libnvmm_x86.c revision 1.9 1 1.8 maxv /* $NetBSD: libnvmm_x86.c,v 1.9 2019/01/04 10:25:39 maxv Exp $ */
2 1.1 maxv
3 1.1 maxv /*
4 1.1 maxv * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 1.1 maxv * All rights reserved.
6 1.1 maxv *
7 1.1 maxv * This code is derived from software contributed to The NetBSD Foundation
8 1.1 maxv * by Maxime Villard.
9 1.1 maxv *
10 1.1 maxv * Redistribution and use in source and binary forms, with or without
11 1.1 maxv * modification, are permitted provided that the following conditions
12 1.1 maxv * are met:
13 1.1 maxv * 1. Redistributions of source code must retain the above copyright
14 1.1 maxv * notice, this list of conditions and the following disclaimer.
15 1.1 maxv * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 maxv * notice, this list of conditions and the following disclaimer in the
17 1.1 maxv * documentation and/or other materials provided with the distribution.
18 1.1 maxv *
19 1.1 maxv * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 maxv * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 maxv * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 maxv * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 maxv * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 maxv * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 maxv * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 maxv * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 maxv * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 maxv * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 maxv * POSSIBILITY OF SUCH DAMAGE.
30 1.1 maxv */
31 1.1 maxv
32 1.1 maxv #include <sys/cdefs.h>
33 1.1 maxv
34 1.1 maxv #include <stdio.h>
35 1.1 maxv #include <stdlib.h>
36 1.1 maxv #include <string.h>
37 1.1 maxv #include <unistd.h>
38 1.1 maxv #include <fcntl.h>
39 1.1 maxv #include <errno.h>
40 1.1 maxv #include <sys/ioctl.h>
41 1.1 maxv #include <sys/mman.h>
42 1.1 maxv #include <machine/vmparam.h>
43 1.1 maxv #include <machine/pte.h>
44 1.1 maxv #include <machine/psl.h>
45 1.1 maxv
46 1.1 maxv #include "nvmm.h"
47 1.1 maxv
48 1.1 maxv #include <x86/specialreg.h>
49 1.1 maxv
50 1.6 maxv extern struct nvmm_callbacks __callbacks;
51 1.6 maxv
52 1.6 maxv /* -------------------------------------------------------------------------- */
53 1.6 maxv
54 1.6 maxv /*
55 1.6 maxv * Undocumented debugging function. Helpful.
56 1.6 maxv */
57 1.6 maxv int
58 1.6 maxv nvmm_vcpu_dump(struct nvmm_machine *mach, nvmm_cpuid_t cpuid)
59 1.6 maxv {
60 1.6 maxv struct nvmm_x64_state state;
61 1.6 maxv size_t i;
62 1.6 maxv int ret;
63 1.6 maxv
64 1.6 maxv const char *segnames[] = {
65 1.6 maxv "CS", "DS", "ES", "FS", "GS", "SS", "GDT", "IDT", "LDT", "TR"
66 1.6 maxv };
67 1.6 maxv
68 1.6 maxv ret = nvmm_vcpu_getstate(mach, cpuid, &state, NVMM_X64_STATE_ALL);
69 1.6 maxv if (ret == -1)
70 1.6 maxv return -1;
71 1.6 maxv
72 1.6 maxv printf("+ VCPU id=%d\n", (int)cpuid);
73 1.6 maxv printf("| -> RIP=%p\n", (void *)state.gprs[NVMM_X64_GPR_RIP]);
74 1.6 maxv printf("| -> RSP=%p\n", (void *)state.gprs[NVMM_X64_GPR_RSP]);
75 1.6 maxv printf("| -> RAX=%p\n", (void *)state.gprs[NVMM_X64_GPR_RAX]);
76 1.6 maxv printf("| -> RBX=%p\n", (void *)state.gprs[NVMM_X64_GPR_RBX]);
77 1.6 maxv printf("| -> RCX=%p\n", (void *)state.gprs[NVMM_X64_GPR_RCX]);
78 1.6 maxv for (i = 0; i < NVMM_X64_NSEG; i++) {
79 1.8 maxv printf("| -> %s: sel=0x%lx base=%p, limit=%p, P=%d, D=%d\n",
80 1.6 maxv segnames[i],
81 1.6 maxv state.segs[i].selector,
82 1.6 maxv (void *)state.segs[i].base,
83 1.6 maxv (void *)state.segs[i].limit,
84 1.8 maxv state.segs[i].attrib.p, state.segs[i].attrib.def32);
85 1.6 maxv }
86 1.8 maxv printf("| -> CPL=%p\n", (void *)state.misc[NVMM_X64_MISC_CPL]);
87 1.6 maxv
88 1.6 maxv return 0;
89 1.6 maxv }
90 1.6 maxv
91 1.1 maxv /* -------------------------------------------------------------------------- */
92 1.1 maxv
93 1.1 maxv #define PTE32_L1_SHIFT 12
94 1.1 maxv #define PTE32_L2_SHIFT 22
95 1.1 maxv
96 1.1 maxv #define PTE32_L2_MASK 0xffc00000
97 1.1 maxv #define PTE32_L1_MASK 0x003ff000
98 1.1 maxv
99 1.1 maxv #define PTE32_L2_FRAME (PTE32_L2_MASK)
100 1.1 maxv #define PTE32_L1_FRAME (PTE32_L2_FRAME|PTE32_L1_MASK)
101 1.1 maxv
102 1.1 maxv #define pte32_l1idx(va) (((va) & PTE32_L1_MASK) >> PTE32_L1_SHIFT)
103 1.1 maxv #define pte32_l2idx(va) (((va) & PTE32_L2_MASK) >> PTE32_L2_SHIFT)
104 1.1 maxv
105 1.1 maxv typedef uint32_t pte_32bit_t;
106 1.1 maxv
107 1.1 maxv static int
108 1.1 maxv x86_gva_to_gpa_32bit(struct nvmm_machine *mach, uint64_t cr3,
109 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, bool has_pse, nvmm_prot_t *prot)
110 1.1 maxv {
111 1.1 maxv gpaddr_t L2gpa, L1gpa;
112 1.1 maxv uintptr_t L2hva, L1hva;
113 1.1 maxv pte_32bit_t *pdir, pte;
114 1.1 maxv
115 1.1 maxv /* We begin with an RWXU access. */
116 1.1 maxv *prot = NVMM_PROT_ALL;
117 1.1 maxv
118 1.1 maxv /* Parse L2. */
119 1.1 maxv L2gpa = (cr3 & PG_FRAME);
120 1.1 maxv if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva) == -1)
121 1.1 maxv return -1;
122 1.1 maxv pdir = (pte_32bit_t *)L2hva;
123 1.1 maxv pte = pdir[pte32_l2idx(gva)];
124 1.1 maxv if ((pte & PG_V) == 0)
125 1.1 maxv return -1;
126 1.1 maxv if ((pte & PG_u) == 0)
127 1.1 maxv *prot &= ~NVMM_PROT_USER;
128 1.1 maxv if ((pte & PG_KW) == 0)
129 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
130 1.1 maxv if ((pte & PG_PS) && !has_pse)
131 1.1 maxv return -1;
132 1.1 maxv if (pte & PG_PS) {
133 1.1 maxv *gpa = (pte & PTE32_L2_FRAME);
134 1.1 maxv return 0;
135 1.1 maxv }
136 1.1 maxv
137 1.1 maxv /* Parse L1. */
138 1.1 maxv L1gpa = (pte & PG_FRAME);
139 1.1 maxv if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva) == -1)
140 1.1 maxv return -1;
141 1.1 maxv pdir = (pte_32bit_t *)L1hva;
142 1.1 maxv pte = pdir[pte32_l1idx(gva)];
143 1.1 maxv if ((pte & PG_V) == 0)
144 1.1 maxv return -1;
145 1.1 maxv if ((pte & PG_u) == 0)
146 1.1 maxv *prot &= ~NVMM_PROT_USER;
147 1.1 maxv if ((pte & PG_KW) == 0)
148 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
149 1.1 maxv if (pte & PG_PS)
150 1.1 maxv return -1;
151 1.1 maxv
152 1.1 maxv *gpa = (pte & PG_FRAME);
153 1.1 maxv return 0;
154 1.1 maxv }
155 1.1 maxv
156 1.1 maxv /* -------------------------------------------------------------------------- */
157 1.1 maxv
158 1.1 maxv #define PTE32_PAE_L1_SHIFT 12
159 1.1 maxv #define PTE32_PAE_L2_SHIFT 21
160 1.1 maxv #define PTE32_PAE_L3_SHIFT 30
161 1.1 maxv
162 1.1 maxv #define PTE32_PAE_L3_MASK 0xc0000000
163 1.1 maxv #define PTE32_PAE_L2_MASK 0x3fe00000
164 1.1 maxv #define PTE32_PAE_L1_MASK 0x001ff000
165 1.1 maxv
166 1.1 maxv #define PTE32_PAE_L3_FRAME (PTE32_PAE_L3_MASK)
167 1.1 maxv #define PTE32_PAE_L2_FRAME (PTE32_PAE_L3_FRAME|PTE32_PAE_L2_MASK)
168 1.1 maxv #define PTE32_PAE_L1_FRAME (PTE32_PAE_L2_FRAME|PTE32_PAE_L1_MASK)
169 1.1 maxv
170 1.1 maxv #define pte32_pae_l1idx(va) (((va) & PTE32_PAE_L1_MASK) >> PTE32_PAE_L1_SHIFT)
171 1.1 maxv #define pte32_pae_l2idx(va) (((va) & PTE32_PAE_L2_MASK) >> PTE32_PAE_L2_SHIFT)
172 1.1 maxv #define pte32_pae_l3idx(va) (((va) & PTE32_PAE_L3_MASK) >> PTE32_PAE_L3_SHIFT)
173 1.1 maxv
174 1.1 maxv typedef uint64_t pte_32bit_pae_t;
175 1.1 maxv
176 1.1 maxv static int
177 1.1 maxv x86_gva_to_gpa_32bit_pae(struct nvmm_machine *mach, uint64_t cr3,
178 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, bool has_pse, nvmm_prot_t *prot)
179 1.1 maxv {
180 1.1 maxv gpaddr_t L3gpa, L2gpa, L1gpa;
181 1.1 maxv uintptr_t L3hva, L2hva, L1hva;
182 1.1 maxv pte_32bit_pae_t *pdir, pte;
183 1.1 maxv
184 1.1 maxv /* We begin with an RWXU access. */
185 1.1 maxv *prot = NVMM_PROT_ALL;
186 1.1 maxv
187 1.1 maxv /* Parse L3. */
188 1.1 maxv L3gpa = (cr3 & PG_FRAME);
189 1.1 maxv if (nvmm_gpa_to_hva(mach, L3gpa, &L3hva) == -1)
190 1.1 maxv return -1;
191 1.1 maxv pdir = (pte_32bit_pae_t *)L3hva;
192 1.1 maxv pte = pdir[pte32_pae_l3idx(gva)];
193 1.1 maxv if ((pte & PG_V) == 0)
194 1.1 maxv return -1;
195 1.1 maxv if (pte & PG_NX)
196 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
197 1.1 maxv if (pte & PG_PS)
198 1.1 maxv return -1;
199 1.1 maxv
200 1.1 maxv /* Parse L2. */
201 1.1 maxv L2gpa = (pte & PG_FRAME);
202 1.1 maxv if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva) == -1)
203 1.1 maxv return -1;
204 1.1 maxv pdir = (pte_32bit_pae_t *)L2hva;
205 1.1 maxv pte = pdir[pte32_pae_l2idx(gva)];
206 1.1 maxv if ((pte & PG_V) == 0)
207 1.1 maxv return -1;
208 1.1 maxv if ((pte & PG_u) == 0)
209 1.1 maxv *prot &= ~NVMM_PROT_USER;
210 1.1 maxv if ((pte & PG_KW) == 0)
211 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
212 1.1 maxv if (pte & PG_NX)
213 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
214 1.1 maxv if ((pte & PG_PS) && !has_pse)
215 1.1 maxv return -1;
216 1.1 maxv if (pte & PG_PS) {
217 1.1 maxv *gpa = (pte & PTE32_PAE_L2_FRAME);
218 1.1 maxv return 0;
219 1.1 maxv }
220 1.1 maxv
221 1.1 maxv /* Parse L1. */
222 1.1 maxv L1gpa = (pte & PG_FRAME);
223 1.1 maxv if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva) == -1)
224 1.1 maxv return -1;
225 1.1 maxv pdir = (pte_32bit_pae_t *)L1hva;
226 1.1 maxv pte = pdir[pte32_pae_l1idx(gva)];
227 1.1 maxv if ((pte & PG_V) == 0)
228 1.1 maxv return -1;
229 1.1 maxv if ((pte & PG_u) == 0)
230 1.1 maxv *prot &= ~NVMM_PROT_USER;
231 1.1 maxv if ((pte & PG_KW) == 0)
232 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
233 1.1 maxv if (pte & PG_NX)
234 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
235 1.1 maxv if (pte & PG_PS)
236 1.1 maxv return -1;
237 1.1 maxv
238 1.1 maxv *gpa = (pte & PG_FRAME);
239 1.1 maxv return 0;
240 1.1 maxv }
241 1.1 maxv
242 1.1 maxv /* -------------------------------------------------------------------------- */
243 1.1 maxv
244 1.1 maxv #define PTE64_L1_SHIFT 12
245 1.1 maxv #define PTE64_L2_SHIFT 21
246 1.1 maxv #define PTE64_L3_SHIFT 30
247 1.1 maxv #define PTE64_L4_SHIFT 39
248 1.1 maxv
249 1.1 maxv #define PTE64_L4_MASK 0x0000ff8000000000
250 1.1 maxv #define PTE64_L3_MASK 0x0000007fc0000000
251 1.1 maxv #define PTE64_L2_MASK 0x000000003fe00000
252 1.1 maxv #define PTE64_L1_MASK 0x00000000001ff000
253 1.1 maxv
254 1.1 maxv #define PTE64_L4_FRAME PTE64_L4_MASK
255 1.1 maxv #define PTE64_L3_FRAME (PTE64_L4_FRAME|PTE64_L3_MASK)
256 1.1 maxv #define PTE64_L2_FRAME (PTE64_L3_FRAME|PTE64_L2_MASK)
257 1.1 maxv #define PTE64_L1_FRAME (PTE64_L2_FRAME|PTE64_L1_MASK)
258 1.1 maxv
259 1.1 maxv #define pte64_l1idx(va) (((va) & PTE64_L1_MASK) >> PTE64_L1_SHIFT)
260 1.1 maxv #define pte64_l2idx(va) (((va) & PTE64_L2_MASK) >> PTE64_L2_SHIFT)
261 1.1 maxv #define pte64_l3idx(va) (((va) & PTE64_L3_MASK) >> PTE64_L3_SHIFT)
262 1.1 maxv #define pte64_l4idx(va) (((va) & PTE64_L4_MASK) >> PTE64_L4_SHIFT)
263 1.1 maxv
264 1.1 maxv typedef uint64_t pte_64bit_t;
265 1.1 maxv
266 1.1 maxv static inline bool
267 1.1 maxv x86_gva_64bit_canonical(gvaddr_t gva)
268 1.1 maxv {
269 1.1 maxv /* Bits 63:47 must have the same value. */
270 1.1 maxv #define SIGN_EXTEND 0xffff800000000000ULL
271 1.1 maxv return (gva & SIGN_EXTEND) == 0 || (gva & SIGN_EXTEND) == SIGN_EXTEND;
272 1.1 maxv }
273 1.1 maxv
274 1.1 maxv static int
275 1.1 maxv x86_gva_to_gpa_64bit(struct nvmm_machine *mach, uint64_t cr3,
276 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, bool has_pse, nvmm_prot_t *prot)
277 1.1 maxv {
278 1.1 maxv gpaddr_t L4gpa, L3gpa, L2gpa, L1gpa;
279 1.1 maxv uintptr_t L4hva, L3hva, L2hva, L1hva;
280 1.1 maxv pte_64bit_t *pdir, pte;
281 1.1 maxv
282 1.1 maxv /* We begin with an RWXU access. */
283 1.1 maxv *prot = NVMM_PROT_ALL;
284 1.1 maxv
285 1.1 maxv if (!x86_gva_64bit_canonical(gva))
286 1.1 maxv return -1;
287 1.1 maxv
288 1.1 maxv /* Parse L4. */
289 1.1 maxv L4gpa = (cr3 & PG_FRAME);
290 1.1 maxv if (nvmm_gpa_to_hva(mach, L4gpa, &L4hva) == -1)
291 1.1 maxv return -1;
292 1.1 maxv pdir = (pte_64bit_t *)L4hva;
