 maxv static int
1620 1.5 maxv node_immediate(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1621 1.5 maxv {
1622 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1623 1.5 maxv struct x86_store *store;
1624 1.5 maxv uint8_t flags;
1625 1.5 maxv uint8_t immsize;
1626 1.5 maxv
1627 1.5 maxv /* The immediate is the source */
1628 1.5 maxv store = &instr->src;
1629 1.5 maxv immsize = instr->operand_size;
1630 1.5 maxv
1631 1.5 maxv /* Get the correct flags */
1632 1.5 maxv flags = opcode->flags;
1633 1.5 maxv if ((flags & FLAG_z) && (immsize == 8)) {
1634 1.5 maxv /* 'z' operates here */
1635 1.5 maxv immsize = 4;
1636 1.5 maxv }
1637 1.5 maxv
1638 1.5 maxv store->type = STORE_IMM;
1639 1.5 maxv store->u.imm.size = immsize;
1640 1.5 maxv
1641 1.5 maxv if (fsm_read(fsm, store->u.imm.data, store->u.imm.size) == -1) {
1642 1.5 maxv return -1;
1643 1.5 maxv }
1644 1.5 maxv
1645 1.5 maxv fsm_advance(fsm, store->u.imm.size, NULL);
1646 1.5 maxv
1647 1.5 maxv return 0;
1648 1.5 maxv }
1649 1.5 maxv
1650 1.5 maxv static int
1651 1.5 maxv node_disp(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1652 1.5 maxv {
1653 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1654 1.5 maxv size_t n;
1655 1.5 maxv
1656 1.5 maxv if (instr->strm->disp.type == DISP_1) {
1657 1.5 maxv n = 1;
1658 1.5 maxv } else { /* DISP4 */
1659 1.5 maxv n = 4;
1660 1.5 maxv }
1661 1.5 maxv
1662 1.5 maxv if (fsm_read(fsm, instr->strm->disp.data, n) == -1) {
1663 1.5 maxv return -1;
1664 1.5 maxv }
1665 1.5 maxv
1666 1.5 maxv if (opcode->immediate) {
1667 1.5 maxv fsm_advance(fsm, n, node_immediate);
1668 1.5 maxv } else {
1669 1.5 maxv fsm_advance(fsm, n, NULL);
1670 1.5 maxv }
1671 1.5 maxv
1672 1.5 maxv return 0;
1673 1.5 maxv }
1674 1.5 maxv
1675 1.5 maxv static const struct x86_reg *
1676 1.5 maxv get_register_idx(struct x86_instr *instr, uint8_t index)
1677 1.5 maxv {
1678 1.5 maxv uint8_t enc = index;
1679 1.5 maxv const struct x86_reg *reg;
1680 1.5 maxv size_t regsize;
1681 1.5 maxv
1682 1.5 maxv regsize = instr->address_size;
1683 1.5 maxv reg = &gpr_map[instr->rexpref.x][enc][regsize-1];
1684 1.5 maxv
1685 1.5 maxv if (reg->num == -1) {
1686 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
1687 1.5 maxv }
1688 1.5 maxv
1689 1.5 maxv return reg;
1690 1.5 maxv }
1691 1.5 maxv
1692 1.5 maxv static const struct x86_reg *
1693 1.5 maxv get_register_bas(struct x86_instr *instr, uint8_t base)
1694 1.5 maxv {
1695 1.5 maxv uint8_t enc = base;
1696 1.5 maxv const struct x86_reg *reg;
1697 1.5 maxv size_t regsize;
1698 1.5 maxv
1699 1.5 maxv regsize = instr->address_size;
1700 1.5 maxv reg = &gpr_map[instr->rexpref.b][enc][regsize-1];
1701 1.5 maxv if (reg->num == -1) {
1702 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
1703 1.5 maxv }
1704 1.5 maxv
1705 1.5 maxv return reg;
1706 1.5 maxv }
1707 1.5 maxv
1708 1.5 maxv static int
1709 1.5 maxv node_sib(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1710 1.5 maxv {
1711 1.5 maxv const struct x86_opcode *opcode;
1712 1.5 maxv uint8_t scale, index, base;
1713 1.5 maxv bool noindex, nobase;
1714 1.5 maxv uint8_t byte;
1715 1.5 maxv
1716 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
1717 1.5 maxv return -1;
1718 1.5 maxv }
1719 1.5 maxv
1720 1.5 maxv scale = ((byte & 0b11000000) >> 6);
1721 1.5 maxv index = ((byte & 0b00111000) >> 3);
1722 1.5 maxv base = ((byte & 0b00000111) >> 0);
1723 1.5 maxv
1724 1.5 maxv opcode = instr->opcode;
1725 1.5 maxv
1726 1.5 maxv noindex = false;
1727 1.5 maxv nobase = false;
1728 1.5 maxv
1729 1.5 maxv if (index == 0b100 && !instr->rexpref.x) {
1730 1.5 maxv /* Special case: the index is null */
1731 1.5 maxv noindex = true;
1732 1.5 maxv }
1733 1.5 maxv
1734 1.5 maxv if (instr->regmodrm.mod == 0b00 && base == 0b101) {
1735 1.5 maxv /* Special case: the base is null + disp32 */
1736 1.5 maxv instr->strm->disp.type = DISP_4;
1737 1.5 maxv nobase = true;
1738 1.5 maxv }
1739 1.5 maxv
1740 1.5 maxv instr->strm->type = STORE_SIB;
1741 1.5 maxv instr->strm->u.sib.scale = (1 << scale);
1742 1.5 maxv if (!noindex)
1743 1.5 maxv instr->strm->u.sib.idx = get_register_idx(instr, index);
1744 1.5 maxv if (!nobase)
1745 1.5 maxv instr->strm->u.sib.bas = get_register_bas(instr, base);
1746 1.5 maxv
1747 1.5 maxv /* May have a displacement, or an immediate */
1748 1.5 maxv if (instr->strm->disp.type == DISP_1 || instr->strm->disp.type == DISP_4) {
1749 1.5 maxv fsm_advance(fsm, 1, node_disp);
1750 1.5 maxv } else if (opcode->immediate) {
1751 1.5 maxv fsm_advance(fsm, 1, node_immediate);
1752 1.5 maxv } else {
1753 1.5 maxv fsm_advance(fsm, 1, NULL);
1754 1.5 maxv }
1755 1.5 maxv
1756 1.5 maxv return 0;
1757 1.5 maxv }
1758 1.5 maxv
1759 1.5 maxv static const struct x86_reg *
1760 1.5 maxv get_register_reg(struct x86_instr *instr, const struct x86_opcode *opcode)
1761 1.5 maxv {
1762 1.5 maxv uint8_t enc = instr->regmodrm.reg;
1763 1.5 maxv const struct x86_reg *reg;
1764 1.5 maxv size_t regsize;
1765 1.5 maxv
1766 1.5 maxv if ((opcode->flags & FLAG_z) && (instr->operand_size == 8)) {
1767 1.5 maxv /* 'z' operates here */
1768 1.5 maxv regsize = 4;
1769 1.5 maxv } else {
1770 1.5 maxv regsize = instr->operand_size;
1771 1.5 maxv }
1772 1.5 maxv
1773 1.5 maxv reg = &gpr_map[instr->rexpref.r][enc][regsize-1];
1774 1.5 maxv if (reg->num == -1) {
1775 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
1776 1.5 maxv }
1777 1.5 maxv
1778 1.5 maxv return reg;
1779 1.5 maxv }
1780 1.5 maxv
1781 1.5 maxv static const struct x86_reg *
1782 1.5 maxv get_register_rm(struct x86_instr *instr, const struct x86_opcode *opcode)
1783 1.5 maxv {
1784 1.5 maxv uint8_t enc = instr->regmodrm.rm;
1785 1.5 maxv const struct x86_reg *reg;
1786 1.5 maxv size_t regsize;
1787 1.5 maxv
1788 1.5 maxv if (instr->strm->disp.type == DISP_NONE) {
1789 1.5 maxv if ((opcode->flags & FLAG_z) && (instr->operand_size == 8)) {
1790 1.5 maxv /* 'z' operates here */
1791 1.5 maxv regsize = 4;
1792 1.5 maxv } else {
1793 1.5 maxv regsize = instr->operand_size;
1794 1.5 maxv }
1795 1.5 maxv } else {
1796 1.5 maxv /* Indirect access, the size is that of the address. */
1797 1.5 maxv regsize = instr->address_size;
1798 1.5 maxv }
1799 1.5 maxv
1800 1.5 maxv reg = &gpr_map[instr->rexpref.b][enc][regsize-1];
1801 1.5 maxv if (reg->num == -1) {
1802 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
1803 1.5 maxv }
1804 1.5 maxv
1805 1.5 maxv return reg;
1806 1.5 maxv }
1807 1.5 maxv
1808 1.5 maxv static inline bool
1809 1.5 maxv has_sib(struct x86_instr *instr)
1810 1.5 maxv {
1811 1.5 maxv return (instr->regmodrm.mod != 3 && instr->regmodrm.rm == 4);
1812 1.5 maxv }
1813 1.5 maxv
1814 1.5 maxv static inline bool
1815 1.5 maxv is_rip_relative(struct x86_instr *instr)
1816 1.5 maxv {
1817 1.5 maxv return (instr->strm->disp.type == DISP_0 &&
1818 1.5 maxv instr->regmodrm.rm == RM_RBP_DISP32);
1819 1.5 maxv }
1820 1.5 maxv
1821 1.5 maxv static enum x86_disp_type
1822 1.5 maxv get_disp_type(struct x86_instr *instr)
1823 1.5 maxv {
1824 1.5 maxv switch (instr->regmodrm.mod) {
1825 1.5 maxv case MOD_DIS0: /* indirect */
1826 1.5 maxv return DISP_0;
1827 1.5 maxv case MOD_DIS1: /* indirect+1 */
1828 1.5 maxv return DISP_1;
1829 1.5 maxv case MOD_DIS4: /* indirect+4 */
1830 1.5 maxv return DISP_4;
1831 1.5 maxv case MOD_REG: /* direct */
1832 1.5 maxv default: /* gcc */
1833 1.5 maxv return DISP_NONE;
1834 1.5 maxv }
1835 1.5 maxv }
1836 1.5 maxv
1837 1.5 maxv static int
1838 1.5 maxv node_regmodrm(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1839 1.5 maxv {
1840 1.5 maxv struct x86_store *strg, *strm;
1841 1.5 maxv const struct x86_opcode *opcode;
1842 1.5 maxv const struct x86_reg *reg;
1843 1.5 maxv uint8_t byte;
1844 1.5 maxv
1845 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
1846 1.5 maxv return -1;
1847 1.5 maxv }
1848 1.5 maxv
1849 1.5 maxv opcode = instr->opcode;
1850 1.5 maxv
1851 1.5 maxv instr->regmodrm.present = true;
1852 1.5 maxv instr->regmodrm.mod = ((byte & 0b11000000) >> 6);
1853 1.5 maxv instr->regmodrm.reg = ((byte & 0b00111000) >> 3);
1854 1.5 maxv instr->regmodrm.rm = ((byte & 0b00000111) >> 0);
1855 1.5 maxv
1856 1.5 maxv if (opcode->regtorm) {
1857 1.5 maxv strg = &instr->src;
1858 1.5 maxv strm = &instr->dst;
1859 1.5 maxv } else { /* RM to REG */
1860 1.5 maxv strm = &instr->src;
1861 1.5 maxv strg = &instr->dst;
1862 1.5 maxv }
1863 1.5 maxv
1864 1.5 maxv /* Save for later use. */
1865 1.5 maxv instr->strm = strm;
1866 1.5 maxv
1867 1.5 maxv /*
1868 1.5 maxv * Special cases: Groups. The REG field of REGMODRM is the index in
1869 1.5 maxv * the group. op1 gets overwritten in the Immediate node, if any.