293 1.1 maxv pte = pdir[pte64_l4idx(gva)];
294 1.1 maxv if ((pte & PG_V) == 0)
295 1.1 maxv return -1;
296 1.1 maxv if ((pte & PG_u) == 0)
297 1.1 maxv *prot &= ~NVMM_PROT_USER;
298 1.1 maxv if ((pte & PG_KW) == 0)
299 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
300 1.1 maxv if (pte & PG_NX)
301 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
302 1.1 maxv if (pte & PG_PS)
303 1.1 maxv return -1;
304 1.1 maxv
305 1.1 maxv /* Parse L3. */
306 1.1 maxv L3gpa = (pte & PG_FRAME);
307 1.1 maxv if (nvmm_gpa_to_hva(mach, L3gpa, &L3hva) == -1)
308 1.1 maxv return -1;
309 1.1 maxv pdir = (pte_64bit_t *)L3hva;
310 1.1 maxv pte = pdir[pte64_l3idx(gva)];
311 1.1 maxv if ((pte & PG_V) == 0)
312 1.1 maxv return -1;
313 1.1 maxv if ((pte & PG_u) == 0)
314 1.1 maxv *prot &= ~NVMM_PROT_USER;
315 1.1 maxv if ((pte & PG_KW) == 0)
316 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
317 1.1 maxv if (pte & PG_NX)
318 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
319 1.1 maxv if ((pte & PG_PS) && !has_pse)
320 1.1 maxv return -1;
321 1.1 maxv if (pte & PG_PS) {
322 1.1 maxv *gpa = (pte & PTE64_L3_FRAME);
323 1.1 maxv return 0;
324 1.1 maxv }
325 1.1 maxv
326 1.1 maxv /* Parse L2. */
327 1.1 maxv L2gpa = (pte & PG_FRAME);
328 1.1 maxv if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva) == -1)
329 1.1 maxv return -1;
330 1.1 maxv pdir = (pte_64bit_t *)L2hva;
331 1.1 maxv pte = pdir[pte64_l2idx(gva)];
332 1.1 maxv if ((pte & PG_V) == 0)
333 1.1 maxv return -1;
334 1.1 maxv if ((pte & PG_u) == 0)
335 1.1 maxv *prot &= ~NVMM_PROT_USER;
336 1.1 maxv if ((pte & PG_KW) == 0)
337 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
338 1.1 maxv if (pte & PG_NX)
339 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
340 1.1 maxv if ((pte & PG_PS) && !has_pse)
341 1.1 maxv return -1;
342 1.1 maxv if (pte & PG_PS) {
343 1.1 maxv *gpa = (pte & PTE64_L2_FRAME);
344 1.1 maxv return 0;
345 1.1 maxv }
346 1.1 maxv
347 1.1 maxv /* Parse L1. */
348 1.1 maxv L1gpa = (pte & PG_FRAME);
349 1.1 maxv if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva) == -1)
350 1.1 maxv return -1;
351 1.1 maxv pdir = (pte_64bit_t *)L1hva;
352 1.1 maxv pte = pdir[pte64_l1idx(gva)];
353 1.1 maxv if ((pte & PG_V) == 0)
354 1.1 maxv return -1;
355 1.1 maxv if ((pte & PG_u) == 0)
356 1.1 maxv *prot &= ~NVMM_PROT_USER;
357 1.1 maxv if ((pte & PG_KW) == 0)
358 1.1 maxv *prot &= ~NVMM_PROT_WRITE;
359 1.1 maxv if (pte & PG_NX)
360 1.1 maxv *prot &= ~NVMM_PROT_EXEC;
361 1.1 maxv if (pte & PG_PS)
362 1.1 maxv return -1;
363 1.1 maxv
364 1.1 maxv *gpa = (pte & PG_FRAME);
365 1.1 maxv return 0;
366 1.1 maxv }
367 1.1 maxv
368 1.1 maxv static inline int
369 1.1 maxv x86_gva_to_gpa(struct nvmm_machine *mach, struct nvmm_x64_state *state,
370 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
371 1.1 maxv {
372 1.1 maxv bool is_pae, is_lng, has_pse;
373 1.1 maxv uint64_t cr3;
374 1.6 maxv size_t off;
375 1.1 maxv int ret;
376 1.1 maxv
377 1.1 maxv if ((state->crs[NVMM_X64_CR_CR0] & CR0_PG) == 0) {
378 1.1 maxv /* No paging. */
379 1.4 maxv *prot = NVMM_PROT_ALL;
380 1.1 maxv *gpa = gva;
381 1.1 maxv return 0;
382 1.1 maxv }
383 1.1 maxv
384 1.6 maxv off = (gva & PAGE_MASK);
385 1.6 maxv gva &= ~PAGE_MASK;
386 1.6 maxv
387 1.1 maxv is_pae = (state->crs[NVMM_X64_CR_CR4] & CR4_PAE) != 0;
388 1.1 maxv is_lng = (state->msrs[NVMM_X64_MSR_EFER] & EFER_LME) != 0;
389 1.1 maxv has_pse = (state->crs[NVMM_X64_CR_CR4] & CR4_PSE) != 0;
390 1.1 maxv cr3 = state->crs[NVMM_X64_CR_CR3];
391 1.1 maxv
392 1.1 maxv if (is_pae && is_lng) {
393 1.1 maxv /* 64bit */
394 1.1 maxv ret = x86_gva_to_gpa_64bit(mach, cr3, gva, gpa, has_pse, prot);
395 1.1 maxv } else if (is_pae && !is_lng) {
396 1.1 maxv /* 32bit PAE */
397 1.1 maxv ret = x86_gva_to_gpa_32bit_pae(mach, cr3, gva, gpa, has_pse,
398 1.1 maxv prot);
399 1.1 maxv } else if (!is_pae && !is_lng) {
400 1.1 maxv /* 32bit */
401 1.1 maxv ret = x86_gva_to_gpa_32bit(mach, cr3, gva, gpa, has_pse, prot);
402 1.1 maxv } else {
403 1.1 maxv ret = -1;
404 1.1 maxv }
405 1.1 maxv
406 1.1 maxv if (ret == -1) {
407 1.1 maxv errno = EFAULT;
408 1.1 maxv }
409 1.1 maxv
410 1.6 maxv *gpa = *gpa + off;
411 1.6 maxv
412 1.1 maxv return ret;
413 1.1 maxv }
414 1.1 maxv
415 1.1 maxv int
416 1.1 maxv nvmm_gva_to_gpa(struct nvmm_machine *mach, nvmm_cpuid_t cpuid,
417 1.1 maxv gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
418 1.1 maxv {
419 1.1 maxv struct nvmm_x64_state state;
420 1.1 maxv int ret;
421 1.1 maxv
422 1.1 maxv ret = nvmm_vcpu_getstate(mach, cpuid, &state,
423 1.1 maxv NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
424 1.1 maxv if (ret == -1)
425 1.1 maxv return -1;
426 1.1 maxv
427 1.1 maxv return x86_gva_to_gpa(mach, &state, gva, gpa, prot);
428 1.1 maxv }
429 1.1 maxv
430 1.1 maxv /* -------------------------------------------------------------------------- */
431 1.1 maxv
432 1.1 maxv static inline bool
433 1.5 maxv is_64bit(struct nvmm_x64_state *state)
434 1.5 maxv {
435 1.5 maxv return (state->segs[NVMM_X64_SEG_CS].attrib.lng != 0);
436 1.5 maxv }
437 1.5 maxv
438 1.5 maxv static inline bool
439 1.5 maxv is_32bit(struct nvmm_x64_state *state)
440 1.5 maxv {
441 1.5 maxv return (state->segs[NVMM_X64_SEG_CS].attrib.lng == 0) &&
442 1.5 maxv (state->segs[NVMM_X64_SEG_CS].attrib.def32 == 1);
443 1.5 maxv }
444 1.5 maxv
445 1.5 maxv static inline bool
446 1.5 maxv is_16bit(struct nvmm_x64_state *state)
447 1.5 maxv {
448 1.5 maxv return (state->segs[NVMM_X64_SEG_CS].attrib.lng == 0) &&
449 1.5 maxv (state->segs[NVMM_X64_SEG_CS].attrib.def32 == 0);
450 1.5 maxv }
451 1.5 maxv
452 1.5 maxv static inline bool
453 1.1 maxv is_long_mode(struct nvmm_x64_state *state)
454 1.1 maxv {
455 1.1 maxv return (state->msrs[NVMM_X64_MSR_EFER] & EFER_LME) != 0;
456 1.1 maxv }
457 1.1 maxv
458 1.1 maxv static int
459 1.1 maxv segment_apply(struct nvmm_x64_state_seg *seg, gvaddr_t *gva, size_t size)
460 1.1 maxv {
461 1.1 maxv uint64_t limit;
462 1.1 maxv
463 1.1 maxv /*
464 1.1 maxv * This is incomplete. We should check topdown, etc, really that's
465 1.1 maxv * tiring.
466 1.1 maxv */
467 1.1 maxv if (__predict_false(!seg->attrib.p)) {
468 1.1 maxv goto error;
469 1.1 maxv }
470 1.1 maxv
471 1.1 maxv limit = (seg->limit + 1);
472 1.1 maxv if (__predict_true(seg->attrib.gran)) {
473 1.1 maxv limit *= PAGE_SIZE;
474 1.1 maxv }
475 1.1 maxv
476 1.7 maxv if (__predict_false(*gva + size > limit)) {
477 1.1 maxv goto error;
478 1.1 maxv }
479 1.1 maxv
480 1.1 maxv *gva += seg->base;
481 1.1 maxv return 0;
482 1.1 maxv
483 1.1 maxv error:
484 1.1 maxv errno = EFAULT;
485 1.1 maxv return -1;
486 1.1 maxv }
487 1.1 maxv
488 1.6 maxv static uint64_t
489 1.6 maxv mask_from_adsize(size_t adsize)
490 1.6 maxv {
491 1.6 maxv switch (adsize) {
492 1.6 maxv case 8:
493 1.6 maxv return 0xFFFFFFFFFFFFFFFF;
494 1.6 maxv case 4:
495 1.6 maxv return 0x00000000FFFFFFFF;
496 1.6 maxv case 2:
497 1.6 maxv default: /* impossible */
498 1.6 maxv return 0x000000000000FFFF;
499 1.6 maxv }
500 1.6 maxv }
501 1.6 maxv
502 1.6 maxv static uint64_t
503 1.6 maxv rep_dec_apply(struct nvmm_x64_state *state, size_t adsize)
504 1.6 maxv {
505 1.6 maxv uint64_t mask, cnt;
506 1.6 maxv
507 1.6 maxv mask = mask_from_adsize(adsize);
508 1.6 maxv
509 1.6 maxv cnt = state->gprs[NVMM_X64_GPR_RCX] & mask;
510 1.6 maxv cnt -= 1;
511 1.6 maxv cnt &= mask;
512 1.6 maxv
513 1.6 maxv state->gprs[NVMM_X64_GPR_RCX] &= ~mask;
514 1.6 maxv state->gprs[NVMM_X64_GPR_RCX] |= cnt;
515 1.6 maxv
516 1.6 maxv return cnt;
517 1.6 maxv }
518 1.6 maxv
519 1.6 maxv static int
520 1.6 maxv read_guest_memory(struct nvmm_machine *mach, struct nvmm_x64_state *state,
521 1.6 maxv gvaddr_t gva, uint8_t *data, size_t size)
522 1.6 maxv {
523 1.6 maxv struct nvmm_mem mem;
524 1.6 maxv nvmm_prot_t prot;
525 1.6 maxv gpaddr_t gpa;
526 1.6 maxv uintptr_t hva;
527 1.6 maxv bool is_mmio;
528 1.6 maxv int ret, remain;
529 1.6 maxv
530 1.6 maxv ret = x86_gva_to_gpa(mach, state, gva, &gpa, &prot);
531 1.6 maxv if (__predict_false(ret == -1)) {
532 1.6 maxv return -1;
533 1.6 maxv }
534 1.6 maxv if (__predict_false(!(prot & NVMM_PROT_READ))) {
535 1.6 maxv errno = EFAULT;
536 1.6 maxv return -1;
537 1.6 maxv }
538 1.6 maxv
539 1.6 maxv if ((gva & PAGE_MASK) + size > PAGE_SIZE) {
540 1.6 maxv remain = ((gva & PAGE_MASK) + size - PAGE_SIZE);
541 1.6 maxv } else {
542 1.6 maxv remain = 0;
543 1.6 maxv }
544 1.6 maxv size -= remain;
545 1.6 maxv
546 1.6 maxv ret = nvmm_gpa_to_hva(mach, gpa, &hva);
547 1.6 maxv is_mmio = (ret == -1);
548 1.6 maxv
549 1.6 maxv if (is_mmio) {
550 1.6 maxv mem.gva = gva;
551 1.6 maxv mem.gpa = gpa;
552 1.6 maxv mem.write = false;
553 1.6 maxv mem.size = size;
554 1.6 maxv (*__callbacks.mem)(&mem);
555 1.6 maxv memcpy(data, mem.data, size);
556 1.6 maxv } else {
557 1.6 maxv memcpy(data, (uint8_t *)hva, size);
558 1.6 maxv }
559 1.6 maxv
560 1.6 maxv if (remain > 0) {
561 1.6 maxv ret = read_guest_memory(mach, state, gva + size,
562 1.6 maxv data + size, remain);
563 1.6 maxv } else {
564 1.6 maxv ret = 0;
565 1.6 maxv }
566 1.6 maxv
567 1.6 maxv return ret;
568 1.6 maxv }
569 1.6 maxv
570 1.6 maxv static int
571 1.6 maxv write_guest_memory(struct nvmm_machine *mach, struct nvmm_x64_state *state,
572 1.6 maxv gvaddr_t gva, uint8_t *data, size_t size)
573 1.6 maxv {
574 1.6 maxv struct nvmm_mem mem;
575 1.6 maxv nvmm_prot_t prot;
576 1.6 maxv gpaddr_t gpa;
577 1.6 maxv uintptr_t hva;
578 1.6 maxv bool is_mmio;
579 1.6 maxv int ret, remain;
580 1.6 maxv
581 1.6 maxv ret = x86_gva_to_gpa(mach, state, gva, &gpa, &prot);
582 1.6 maxv if (__predict_false(ret == -1)) {
583 1.6 maxv return -1;
584 1.6 maxv }
585 1.6 maxv if (__predict_false(!(prot & NVMM_PROT_WRITE))) {
586 1.6 maxv errno = EFAULT;
587 1.6 maxv return -1;
588 1.6 maxv }
589 1.6 maxv
590 1.6 maxv if ((gva & PAGE_MASK) + size > PAGE_SIZE) {
591 1.6 maxv remain = ((gva & PAGE_MASK) + size - PAGE_SIZE);
592 1.6 maxv } else {
593 1.6 maxv remain = 0;
594 1.6 maxv }
595 1.6 maxv size -= remain;
596 1.6 maxv
597 1.6 maxv ret = nvmm_gpa_to_hva(mach, gpa, &hva);
598 1.6 maxv is_mmio = (ret == -1);
599 1.6 maxv
600 1.6 maxv if (is_mmio) {
601 1.6 maxv mem.gva = gva;
602 1.6 maxv mem.gpa = gpa;
603 1.6 maxv mem.write = true;
604 1.6 maxv memcpy(mem.data, data, size);
605 1.6 maxv mem.size = size;
606 1.6 maxv (*__callbacks.mem)(&mem);
607 1.6 maxv } else {
608 1.6 maxv memcpy((uint8_t *)hva, data, size);
609 1.6 maxv }
610 1.6 maxv
611 1.6 maxv if (remain > 0) {
612 1.6 maxv ret = write_guest_memory(mach, state, gva + size,
613 1.6 maxv data + size, remain);
614 1.6 maxv } else {
615 1.6 maxv ret = 0;
616 1.6 maxv }
617 1.6 maxv
618 1.6 maxv return ret;
619 1.6 maxv }
620 1.6 maxv
621 1.6 maxv /* -------------------------------------------------------------------------- */
622 1.6 maxv
623 1.8 maxv static int fetch_segment(struct nvmm_machine *, struct nvmm_x64_state *);
624 1.8 maxv
625 1.1 maxv int
626 1.1 maxv nvmm_assist_io(struct nvmm_machine *mach, nvmm_cpuid_t cpuid,
627 1.6 maxv struct nvmm_exit *exit)
628 1.1 maxv {
629 1.1 maxv struct nvmm_x64_state state;
630 1.1 maxv struct nvmm_io io;
631 1.6 maxv uint64_t cnt;
632 1.6 maxv gvaddr_t gva;
633 1.5 maxv int reg = 0; /* GCC */
634 1.8 maxv int ret, seg;
635 1.1 maxv
636 1.1 maxv if (__predict_false(exit->reason != NVMM_EXIT_IO)) {
637 1.1 maxv errno = EINVAL;
638 1.1 maxv return -1;
639 1.1 maxv }
640 1.1 maxv
641 1.1 maxv io.port = exit->u.io.port;
642 1.1 maxv io.in = (exit->u.io.type == NVMM_EXIT_IO_IN);
643 1.1 maxv io.size = exit->u.io.operand_size;
644 1.1 maxv
645 1.1 maxv ret = nvmm_vcpu_getstate(mach, cpuid, &state,
646 1.1 maxv NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
647 1.1 maxv NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
648 1.1 maxv if (ret == -1)
649 1.1 maxv return -1;
650 1.1 maxv
651 1.6 maxv /*
652 1.6 maxv * Determine GVA.