1870 1.5 maxv */
1871 1.5 maxv if (opcode->group11) {
1872 1.5 maxv if (group11[instr->regmodrm.reg].emul == NULL) {
1873 1.5 maxv return -1;
1874 1.5 maxv }
1875 1.5 maxv instr->emul = group11[instr->regmodrm.reg].emul;
1876 1.5 maxv }
1877 1.5 maxv
1878 1.5 maxv reg = get_register_reg(instr, opcode);
1879 1.5 maxv if (reg == NULL) {
1880 1.5 maxv return -1;
1881 1.5 maxv }
1882 1.5 maxv strg->type = STORE_REG;
1883 1.5 maxv strg->u.reg = reg;
1884 1.5 maxv
1885 1.5 maxv if (has_sib(instr)) {
1886 1.5 maxv /* Overwrites RM */
1887 1.5 maxv fsm_advance(fsm, 1, node_sib);
1888 1.5 maxv return 0;
1889 1.5 maxv }
1890 1.5 maxv
1891 1.5 maxv /* The displacement applies to RM. */
1892 1.5 maxv strm->disp.type = get_disp_type(instr);
1893 1.5 maxv
1894 1.5 maxv if (is_rip_relative(instr)) {
1895 1.5 maxv /* Overwrites RM */
1896 1.5 maxv strm->type = STORE_REG;
1897 1.5 maxv strm->u.reg = &gpr_map__rip;
1898 1.5 maxv strm->disp.type = DISP_4;
1899 1.5 maxv fsm_advance(fsm, 1, node_disp);
1900 1.5 maxv return 0;
1901 1.5 maxv }
1902 1.5 maxv
1903 1.5 maxv reg = get_register_rm(instr, opcode);
1904 1.5 maxv if (reg == NULL) {
1905 1.5 maxv return -1;
1906 1.5 maxv }
1907 1.5 maxv strm->type = STORE_REG;
1908 1.5 maxv strm->u.reg = reg;
1909 1.5 maxv
1910 1.5 maxv if (strm->disp.type == DISP_NONE) {
1911 1.5 maxv /* Direct register addressing mode */
1912 1.5 maxv if (opcode->immediate) {
1913 1.5 maxv fsm_advance(fsm, 1, node_immediate);
1914 1.5 maxv } else {
1915 1.5 maxv fsm_advance(fsm, 1, NULL);
1916 1.5 maxv }
1917 1.5 maxv } else if (strm->disp.type == DISP_0) {
1918 1.5 maxv /* Indirect register addressing mode */
1919 1.5 maxv if (opcode->immediate) {
1920 1.5 maxv fsm_advance(fsm, 1, node_immediate);
1921 1.5 maxv } else {
1922 1.5 maxv fsm_advance(fsm, 1, NULL);
1923 1.5 maxv }
1924 1.5 maxv } else {
1925 1.5 maxv fsm_advance(fsm, 1, node_disp);
1926 1.5 maxv }
1927 1.5 maxv
1928 1.5 maxv return 0;
1929 1.5 maxv }
1930 1.5 maxv
1931 1.5 maxv static size_t
1932 1.5 maxv get_operand_size(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1933 1.5 maxv {
1934 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1935 1.5 maxv int opsize;
1936 1.5 maxv
1937 1.5 maxv /* Get the opsize */
1938 1.5 maxv if (!opcode->szoverride) {
1939 1.5 maxv opsize = opcode->defsize;
1940 1.5 maxv } else if (instr->rexpref.present && instr->rexpref.w) {
1941 1.5 maxv opsize = 8;
1942 1.5 maxv } else {
1943 1.5 maxv if (!fsm->is16bit) {
1944 1.5 maxv if (instr->legpref[LEG_OPR_OVR]) {
1945 1.5 maxv opsize = 2;
1946 1.5 maxv } else {
1947 1.5 maxv opsize = 4;
1948 1.5 maxv }
1949 1.5 maxv } else { /* 16bit */
1950 1.5 maxv if (instr->legpref[LEG_OPR_OVR]) {
1951 1.5 maxv opsize = 4;
1952 1.5 maxv } else {
1953 1.5 maxv opsize = 2;
1954 1.5 maxv }
1955 1.5 maxv }
1956 1.5 maxv }
1957 1.5 maxv
1958 1.5 maxv /* See if available */
1959 1.5 maxv if ((opcode->allsize & opsize) == 0) {
1960 1.5 maxv // XXX do we care?
1961 1.5 maxv }
1962 1.5 maxv
1963 1.5 maxv return opsize;
1964 1.5 maxv }
1965 1.5 maxv
1966 1.5 maxv static size_t
1967 1.5 maxv get_address_size(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1968 1.5 maxv {
1969 1.5 maxv if (fsm->is64bit) {
1970 1.5 maxv if (__predict_false(instr->legpref[LEG_ADR_OVR])) {
1971 1.5 maxv return 4;
1972 1.5 maxv }
1973 1.5 maxv return 8;
1974 1.5 maxv }
1975 1.5 maxv
1976 1.5 maxv if (fsm->is32bit) {
1977 1.5 maxv if (__predict_false(instr->legpref[LEG_ADR_OVR])) {
1978 1.5 maxv return 2;
1979 1.5 maxv }
1980 1.5 maxv return 4;
1981 1.5 maxv }
1982 1.5 maxv
1983 1.5 maxv /* 16bit. */
1984 1.5 maxv if (__predict_false(instr->legpref[LEG_ADR_OVR])) {
1985 1.5 maxv return 4;
1986 1.5 maxv }
1987 1.5 maxv return 2;
1988 1.5 maxv }
1989 1.5 maxv
1990 1.5 maxv static int
1991 1.5 maxv node_primary_opcode(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1992 1.1 maxv {
1993 1.5 maxv const struct x86_opcode *opcode;
1994 1.5 maxv uint8_t byte;
1995 1.5 maxv size_t i, n;
1996 1.5 maxv
1997 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
1998 1.5 maxv return -1;
1999 1.5 maxv }
2000 1.5 maxv
2001 1.5 maxv n = sizeof(primary_opcode_table) / sizeof(primary_opcode_table[0]);
2002 1.5 maxv for (i = 0; i < n; i++) {
2003 1.5 maxv if (primary_opcode_table[i].byte == byte)
2004 1.5 maxv break;
2005 1.5 maxv }
2006 1.5 maxv if (i == n) {
2007 1.1 maxv return -1;
2008 1.1 maxv }
2009 1.5 maxv opcode = &primary_opcode_table[i];
2010 1.1 maxv
2011 1.5 maxv instr->opcode = opcode;
2012 1.5 maxv instr->emul = opcode->emul;
2013 1.5 maxv instr->operand_size = get_operand_size(fsm, instr);
2014 1.5 maxv instr->address_size = get_address_size(fsm, instr);
2015 1.5 maxv
2016 1.5 maxv if (opcode->regmodrm) {
2017 1.5 maxv fsm_advance(fsm, 1, node_regmodrm);
2018 1.5 maxv } else if (opcode->dmo) {
2019 1.5 maxv /* Direct-Memory Offsets */
2020 1.5 maxv fsm_advance(fsm, 1, node_dmo);
2021 1.5 maxv } else if (opcode->stos || opcode->lods) {
2022 1.5 maxv fsm_advance(fsm, 1, node_stlo);
2023 1.6 maxv } else if (opcode->movs) {
2024 1.6 maxv fsm_advance(fsm, 1, node_movs);
2025 1.5 maxv } else {
2026 1.5 maxv return -1;
2027 1.5 maxv }
2028 1.5 maxv
2029 1.5 maxv return 0;
2030 1.5 maxv }
2031 1.5 maxv
2032 1.5 maxv static int
2033 1.5 maxv node_main(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2034 1.5 maxv {
2035 1.5 maxv uint8_t byte;
2036 1.5 maxv
2037 1.5 maxv #define ESCAPE 0x0F
2038 1.5 maxv #define VEX_1 0xC5
2039 1.5 maxv #define VEX_2 0xC4
2040 1.5 maxv #define XOP 0x8F
2041 1.5 maxv
2042 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2043 1.5 maxv return -1;
2044 1.5 maxv }
2045 1.5 maxv
2046 1.5 maxv /*
2047 1.5 maxv * We don't take XOP. It is AMD-specific, and it was removed shortly
2048 1.5 maxv * after being introduced.
2049 1.5 maxv */
2050 1.5 maxv if (byte == ESCAPE) {
2051 1.5 maxv return -1;
2052 1.5 maxv } else if (!instr->rexpref.present) {
2053 1.5 maxv if (byte == VEX_1) {
2054 1.5 maxv return -1;
2055 1.5 maxv } else if (byte == VEX_2) {
2056 1.5 maxv return -1;
2057 1.5 maxv } else {
2058 1.5 maxv fsm->fn = node_primary_opcode;
2059 1.5 maxv }
2060 1.5 maxv } else {
2061 1.5 maxv fsm->fn = node_primary_opcode;
2062 1.5 maxv }
2063 1.5 maxv
2064 1.5 maxv return 0;
2065 1.5 maxv }
2066 1.5 maxv
2067 1.5 maxv static int
2068 1.5 maxv node_rex_prefix(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2069 1.5 maxv {
2070 1.5 maxv struct x86_rexpref *rexpref = &instr->rexpref;
2071 1.5 maxv uint8_t byte;
2072 1.5 maxv size_t n = 0;
2073 1.5 maxv
2074 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2075 1.5 maxv return -1;
2076 1.5 maxv }
2077 1.5 maxv
2078 1.5 maxv if (byte >= 0x40 && byte <= 0x4F) {
2079 1.5 maxv if (__predict_false(!fsm->is64bit)) {
2080 1.5 maxv return -1;
2081 1.5 maxv }
2082 1.5 maxv rexpref->present = true;
2083 1.5 maxv rexpref->w = ((byte & 0x8) != 0);
2084 1.5 maxv rexpref->r = ((byte & 0x4) != 0);
2085 1.5 maxv rexpref->x = ((byte & 0x2) != 0);
2086 1.5 maxv rexpref->b = ((byte & 0x1) != 0);
2087 1.5 maxv n = 1;
2088 1.5 maxv }
2089 1.5 maxv
2090 1.5 maxv fsm_advance(fsm, n, node_main);
2091 1.5 maxv return 0;
2092 1.5 maxv }
2093 1.5 maxv
2094 1.5 maxv static const uint8_t legpref_table[NLEG] = {
2095 1.5 maxv /* Group 1 */
2096 1.5 maxv [LEG_LOCK] = 0xF0,
2097 1.5 maxv [LEG_REPN] = 0xF2,
2098 1.5 maxv [LEG_REP] = 0xF3,
2099 1.5 maxv /* Group 2 */
2100 1.5 maxv [LEG_OVR_CS] = 0x2E,
2101 1.5 maxv [LEG_OVR_SS] = 0x36,
2102 1.5 maxv [LEG_OVR_DS] = 0x3E,
2103 1.5 maxv [LEG_OVR_ES] = 0x26,
2104 1.5 maxv [LEG_OVR_FS] = 0x64,
2105 1.5 maxv [LEG_OVR_GS] = 0x65,
2106 1.5 maxv [LEG_BRN_TAKEN] = 0x2E,
2107 1.5 maxv [LEG_BRN_NTAKEN] = 0x3E,
2108 1.5 maxv /* Group 3 */
2109 1.5 maxv [LEG_OPR_OVR] = 0x66,
2110 1.5 maxv /* Group 4 */
2111 1.5 maxv [LEG_ADR_OVR] = 0x67
2112 1.5 maxv };
2113 1.5 maxv
2114 1.5 maxv static int
2115 1.5 maxv node_legacy_prefix(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2116 1.5 maxv {
2117 1.5 maxv uint8_t byte;
2118 1.5 maxv size_t i;
2119 1.5 maxv
2120 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2121 1.5 maxv return -1;
2122 1.5 maxv }
2123 1.5 maxv
2124 1.5 maxv for (i = 0; i < NLEG; i++) {
2125 1.5 maxv if (byte == legpref_table[i])
2126 1.5 maxv break;
2127 1.5 maxv }
2128 1.5 maxv
2129 1.5 maxv if (i == NLEG) {
2130 1.5 maxv fsm->fn = node_rex_prefix;
2131 1.5 maxv } else {
2132 1.5 maxv instr->legpref[i] = true;
2133 1.5 maxv fsm_advance(fsm, 1, node_legacy_prefix);
2134 1.5 maxv }
2135 1.5 maxv
2136 1.5 maxv return 0;
2137 1.5 maxv }
2138 1.5 maxv
2139 1.5 maxv static int
2140 1.5 maxv x86_decode(uint8_t *inst_bytes, size_t inst_len, struct x86_instr *instr,
2141 1.5 maxv struct nvmm_x64_state *state)
2142 1.5 maxv {
2143 1.5 maxv struct x86_decode_fsm fsm;
2144 1.5 maxv int ret;
2145 1.5 maxv
2146 1.5 maxv memset(instr, 0, sizeof(*instr));
2147 1.5 maxv
2148 1.5 maxv fsm.is64bit = is_64bit(state);
2149 1.5 maxv fsm.is32bit = is_32bit(state);
2150 1.5 maxv fsm.is16bit = is_16bit(state);
2151 1.5 maxv
2152 1.5 maxv fsm.fn = node_legacy_prefix;
2153 1.5 maxv fsm.buf = inst_bytes;
2154 1.5 maxv fsm.end = inst_bytes + inst_len;
2155 1.5 maxv
2156 1.5 maxv while (fsm.fn != NULL) {
2157 1.5 maxv ret = (*fsm.fn)(&fsm, instr);
2158 1.5 maxv if (ret == -1)
2159 1.5 maxv return -1;
2160 1.5 maxv }
2161 1.5 maxv
2162 1.5 maxv instr->len = fsm.buf - inst_bytes;
2163 1.5 maxv
2164 1.5 maxv return 0;
2165 1.5 maxv }
2166 1.5 maxv
2167 1.5 maxv /* -------------------------------------------------------------------------- */
2168 1.5 maxv
2169 1.5 maxv static inline uint8_t
2170 1.5 maxv compute_parity(uint8_t *data)
2171 1.5 maxv {
2172 1.5 maxv uint64_t *ptr = (uint64_t *)data;
2173 1.5 maxv uint64_t val = *ptr;
2174 1.5 maxv
2175 1.5 maxv val ^= val >> 32;
2176 1.5 maxv val ^= val >> 16;
2177 1.5 maxv val ^= val >> 8;
2178 1.5 maxv val ^= val >> 4;
2179 1.5 maxv val ^= val >> 2;
2180 1.5 maxv val ^= val >> 1;
2181 1.5 maxv return (~val) & 1;