653 1.6 maxv */
654 1.6 maxv if (exit->u.io.str) {
655 1.5 maxv if (io.in) {
656 1.5 maxv reg = NVMM_X64_GPR_RDI;
657 1.5 maxv } else {
658 1.5 maxv reg = NVMM_X64_GPR_RSI;
659 1.5 maxv }
660 1.1 maxv
661 1.6 maxv gva = state.gprs[reg];
662 1.6 maxv gva &= mask_from_adsize(exit->u.io.address_size);
663 1.1 maxv
664 1.1 maxv if (!is_long_mode(&state)) {
665 1.8 maxv if (exit->u.io.seg != -1) {
666 1.8 maxv seg = exit->u.io.seg;
667 1.8 maxv } else {
668 1.8 maxv if (io.in) {
669 1.8 maxv seg = NVMM_X64_SEG_ES;
670 1.8 maxv } else {
671 1.8 maxv seg = fetch_segment(mach, &state);
672 1.8 maxv if (seg == -1)
673 1.8 maxv return -1;
674 1.8 maxv }
675 1.8 maxv }
676 1.8 maxv
677 1.8 maxv ret = segment_apply(&state.segs[seg], &gva, io.size);
678 1.1 maxv if (ret == -1)
679 1.1 maxv return -1;
680 1.1 maxv }
681 1.6 maxv }
682 1.1 maxv
683 1.6 maxv if (!io.in) {
684 1.6 maxv if (!exit->u.io.str) {
685 1.6 maxv memcpy(io.data, &state.gprs[NVMM_X64_GPR_RAX], io.size);
686 1.6 maxv } else {
687 1.6 maxv ret = read_guest_memory(mach, &state, gva, io.data,
688 1.6 maxv io.size);
689 1.1 maxv if (ret == -1)
690 1.1 maxv return -1;
691 1.1 maxv }
692 1.1 maxv }
693 1.1 maxv
694 1.6 maxv (*__callbacks.io)(&io);
695 1.1 maxv
696 1.1 maxv if (io.in) {
697 1.6 maxv if (!exit->u.io.str) {
698 1.6 maxv memcpy(&state.gprs[NVMM_X64_GPR_RAX], io.data, io.size);
699 1.1 maxv } else {
700 1.6 maxv ret = write_guest_memory(mach, &state, gva, io.data,
701 1.6 maxv io.size);
702 1.6 maxv if (ret == -1)
703 1.6 maxv return -1;
704 1.1 maxv }
705 1.1 maxv }
706 1.1 maxv
707 1.5 maxv if (exit->u.io.str) {
708 1.5 maxv if (state.gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
709 1.5 maxv state.gprs[reg] -= io.size;
710 1.5 maxv } else {
711 1.5 maxv state.gprs[reg] += io.size;
712 1.5 maxv }
713 1.5 maxv }
714 1.5 maxv
715 1.1 maxv if (exit->u.io.rep) {
716 1.6 maxv cnt = rep_dec_apply(&state, exit->u.io.address_size);
717 1.6 maxv if (cnt == 0) {
718 1.1 maxv state.gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
719 1.1 maxv }
720 1.1 maxv } else {
721 1.1 maxv state.gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
722 1.1 maxv }
723 1.1 maxv
724 1.1 maxv ret = nvmm_vcpu_setstate(mach, cpuid, &state, NVMM_X64_STATE_GPRS);
725 1.1 maxv if (ret == -1)
726 1.1 maxv return -1;
727 1.1 maxv
728 1.1 maxv return 0;
729 1.1 maxv }
730 1.1 maxv
731 1.1 maxv /* -------------------------------------------------------------------------- */
732 1.1 maxv
733 1.5 maxv static void x86_emul_or(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
734 1.5 maxv static void x86_emul_and(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
735 1.5 maxv static void x86_emul_xor(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
736 1.5 maxv static void x86_emul_mov(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
737 1.5 maxv static void x86_emul_stos(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
738 1.5 maxv static void x86_emul_lods(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
739 1.6 maxv static void x86_emul_movs(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
740 1.5 maxv
741 1.5 maxv enum x86_legpref {
742 1.5 maxv /* Group 1 */
743 1.5 maxv LEG_LOCK = 0,
744 1.5 maxv LEG_REPN, /* REPNE/REPNZ */
745 1.5 maxv LEG_REP, /* REP/REPE/REPZ */
746 1.5 maxv /* Group 2 */
747 1.5 maxv LEG_OVR_CS,
748 1.5 maxv LEG_OVR_SS,
749 1.5 maxv LEG_OVR_DS,
750 1.5 maxv LEG_OVR_ES,
751 1.5 maxv LEG_OVR_FS,
752 1.5 maxv LEG_OVR_GS,
753 1.5 maxv LEG_BRN_TAKEN,
754 1.5 maxv LEG_BRN_NTAKEN,
755 1.5 maxv /* Group 3 */
756 1.5 maxv LEG_OPR_OVR,
757 1.5 maxv /* Group 4 */
758 1.5 maxv LEG_ADR_OVR,
759 1.5 maxv
760 1.5 maxv NLEG
761 1.5 maxv };
762 1.5 maxv
763 1.5 maxv struct x86_rexpref {
764 1.5 maxv bool present;
765 1.5 maxv bool w;
766 1.5 maxv bool r;
767 1.5 maxv bool x;
768 1.5 maxv bool b;
769 1.5 maxv };
770 1.5 maxv
771 1.5 maxv struct x86_reg {
772 1.5 maxv int num; /* NVMM GPR state index */
773 1.5 maxv uint64_t mask;
774 1.5 maxv };
775 1.5 maxv
776 1.5 maxv enum x86_disp_type {
777 1.5 maxv DISP_NONE,
778 1.5 maxv DISP_0,
779 1.5 maxv DISP_1,
780 1.5 maxv DISP_4
781 1.5 maxv };
782 1.5 maxv
783 1.5 maxv struct x86_disp {
784 1.5 maxv enum x86_disp_type type;
785 1.5 maxv uint8_t data[4];
786 1.5 maxv };
787 1.5 maxv
788 1.5 maxv enum REGMODRM__Mod {
789 1.5 maxv MOD_DIS0, /* also, register indirect */
790 1.5 maxv MOD_DIS1,
791 1.5 maxv MOD_DIS4,
792 1.5 maxv MOD_REG
793 1.5 maxv };
794 1.5 maxv
795 1.5 maxv enum REGMODRM__Reg {
796 1.5 maxv REG_000, /* these fields are indexes to the register map */
797 1.5 maxv REG_001,
798 1.5 maxv REG_010,
799 1.5 maxv REG_011,
800 1.5 maxv REG_100,
801 1.5 maxv REG_101,
802 1.5 maxv REG_110,
803 1.5 maxv REG_111
804 1.5 maxv };
805 1.5 maxv
806 1.5 maxv enum REGMODRM__Rm {
807 1.5 maxv RM_000, /* reg */
808 1.5 maxv RM_001, /* reg */
809 1.5 maxv RM_010, /* reg */
810 1.5 maxv RM_011, /* reg */
811 1.5 maxv RM_RSP_SIB, /* reg or SIB, depending on the MOD */
812 1.5 maxv RM_RBP_DISP32, /* reg or displacement-only (= RIP-relative on amd64) */
813 1.5 maxv RM_110,
814 1.5 maxv RM_111
815 1.5 maxv };
816 1.5 maxv
817 1.5 maxv struct x86_regmodrm {
818 1.5 maxv bool present;
819 1.5 maxv enum REGMODRM__Mod mod;
820 1.5 maxv enum REGMODRM__Reg reg;
821 1.5 maxv enum REGMODRM__Rm rm;
822 1.5 maxv };
823 1.5 maxv
824 1.5 maxv struct x86_immediate {
825 1.5 maxv size_t size; /* 1/2/4/8 */
826 1.5 maxv uint8_t data[8];
827 1.5 maxv };
828 1.5 maxv
829 1.5 maxv struct x86_sib {
830 1.5 maxv uint8_t scale;
831 1.5 maxv const struct x86_reg *idx;
832 1.5 maxv const struct x86_reg *bas;
833 1.5 maxv };
834 1.5 maxv
835 1.5 maxv enum x86_store_type {
836 1.5 maxv STORE_NONE,
837 1.5 maxv STORE_REG,
838 1.5 maxv STORE_IMM,
839 1.5 maxv STORE_SIB,
840 1.5 maxv STORE_DMO
841 1.5 maxv };
842 1.5 maxv
843 1.5 maxv struct x86_store {
844 1.5 maxv enum x86_store_type type;
845 1.5 maxv union {
846 1.5 maxv const struct x86_reg *reg;
847 1.5 maxv struct x86_immediate imm;
848 1.5 maxv struct x86_sib sib;
849 1.5 maxv uint64_t dmo;
850 1.5 maxv } u;
851 1.5 maxv struct x86_disp disp;
852 1.6 maxv int hardseg;
853 1.5 maxv };
854 1.5 maxv
855 1.5 maxv struct x86_instr {
856 1.5 maxv size_t len;
857 1.5 maxv bool legpref[NLEG];
858 1.5 maxv struct x86_rexpref rexpref;
859 1.5 maxv size_t operand_size;
860 1.5 maxv size_t address_size;
861 1.5 maxv
862 1.5 maxv struct x86_regmodrm regmodrm;
863 1.5 maxv
864 1.5 maxv const struct x86_opcode *opcode;
865 1.5 maxv
866 1.5 maxv struct x86_store src;
867 1.5 maxv struct x86_store dst;
868 1.5 maxv
869 1.5 maxv struct x86_store *strm;
870 1.5 maxv
871 1.5 maxv void (*emul)(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
872 1.5 maxv };
873 1.5 maxv
874 1.5 maxv struct x86_decode_fsm {
875 1.5 maxv /* vcpu */
876 1.5 maxv bool is64bit;
877 1.5 maxv bool is32bit;
878 1.5 maxv bool is16bit;
879 1.5 maxv
880 1.5 maxv /* fsm */
881 1.5 maxv int (*fn)(struct x86_decode_fsm *, struct x86_instr *);
882 1.5 maxv uint8_t *buf;
883 1.5 maxv uint8_t *end;
884 1.5 maxv };
885 1.5 maxv
886 1.5 maxv struct x86_opcode {
887 1.5 maxv uint8_t byte;
888 1.5 maxv bool regmodrm;
889 1.5 maxv bool regtorm;
890 1.5 maxv bool dmo;
891 1.5 maxv bool todmo;
892 1.6 maxv bool movs;
893 1.5 maxv bool stos;
894 1.5 maxv bool lods;
895 1.5 maxv bool szoverride;
896 1.5 maxv int defsize;
897 1.5 maxv int allsize;
898 1.5 maxv bool group11;
899 1.5 maxv bool immediate;
900 1.5 maxv int immsize;
901 1.5 maxv int flags;
902 1.5 maxv void (*emul)(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
903 1.5 maxv };
904 1.5 maxv
905 1.5 maxv struct x86_group_entry {
906 1.5 maxv void (*emul)(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
907 1.5 maxv };
908 1.5 maxv
909 1.5 maxv #define OPSIZE_BYTE 0x01
910 1.5 maxv #define OPSIZE_WORD 0x02 /* 2 bytes */
911 1.5 maxv #define OPSIZE_DOUB 0x04 /* 4 bytes */
912 1.5 maxv #define OPSIZE_QUAD 0x08 /* 8 bytes */
913 1.5 maxv
914 1.5 maxv #define FLAG_z 0x02
915 1.5 maxv
916 1.5 maxv static const struct x86_group_entry group11[8] = {
917 1.5 maxv [0] = { .emul = x86_emul_mov }
918 1.5 maxv };
919 1.5 maxv
920 1.5 maxv static const struct x86_opcode primary_opcode_table[] = {
921 1.5 maxv /*
922 1.5 maxv * Group11
923 1.5 maxv */
924 1.5 maxv {
925 1.5 maxv .byte = 0xC6,
926 1.5 maxv .regmodrm = true,
927 1.5 maxv .regtorm = true,
928 1.5 maxv .szoverride = false,
929 1.5 maxv .defsize = OPSIZE_BYTE,
930 1.5 maxv .allsize = -1,
931 1.5 maxv .group11 = true,
932 1.5 maxv .immediate = true,
933 1.5 maxv .immsize = OPSIZE_BYTE,
934 1.5 maxv .emul = NULL /* group11 */
935 1.5 maxv },
936 1.5 maxv {
937 1.5 maxv .byte = 0xC7,
938 1.5 maxv .regmodrm = true,
939 1.5 maxv .regtorm = true,
940 1.5 maxv .szoverride = true,
941 1.5 maxv .defsize = -1,
942 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
943 1.5 maxv .group11 = true,
944 1.5 maxv .immediate = true,
945 1.5 maxv .immsize = -1, /* special, Z */
946 1.5 maxv .flags = FLAG_z,
947 1.5 maxv .emul = NULL /* group11 */
948 1.5 maxv },
949 1.5 maxv
950 1.5 maxv /*
951 1.5 maxv * OR
952 1.5 maxv */
953 1.5 maxv {
954 1.5 maxv /* Eb, Gb */
955 1.5 maxv .byte = 0x08,
956 1.5 maxv .regmodrm = true,
957 1.5 maxv .regtorm = true,
958 1.5 maxv .szoverride = false,
959 1.5 maxv .defsize = OPSIZE_BYTE,
960 1.5 maxv .allsize = -1,
961 1.5 maxv .emul = x86_emul_or
962 1.5 maxv },
963 1.5 maxv {
964 1.5 maxv /* Ev, Gv */
965 1.5 maxv .byte = 0x09,
966 1.5 maxv .regmodrm = true,
967 1.5 maxv .regtorm = true,
968 1.5 maxv .szoverride = true,
969 1.5 maxv .defsize = -1,
970 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
971 1.5 maxv .emul = x86_emul_or
972 1.5 maxv },
973 1.5 maxv {
974 1.5 maxv /* Gb, Eb */
975 1.5 maxv .byte = 0x0A,
976 1.5 maxv .regmodrm = true,
977 1.5 maxv .regtorm = false,
978 1.5 maxv .szoverride = false,
979 1.5 maxv .defsize = OPSIZE_BYTE,
980 1.5 maxv .allsize = -1,
981 1.5 maxv .emul = x86_emul_or
982 1.5 maxv },
983 1.5 maxv {
984 1.5 maxv /* Gv, Ev */
985 1.5 maxv .byte = 0x0B,
986 1.5 maxv .regmodrm = true,
987 1.5 maxv .regtorm = false,
988 1.5 maxv .szoverride = true,
989 1.5 maxv .defsize = -1,
990 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
991 1.5 maxv .emul = x86_emul_or
992 1.5 maxv },
993 1.5 maxv
994 1.5 maxv /*
995 1.5 maxv * AND
996 1.5 maxv */
997 1.5 maxv {
998 1.5 maxv /* Eb, Gb */
999 1.5 maxv .byte = 0x20,
1000 1.5 maxv .regmodrm = true,
1001 1.5 maxv .regtorm = true,
1002 1.5 maxv .szoverride = false,
1003 1.5 maxv .defsize = OPSIZE_BYTE,
1004 1.5 maxv .allsize = -1,
1005 1.5 maxv .emul = x86_emul_and
1006 1.5 maxv },
1007 1.5 maxv {
1008 1.5 maxv /* Ev, Gv */
1009 1.5 maxv .byte = 0x21,
1010 1.5 maxv .regmodrm = true,
1011 1.5 maxv .regtorm = true,
1012 1.5 maxv .szoverride = true,
1013 1.5 maxv .defsize = -1,
1014 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1015 1.5 maxv .emul = x86_emul_and
1016 1.5 maxv },
1017 1.5 maxv {
1018 1.5 maxv /* Gb, Eb */
1019 1.5 maxv .byte = 0x22,
1020 1.5 maxv .regmodrm = true,
1021 1.5 maxv .regtorm = false,
1022 1.5 maxv .szoverride = false,
1023 1.5 maxv .defsize = OPSIZE_BYTE,
1024 1.5 maxv .allsize = -1,
1025 1.5 maxv .emul = x86_emul_and
1026 1.5 maxv },
1027 1.5 maxv {
1028 1.5 maxv /* Gv, Ev */
1029 1.5 maxv .byte = 0x23,
1030 1.5 maxv .regmodrm = true,
1031 1.5 maxv .regtorm = false,
1032 1.5 maxv .szoverride = true,
1033 1.5 maxv .defsize = -1,
1034 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1035 1.5 maxv .emul = x86_emul_and
1036 1.5 maxv },
1037 1.5 maxv
1038 1.5 maxv /*
1039 1.5 maxv * XOR
1040 1.5 maxv */
1041 1.5 maxv {
1042 1.5 maxv /* Eb, Gb */
1043 1.5 maxv .byte = 0x30,
1044 1.5 maxv .regmodrm = true,
1045 1.5 maxv .regtorm = true,
1046 1.5 maxv .szoverride = false,
1047 1.5 maxv .defsize = OPSIZE_BYTE,
1048 1.5 maxv .allsize = -1,
1049 1.5 maxv .emul = x86_emul_xor
1050 1.5 maxv },
1051 1.5 maxv {
1052 1.5 maxv /* Ev, Gv */
1053 1.5 maxv .byte = 0x31,
1054 1.5 maxv .regmodrm = true,
1055 1.5 maxv .regtorm = true,
1056 1.5 maxv .szoverride = true,
1057 1.5 maxv .defsize = -1,
1058 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1059 1.5 maxv .emul = x86_emul_xor
1060 1.5 maxv },
1061 1.5 maxv {
1062 1.5 maxv /* Gb, Eb */
1063 1.5 maxv .byte = 0x32,
1064 1.5 maxv .regmodrm = true,
1065 1.5 maxv .regtorm = false,
1066 1.5 maxv .szoverride = false,
1067 1.5 maxv .defsize = OPSIZE_BYTE,
1068 1.5 maxv .allsize = -1,
1069 1.5 maxv .emul = x86_emul_xor
1070 1.5 maxv },
1071 1.5 maxv {
1072 1.5 maxv /* Gv, Ev */
1073 1.5 maxv .byte = 0x33,
1074 1.5 maxv .regmodrm = true,
1075 1.5 maxv .regtorm = false,
1076 1.5 maxv .szoverride = true,
1077 1.5 maxv .defsize = -1,
1078 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1079 1.5 maxv .emul = x86_emul_xor
1080 1.5 maxv },
1081 1.5 maxv
1082 1.5 maxv /*
1083 1.5 maxv * MOV
1084 1.5 maxv */
1085 1.5 maxv {
1086 1.5 maxv /* Eb, Gb */
1087 1.5 maxv .byte = 0x88,
1088 1.5 maxv .regmodrm = true,
1089 1.5 maxv .regtorm = true,
1090 1.5 maxv .szoverride = false,
1091 1.5 maxv .defsize = OPSIZE_BYTE,
1092 1.5 maxv .allsize = -1,
1093 1.5 maxv .emul = x86_emul_mov
1094 1.5 maxv },
1095 1.5 maxv {
1096 1.5 maxv /* Ev, Gv */
1097 1.5 maxv .byte = 0x89,
1098 1.5 maxv .regmodrm = true,
1099 1.5 maxv .regtorm = true,
1100 1.5 maxv .szoverride = true,
1101 1.5 maxv .defsize = -1,
1102 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1103 1.5 maxv .emul = x86_emul_mov
1104 1.5 maxv },
1105 1.5 maxv {
1106 1.5 maxv /* Gb, Eb */
1107 1.5 maxv .byte = 0x8A,
1108 1.5 maxv .regmodrm = true,
1109 1.5 maxv .regtorm = false,
1110 1.5 maxv .szoverride = false,
1111 1.5 maxv .defsize = OPSIZE_BYTE,
1112 1.5 maxv .allsize = -1,
1113 1.5 maxv .emul = x86_emul_mov
1114 1.5 maxv },
1115 1.5 maxv {
1116 1.5 maxv /* Gv, Ev */
1117 1.5 maxv .byte = 0x8B,
1118 1.5 maxv .regmodrm = true,
1119 1.5 maxv .regtorm = false,
1120 1.5 maxv .szoverride = true,
1121 1.5 maxv .defsize = -1,
1122 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1123 1.5 maxv .emul = x86_emul_mov
1124 1.5 maxv },
1125 1.5 maxv {
1126 1.5 maxv /* AL, Ob */
1127 1.5 maxv .byte = 0xA0,
1128 1.5 maxv .dmo = true,
1129 1.5 maxv .todmo = false,
1130 1.5 maxv .szoverride = false,
1131 1.5 maxv .defsize = OPSIZE_BYTE,
1132 1.5 maxv .allsize = -1,
1133 1.5 maxv .emul = x86_emul_mov
1134 1.5 maxv },
1135 1.5 maxv {
1136 1.5 maxv /* rAX, Ov */
1137 1.5 maxv .byte = 0xA1,
1138 1.5 maxv .dmo = true,
1139 1.5 maxv .todmo = false,
1140 1.5 maxv .szoverride = true,
1141 1.5 maxv .defsize = -1,
1142 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1143 1.5 maxv .emul = x86_emul_mov
1144 1.5 maxv },
1145 1.5 maxv {
1146 1.5 maxv /* Ob, AL */
1147 1.5 maxv .byte = 0xA2,
1148 1.5 maxv .dmo = true,
1149 1.5 maxv .todmo = true,
1150 1.5 maxv .szoverride = false,
1151 1.5 maxv .defsize = OPSIZE_BYTE,
1152 1.5 maxv .allsize = -1,
1153 1.5 maxv .emul = x86_emul_mov
1154 1.5 maxv },
1155 1.5 maxv {
1156 1.5 maxv /* Ov, rAX */
1157 1.5 maxv .byte = 0xA3,
1158 1.5 maxv .dmo = true,
1159 1.5 maxv .todmo = true,
1160 1.5 maxv .szoverride = true,
1161 1.5 maxv .defsize = -1,
1162 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1163 1.5 maxv .emul = x86_emul_mov
1164 1.5 maxv },
1165 1.5 maxv
1166 1.5 maxv /*
1167 1.6 maxv * MOVS
1168 1.6 maxv */
1169 1.6 maxv {
1170 1.6 maxv /* Yb, Xb */
1171 1.6 maxv .byte = 0xA4,
1172 1.6 maxv .movs = true,
1173 1.6 maxv .szoverride = false,
1174 1.6 maxv .defsize = OPSIZE_BYTE,
1175 1.6 maxv .allsize = -1,
1176 1.6 maxv .emul = x86_emul_movs
1177 1.6 maxv },
1178 1.6 maxv {
1179 1.6 maxv /* Yv, Xv */
1180 1.6 maxv .byte = 0xA5,
1181 1.6 maxv .movs = true,
1182 1.6 maxv .szoverride = true,
1183 1.6 maxv .defsize = -1,
1184 1.6 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1185 1.6 maxv .emul = x86_emul_movs
1186 1.6 maxv },
1187 1.6 maxv
1188 1.6 maxv /*
1189 1.5 maxv * STOS
1190 1.5 maxv */
1191 1.5 maxv {
1192 1.5 maxv /* Yb, AL */
1193 1.5 maxv .byte = 0xAA,
1194 1.5 maxv .stos = true,
1195 1.5 maxv .szoverride = false,
1196 1.5 maxv .defsize = OPSIZE_BYTE,
1197 1.5 maxv .allsize = -1,
1198 1.5 maxv .emul = x86_emul_stos
1199 1.5 maxv },
1200 1.5 maxv {
1201 1.5 maxv /* Yv, rAX */
1202 1.5 maxv .byte = 0xAB,
1203 1.5 maxv .stos = true,
1204 1.5 maxv .szoverride = true,
1205 1.5 maxv .defsize = -1,
1206 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1207 1.5 maxv .emul = x86_emul_stos
1208 1.5 maxv },
1209 1.5 maxv
1210 1.5 maxv /*
1211 1.5 maxv * LODS
1212 1.5 maxv */
1213 1.5 maxv {
1214 1.5 maxv /* AL, Xb */
1215 1.5 maxv .byte = 0xAC,
1216 1.5 maxv .lods = true,
1217 1.5 maxv .szoverride = false,
1218 1.5 maxv .defsize = OPSIZE_BYTE,
1219 1.5 maxv .allsize = -1,
1220 1.5 maxv .emul = x86_emul_lods
1221 1.5 maxv },
1222 1.5 maxv {
1223 1.5 maxv /* rAX, Xv */
1224 1.5 maxv .byte = 0xAD,
1225 1.5 maxv .lods = true,
1226 1.5 maxv .szoverride = true,
1227 1.5 maxv .defsize = -1,
1228 1.5 maxv .allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
1229 1.5 maxv .emul = x86_emul_lods
1230 1.5 maxv },
1231 1.5 maxv };
1232 1.5 maxv
1233 1.5 maxv static const struct x86_reg gpr_map__rip = { NVMM_X64_GPR_RIP, 0xFFFFFFFFFFFFFFFF };
1234 1.5 maxv
1235 1.5 maxv /* [REX-present][enc][opsize] */
1236 1.5 maxv static const struct x86_reg gpr_map__special[2][4][8] = {
1237 1.5 maxv [false] = {
1238 1.5 maxv /* No REX prefix. */
1239 1.5 maxv [0b00] = {
1240 1.5 maxv [0] = { NVMM_X64_GPR_RAX, 0x000000000000FF00 }, /* AH */
1241 1.5 maxv [1] = { NVMM_X64_GPR_RSP, 0x000000000000FFFF }, /* SP */
1242 1.5 maxv [2] = { -1, 0 },
1243 1.5 maxv [3] = { NVMM_X64_GPR_RSP, 0x00000000FFFFFFFF }, /* ESP */
1244 1.5 maxv [4] = { -1, 0 },
1245 1.5 maxv [5] = { -1, 0 },
1246 1.5 maxv [6] = { -1, 0 },
1247 1.5 maxv [7] = { -1, 0 },
1248 1.5 maxv },
1249 1.5 maxv [0b01] = {
1250 1.5 maxv [0] = { NVMM_X64_GPR_RCX, 0x000000000000FF00 }, /* CH */
1251 1.5 maxv [1] = { NVMM_X64_GPR_RBP, 0x000000000000FFFF }, /* BP */
1252 1.5 maxv [2] = { -1, 0 },
1253 1.5 maxv [3] = { NVMM_X64_GPR_RBP, 0x00000000FFFFFFFF }, /* EBP */
1254 1.5 maxv [4] = { -1, 0 },
1255 1.5 maxv [5] = { -1, 0 },
1256 1.5 maxv [6] = { -1, 0 },
1257 1.5 maxv [7] = { -1, 0 },
1258 1.5 maxv },
1259 1.5 maxv [0b10] = {
1260 1.5 maxv [0] = { NVMM_X64_GPR_RDX, 0x000000000000FF00 }, /* DH */
1261 1.5 maxv [1] = { NVMM_X64_GPR_RSI, 0x000000000000FFFF }, /* SI */
1262 1.5 maxv [2] = { -1, 0 },
1263 1.5 maxv [3] = { NVMM_X64_GPR_RSI, 0x00000000FFFFFFFF }, /* ESI */
1264 1.5 maxv [4] = { -1, 0 },
1265 1.5 maxv [5] = { -1, 0 },
1266 1.5 maxv [6] = { -1, 0 },
1267 1.5 maxv [7] = { -1, 0 },
1268 1.5 maxv },
1269 1.5 maxv [0b11] = {
1270 1.5 maxv [0] = { NVMM_X64_GPR_RBX, 0x000000000000FF00 }, /* BH */
1271 1.5 maxv [1] = { NVMM_X64_GPR_RDI, 0x000000000000FFFF }, /* DI */
1272 1.5 maxv [2] = { -1, 0 },
1273 1.5 maxv [3] = { NVMM_X64_GPR_RDI, 0x00000000FFFFFFFF }, /* EDI */
1274 1.5 maxv [4] = { -1, 0 },
1275 1.5 maxv [5] = { -1, 0 },
1276 1.5 maxv [6] = { -1, 0 },
1277 1.5 maxv [7] = { -1, 0 },
1278 1.5 maxv }
1279 1.5 maxv },
1280 1.5 maxv [true] = {
1281 1.5 maxv /* Has REX prefix. */
1282 1.5 maxv [0b00] = {
1283 1.5 maxv [0] = { NVMM_X64_GPR_RSP, 0x00000000000000FF }, /* SPL */
1284 1.5 maxv [1] = { NVMM_X64_GPR_RSP, 0x000000000000FFFF }, /* SP */
1285 1.5 maxv [2] = { -1, 0 },
1286 1.5 maxv [3] = { NVMM_X64_GPR_RSP, 0x00000000FFFFFFFF }, /* ESP */
1287 1.5 maxv [4] = { -1, 0 },
1288 1.5 maxv [5] = { -1, 0 },
1289 1.5 maxv [6] = { -1, 0 },
1290 1.5 maxv [7] = { NVMM_X64_GPR_RSP, 0xFFFFFFFFFFFFFFFF }, /* RSP */
1291 1.5 maxv },
1292 1.5 maxv [0b01] = {
1293 1.5 maxv [0] = { NVMM_X64_GPR_RBP, 0x00000000000000FF }, /* BPL */
1294 1.5 maxv [1] = { NVMM_X64_GPR_RBP, 0x000000000000FFFF }, /* BP */
1295 1.5 maxv [2] = { -1, 0 },
1296 1.5 maxv [3] = { NVMM_X64_GPR_RBP, 0x00000000FFFFFFFF }, /* EBP */
1297 1.5 maxv [4] = { -1, 0 },
1298 1.5 maxv [5] = { -1, 0 },
1299 1.5 maxv [6] = { -1, 0 },
1300 1.5 maxv [7] = { NVMM_X64_GPR_RBP, 0xFFFFFFFFFFFFFFFF }, /* RBP */
1301 1.5 maxv },
1302 1.5 maxv [0b10] = {
1303 1.5 maxv [0] = { NVMM_X64_GPR_RSI, 0x00000000000000FF }, /* SIL */
1304 1.5 maxv [1] = { NVMM_X64_GPR_RSI, 0x000000000000FFFF }, /* SI */
1305 1.5 maxv [2] = { -1, 0 },
1306 1.5 maxv [3] = { NVMM_X64_GPR_RSI, 0x00000000FFFFFFFF }, /* ESI */
1307 1.5 maxv [4] = { -1, 0 },
1308 1.5 maxv [5] = { -1, 0 },
1309 1.5 maxv [6] = { -1, 0 },
1310 1.5 maxv [7] = { NVMM_X64_GPR_RSI, 0xFFFFFFFFFFFFFFFF }, /* RSI */
1311 1.5 maxv },
1312 1.5 maxv [0b11] = {
1313 1.5 maxv [0] = { NVMM_X64_GPR_RDI, 0x00000000000000FF }, /* DIL */
1314 1.5 maxv [1] = { NVMM_X64_GPR_RDI, 0x000000000000FFFF }, /* DI */
1315 1.5 maxv [2] = { -1, 0 },
1316 1.5 maxv [3] = { NVMM_X64_GPR_RDI, 0x00000000FFFFFFFF }, /* EDI */
1317 1.5 maxv [4] = { -1, 0 },
1318 1.5 maxv [5] = { -1, 0 },
1319 1.5 maxv [6] = { -1, 0 },
1320 1.5 maxv [7] = { NVMM_X64_GPR_RDI, 0xFFFFFFFFFFFFFFFF }, /* RDI */
1321 1.5 maxv }
1322 1.5 maxv }
1323 1.5 maxv };
1324 1.5 maxv
1325 1.5 maxv /* [depends][enc][size] */
1326 1.5 maxv static const struct x86_reg gpr_map[2][8][8] = {
1327 1.5 maxv [false] = {
1328 1.5 maxv /* Not extended. */
1329 1.5 maxv [0b000] = {
1330 1.5 maxv [0] = { NVMM_X64_GPR_RAX, 0x00000000000000FF }, /* AL */
1331 1.5 maxv [1] = { NVMM_X64_GPR_RAX, 0x000000000000FFFF }, /* AX */
1332 1.5 maxv [2] = { -1, 0 },
1333 1.5 maxv [3] = { NVMM_X64_GPR_RAX, 0x00000000FFFFFFFF }, /* EAX */
1334 1.5 maxv [4] = { -1, 0 },
1335 1.5 maxv [5] = { -1, 0 },
1336 1.5 maxv [6] = { -1, 0 },
1337 1.5 maxv [7] = { NVMM_X64_GPR_RAX, 0x00000000FFFFFFFF }, /* RAX */
1338 1.5 maxv },
1339 1.5 maxv [0b001] = {
1340 1.5 maxv [0] = { NVMM_X64_GPR_RCX, 0x00000000000000FF }, /* CL */
1341 1.5 maxv [1] = { NVMM_X64_GPR_RCX, 0x000000000000FFFF }, /* CX */
1342 1.5 maxv [2] = { -1, 0 },
1343 1.5 maxv [3] = { NVMM_X64_GPR_RCX, 0x00000000FFFFFFFF }, /* ECX */
1344 1.5 maxv [4] = { -1, 0 },
1345 1.5 maxv [5] = { -1, 0 },
1346 1.5 maxv [6] = { -1, 0 },
1347 1.5 maxv [7] = { NVMM_X64_GPR_RCX, 0x00000000FFFFFFFF }, /* RCX */
1348 1.5 maxv },
1349 1.5 maxv [0b010] = {
1350 1.5 maxv [0] = { NVMM_X64_GPR_RDX, 0x00000000000000FF }, /* DL */
1351 1.5 maxv [1] = { NVMM_X64_GPR_RDX, 0x000000000000FFFF }, /* DX */
1352 1.5 maxv [2] = { -1, 0 },
1353 1.5 maxv [3] = { NVMM_X64_GPR_RDX, 0x00000000FFFFFFFF }, /* EDX */
1354 1.5 maxv [4] = { -1, 0 },
1355 1.5 maxv [5] = { -1, 0 },
1356 1.5 maxv [6] = { -1, 0 },
1357 1.5 maxv [7] = { NVMM_X64_GPR_RDX, 0x00000000FFFFFFFF }, /* RDX */
1358 1.5 maxv },
1359 1.5 maxv [0b011] = {
1360 1.5 maxv [0] = { NVMM_X64_GPR_RBX, 0x00000000000000FF }, /* BL */
1361 1.5 maxv [1] = { NVMM_X64_GPR_RBX, 0x000000000000FFFF }, /* BX */
1362 1.5 maxv [2] = { -1, 0 },
1363 1.5 maxv [3] = { NVMM_X64_GPR_RBX, 0x00000000FFFFFFFF }, /* EBX */
1364 1.5 maxv [4] = { -1, 0 },
1365 1.5 maxv [5] = { -1, 0 },
1366 1.5 maxv [6] = { -1, 0 },
1367 1.5 maxv [7] = { NVMM_X64_GPR_RBX, 0x00000000FFFFFFFF }, /* RBX */
1368 1.5 maxv },
1369 1.5 maxv [0b100] = {
1370 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1371 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1372 1.5 maxv [2] = { -1, 0 },
1373 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1374 1.5 maxv [4] = { -1, 0 },
1375 1.5 maxv [5] = { -1, 0 },
1376 1.5 maxv [6] = { -1, 0 },
1377 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1378 1.5 maxv },
1379 1.5 maxv [0b101] = {
1380 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1381 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1382 1.5 maxv [2] = { -1, 0 },
1383 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1384 1.5 maxv [4] = { -1, 0 },
1385 1.5 maxv [5] = { -1, 0 },
1386 1.5 maxv [6] = { -1, 0 },
1387 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1388 1.5 maxv },
1389 1.5 maxv [0b110] = {
1390 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1391 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1392 1.5 maxv [2] = { -1, 0 },
1393 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1394 1.5 maxv [4] = { -1, 0 },