2182 1.5 maxv }
2183 1.5 maxv
2184 1.5 maxv static void
2185 1.5 maxv x86_emul_or(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2186 1.5 maxv uint64_t *gprs)
2187 1.5 maxv {
2188 1.5 maxv const bool write = mem->write;
2189 1.5 maxv uint64_t fl = gprs[NVMM_X64_GPR_RFLAGS];
2190 1.5 maxv uint8_t data[8];
2191 1.5 maxv size_t i;
2192 1.5 maxv
2193 1.5 maxv fl &= ~(PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF);
2194 1.5 maxv
2195 1.5 maxv memcpy(data, mem->data, sizeof(data));
2196 1.5 maxv
2197 1.5 maxv /* Fetch the value to be OR'ed. */
2198 1.5 maxv mem->write = false;
2199 1.5 maxv (*cb)(mem);
2200 1.5 maxv
2201 1.5 maxv /* Perform the OR. */
2202 1.5 maxv for (i = 0; i < mem->size; i++) {
2203 1.5 maxv mem->data[i] |= data[i];
2204 1.5 maxv if (mem->data[i] != 0)
2205 1.5 maxv fl |= PSL_Z;
2206 1.5 maxv }
2207 1.5 maxv if (mem->data[mem->size-1] & __BIT(7))
2208 1.5 maxv fl |= PSL_N;
2209 1.5 maxv if (compute_parity(mem->data))
2210 1.5 maxv fl |= PSL_PF;
2211 1.5 maxv
2212 1.5 maxv if (write) {
2213 1.5 maxv /* Write back the result. */
2214 1.5 maxv mem->write = true;
2215 1.5 maxv (*cb)(mem);
2216 1.5 maxv }
2217 1.5 maxv
2218 1.5 maxv gprs[NVMM_X64_GPR_RFLAGS] = fl;
2219 1.5 maxv }
2220 1.5 maxv
2221 1.5 maxv static void
2222 1.5 maxv x86_emul_and(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2223 1.5 maxv uint64_t *gprs)
2224 1.5 maxv {
2225 1.5 maxv const bool write = mem->write;
2226 1.5 maxv uint64_t fl = gprs[NVMM_X64_GPR_RFLAGS];
2227 1.5 maxv uint8_t data[8];
2228 1.5 maxv size_t i;
2229 1.5 maxv
2230 1.5 maxv fl &= ~(PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF);
2231 1.5 maxv
2232 1.5 maxv memcpy(data, mem->data, sizeof(data));
2233 1.5 maxv
2234 1.5 maxv /* Fetch the value to be AND'ed. */
2235 1.5 maxv mem->write = false;
2236 1.5 maxv (*cb)(mem);
2237 1.5 maxv
2238 1.5 maxv /* Perform the AND. */
2239 1.5 maxv for (i = 0; i < mem->size; i++) {
2240 1.5 maxv mem->data[i] &= data[i];
2241 1.5 maxv if (mem->data[i] != 0)
2242 1.5 maxv fl |= PSL_Z;
2243 1.5 maxv }
2244 1.5 maxv if (mem->data[mem->size-1] & __BIT(7))
2245 1.5 maxv fl |= PSL_N;
2246 1.5 maxv if (compute_parity(mem->data))
2247 1.5 maxv fl |= PSL_PF;
2248 1.5 maxv
2249 1.5 maxv if (write) {
2250 1.5 maxv /* Write back the result. */
2251 1.5 maxv mem->write = true;
2252 1.5 maxv (*cb)(mem);
2253 1.5 maxv }
2254 1.5 maxv
2255 1.5 maxv gprs[NVMM_X64_GPR_RFLAGS] = fl;
2256 1.5 maxv }
2257 1.5 maxv
2258 1.5 maxv static void
2259 1.5 maxv x86_emul_xor(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2260 1.5 maxv uint64_t *gprs)
2261 1.5 maxv {
2262 1.5 maxv const bool write = mem->write;
2263 1.5 maxv uint64_t fl = gprs[NVMM_X64_GPR_RFLAGS];
2264 1.5 maxv uint8_t data[8];
2265 1.5 maxv size_t i;
2266 1.5 maxv
2267 1.5 maxv fl &= ~(PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF);
2268 1.5 maxv
2269 1.5 maxv memcpy(data, mem->data, sizeof(data));
2270 1.5 maxv
2271 1.5 maxv /* Fetch the value to be XOR'ed. */
2272 1.5 maxv mem->write = false;
2273 1.5 maxv (*cb)(mem);
2274 1.5 maxv
2275 1.5 maxv /* Perform the XOR. */
2276 1.5 maxv for (i = 0; i < mem->size; i++) {
2277 1.5 maxv mem->data[i] ^= data[i];
2278 1.5 maxv if (mem->data[i] != 0)
2279 1.5 maxv fl |= PSL_Z;
2280 1.5 maxv }
2281 1.5 maxv if (mem->data[mem->size-1] & __BIT(7))
2282 1.5 maxv fl |= PSL_N;
2283 1.5 maxv if (compute_parity(mem->data))
2284 1.5 maxv fl |= PSL_PF;
2285 1.5 maxv
2286 1.5 maxv if (write) {
2287 1.5 maxv /* Write back the result. */
2288 1.5 maxv mem->write = true;
2289 1.5 maxv (*cb)(mem);
2290 1.5 maxv }
2291 1.5 maxv
2292 1.5 maxv gprs[NVMM_X64_GPR_RFLAGS] = fl;
2293 1.5 maxv }
2294 1.5 maxv
2295 1.5 maxv static void
2296 1.5 maxv x86_emul_mov(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2297 1.5 maxv uint64_t *gprs)
2298 1.5 maxv {
2299 1.5 maxv /*
2300 1.5 maxv * Nothing special, just move without emulation.
2301 1.5 maxv */
2302 1.5 maxv (*cb)(mem);
2303 1.5 maxv }
2304 1.5 maxv
2305 1.5 maxv static void
2306 1.5 maxv x86_emul_stos(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2307 1.5 maxv uint64_t *gprs)
2308 1.5 maxv {
2309 1.5 maxv /*
2310 1.5 maxv * Just move, and update RDI.
2311 1.5 maxv */
2312 1.5 maxv (*cb)(mem);
2313 1.5 maxv
2314 1.5 maxv if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
2315 1.5 maxv gprs[NVMM_X64_GPR_RDI] -= mem->size;
2316 1.5 maxv } else {
2317 1.5 maxv gprs[NVMM_X64_GPR_RDI] += mem->size;
2318 1.5 maxv }
2319 1.5 maxv }
2320 1.5 maxv
2321 1.5 maxv static void
2322 1.5 maxv x86_emul_lods(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2323 1.5 maxv uint64_t *gprs)
2324 1.5 maxv {
2325 1.5 maxv /*
2326 1.5 maxv * Just move, and update RSI.
2327 1.5 maxv */
2328 1.5 maxv (*cb)(mem);
2329 1.5 maxv
2330 1.5 maxv if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
2331 1.5 maxv gprs[NVMM_X64_GPR_RSI] -= mem->size;
2332 1.5 maxv } else {
2333 1.5 maxv gprs[NVMM_X64_GPR_RSI] += mem->size;
2334 1.5 maxv }
2335 1.5 maxv }
2336 1.5 maxv
2337 1.6 maxv static void
2338 1.6 maxv x86_emul_movs(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2339 1.6 maxv uint64_t *gprs)
2340 1.6 maxv {
2341 1.6 maxv /*
2342 1.6 maxv * Special instruction: double memory operand. Don't call the cb,
2343 1.6 maxv * because the storage has already been performed earlier.
2344 1.6 maxv */
2345 1.6 maxv
2346 1.6 maxv if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
2347 1.6 maxv gprs[NVMM_X64_GPR_RSI] -= mem->size;
2348 1.6 maxv gprs[NVMM_X64_GPR_RDI] -= mem->size;
2349 1.6 maxv } else {
2350 1.6 maxv gprs[NVMM_X64_GPR_RSI] += mem->size;
2351 1.6 maxv gprs[NVMM_X64_GPR_RDI] += mem->size;
2352 1.6 maxv }
2353 1.6 maxv }
2354 1.6 maxv
2355 1.5 maxv /* -------------------------------------------------------------------------- */
2356 1.5 maxv
2357 1.5 maxv static inline uint64_t
2358 1.5 maxv gpr_read_address(struct x86_instr *instr, struct nvmm_x64_state *state, int gpr)
2359 1.5 maxv {
2360 1.5 maxv uint64_t val;
2361 1.5 maxv
2362 1.5 maxv val = state->gprs[gpr];
2363 1.5 maxv if (__predict_false(instr->address_size == 4)) {
2364 1.5 maxv val &= 0x00000000FFFFFFFF;
2365 1.5 maxv } else if (__predict_false(instr->address_size == 2)) {
2366 1.5 maxv val &= 0x000000000000FFFF;
2367 1.5 maxv }
2368 1.5 maxv
2369 1.5 maxv return val;
2370 1.5 maxv }
2371 1.5 maxv
2372 1.5 maxv static int
2373 1.6 maxv store_to_gva(struct nvmm_x64_state *state, struct x86_instr *instr,
2374 1.6 maxv struct x86_store *store, gvaddr_t *gvap, size_t size)
2375 1.5 maxv {
2376 1.5 maxv struct x86_sib *sib;
2377 1.6 maxv gvaddr_t gva = 0;
2378 1.5 maxv uint64_t reg;
2379 1.5 maxv int ret, seg;
2380 1.5 maxv uint32_t *p;
2381 1.5 maxv
2382 1.5 maxv if (store->type == STORE_SIB) {
2383 1.5 maxv sib = &store->u.sib;
2384 1.5 maxv if (sib->bas != NULL)
2385 1.5 maxv gva += gpr_read_address(instr, state, sib->bas->num);
2386 1.5 maxv if (sib->idx != NULL) {
2387 1.5 maxv reg = gpr_read_address(instr, state, sib->idx->num);
2388 1.5 maxv gva += sib->scale * reg;
2389 1.5 maxv }
2390 1.5 maxv } else if (store->type == STORE_REG) {
2391 1.5 maxv gva = gpr_read_address(instr, state, store->u.reg->num);
2392 1.5 maxv } else {
2393 1.5 maxv gva = store->u.dmo;
2394 1.5 maxv }
2395 1.5 maxv
2396 1.5 maxv if (store->disp.type != DISP_NONE) {
2397 1.5 maxv p = (uint32_t *)&store->disp.data[0];
2398 1.5 maxv gva += *p;
2399 1.5 maxv }
2400 1.5 maxv
2401 1.5 maxv if (!is_long_mode(state)) {
2402 1.6 maxv if (store->hardseg != 0) {
2403 1.6 maxv seg = store->hardseg;
2404 1.5 maxv } else {
2405 1.6 maxv if (instr->legpref[LEG_OVR_CS]) {
2406 1.6 maxv seg = NVMM_X64_SEG_CS;
2407 1.6 maxv } else if (instr->legpref[LEG_OVR_SS]) {
2408 1.6 maxv seg = NVMM_X64_SEG_SS;
2409 1.6 maxv } else if (instr->legpref[LEG_OVR_ES]) {
2410 1.6 maxv seg = NVMM_X64_SEG_ES;
2411 1.6 maxv } else if (instr->legpref[LEG_OVR_FS]) {
2412 1.6 maxv seg = NVMM_X64_SEG_FS;
2413 1.6 maxv } else if (instr->legpref[LEG_OVR_GS]) {
2414 1.6 maxv seg = NVMM_X64_SEG_GS;
2415 1.6 maxv } else {
2416 1.6 maxv seg = NVMM_X64_SEG_DS;
2417 1.6 maxv }
2418 1.5 maxv }
2419 1.5 maxv
2420 1.6 maxv ret = segment_apply(&state->segs[seg], &gva, size);
2421 1.5 maxv if (ret == -1)
2422 1.5 maxv return -1;
2423 1.5 maxv }
2424 1.5 maxv
2425 1.6 maxv *gvap = gva;
2426 1.6 maxv return 0;
2427 1.6 maxv }
2428 1.6 maxv
2429 1.6 maxv static int
2430 1.6 maxv store_to_mem(struct nvmm_machine *mach, struct nvmm_x64_state *state,
2431 1.6 maxv struct x86_instr *instr, struct x86_store *store, struct nvmm_mem *mem)
2432 1.6 maxv {
2433 1.6 maxv nvmm_prot_t prot;