1395 1.5 maxv [5] = { -1, 0 },
1396 1.5 maxv [6] = { -1, 0 },
1397 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1398 1.5 maxv },
1399 1.5 maxv [0b111] = {
1400 1.5 maxv [0] = { -1, 0 }, /* SPECIAL */
1401 1.5 maxv [1] = { -1, 0 }, /* SPECIAL */
1402 1.5 maxv [2] = { -1, 0 },
1403 1.5 maxv [3] = { -1, 0 }, /* SPECIAL */
1404 1.5 maxv [4] = { -1, 0 },
1405 1.5 maxv [5] = { -1, 0 },
1406 1.5 maxv [6] = { -1, 0 },
1407 1.5 maxv [7] = { -1, 0 }, /* SPECIAL */
1408 1.5 maxv },
1409 1.5 maxv },
1410 1.5 maxv [true] = {
1411 1.5 maxv /* Extended. */
1412 1.5 maxv [0b000] = {
1413 1.5 maxv [0] = { NVMM_X64_GPR_R8, 0x00000000000000FF }, /* R8B */
1414 1.5 maxv [1] = { NVMM_X64_GPR_R8, 0x000000000000FFFF }, /* R8W */
1415 1.5 maxv [2] = { -1, 0 },
1416 1.5 maxv [3] = { NVMM_X64_GPR_R8, 0x00000000FFFFFFFF }, /* R8D */
1417 1.5 maxv [4] = { -1, 0 },
1418 1.5 maxv [5] = { -1, 0 },
1419 1.5 maxv [6] = { -1, 0 },
1420 1.5 maxv [7] = { NVMM_X64_GPR_R8, 0x00000000FFFFFFFF }, /* R8 */
1421 1.5 maxv },
1422 1.5 maxv [0b001] = {
1423 1.5 maxv [0] = { NVMM_X64_GPR_R9, 0x00000000000000FF }, /* R9B */
1424 1.5 maxv [1] = { NVMM_X64_GPR_R9, 0x000000000000FFFF }, /* R9W */
1425 1.5 maxv [2] = { -1, 0 },
1426 1.5 maxv [3] = { NVMM_X64_GPR_R9, 0x00000000FFFFFFFF }, /* R9D */
1427 1.5 maxv [4] = { -1, 0 },
1428 1.5 maxv [5] = { -1, 0 },
1429 1.5 maxv [6] = { -1, 0 },
1430 1.5 maxv [7] = { NVMM_X64_GPR_R9, 0x00000000FFFFFFFF }, /* R9 */
1431 1.5 maxv },
1432 1.5 maxv [0b010] = {
1433 1.5 maxv [0] = { NVMM_X64_GPR_R10, 0x00000000000000FF }, /* R10B */
1434 1.5 maxv [1] = { NVMM_X64_GPR_R10, 0x000000000000FFFF }, /* R10W */
1435 1.5 maxv [2] = { -1, 0 },
1436 1.5 maxv [3] = { NVMM_X64_GPR_R10, 0x00000000FFFFFFFF }, /* R10D */
1437 1.5 maxv [4] = { -1, 0 },
1438 1.5 maxv [5] = { -1, 0 },
1439 1.5 maxv [6] = { -1, 0 },
1440 1.5 maxv [7] = { NVMM_X64_GPR_R10, 0x00000000FFFFFFFF }, /* R10 */
1441 1.5 maxv },
1442 1.5 maxv [0b011] = {
1443 1.5 maxv [0] = { NVMM_X64_GPR_R11, 0x00000000000000FF }, /* R11B */
1444 1.5 maxv [1] = { NVMM_X64_GPR_R11, 0x000000000000FFFF }, /* R11W */
1445 1.5 maxv [2] = { -1, 0 },
1446 1.5 maxv [3] = { NVMM_X64_GPR_R11, 0x00000000FFFFFFFF }, /* R11D */
1447 1.5 maxv [4] = { -1, 0 },
1448 1.5 maxv [5] = { -1, 0 },
1449 1.5 maxv [6] = { -1, 0 },
1450 1.5 maxv [7] = { NVMM_X64_GPR_R11, 0x00000000FFFFFFFF }, /* R11 */
1451 1.5 maxv },
1452 1.5 maxv [0b100] = {
1453 1.5 maxv [0] = { NVMM_X64_GPR_R12, 0x00000000000000FF }, /* R12B */
1454 1.5 maxv [1] = { NVMM_X64_GPR_R12, 0x000000000000FFFF }, /* R12W */
1455 1.5 maxv [2] = { -1, 0 },
1456 1.5 maxv [3] = { NVMM_X64_GPR_R12, 0x00000000FFFFFFFF }, /* R12D */
1457 1.5 maxv [4] = { -1, 0 },
1458 1.5 maxv [5] = { -1, 0 },
1459 1.5 maxv [6] = { -1, 0 },
1460 1.5 maxv [7] = { NVMM_X64_GPR_R12, 0x00000000FFFFFFFF }, /* R12 */
1461 1.5 maxv },
1462 1.5 maxv [0b101] = {
1463 1.5 maxv [0] = { NVMM_X64_GPR_R13, 0x00000000000000FF }, /* R13B */
1464 1.5 maxv [1] = { NVMM_X64_GPR_R13, 0x000000000000FFFF }, /* R13W */
1465 1.5 maxv [2] = { -1, 0 },
1466 1.5 maxv [3] = { NVMM_X64_GPR_R13, 0x00000000FFFFFFFF }, /* R13D */
1467 1.5 maxv [4] = { -1, 0 },
1468 1.5 maxv [5] = { -1, 0 },
1469 1.5 maxv [6] = { -1, 0 },
1470 1.5 maxv [7] = { NVMM_X64_GPR_R13, 0x00000000FFFFFFFF }, /* R13 */
1471 1.5 maxv },
1472 1.5 maxv [0b110] = {
1473 1.5 maxv [0] = { NVMM_X64_GPR_R14, 0x00000000000000FF }, /* R14B */
1474 1.5 maxv [1] = { NVMM_X64_GPR_R14, 0x000000000000FFFF }, /* R14W */
1475 1.5 maxv [2] = { -1, 0 },
1476 1.5 maxv [3] = { NVMM_X64_GPR_R14, 0x00000000FFFFFFFF }, /* R14D */
1477 1.5 maxv [4] = { -1, 0 },
1478 1.5 maxv [5] = { -1, 0 },
1479 1.5 maxv [6] = { -1, 0 },
1480 1.5 maxv [7] = { NVMM_X64_GPR_R14, 0x00000000FFFFFFFF }, /* R14 */
1481 1.5 maxv },
1482 1.5 maxv [0b111] = {
1483 1.5 maxv [0] = { NVMM_X64_GPR_R15, 0x00000000000000FF }, /* R15B */
1484 1.5 maxv [1] = { NVMM_X64_GPR_R15, 0x000000000000FFFF }, /* R15W */
1485 1.5 maxv [2] = { -1, 0 },
1486 1.5 maxv [3] = { NVMM_X64_GPR_R15, 0x00000000FFFFFFFF }, /* R15D */
1487 1.5 maxv [4] = { -1, 0 },
1488 1.5 maxv [5] = { -1, 0 },
1489 1.5 maxv [6] = { -1, 0 },
1490 1.5 maxv [7] = { NVMM_X64_GPR_R15, 0x00000000FFFFFFFF }, /* R15 */
1491 1.5 maxv },
1492 1.5 maxv }
1493 1.5 maxv };
1494 1.5 maxv
1495 1.5 maxv static int
1496 1.5 maxv node_overflow(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1497 1.5 maxv {
1498 1.5 maxv fsm->fn = NULL;
1499 1.5 maxv return -1;
1500 1.5 maxv }
1501 1.5 maxv
1502 1.5 maxv static int
1503 1.5 maxv fsm_read(struct x86_decode_fsm *fsm, uint8_t *bytes, size_t n)
1504 1.5 maxv {
1505 1.5 maxv if (fsm->buf + n > fsm->end) {
1506 1.5 maxv return -1;
1507 1.5 maxv }
1508 1.5 maxv memcpy(bytes, fsm->buf, n);
1509 1.5 maxv return 0;
1510 1.5 maxv }
1511 1.5 maxv
1512 1.5 maxv static void
1513 1.5 maxv fsm_advance(struct x86_decode_fsm *fsm, size_t n,
1514 1.5 maxv int (*fn)(struct x86_decode_fsm *, struct x86_instr *))
1515 1.5 maxv {
1516 1.5 maxv fsm->buf += n;
1517 1.5 maxv if (fsm->buf > fsm->end) {
1518 1.5 maxv fsm->fn = node_overflow;
1519 1.5 maxv } else {
1520 1.5 maxv fsm->fn = fn;
1521 1.5 maxv }
1522 1.5 maxv }
1523 1.5 maxv
1524 1.5 maxv static const struct x86_reg *
1525 1.5 maxv resolve_special_register(struct x86_instr *instr, uint8_t enc, size_t regsize)
1526 1.5 maxv {
1527 1.5 maxv enc &= 0b11;
1528 1.5 maxv if (regsize == 8) {
1529 1.5 maxv /* May be 64bit without REX */
1530 1.5 maxv return &gpr_map__special[1][enc][regsize-1];
1531 1.5 maxv }
1532 1.5 maxv return &gpr_map__special[instr->rexpref.present][enc][regsize-1];
1533 1.5 maxv }
1534 1.5 maxv
1535 1.5 maxv /*
1536 1.6 maxv * Special node, for MOVS. Fake two displacements of zero on the source and
1537 1.6 maxv * destination registers.
1538 1.6 maxv */
1539 1.6 maxv static int
1540 1.6 maxv node_movs(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1541 1.6 maxv {
1542 1.6 maxv size_t adrsize;
1543 1.6 maxv
1544 1.6 maxv adrsize = instr->address_size;
1545 1.6 maxv
1546 1.6 maxv /* DS:RSI */
1547 1.6 maxv instr->src.type = STORE_REG;
1548 1.6 maxv instr->src.u.reg = &gpr_map__special[1][2][adrsize-1];
1549 1.6 maxv instr->src.disp.type = DISP_0;
1550 1.6 maxv
1551 1.6 maxv /* ES:RDI, force ES */
1552 1.6 maxv instr->dst.type = STORE_REG;
1553 1.6 maxv instr->dst.u.reg = &gpr_map__special[1][3][adrsize-1];
1554 1.6 maxv instr->dst.disp.type = DISP_0;
1555 1.6 maxv instr->dst.hardseg = NVMM_X64_SEG_ES;
1556 1.6 maxv
1557 1.6 maxv fsm_advance(fsm, 0, NULL);
1558 1.6 maxv
1559 1.6 maxv return 0;
1560 1.6 maxv }
1561 1.6 maxv
1562 1.6 maxv /*
1563 1.5 maxv * Special node, for STOS and LODS. Fake a displacement of zero on the
1564 1.5 maxv * destination register.
1565 1.5 maxv */
1566 1.5 maxv static int
1567 1.5 maxv node_stlo(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1568 1.5 maxv {
1569 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1570 1.5 maxv struct x86_store *stlo, *streg;
1571 1.5 maxv size_t adrsize, regsize;
1572 1.5 maxv
1573 1.5 maxv adrsize = instr->address_size;
1574 1.5 maxv regsize = instr->operand_size;
1575 1.5 maxv
1576 1.5 maxv if (opcode->stos) {
1577 1.5 maxv streg = &instr->src;
1578 1.5 maxv stlo = &instr->dst;
1579 1.5 maxv } else {
1580 1.5 maxv streg = &instr->dst;
1581 1.5 maxv stlo = &instr->src;
1582 1.5 maxv }
1583 1.5 maxv
1584 1.5 maxv streg->type = STORE_REG;
1585 1.5 maxv streg->u.reg = &gpr_map[0][0][regsize-1]; /* ?AX */
1586 1.5 maxv
1587 1.5 maxv stlo->type = STORE_REG;
1588 1.5 maxv if (opcode->stos) {
1589 1.5 maxv /* ES:RDI, force ES */
1590 1.5 maxv stlo->u.reg = &gpr_map__special[1][3][adrsize-1];
1591 1.6 maxv stlo->hardseg = NVMM_X64_SEG_ES;
1592 1.5 maxv } else {
1593 1.5 maxv /* DS:RSI */
1594 1.5 maxv stlo->u.reg = &gpr_map__special[1][2][adrsize-1];
1595 1.5 maxv }
1596 1.5 maxv stlo->disp.type = DISP_0;
1597 1.5 maxv
1598 1.5 maxv fsm_advance(fsm, 0, NULL);
1599 1.5 maxv
1600 1.5 maxv return 0;
1601 1.5 maxv }
1602 1.5 maxv
1603 1.5 maxv static int
1604 1.5 maxv node_dmo(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1605 1.5 maxv {
1606 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1607 1.5 maxv struct x86_store *stdmo, *streg;
1608 1.5 maxv size_t adrsize, regsize;
1609 1.5 maxv
1610 1.5 maxv adrsize = instr->address_size;
1611 1.5 maxv regsize = instr->operand_size;
1612 1.5 maxv
1613 1.5 maxv if (opcode->todmo) {
1614 1.5 maxv streg = &instr->src;
1615 1.5 maxv stdmo = &instr->dst;
1616 1.5 maxv } else {
1617 1.5 maxv streg = &instr->dst;
1618 1.5 maxv stdmo = &instr->src;
1619 1.5 maxv }
1620 1.5 maxv
1621 1.5 maxv streg->type = STORE_REG;
1622 1.5 maxv streg->u.reg = &gpr_map[0][0][regsize-1]; /* ?AX */
1623 1.5 maxv
1624 1.5 maxv stdmo->type = STORE_DMO;
1625 1.5 maxv if (fsm_read(fsm, (uint8_t *)&stdmo->u.dmo, adrsize) == -1) {
1626 1.5 maxv return -1;
1627 1.5 maxv }
1628 1.5 maxv fsm_advance(fsm, adrsize, NULL);
1629 1.5 maxv
1630 1.5 maxv return 0;
1631 1.5 maxv }
1632 1.5 maxv
1633 1.5 maxv static int
1634 1.5 maxv node_immediate(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1635 1.5 maxv {
1636 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1637 1.5 maxv struct x86_store *store;
1638 1.5 maxv uint8_t flags;
1639 1.5 maxv uint8_t immsize;
1640 1.5 maxv
1641 1.5 maxv /* The immediate is the source */
1642 1.5 maxv store = &instr->src;
1643 1.5 maxv immsize = instr->operand_size;
1644 1.5 maxv
1645 1.5 maxv /* Get the correct flags */
1646 1.5 maxv flags = opcode->flags;
1647 1.5 maxv if ((flags & FLAG_z) && (immsize == 8)) {
1648 1.5 maxv /* 'z' operates here */
1649 1.5 maxv immsize = 4;
1650 1.5 maxv }
1651 1.5 maxv
1652 1.5 maxv store->type = STORE_IMM;
1653 1.5 maxv store->u.imm.size = immsize;
1654 1.5 maxv
1655 1.5 maxv if (fsm_read(fsm, store->u.imm.data, store->u.imm.size) == -1) {
1656 1.5 maxv return -1;
1657 1.5 maxv }
1658 1.5 maxv
1659 1.5 maxv fsm_advance(fsm, store->u.imm.size, NULL);
1660 1.5 maxv
1661 1.5 maxv return 0;
1662 1.5 maxv }
1663 1.5 maxv
1664 1.5 maxv static int
1665 1.5 maxv node_disp(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1666 1.5 maxv {
1667 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1668 1.5 maxv size_t n;
1669 1.5 maxv
1670 1.5 maxv if (instr->strm->disp.type == DISP_1) {
1671 1.5 maxv n = 1;
1672 1.5 maxv } else { /* DISP4 */
1673 1.5 maxv n = 4;
1674 1.5 maxv }
1675 1.5 maxv
1676 1.5 maxv if (fsm_read(fsm, instr->strm->disp.data, n) == -1) {
1677 1.5 maxv return -1;
1678 1.5 maxv }
1679 1.5 maxv
1680 1.5 maxv if (opcode->immediate) {
1681 1.5 maxv fsm_advance(fsm, n, node_immediate);
1682 1.5 maxv } else {
1683 1.5 maxv fsm_advance(fsm, n, NULL);
1684 1.5 maxv }
1685 1.5 maxv
1686 1.5 maxv return 0;
1687 1.5 maxv }
1688 1.5 maxv
1689 1.5 maxv static const struct x86_reg *
1690 1.5 maxv get_register_idx(struct x86_instr *instr, uint8_t index)
1691 1.5 maxv {
1692 1.5 maxv uint8_t enc = index;
1693 1.5 maxv const struct x86_reg *reg;
1694 1.5 maxv size_t regsize;
1695 1.5 maxv
1696 1.5 maxv regsize = instr->address_size;
1697 1.5 maxv reg = &gpr_map[instr->rexpref.x][enc][regsize-1];
1698 1.5 maxv
1699 1.5 maxv if (reg->num == -1) {
1700 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
1701 1.5 maxv }
1702 1.5 maxv
1703 1.5 maxv return reg;
1704 1.5 maxv }
1705 1.5 maxv
1706 1.5 maxv static const struct x86_reg *
1707 1.5 maxv get_register_bas(struct x86_instr *instr, uint8_t base)
1708 1.5 maxv {
1709 1.5 maxv uint8_t enc = base;
1710 1.5 maxv const struct x86_reg *reg;
1711 1.5 maxv size_t regsize;
1712 1.5 maxv
1713 1.5 maxv regsize = instr->address_size;
1714 1.5 maxv reg = &gpr_map[instr->rexpref.b][enc][regsize-1];
1715 1.5 maxv if (reg->num == -1) {
1716 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
1717 1.5 maxv }
1718 1.5 maxv
1719 1.5 maxv return reg;
1720 1.5 maxv }
1721 1.5 maxv
1722 1.5 maxv static int
1723 1.5 maxv node_sib(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1724 1.5 maxv {
1725 1.5 maxv const struct x86_opcode *opcode;
1726 1.5 maxv uint8_t scale, index, base;