2434 1.6 maxv int ret;
2435 1.6 maxv
2436 1.6 maxv ret = store_to_gva(state, instr, store, &mem->gva, mem->size);
2437 1.6 maxv if (ret == -1)
2438 1.6 maxv return -1;
2439 1.6 maxv
2440 1.5 maxv if ((mem->gva & PAGE_MASK) + mem->size > PAGE_SIZE) {
2441 1.5 maxv /* Don't allow a cross-page MMIO. */
2442 1.5 maxv errno = EINVAL;
2443 1.5 maxv return -1;
2444 1.5 maxv }
2445 1.5 maxv
2446 1.5 maxv ret = x86_gva_to_gpa(mach, state, mem->gva, &mem->gpa, &prot);
2447 1.5 maxv if (ret == -1)
2448 1.5 maxv return -1;
2449 1.5 maxv
2450 1.5 maxv return 0;
2451 1.5 maxv }
2452 1.5 maxv
2453 1.5 maxv static int
2454 1.5 maxv fetch_instruction(struct nvmm_machine *mach, struct nvmm_x64_state *state,
2455 1.5 maxv struct nvmm_exit *exit)
2456 1.5 maxv {
2457 1.6 maxv size_t fetchsize;
2458 1.6 maxv gvaddr_t gva;
2459 1.5 maxv int ret;
2460 1.5 maxv
2461 1.5 maxv fetchsize = sizeof(exit->u.mem.inst_bytes);
2462 1.5 maxv
2463 1.5 maxv gva = state->gprs[NVMM_X64_GPR_RIP];
2464 1.5 maxv if (!is_long_mode(state)) {
2465 1.5 maxv ret = segment_apply(&state->segs[NVMM_X64_SEG_CS], &gva,
2466 1.5 maxv fetchsize);
2467 1.5 maxv if (ret == -1)
2468 1.5 maxv return -1;
2469 1.5 maxv }
2470 1.5 maxv
2471 1.6 maxv ret = read_guest_memory(mach, state, gva, exit->u.mem.inst_bytes,
2472 1.6 maxv fetchsize);
2473 1.6 maxv if (ret == -1)
2474 1.6 maxv return -1;
2475 1.6 maxv
2476 1.6 maxv exit->u.mem.inst_len = fetchsize;
2477 1.6 maxv
2478 1.6 maxv return 0;
2479 1.6 maxv }
2480 1.6 maxv
2481 1.6 maxv static int
2482 1.6 maxv assist_mem_double(struct nvmm_machine *mach, struct nvmm_x64_state *state,
2483 1.6 maxv struct x86_instr *instr)
2484 1.6 maxv {
2485 1.6 maxv struct nvmm_mem mem;
2486 1.6 maxv uint8_t data[8];
2487 1.6 maxv gvaddr_t gva;
2488 1.6 maxv size_t size;
2489 1.6 maxv int ret;
2490 1.6 maxv
2491 1.6 maxv size = instr->operand_size;
2492 1.5 maxv
2493 1.6 maxv /* Source. */
2494 1.6 maxv ret = store_to_gva(state, instr, &instr->src, &gva, size);
2495 1.5 maxv if (ret == -1)
2496 1.5 maxv return -1;
2497 1.6 maxv ret = read_guest_memory(mach, state, gva, data, size);
2498 1.6 maxv if (ret == -1)
2499 1.5 maxv return -1;
2500 1.5 maxv
2501 1.6 maxv /* Destination. */
2502 1.6 maxv ret = store_to_gva(state, instr, &instr->dst, &gva, size);
2503 1.6 maxv if (ret == -1)
2504 1.6 maxv return -1;
2505 1.6 maxv ret = write_guest_memory(mach, state, gva, data, size);
2506 1.5 maxv if (ret == -1)
2507 1.5 maxv return -1;
2508 1.5 maxv
2509 1.6 maxv mem.size = size;
2510 1.6 maxv (*instr->emul)(&mem, NULL, state->gprs);
2511 1.5 maxv
2512 1.5 maxv return 0;
2513 1.5 maxv }
2514 1.5 maxv
2515 1.5 maxv #define DISASSEMBLER_BUG() \
2516 1.5 maxv do { \
2517 1.5 maxv errno = EINVAL; \
2518 1.5 maxv return -1; \
2519 1.5 maxv } while (0);
2520 1.5 maxv
2521 1.6 maxv static int
2522 1.6 maxv assist_mem_single(struct nvmm_machine *mach, struct nvmm_x64_state *state,
2523 1.6 maxv struct x86_instr *instr)
2524 1.5 maxv {
2525 1.5 maxv struct nvmm_mem mem;
2526 1.5 maxv uint64_t val;
2527 1.5 maxv int ret;
2528 1.5 maxv
2529 1.5 maxv memset(&mem, 0, sizeof(mem));
2530 1.5 maxv
2531 1.6 maxv switch (instr->src.type) {
2532 1.5 maxv case STORE_REG:
2533 1.6 maxv if (instr->src.disp.type != DISP_NONE) {
2534 1.5 maxv /* Indirect access. */
2535 1.5 maxv mem.write = false;
2536 1.6 maxv mem.size = instr->operand_size;
2537 1.6 maxv ret = store_to_mem(mach, state, instr, &instr->src,
2538 1.5 maxv &mem);
2539 1.5 maxv if (ret == -1)
2540 1.5 maxv return -1;
2541 1.5 maxv } else {
2542 1.5 maxv /* Direct access. */
2543 1.5 maxv mem.write = true;
2544 1.6 maxv mem.size = instr->operand_size;
2545 1.6 maxv val = state->gprs[instr->src.u.reg->num];
2546 1.6 maxv val = __SHIFTOUT(val, instr->src.u.reg->mask);
2547 1.5 maxv memcpy(mem.data, &val, mem.size);
2548 1.5 maxv }
2549 1.5 maxv break;
2550 1.5 maxv
2551 1.5 maxv case STORE_IMM:
2552 1.5 maxv mem.write = true;
2553 1.6 maxv mem.size = instr->src.u.imm.size;
2554 1.6 maxv memcpy(mem.data, instr->src.u.imm.data, mem.size);
2555 1.5 maxv break;
2556 1.5 maxv
2557 1.5 maxv case STORE_SIB:
2558 1.5 maxv mem.write = false;
2559 1.6 maxv mem.size = instr->operand_size;
2560 1.6 maxv ret = store_to_mem(mach, state, instr, &instr->src, &mem);
2561 1.5 maxv if (ret == -1)
2562 1.5 maxv return -1;
2563 1.5 maxv break;
2564 1.5 maxv
2565 1.5 maxv case STORE_DMO:
2566 1.5 maxv mem.write = false;