1727 1.5 maxv bool noindex, nobase;
1728 1.5 maxv uint8_t byte;
1729 1.5 maxv
1730 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
1731 1.5 maxv return -1;
1732 1.5 maxv }
1733 1.5 maxv
1734 1.5 maxv scale = ((byte & 0b11000000) >> 6);
1735 1.5 maxv index = ((byte & 0b00111000) >> 3);
1736 1.5 maxv base = ((byte & 0b00000111) >> 0);
1737 1.5 maxv
1738 1.5 maxv opcode = instr->opcode;
1739 1.5 maxv
1740 1.5 maxv noindex = false;
1741 1.5 maxv nobase = false;
1742 1.5 maxv
1743 1.5 maxv if (index == 0b100 && !instr->rexpref.x) {
1744 1.5 maxv /* Special case: the index is null */
1745 1.5 maxv noindex = true;
1746 1.5 maxv }
1747 1.5 maxv
1748 1.5 maxv if (instr->regmodrm.mod == 0b00 && base == 0b101) {
1749 1.5 maxv /* Special case: the base is null + disp32 */
1750 1.5 maxv instr->strm->disp.type = DISP_4;
1751 1.5 maxv nobase = true;
1752 1.5 maxv }
1753 1.5 maxv
1754 1.5 maxv instr->strm->type = STORE_SIB;
1755 1.5 maxv instr->strm->u.sib.scale = (1 << scale);
1756 1.5 maxv if (!noindex)
1757 1.5 maxv instr->strm->u.sib.idx = get_register_idx(instr, index);
1758 1.5 maxv if (!nobase)
1759 1.5 maxv instr->strm->u.sib.bas = get_register_bas(instr, base);
1760 1.5 maxv
1761 1.5 maxv /* May have a displacement, or an immediate */
1762 1.5 maxv if (instr->strm->disp.type == DISP_1 || instr->strm->disp.type == DISP_4) {
1763 1.5 maxv fsm_advance(fsm, 1, node_disp);
1764 1.5 maxv } else if (opcode->immediate) {
1765 1.5 maxv fsm_advance(fsm, 1, node_immediate);
1766 1.5 maxv } else {
1767 1.5 maxv fsm_advance(fsm, 1, NULL);
1768 1.5 maxv }
1769 1.5 maxv
1770 1.5 maxv return 0;
1771 1.5 maxv }
1772 1.5 maxv
1773 1.5 maxv static const struct x86_reg *
1774 1.5 maxv get_register_reg(struct x86_instr *instr, const struct x86_opcode *opcode)
1775 1.5 maxv {
1776 1.5 maxv uint8_t enc = instr->regmodrm.reg;
1777 1.5 maxv const struct x86_reg *reg;
1778 1.5 maxv size_t regsize;
1779 1.5 maxv
1780 1.5 maxv if ((opcode->flags & FLAG_z) && (instr->operand_size == 8)) {
1781 1.5 maxv /* 'z' operates here */
1782 1.5 maxv regsize = 4;
1783 1.5 maxv } else {
1784 1.5 maxv regsize = instr->operand_size;
1785 1.5 maxv }
1786 1.5 maxv
1787 1.5 maxv reg = &gpr_map[instr->rexpref.r][enc][regsize-1];
1788 1.5 maxv if (reg->num == -1) {
1789 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
1790 1.5 maxv }
1791 1.5 maxv
1792 1.5 maxv return reg;
1793 1.5 maxv }
1794 1.5 maxv
1795 1.5 maxv static const struct x86_reg *
1796 1.5 maxv get_register_rm(struct x86_instr *instr, const struct x86_opcode *opcode)
1797 1.5 maxv {
1798 1.5 maxv uint8_t enc = instr->regmodrm.rm;
1799 1.5 maxv const struct x86_reg *reg;
1800 1.5 maxv size_t regsize;
1801 1.5 maxv
1802 1.5 maxv if (instr->strm->disp.type == DISP_NONE) {
1803 1.5 maxv if ((opcode->flags & FLAG_z) && (instr->operand_size == 8)) {
1804 1.5 maxv /* 'z' operates here */
1805 1.5 maxv regsize = 4;
1806 1.5 maxv } else {
1807 1.5 maxv regsize = instr->operand_size;
1808 1.5 maxv }
1809 1.5 maxv } else {
1810 1.5 maxv /* Indirect access, the size is that of the address. */
1811 1.5 maxv regsize = instr->address_size;
1812 1.5 maxv }
1813 1.5 maxv
1814 1.5 maxv reg = &gpr_map[instr->rexpref.b][enc][regsize-1];
1815 1.5 maxv if (reg->num == -1) {
1816 1.5 maxv reg = resolve_special_register(instr, enc, regsize);
1817 1.5 maxv }
1818 1.5 maxv
1819 1.5 maxv return reg;
1820 1.5 maxv }
1821 1.5 maxv
1822 1.5 maxv static inline bool
1823 1.5 maxv has_sib(struct x86_instr *instr)
1824 1.5 maxv {
1825 1.5 maxv return (instr->regmodrm.mod != 3 && instr->regmodrm.rm == 4);
1826 1.5 maxv }
1827 1.5 maxv
1828 1.5 maxv static inline bool
1829 1.9 maxv is_rip_relative(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1830 1.5 maxv {
1831 1.9 maxv return (fsm->is64bit && instr->strm->disp.type == DISP_0 &&
1832 1.9 maxv instr->regmodrm.rm == RM_RBP_DISP32);
1833 1.9 maxv }
1834 1.9 maxv
1835 1.9 maxv static inline bool
1836 1.9 maxv is_disp32_only(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1837 1.9 maxv {
1838 1.9 maxv return (!fsm->is64bit && instr->strm->disp.type == DISP_0 &&
1839 1.5 maxv instr->regmodrm.rm == RM_RBP_DISP32);
1840 1.5 maxv }
1841 1.5 maxv
1842 1.5 maxv static enum x86_disp_type
1843 1.5 maxv get_disp_type(struct x86_instr *instr)
1844 1.5 maxv {
1845 1.5 maxv switch (instr->regmodrm.mod) {
1846 1.5 maxv case MOD_DIS0: /* indirect */
1847 1.5 maxv return DISP_0;
1848 1.5 maxv case MOD_DIS1: /* indirect+1 */
1849 1.5 maxv return DISP_1;
1850 1.5 maxv case MOD_DIS4: /* indirect+4 */
1851 1.5 maxv return DISP_4;
1852 1.5 maxv case MOD_REG: /* direct */
1853 1.5 maxv default: /* gcc */
1854 1.5 maxv return DISP_NONE;
1855 1.5 maxv }
1856 1.5 maxv }
1857 1.5 maxv
1858 1.5 maxv static int
1859 1.5 maxv node_regmodrm(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1860 1.5 maxv {
1861 1.5 maxv struct x86_store *strg, *strm;
1862 1.5 maxv const struct x86_opcode *opcode;
1863 1.5 maxv const struct x86_reg *reg;
1864 1.5 maxv uint8_t byte;
1865 1.5 maxv
1866 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
1867 1.5 maxv return -1;
1868 1.5 maxv }
1869 1.5 maxv
1870 1.5 maxv opcode = instr->opcode;
1871 1.5 maxv
1872 1.5 maxv instr->regmodrm.present = true;
1873 1.5 maxv instr->regmodrm.mod = ((byte & 0b11000000) >> 6);
1874 1.5 maxv instr->regmodrm.reg = ((byte & 0b00111000) >> 3);
1875 1.5 maxv instr->regmodrm.rm = ((byte & 0b00000111) >> 0);
1876 1.5 maxv
1877 1.5 maxv if (opcode->regtorm) {
1878 1.5 maxv strg = &instr->src;
1879 1.5 maxv strm = &instr->dst;
1880 1.5 maxv } else { /* RM to REG */
1881 1.5 maxv strm = &instr->src;
1882 1.5 maxv strg = &instr->dst;
1883 1.5 maxv }
1884 1.5 maxv
1885 1.5 maxv /* Save for later use. */
1886 1.5 maxv instr->strm = strm;
1887 1.5 maxv
1888 1.5 maxv /*
1889 1.5 maxv * Special cases: Groups. The REG field of REGMODRM is the index in
1890 1.5 maxv * the group. op1 gets overwritten in the Immediate node, if any.
1891 1.5 maxv */
1892 1.5 maxv if (opcode->group11) {
1893 1.5 maxv if (group11[instr->regmodrm.reg].emul == NULL) {
1894 1.5 maxv return -1;
1895 1.5 maxv }
1896 1.5 maxv instr->emul = group11[instr->regmodrm.reg].emul;
1897 1.5 maxv }
1898 1.5 maxv
1899 1.5 maxv reg = get_register_reg(instr, opcode);
1900 1.5 maxv if (reg == NULL) {
1901 1.5 maxv return -1;
1902 1.5 maxv }
1903 1.5 maxv strg->type = STORE_REG;
1904 1.5 maxv strg->u.reg = reg;
1905 1.5 maxv
1906 1.5 maxv if (has_sib(instr)) {
1907 1.5 maxv /* Overwrites RM */
1908 1.5 maxv fsm_advance(fsm, 1, node_sib);
1909 1.5 maxv return 0;
1910 1.5 maxv }
1911 1.5 maxv
1912 1.5 maxv /* The displacement applies to RM. */
1913 1.5 maxv strm->disp.type = get_disp_type(instr);
1914 1.5 maxv
1915 1.9 maxv if (is_rip_relative(fsm, instr)) {
1916 1.5 maxv /* Overwrites RM */
1917 1.5 maxv strm->type = STORE_REG;
1918 1.5 maxv strm->u.reg = &gpr_map__rip;
1919 1.5 maxv strm->disp.type = DISP_4;
1920 1.5 maxv fsm_advance(fsm, 1, node_disp);
1921 1.5 maxv return 0;
1922 1.5 maxv }
1923 1.5 maxv
1924 1.9 maxv if (is_disp32_only(fsm, instr)) {
1925 1.9 maxv /* Overwrites RM */
1926 1.9 maxv strm->type = STORE_REG;
1927 1.9 maxv strm->u.reg = NULL;
1928 1.9 maxv strm->disp.type = DISP_4;
1929 1.9 maxv fsm_advance(fsm, 1, node_disp);
1930 1.9 maxv return 0;
1931 1.9 maxv }
1932 1.9 maxv
1933 1.5 maxv reg = get_register_rm(instr, opcode);
1934 1.5 maxv if (reg == NULL) {
1935 1.5 maxv return -1;
1936 1.5 maxv }
1937 1.5 maxv strm->type = STORE_REG;
1938 1.5 maxv strm->u.reg = reg;
1939 1.5 maxv
1940 1.5 maxv if (strm->disp.type == DISP_NONE) {
1941 1.5 maxv /* Direct register addressing mode */
1942 1.5 maxv if (opcode->immediate) {
1943 1.5 maxv fsm_advance(fsm, 1, node_immediate);
1944 1.5 maxv } else {
1945 1.5 maxv fsm_advance(fsm, 1, NULL);
1946 1.5 maxv }
1947 1.5 maxv } else if (strm->disp.type == DISP_0) {
1948 1.5 maxv /* Indirect register addressing mode */
1949 1.5 maxv if (opcode->immediate) {
1950 1.5 maxv fsm_advance(fsm, 1, node_immediate);
1951 1.5 maxv } else {
1952 1.5 maxv fsm_advance(fsm, 1, NULL);
1953 1.5 maxv }
1954 1.5 maxv } else {
1955 1.5 maxv fsm_advance(fsm, 1, node_disp);
1956 1.5 maxv }
1957 1.5 maxv
1958 1.5 maxv return 0;
1959 1.5 maxv }
1960 1.5 maxv
1961 1.5 maxv static size_t
1962 1.5 maxv get_operand_size(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1963 1.5 maxv {
1964 1.5 maxv const struct x86_opcode *opcode = instr->opcode;
1965 1.5 maxv int opsize;
1966 1.5 maxv
1967 1.5 maxv /* Get the opsize */
1968 1.5 maxv if (!opcode->szoverride) {
1969 1.5 maxv opsize = opcode->defsize;
1970 1.5 maxv } else if (instr->rexpref.present && instr->rexpref.w) {
1971 1.5 maxv opsize = 8;
1972 1.5 maxv } else {
1973 1.5 maxv if (!fsm->is16bit) {
1974 1.5 maxv if (instr->legpref[LEG_OPR_OVR]) {
1975 1.5 maxv opsize = 2;
1976 1.5 maxv } else {
1977 1.5 maxv opsize = 4;
1978 1.5 maxv }
1979 1.5 maxv } else { /* 16bit */
1980 1.5 maxv if (instr->legpref[LEG_OPR_OVR]) {
1981 1.5 maxv opsize = 4;
1982 1.5 maxv } else {
1983 1.5 maxv opsize = 2;
1984 1.5 maxv }
1985 1.5 maxv }
1986 1.5 maxv }
1987 1.5 maxv
1988 1.5 maxv /* See if available */
1989 1.5 maxv if ((opcode->allsize & opsize) == 0) {
1990 1.5 maxv // XXX do we care?
1991 1.5 maxv }
1992 1.5 maxv
1993 1.5 maxv return opsize;
1994 1.5 maxv }
1995 1.5 maxv
1996 1.5 maxv static size_t
1997 1.5 maxv get_address_size(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1998 1.5 maxv {
1999 1.5 maxv if (fsm->is64bit) {
2000 1.5 maxv if (__predict_false(instr->legpref[LEG_ADR_OVR])) {
2001 1.5 maxv return 4;
2002 1.5 maxv }
2003 1.5 maxv return 8;
2004 1.5 maxv }
2005 1.5 maxv
2006 1.5 maxv if (fsm->is32bit) {
2007 1.5 maxv if (__predict_false(instr->legpref[LEG_ADR_OVR])) {
2008 1.5 maxv return 2;
2009 1.5 maxv }
2010 1.5 maxv return 4;
2011 1.5 maxv }
2012 1.5 maxv
2013 1.5 maxv /* 16bit. */
2014 1.5 maxv if (__predict_false(instr->legpref[LEG_ADR_OVR])) {
2015 1.5 maxv return 4;
2016 1.5 maxv }
2017 1.5 maxv return 2;
2018 1.5 maxv }
2019 1.5 maxv
2020 1.5 maxv static int
2021 1.5 maxv node_primary_opcode(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2022 1.1 maxv {
2023 1.5 maxv const struct x86_opcode *opcode;
2024 1.5 maxv uint8_t byte;
2025 1.5 maxv size_t i, n;
2026 1.5 maxv
2027 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2028 1.5 maxv return -1;
2029 1.5 maxv }
2030 1.5 maxv
2031 1.5 maxv n = sizeof(primary_opcode_table) / sizeof(primary_opcode_table[0]);
2032 1.5 maxv for (i = 0; i < n; i++) {
2033 1.5 maxv if (primary_opcode_table[i].byte == byte)
2034 1.5 maxv break;
2035 1.5 maxv }
2036 1.5 maxv if (i == n) {
2037 1.1 maxv return -1;
2038 1.1 maxv }
2039 1.5 maxv opcode = &primary_opcode_table[i];
2040 1.1 maxv
2041 1.5 maxv instr->opcode = opcode;
2042 1.5 maxv instr->emul = opcode->emul;
2043 1.5 maxv instr->operand_size = get_operand_size(fsm, instr);
2044 1.5 maxv instr->address_size = get_address_size(fsm, instr);
2045 1.5 maxv
2046 1.5 maxv if (opcode->regmodrm) {
2047 1.5 maxv fsm_advance(fsm, 1, node_regmodrm);
2048 1.5 maxv } else if (opcode->dmo) {
2049 1.5 maxv /* Direct-Memory Offsets */
2050 1.5 maxv fsm_advance(fsm, 1, node_dmo);
2051 1.5 maxv } else if (opcode->stos || opcode->lods) {
2052 1.5 maxv fsm_advance(fsm, 1, node_stlo);
2053 1.6 maxv } else if (opcode->movs) {
2054 1.6 maxv fsm_advance(fsm, 1, node_movs);
2055 1.5 maxv } else {
2056 1.5 maxv return -1;
2057 1.5 maxv }
2058 1.5 maxv
2059 1.5 maxv return 0;
2060 1.5 maxv }
2061 1.5 maxv
2062 1.5 maxv static int
2063 1.5 maxv node_main(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2064 1.5 maxv {
2065 1.5 maxv uint8_t byte;
2066 1.5 maxv
2067 1.5 maxv #define ESCAPE 0x0F
2068 1.5 maxv #define VEX_1 0xC5
2069 1.5 maxv #define VEX_2 0xC4
2070 1.5 maxv #define XOP 0x8F
2071 1.5 maxv
2072 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2073 1.5 maxv return -1;
2074 1.5 maxv }
2075 1.5 maxv
2076 1.5 maxv /*
2077 1.5 maxv * We don't take XOP. It is AMD-specific, and it was removed shortly
2078 1.5 maxv * after being introduced.