2567 1.6 maxv mem.size = instr->operand_size;
2568 1.6 maxv ret = store_to_mem(mach, state, instr, &instr->src, &mem);
2569 1.5 maxv if (ret == -1)
2570 1.5 maxv return -1;
2571 1.5 maxv break;
2572 1.5 maxv
2573 1.5 maxv default:
2574 1.5 maxv return -1;
2575 1.5 maxv }
2576 1.5 maxv
2577 1.6 maxv switch (instr->dst.type) {
2578 1.5 maxv case STORE_REG:
2579 1.6 maxv if (instr->dst.disp.type != DISP_NONE) {
2580 1.5 maxv if (__predict_false(!mem.write)) {
2581 1.5 maxv DISASSEMBLER_BUG();
2582 1.5 maxv }
2583 1.6 maxv mem.size = instr->operand_size;
2584 1.6 maxv ret = store_to_mem(mach, state, instr, &instr->dst,
2585 1.5 maxv &mem);
2586 1.5 maxv if (ret == -1)
2587 1.5 maxv return -1;
2588 1.5 maxv } else {
2589 1.5 maxv /* nothing */
2590 1.5 maxv }
2591 1.5 maxv break;
2592 1.5 maxv
2593 1.5 maxv case STORE_IMM:
2594 1.5 maxv /* The dst can't be an immediate. */
2595 1.5 maxv DISASSEMBLER_BUG();
2596 1.5 maxv
2597 1.5 maxv case STORE_SIB:
2598 1.5 maxv if (__predict_false(!mem.write)) {
2599 1.5 maxv DISASSEMBLER_BUG();
2600 1.5 maxv }
2601 1.6 maxv mem.size = instr->operand_size;
2602 1.6 maxv ret = store_to_mem(mach, state, instr, &instr->dst, &mem);
2603 1.5 maxv if (ret == -1)
2604 1.5 maxv return -1;
2605 1.5 maxv break;
2606 1.5 maxv
2607 1.5 maxv case STORE_DMO:
2608 1.5 maxv if (__predict_false(!mem.write)) {
2609 1.5 maxv DISASSEMBLER_BUG();
2610 1.5 maxv }
2611 1.6 maxv mem.size = instr->operand_size;
2612 1.6 maxv ret = store_to_mem(mach, state, instr, &instr->dst, &mem);
2613 1.5 maxv if (ret == -1)
2614 1.5 maxv return -1;
2615 1.5 maxv break;
2616 1.5 maxv
2617 1.5 maxv default:
2618 1.5 maxv return -1;
2619 1.5 maxv }
2620 1.5 maxv
2621 1.6 maxv (*instr->emul)(&mem, __callbacks.mem, state->gprs);
2622 1.5 maxv
2623 1.5 maxv if (!mem.write) {
2624 1.6 maxv /* instr->dst.type == STORE_REG */
2625 1.5 maxv memcpy(&val, mem.data, sizeof(uint64_t));
2626 1.6 maxv val = __SHIFTIN(val, instr->dst.u.reg->mask);
2627 1.6 maxv state->gprs[instr->dst.u.reg->num] &= ~instr->dst.u.reg->mask;
2628 1.6 maxv state->gprs[instr->dst.u.reg->num] |= val;
2629 1.6 maxv }
2630 1.6 maxv
2631 1.6 maxv return 0;
2632 1.6 maxv }
2633 1.6 maxv
2634 1.6 maxv int
2635 1.6 maxv nvmm_assist_mem(struct nvmm_machine *mach, nvmm_cpuid_t cpuid,
2636 1.6 maxv struct nvmm_exit *exit)
2637 1.6 maxv {
2638 1.6 maxv struct nvmm_x64_state state;
2639 1.6 maxv struct x86_instr instr;
2640 1.6 maxv uint64_t cnt;
2641 1.6 maxv int ret;
2642 1.6 maxv
2643 1.6 maxv if (__predict_false(exit->reason != NVMM_EXIT_MEMORY)) {
2644 1.6 maxv errno = EINVAL;
2645 1.6 maxv return -1;
2646 1.6 maxv }
2647 1.6 maxv
2648 1.6 maxv ret = nvmm_vcpu_getstate(mach, cpuid, &state,
2649 1.6 maxv NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS | NVMM_X64_STATE_CRS |
2650 1.6 maxv NVMM_X64_STATE_MSRS);
2651 1.6 maxv if (ret == -1)
2652 1.6 maxv return -1;
2653 1.6 maxv
2654 1.6 maxv if (exit->u.mem.inst_len == 0) {
2655 1.6 maxv /*
2656 1.6 maxv * The instruction was not fetched from the kernel. Fetch
2657 1.6 maxv * it ourselves.
2658 1.6 maxv */
2659 1.6 maxv ret = fetch_instruction(mach, &state, exit);
2660 1.6 maxv if (ret == -1)
2661 1.6 maxv return -1;
2662 1.6 maxv }
2663 1.6 maxv
2664 1.6 maxv ret = x86_decode(exit->u.mem.inst_bytes, exit->u.mem.inst_len,
2665 1.6 maxv &instr, &state);
2666 1.6 maxv if (ret == -1) {
2667 1.6 maxv errno = ENODEV;
2668 1.6 maxv return -1;
2669 1.6 maxv }
2670 1.6 maxv
2671 1.6 maxv if (__predict_false(instr.legpref[LEG_REPN])) {
2672 1.6 maxv errno = ENODEV;
2673 1.6 maxv return -1;
2674 1.6 maxv }
2675 1.6 maxv
2676 1.6 maxv if (instr.opcode->movs) {
2677 1.6 maxv ret = assist_mem_double(mach, &state, &instr);
2678 1.6 maxv } else {
2679 1.6 maxv ret = assist_mem_single(mach, &state, &instr);
2680 1.6 maxv }
2681 1.6 maxv if (ret == -1) {
2682 1.6 maxv errno = ENODEV;
2683 1.6 maxv return -1;
2684 1.5 maxv }
2685 1.5 maxv
2686 1.5 maxv if (instr.legpref[LEG_REP]) {
2687 1.6 maxv cnt = rep_dec_apply(&state, instr.address_size);
2688 1.6 maxv if (cnt == 0) {
2689 1.5 maxv state.gprs[NVMM_X64_GPR_RIP] += instr.len;
2690 1.5 maxv }
2691 1.5 maxv } else {
2692 1.5 maxv state.gprs[NVMM_X64_GPR_RIP] += instr.len;
2693 1.5 maxv }
2694 1.5 maxv
2695 1.5 maxv ret = nvmm_vcpu_setstate(mach, cpuid, &state, NVMM_X64_STATE_GPRS);
2696 1.5 maxv if (ret == -1)
2697 1.5 maxv return -1;
2698 1.5 maxv
2699 1.5 maxv return 0;
2700 1.1 maxv }
2701