2079 1.5 maxv */
2080 1.5 maxv if (byte == ESCAPE) {
2081 1.5 maxv return -1;
2082 1.5 maxv } else if (!instr->rexpref.present) {
2083 1.5 maxv if (byte == VEX_1) {
2084 1.5 maxv return -1;
2085 1.5 maxv } else if (byte == VEX_2) {
2086 1.5 maxv return -1;
2087 1.5 maxv } else {
2088 1.5 maxv fsm->fn = node_primary_opcode;
2089 1.5 maxv }
2090 1.5 maxv } else {
2091 1.5 maxv fsm->fn = node_primary_opcode;
2092 1.5 maxv }
2093 1.5 maxv
2094 1.5 maxv return 0;
2095 1.5 maxv }
2096 1.5 maxv
2097 1.5 maxv static int
2098 1.5 maxv node_rex_prefix(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2099 1.5 maxv {
2100 1.5 maxv struct x86_rexpref *rexpref = &instr->rexpref;
2101 1.5 maxv uint8_t byte;
2102 1.5 maxv size_t n = 0;
2103 1.5 maxv
2104 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2105 1.5 maxv return -1;
2106 1.5 maxv }
2107 1.5 maxv
2108 1.5 maxv if (byte >= 0x40 && byte <= 0x4F) {
2109 1.5 maxv if (__predict_false(!fsm->is64bit)) {
2110 1.5 maxv return -1;
2111 1.5 maxv }
2112 1.5 maxv rexpref->present = true;
2113 1.5 maxv rexpref->w = ((byte & 0x8) != 0);
2114 1.5 maxv rexpref->r = ((byte & 0x4) != 0);
2115 1.5 maxv rexpref->x = ((byte & 0x2) != 0);
2116 1.5 maxv rexpref->b = ((byte & 0x1) != 0);
2117 1.5 maxv n = 1;
2118 1.5 maxv }
2119 1.5 maxv
2120 1.5 maxv fsm_advance(fsm, n, node_main);
2121 1.5 maxv return 0;
2122 1.5 maxv }
2123 1.5 maxv
2124 1.8 maxv static const struct {
2125 1.8 maxv uint8_t byte;
2126 1.8 maxv int seg;
2127 1.8 maxv } legpref_table[NLEG] = {
2128 1.5 maxv /* Group 1 */
2129 1.8 maxv [LEG_LOCK] = { 0xF0, -1 },
2130 1.8 maxv [LEG_REPN] = { 0xF2, -1 },
2131 1.8 maxv [LEG_REP] = { 0xF3, -1 },
2132 1.5 maxv /* Group 2 */
2133 1.8 maxv [LEG_OVR_CS] = { 0x2E, NVMM_X64_SEG_CS },
2134 1.8 maxv [LEG_OVR_SS] = { 0x36, NVMM_X64_SEG_SS },
2135 1.8 maxv [LEG_OVR_DS] = { 0x3E, NVMM_X64_SEG_DS },
2136 1.8 maxv [LEG_OVR_ES] = { 0x26, NVMM_X64_SEG_ES },
2137 1.8 maxv [LEG_OVR_FS] = { 0x64, NVMM_X64_SEG_FS },
2138 1.8 maxv [LEG_OVR_GS] = { 0x65, NVMM_X64_SEG_GS },
2139 1.8 maxv [LEG_BRN_TAKEN] = { 0x2E, -1 },
2140 1.8 maxv [LEG_BRN_NTAKEN] = { 0x3E, -1 },
2141 1.5 maxv /* Group 3 */
2142 1.8 maxv [LEG_OPR_OVR] = { 0x66, -1 },
2143 1.5 maxv /* Group 4 */
2144 1.8 maxv [LEG_ADR_OVR] = { 0x67, -1 },
2145 1.5 maxv };
2146 1.5 maxv
2147 1.5 maxv static int
2148 1.5 maxv node_legacy_prefix(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2149 1.5 maxv {
2150 1.5 maxv uint8_t byte;
2151 1.5 maxv size_t i;
2152 1.5 maxv
2153 1.5 maxv if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2154 1.5 maxv return -1;
2155 1.5 maxv }
2156 1.5 maxv
2157 1.5 maxv for (i = 0; i < NLEG; i++) {
2158 1.8 maxv if (byte == legpref_table[i].byte)
2159 1.5 maxv break;
2160 1.5 maxv }
2161 1.5 maxv
2162 1.5 maxv if (i == NLEG) {
2163 1.5 maxv fsm->fn = node_rex_prefix;
2164 1.5 maxv } else {
2165 1.5 maxv instr->legpref[i] = true;
2166 1.5 maxv fsm_advance(fsm, 1, node_legacy_prefix);
2167 1.5 maxv }
2168 1.5 maxv
2169 1.5 maxv return 0;
2170 1.5 maxv }
2171 1.5 maxv
2172 1.5 maxv static int
2173 1.5 maxv x86_decode(uint8_t *inst_bytes, size_t inst_len, struct x86_instr *instr,
2174 1.5 maxv struct nvmm_x64_state *state)
2175 1.5 maxv {
2176 1.5 maxv struct x86_decode_fsm fsm;
2177 1.5 maxv int ret;
2178 1.5 maxv
2179 1.5 maxv memset(instr, 0, sizeof(*instr));
2180 1.5 maxv
2181 1.5 maxv fsm.is64bit = is_64bit(state);
2182 1.5 maxv fsm.is32bit = is_32bit(state);
2183 1.5 maxv fsm.is16bit = is_16bit(state);
2184 1.5 maxv
2185 1.5 maxv fsm.fn = node_legacy_prefix;
2186 1.5 maxv fsm.buf = inst_bytes;
2187 1.5 maxv fsm.end = inst_bytes + inst_len;
2188 1.5 maxv
2189 1.5 maxv while (fsm.fn != NULL) {
2190 1.5 maxv ret = (*fsm.fn)(&fsm, instr);
2191 1.5 maxv if (ret == -1)
2192 1.5 maxv return -1;
2193 1.5 maxv }
2194 1.5 maxv
2195 1.5 maxv instr->len = fsm.buf - inst_bytes;
2196 1.5 maxv
2197 1.5 maxv return 0;
2198 1.5 maxv }
2199 1.5 maxv
2200 1.5 maxv /* -------------------------------------------------------------------------- */
2201 1.5 maxv
2202 1.5 maxv static inline uint8_t
2203 1.5 maxv compute_parity(uint8_t *data)
2204 1.5 maxv {
2205 1.5 maxv uint64_t *ptr = (uint64_t *)data;
2206 1.5 maxv uint64_t val = *ptr;
2207 1.5 maxv
2208 1.5 maxv val ^= val >> 32;
2209 1.5 maxv val ^= val >> 16;
2210 1.5 maxv val ^= val >> 8;
2211 1.5 maxv val ^= val >> 4;
2212 1.5 maxv val ^= val >> 2;
2213 1.5 maxv val ^= val >> 1;
2214 1.5 maxv return (~val) & 1;
2215 1.5 maxv }
2216 1.5 maxv
2217 1.5 maxv static void
2218 1.5 maxv x86_emul_or(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2219 1.5 maxv uint64_t *gprs)
2220 1.5 maxv {
2221 1.5 maxv const bool write = mem->write;
2222 1.5 maxv uint64_t fl = gprs[NVMM_X64_GPR_RFLAGS];
2223 1.5 maxv uint8_t data[8];
2224 1.5 maxv size_t i;
2225 1.5 maxv
2226 1.5 maxv fl &= ~(PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF);
2227 1.5 maxv
2228 1.5 maxv memcpy(data, mem->data, sizeof(data));
2229 1.5 maxv
2230 1.5 maxv /* Fetch the value to be OR'ed. */
2231 1.5 maxv mem->write = false;
2232 1.5 maxv (*cb)(mem);
2233 1.5 maxv
2234 1.5 maxv /* Perform the OR. */
2235 1.5 maxv for (i = 0; i < mem->size; i++) {
2236 1.5 maxv mem->data[i] |= data[i];
2237 1.5 maxv if (mem->data[i] != 0)
2238 1.5 maxv fl |= PSL_Z;
2239 1.5 maxv }
2240 1.5 maxv if (mem->data[mem->size-1] & __BIT(7))
2241 1.5 maxv fl |= PSL_N;
2242 1.5 maxv if (compute_parity(mem->data))
2243 1.5 maxv fl |= PSL_PF;
2244 1.5 maxv
2245 1.5 maxv if (write) {
2246 1.5 maxv /* Write back the result. */
2247 1.5 maxv mem->write = true;
2248 1.5 maxv (*cb)(mem);
2249 1.5 maxv }
2250 1.5 maxv
2251 1.5 maxv gprs[NVMM_X64_GPR_RFLAGS] = fl;
2252 1.5 maxv }
2253 1.5 maxv
2254 1.5 maxv static void
2255 1.5 maxv x86_emul_and(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2256 1.5 maxv uint64_t *gprs)
2257 1.5 maxv {
2258 1.5 maxv const bool write = mem->write;
2259 1.5 maxv uint64_t fl = gprs[NVMM_X64_GPR_RFLAGS];
2260 1.5 maxv uint8_t data[8];
2261 1.5 maxv size_t i;
2262 1.5 maxv
2263 1.5 maxv fl &= ~(PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF);
2264 1.5 maxv
2265 1.5 maxv memcpy(data, mem->data, sizeof(data));
2266 1.5 maxv
2267 1.5 maxv /* Fetch the value to be AND'ed. */
2268 1.5 maxv mem->write = false;
2269 1.5 maxv (*cb)(mem);
2270 1.5 maxv
2271 1.5 maxv /* Perform the AND. */
2272 1.5 maxv for (i = 0; i < mem->size; i++) {
2273 1.5 maxv mem->data[i] &= data[i];
2274 1.5 maxv if (mem->data[i] != 0)
2275 1.5 maxv fl |= PSL_Z;
2276 1.5 maxv }
2277 1.5 maxv if (mem->data[mem->size-1] & __BIT(7))
2278 1.5 maxv fl |= PSL_N;
2279 1.5 maxv if (compute_parity(mem->data))
2280 1.5 maxv fl |= PSL_PF;
2281 1.5 maxv
2282 1.5 maxv if (write) {
2283 1.5 maxv /* Write back the result. */
2284 1.5 maxv mem->write = true;
2285 1.5 maxv (*cb)(mem);
2286 1.5 maxv }
2287 1.5 maxv
2288 1.5 maxv gprs[NVMM_X64_GPR_RFLAGS] = fl;
2289 1.5 maxv }
2290 1.5 maxv
2291 1.5 maxv static void
2292 1.5 maxv x86_emul_xor(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2293 1.5 maxv uint64_t *gprs)
2294 1.5 maxv {
2295 1.5 maxv const bool write = mem->write;
2296 1.5 maxv uint64_t fl = gprs[NVMM_X64_GPR_RFLAGS];
2297 1.5 maxv uint8_t data[8];
2298 1.5 maxv size_t i;
2299 1.5 maxv
2300 1.5 maxv fl &= ~(PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF);
2301 1.5 maxv
2302 1.5 maxv memcpy(data, mem->data, sizeof(data));
2303 1.5 maxv
2304 1.5 maxv /* Fetch the value to be XOR'ed. */
2305 1.5 maxv mem->write = false;
2306 1.5 maxv (*cb)(mem);
2307 1.5 maxv
2308 1.5 maxv /* Perform the XOR. */
2309 1.5 maxv for (i = 0; i < mem->size; i++) {
2310 1.5 maxv mem->data[i] ^= data[i];
2311 1.5 maxv if (mem->data[i] != 0)
2312 1.5 maxv fl |= PSL_Z;
2313 1.5 maxv }
2314 1.5 maxv if (mem->data[mem->size-1] & __BIT(7))
2315 1.5 maxv fl |= PSL_N;
2316 1.5 maxv if (compute_parity(mem->data))
2317 1.5 maxv fl |= PSL_PF;
2318 1.5 maxv
2319 1.5 maxv if (write) {
2320 1.5 maxv /* Write back the result. */
2321 1.5 maxv mem->write = true;
2322 1.5 maxv (*cb)(mem);
2323 1.5 maxv }
2324 1.5 maxv
2325 1.5 maxv gprs[NVMM_X64_GPR_RFLAGS] = fl;
2326 1.5 maxv }
2327 1.5 maxv
2328 1.5 maxv static void
2329 1.5 maxv x86_emul_mov(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2330 1.5 maxv uint64_t *gprs)
2331 1.5 maxv {
2332 1.5 maxv /*
2333 1.5 maxv * Nothing special, just move without emulation.
2334 1.5 maxv */
2335 1.5 maxv (*cb)(mem);
2336 1.5 maxv }
2337 1.5 maxv
2338 1.5 maxv static void
2339 1.5 maxv x86_emul_stos(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2340 1.5 maxv uint64_t *gprs)
2341 1.5 maxv {
2342 1.5 maxv /*
2343 1.5 maxv * Just move, and update RDI.
2344 1.5 maxv */
2345 1.5 maxv (*cb)(mem);
2346 1.5 maxv
2347 1.5 maxv if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
2348 1.5 maxv gprs[NVMM_X64_GPR_RDI] -= mem->size;
2349 1.5 maxv } else {
2350 1.5 maxv gprs[NVMM_X64_GPR_RDI] += mem->size;
2351 1.5 maxv }
2352 1.5 maxv }
2353 1.5 maxv
2354 1.5 maxv static void
2355 1.5 maxv x86_emul_lods(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2356 1.5 maxv uint64_t *gprs)
2357 1.5 maxv {
2358 1.5 maxv /*
2359 1.5 maxv * Just move, and update RSI.
2360 1.5 maxv */
2361 1.5 maxv (*cb)(mem);
2362 1.5 maxv
2363 1.5 maxv if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
2364 1.5 maxv gprs[NVMM_X64_GPR_RSI] -= mem->size;
2365 1.5 maxv } else {
2366 1.5 maxv gprs[NVMM_X64_GPR_RSI] += mem->size;
2367 1.5 maxv }
2368 1.5 maxv }
2369 1.5 maxv
2370 1.6 maxv static void
2371 1.6 maxv x86_emul_movs(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
2372 1.6 maxv uint64_t *gprs)
2373 1.6 maxv {
2374 1.6 maxv /*
2375 1.6 maxv * Special instruction: double memory operand. Don't call the cb,
2376 1.6 maxv * because the storage has already been performed earlier.
2377 1.6 maxv */
2378 1.6 maxv
2379 1.6 maxv if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
2380 1.6 maxv gprs[NVMM_X64_GPR_RSI] -= mem->size;
2381 1.6 maxv gprs[NVMM_X64_GPR_RDI] -= mem->size;
2382 1.6 maxv } else {
2383 1.6 maxv gprs[NVMM_X64_GPR_RSI] += mem->size;
2384 1.6 maxv gprs[NVMM_X64_GPR_RDI] += mem->size;
2385 1.6 maxv }
2386 1.6 maxv }
2387 1.6 maxv
2388 1.5 maxv /* -------------------------------------------------------------------------- */
2389 1.5 maxv
2390 1.5 maxv static inline uint64_t
2391 1.5 maxv gpr_read_address(struct x86_instr *instr, struct nvmm_x64_state *state, int gpr)
2392 1.5 maxv {
2393 1.5 maxv uint64_t val;
2394 1.5 maxv
2395 1.5 maxv val = state->gprs[gpr];
2396 1.5 maxv if (__predict_false(instr->address_size == 4)) {
2397 1.5 maxv val &= 0x00000000FFFFFFFF;
2398 1.5 maxv } else if (__predict_false(instr->address_size == 2)) {
2399 1.5 maxv val &= 0x000000000000FFFF;
2400 1.5 maxv }
2401 1.5 maxv
2402 1.5 maxv return val;
2403 1.5 maxv }
2404 1.5 maxv
2405 1.5 maxv static int
2406 1.6 maxv store_to_gva(struct nvmm_x64_state *state, struct x86_instr *instr,
2407 1.6 maxv struct x86_store *store, gvaddr_t *gvap, size_t size)
2408 1.5 maxv {
2409 1.5 maxv struct x86_sib *sib;
2410 1.6 maxv gvaddr_t gva = 0;
2411 1.5 maxv uint64_t reg;
2412 1.5 maxv int ret, seg;
2413 1.5 maxv uint32_t *p;
2414 1.5 maxv
2415 1.5 maxv if (store->type == STORE_SIB) {
2416 1.5 maxv sib = &store->u.sib;
2417 1.5 maxv if (sib->bas != NULL)
2418 1.5 maxv gva += gpr_read_address(instr, state, sib->bas->num);
2419 1.5 maxv if (sib->idx != NULL) {
2420 1.5 maxv reg = gpr_read_address(instr, state, sib->idx->num);
2421 1.5 maxv gva += sib->scale * reg;
2422 1.5 maxv }
2423 1.5 maxv } else if (store->type == STORE_REG) {
2424 1.9 maxv if (store->u.reg == NULL) {
2425 1.9 maxv /* The base is null. Happens with disp32-only. */
2426 1.9 maxv } else {
2427 1.9 maxv gva = gpr_read_address(instr, state, store->u.reg->num);
2428 1.9 maxv }
2429 1.5 maxv } else {
2430 1.5 maxv gva = store->u.dmo;
2431 1.5 maxv }
2432 1.5 maxv
2433 1.5 maxv if (store->disp.type != DISP_NONE) {
2434 1.5 maxv p = (uint32_t *)&store->disp.data[0];
2435 1.5 maxv gva += *p;
2436 1.5 maxv }
2437 1.5 maxv
2438 1.5 maxv if (!is_long_mode(state)) {
2439 1.6 maxv if (store->hardseg != 0) {
2440 1.6 maxv seg = store->hardseg;
2441 1.5 maxv } else {
2442 1.6 maxv if (instr->legpref[LEG_OVR_CS]) {
2443 1.6 maxv seg = NVMM_X64_SEG_CS;
2444 1.6 maxv } else if (instr->legpref[LEG_OVR_SS]) {
2445 1.6 maxv seg = NVMM_X64_SEG_SS;
2446 1.6 maxv } else if (instr->legpref[LEG_OVR_ES]) {
2447 1.6 maxv seg = NVMM_X64_SEG_ES;
2448 1.6 maxv } else if (instr->legpref[LEG_OVR_FS]) {
2449 1.6 maxv seg = NVMM_X64_SEG_FS;
2450 1.6 maxv } else if (instr->legpref[LEG_OVR_GS]) {
2451 1.6 maxv seg = NVMM_X64_SEG_GS;
2452 1.6 maxv } else {
2453 1.6 maxv seg = NVMM_X64_SEG_DS;
2454 1.6 maxv }
2455 1.5 maxv }
2456 1.5 maxv
2457 1.6 maxv ret = segment_apply(&state->segs[seg], &gva, size);
2458 1.5 maxv if (ret == -1)
2459 1.5 maxv return -1;
2460 1.5 maxv }
2461 1.5 maxv
2462 1.6 maxv *gvap = gva;
2463 1.6 maxv return 0;
2464 1.6 maxv }
2465 1.6 maxv
2466 1.6 maxv static int
2467 1.6 maxv store_to_mem(struct nvmm_machine *mach, struct nvmm_x64_state *state,
2468 1.6 maxv struct x86_instr *instr, struct x86_store *store, struct nvmm_mem *mem)
2469 1.6 maxv {
2470 1.6 maxv nvmm_prot_t prot;
2471 1.6 maxv int ret;
2472 1.6 maxv
2473 1.6 maxv ret = store_to_gva(state, instr, store, &mem->gva, mem->size);
2474 1.6 maxv if (ret == -1)
2475 1.6 maxv return -1;
2476 1.6 maxv
2477 1.5 maxv if ((mem->gva & PAGE_MASK) + mem->size > PAGE_SIZE) {
2478 1.5 maxv /* Don't allow a cross-page MMIO. */
2479 1.5 maxv errno = EINVAL;
2480 1.5 maxv return -1;
2481 1.5 maxv }
2482 1.5 maxv
2483 1.5 maxv ret = x86_gva_to_gpa(mach, state, mem->gva, &mem->gpa, &prot);
2484 1.5 maxv if (ret == -1)
2485 1.5 maxv return -1;
2486 1.5 maxv
2487 1.5 maxv return 0;
2488 1.5 maxv }
2489 1.5 maxv
2490 1.5 maxv static int
2491 1.8 maxv fetch_segment(struct nvmm_machine *mach, struct nvmm_x64_state *state)
2492 1.8 maxv {
2493 1.8 maxv uint8_t inst_bytes[15], byte;
2494 1.8 maxv size_t i, n, fetchsize;
2495 1.8 maxv gvaddr_t gva;
2496 1.8 maxv int ret, seg;
2497 1.8 maxv
2498 1.8 maxv fetchsize = sizeof(inst_bytes);
2499 1.8 maxv
2500 1.8 maxv gva = state->gprs[NVMM_X64_GPR_RIP];
2501 1.8 maxv if (!is_long_mode(state)) {
2502 1.8 maxv ret = segment_apply(&state->segs[NVMM_X64_SEG_CS], &gva,
2503 1.8 maxv fetchsize);
2504 1.8 maxv if (ret == -1)
2505 1.8 maxv return -1;
2506 1.8 maxv }
2507 1.8 maxv
2508 1.8 maxv ret = read_guest_memory(mach, state, gva, inst_bytes, fetchsize);
2509 1.8 maxv if (ret == -1)
2510 1.8 maxv return -1;
2511 1.8 maxv
2512 1.8 maxv seg = NVMM_X64_SEG_DS;
2513 1.8 maxv for (n = 0; n < fetchsize; n++) {
2514 1.8 maxv byte = inst_bytes[n];
2515 1.8 maxv for (i = 0; i < NLEG; i++) {
2516 1.8 maxv if (byte != legpref_table[i].byte)
2517 1.8 maxv continue;
2518 1.8 maxv if (i >= LEG_OVR_CS && i <= LEG_OVR_GS)
2519 1.8 maxv seg = legpref_table[i].seg;
2520 1.8 maxv break;
2521 1.8 maxv }
2522 1.8 maxv if (i == NLEG) {
2523 1.8 maxv break;
2524 1.8 maxv }
2525 1.8 maxv }
2526 1.8 maxv
2527 1.8 maxv return seg;
2528 1.8 maxv }
2529 1.8 maxv
2530 1.8 maxv static int
2531 1.5 maxv fetch_instruction(struct nvmm_machine *mach, struct nvmm_x64_state *state,
2532 1.5 maxv struct nvmm_exit *exit)
2533 1.5 maxv {
2534 1.6 maxv size_t fetchsize;
2535 1.6 maxv gvaddr_t gva;
2536 1.5 maxv int ret;
2537 1.5 maxv
2538 1.5 maxv fetchsize = sizeof(exit->u.mem.inst_bytes);
2539 1.5 maxv
2540 1.5 maxv gva = state->gprs[NVMM_X64_GPR_RIP];
2541 1.5 maxv if (!is_long_mode(state)) {
2542 1.5 maxv ret = segment_apply(&state->segs[NVMM_X64_SEG_CS], &gva,
2543 1.5 maxv fetchsize);
2544 1.5 maxv if (ret == -1)
2545 1.5 maxv return -1;
2546 1.5 maxv }
2547 1.5 maxv
2548 1.6 maxv ret = read_guest_memory(mach, state, gva, exit->u.mem.inst_bytes,
2549 1.6 maxv fetchsize);
2550 1.6 maxv if (ret == -1)
2551 1.6 maxv return -1;
2552 1.6 maxv
2553 1.6 maxv exit->u.mem.inst_len = fetchsize;
2554 1.6 maxv
2555 1.6 maxv return 0;
2556 1.6 maxv }
2557 1.6 maxv
2558 1.6 maxv static int
2559 1.6 maxv assist_mem_double(struct nvmm_machine *mach, struct nvmm_x64_state *state,
2560 1.6 maxv struct x86_instr *instr)
2561 1.6 maxv {
2562 1.6 maxv struct nvmm_mem mem;
2563 1.6 maxv uint8_t data[8];
2564 1.6 maxv gvaddr_t gva;
2565 1.6 maxv size_t size;
2566 1.6 maxv int ret;
2567 1.6 maxv
2568 1.6 maxv size = instr->operand_size;
2569 1.5 maxv
2570 1.6 maxv /* Source. */
2571 1.6 maxv ret = store_to_gva(state, instr, &instr->src, &gva, size);
2572 1.5 maxv if (ret == -1)
2573 1.5 maxv return -1;
2574 1.6 maxv ret = read_guest_memory(mach, state, gva, data, size);
2575 1.6 maxv if (ret == -1)
2576 1.5 maxv return -1;
2577 1.5 maxv
2578 1.6 maxv /* Destination. */
2579 1.6 maxv ret = store_to_gva(state, instr, &instr->dst, &gva, size);
2580 1.6 maxv if (ret == -1)
2581 1.6 maxv return -1;
2582 1.6 maxv ret = write_guest_memory(mach, state, gva, data, size);
2583 1.5 maxv if (ret == -1)
2584 1.5 maxv return -1;
2585 1.5 maxv
2586 1.6 maxv mem.size = size;
2587 1.6 maxv (*instr->emul)(&mem, NULL, state->gprs);
2588 1.5 maxv
2589 1.5 maxv return 0;
2590 1.5 maxv }
2591 1.5 maxv
2592 1.5 maxv #define DISASSEMBLER_BUG() \
2593 1.5 maxv do { \
2594 1.5 maxv errno = EINVAL; \
2595 1.5 maxv return -1; \
2596 1.5 maxv } while (0);
2597 1.5 maxv
2598 1.6 maxv static int
2599 1.6 maxv assist_mem_single(struct nvmm_machine *mach, struct nvmm_x64_state *state,
2600 1.6 maxv struct x86_instr *instr)
2601 1.5 maxv {
2602 1.5 maxv struct nvmm_mem mem;
2603 1.5 maxv uint64_t val;
2604 1.5 maxv int ret;
2605 1.5 maxv
2606 1.5 maxv memset(&mem, 0, sizeof(mem));
2607 1.5 maxv
2608 1.6 maxv switch (instr->src.type) {
2609 1.5 maxv case STORE_REG:
2610 1.6 maxv if (instr->src.disp.type != DISP_NONE) {
2611 1.5 maxv /* Indirect access. */
2612 1.5 maxv mem.write = false;
2613 1.6 maxv mem.size = instr->operand_size;
2614 1.6 maxv ret = store_to_mem(mach, state, instr, &instr->src,
2615 1.5 maxv &mem);
2616 1.5 maxv if (ret == -1)
2617 1.5 maxv return -1;
2618 1.5 maxv } else {
2619 1.5 maxv /* Direct access. */
2620 1.5 maxv mem.write = true;
2621 1.6 maxv mem.size = instr->operand_size;
2622 1.6 maxv val = state->gprs[instr->src.u.reg->num];
2623 1.6 maxv val = __SHIFTOUT(val, instr->src.u.reg->mask);
2624 1.5 maxv memcpy(mem.data, &val, mem.size);
2625 1.5 maxv }
2626 1.5 maxv break;
2627 1.5 maxv
2628 1.5 maxv case STORE_IMM:
2629 1.5 maxv mem.write = true;
2630 1.6 maxv mem.size = instr->src.u.imm.size;
2631 1.6 maxv memcpy(mem.data, instr->src.u.imm.data, mem.size);
2632 1.5 maxv break;
2633 1.5 maxv
2634 1.5 maxv case STORE_SIB:
2635 1.5 maxv mem.write = false;
2636 1.6 maxv mem.size = instr->operand_size;
2637 1.6 maxv ret = store_to_mem(mach, state, instr, &instr->src, &mem);
2638 1.5 maxv if (ret == -1)
2639 1.5 maxv return -1;
2640 1.5 maxv break;
2641 1.5 maxv
2642 1.5 maxv case STORE_DMO:
2643 1.5 maxv mem.write = false;
2644 1.6 maxv mem.size = instr->operand_size;
2645 1.6 maxv ret = store_to_mem(mach, state, instr, &instr->src, &mem);
2646 1.5 maxv if (ret == -1)
2647 1.5 maxv return -1;
2648 1.5 maxv break;
2649 1.5 maxv
2650 1.5 maxv default:
2651 1.5 maxv return -1;
2652 1.5 maxv }
2653 1.5 maxv
2654 1.6 maxv switch (instr->dst.type) {
2655 1.5 maxv case STORE_REG:
2656 1.6 maxv if (instr->dst.disp.type != DISP_NONE) {
2657 1.5 maxv if (__predict_false(!mem.write)) {
2658 1.5 maxv DISASSEMBLER_BUG();
2659 1.5 maxv }
2660 1.6 maxv mem.size = instr->operand_size;
2661 1.6 maxv ret = store_to_mem(mach, state, instr, &instr->dst,
2662 1.5 maxv &mem);
2663 1.5 maxv if (ret == -1)
2664 1.5 maxv return -1;
2665 1.5 maxv } else {
2666 1.5 maxv /* nothing */
2667 1.5 maxv }
2668 1.5 maxv break;
2669 1.5 maxv
2670 1.5 maxv case STORE_IMM:
2671 1.5 maxv /* The dst can't be an immediate. */
2672 1.5 maxv DISASSEMBLER_BUG();
2673 1.5 maxv
2674 1.5 maxv case STORE_SIB:
2675 1.5 maxv if (__predict_false(!mem.write)) {
2676 1.5 maxv DISASSEMBLER_BUG();
2677 1.5 maxv }
2678 1.6 maxv mem.size = instr->operand_size;
2679 1.6 maxv ret = store_to_mem(mach, state, instr, &instr->dst, &mem);
2680 1.5 maxv if (ret == -1)
2681 1.5 maxv return -1;
2682 1.5 maxv break;
2683 1.5 maxv
2684 1.5 maxv case STORE_DMO:
2685 1.5 maxv if (__predict_false(!mem.write)) {
2686 1.5 maxv DISASSEMBLER_BUG();
2687 1.5 maxv }
2688 1.6 maxv mem.size = instr->operand_size;
2689 1.6 maxv ret = store_to_mem(mach, state, instr, &instr->dst, &mem);
2690 1.5 maxv if (ret == -1)
2691 1.5 maxv return -1;
2692 1.5 maxv break;
2693 1.5 maxv
2694 1.5 maxv default:
2695 1.5 maxv return -1;
2696 1.5 maxv }
2697 1.5 maxv
2698 1.6 maxv (*instr->emul)(&mem, __callbacks.mem, state->gprs);
2699 1.5 maxv
2700 1.5 maxv if (!mem.write) {
2701 1.6 maxv /* instr->dst.type == STORE_REG */
2702 1.5 maxv memcpy(&val, mem.data, sizeof(uint64_t));
2703 1.6 maxv val = __SHIFTIN(val, instr->dst.u.reg->mask);
2704 1.6 maxv state->gprs[instr->dst.u.reg->num] &= ~instr->dst.u.reg->mask;
2705 1.6 maxv state->gprs[instr->dst.u.reg->num] |= val;
2706 1.6 maxv }
2707 1.6 maxv
2708 1.6 maxv return 0;
2709 1.6 maxv }
2710 1.6 maxv
2711 1.6 maxv int
2712 1.6 maxv nvmm_assist_mem(struct nvmm_machine *mach, nvmm_cpuid_t cpuid,
2713 1.6 maxv struct nvmm_exit *exit)
2714 1.6 maxv {
2715 1.6 maxv struct nvmm_x64_state state;
2716 1.6 maxv struct x86_instr instr;
2717 1.6 maxv uint64_t cnt;
2718 1.6 maxv int ret;
2719 1.6 maxv
2720 1.6 maxv if (__predict_false(exit->reason != NVMM_EXIT_MEMORY)) {
2721 1.6 maxv errno = EINVAL;
2722 1.6 maxv return -1;
2723 1.6 maxv }
2724 1.6 maxv
2725 1.6 maxv ret = nvmm_vcpu_getstate(mach, cpuid, &state,
2726 1.6 maxv NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS | NVMM_X64_STATE_CRS |
2727 1.6 maxv NVMM_X64_STATE_MSRS);
2728 1.6 maxv if (ret == -1)
2729 1.6 maxv return -1;
2730 1.6 maxv
2731 1.6 maxv if (exit->u.mem.inst_len == 0) {
2732 1.6 maxv /*
2733 1.6 maxv * The instruction was not fetched from the kernel. Fetch
2734 1.6 maxv * it ourselves.
2735 1.6 maxv */
2736 1.6 maxv ret = fetch_instruction(mach, &state, exit);
2737 1.6 maxv if (ret == -1)
2738 1.6 maxv return -1;
2739 1.6 maxv }
2740 1.6 maxv
2741 1.6 maxv ret = x86_decode(exit->u.mem.inst_bytes, exit->u.mem.inst_len,
2742 1.6 maxv &instr, &state);
2743 1.6 maxv if (ret == -1) {
2744 1.6 maxv errno = ENODEV;
2745 1.6 maxv return -1;
2746 1.6 maxv }
2747 1.6 maxv
2748 1.6 maxv if (__predict_false(instr.legpref[LEG_REPN])) {
2749 1.6 maxv errno = ENODEV;
2750 1.6 maxv return -1;
2751 1.6 maxv }
2752 1.6 maxv
2753 1.6 maxv if (instr.opcode->movs) {
2754 1.6 maxv ret = assist_mem_double(mach, &state, &instr);
2755 1.6 maxv } else {
2756 1.6 maxv ret = assist_mem_single(mach, &state, &instr);
2757 1.6 maxv }
2758 1.6 maxv if (ret == -1) {
2759 1.6 maxv errno = ENODEV;
2760 1.6 maxv return -1;
2761 1.5 maxv }
2762 1.5 maxv
2763 1.5 maxv if (instr.legpref[LEG_REP]) {
2764 1.6 maxv cnt = rep_dec_apply(&state, instr.address_size);
2765 1.6 maxv if (cnt == 0) {
2766 1.5 maxv state.gprs[NVMM_X64_GPR_RIP] += instr.len;
2767 1.5 maxv }
2768 1.5 maxv } else {
2769 1.5 maxv state.gprs[NVMM_X64_GPR_RIP] += instr.len;
2770 1.5 maxv }
2771 1.5 maxv
2772 1.5 maxv ret = nvmm_vcpu_setstate(mach, cpuid, &state, NVMM_X64_STATE_GPRS);
2773 1.5 maxv if (ret == -1)
2774 1.5 maxv return -1;
2775 1.5 maxv
2776 1.5 maxv return 0;
2777 1.1 maxv }
2778