Home | History | Annotate | Line # | Download | only in libnvmm
libnvmm_x86.c revision 1.9
      1  1.8  maxv /*	$NetBSD: libnvmm_x86.c,v 1.9 2019/01/04 10:25:39 maxv Exp $	*/
      2  1.1  maxv 
      3  1.1  maxv /*
      4  1.1  maxv  * Copyright (c) 2018 The NetBSD Foundation, Inc.
      5  1.1  maxv  * All rights reserved.
      6  1.1  maxv  *
      7  1.1  maxv  * This code is derived from software contributed to The NetBSD Foundation
      8  1.1  maxv  * by Maxime Villard.
      9  1.1  maxv  *
     10  1.1  maxv  * Redistribution and use in source and binary forms, with or without
     11  1.1  maxv  * modification, are permitted provided that the following conditions
     12  1.1  maxv  * are met:
     13  1.1  maxv  * 1. Redistributions of source code must retain the above copyright
     14  1.1  maxv  *    notice, this list of conditions and the following disclaimer.
     15  1.1  maxv  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.1  maxv  *    notice, this list of conditions and the following disclaimer in the
     17  1.1  maxv  *    documentation and/or other materials provided with the distribution.
     18  1.1  maxv  *
     19  1.1  maxv  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.1  maxv  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.1  maxv  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.1  maxv  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.1  maxv  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.1  maxv  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.1  maxv  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.1  maxv  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.1  maxv  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.1  maxv  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.1  maxv  * POSSIBILITY OF SUCH DAMAGE.
     30  1.1  maxv  */
     31  1.1  maxv 
     32  1.1  maxv #include <sys/cdefs.h>
     33  1.1  maxv 
     34  1.1  maxv #include <stdio.h>
     35  1.1  maxv #include <stdlib.h>
     36  1.1  maxv #include <string.h>
     37  1.1  maxv #include <unistd.h>
     38  1.1  maxv #include <fcntl.h>
     39  1.1  maxv #include <errno.h>
     40  1.1  maxv #include <sys/ioctl.h>
     41  1.1  maxv #include <sys/mman.h>
     42  1.1  maxv #include <machine/vmparam.h>
     43  1.1  maxv #include <machine/pte.h>
     44  1.1  maxv #include <machine/psl.h>
     45  1.1  maxv 
     46  1.1  maxv #include "nvmm.h"
     47  1.1  maxv 
     48  1.1  maxv #include <x86/specialreg.h>
     49  1.1  maxv 
     50  1.6  maxv extern struct nvmm_callbacks __callbacks;
     51  1.6  maxv 
     52  1.6  maxv /* -------------------------------------------------------------------------- */
     53  1.6  maxv 
     54  1.6  maxv /*
     55  1.6  maxv  * Undocumented debugging function. Helpful.
     56  1.6  maxv  */
     57  1.6  maxv int
     58  1.6  maxv nvmm_vcpu_dump(struct nvmm_machine *mach, nvmm_cpuid_t cpuid)
     59  1.6  maxv {
     60  1.6  maxv 	struct nvmm_x64_state state;
     61  1.6  maxv 	size_t i;
     62  1.6  maxv 	int ret;
     63  1.6  maxv 
     64  1.6  maxv 	const char *segnames[] = {
     65  1.6  maxv 		"CS", "DS", "ES", "FS", "GS", "SS", "GDT", "IDT", "LDT", "TR"
     66  1.6  maxv 	};
     67  1.6  maxv 
     68  1.6  maxv 	ret = nvmm_vcpu_getstate(mach, cpuid, &state, NVMM_X64_STATE_ALL);
     69  1.6  maxv 	if (ret == -1)
     70  1.6  maxv 		return -1;
     71  1.6  maxv 
     72  1.6  maxv 	printf("+ VCPU id=%d\n", (int)cpuid);
     73  1.6  maxv 	printf("| -> RIP=%p\n", (void *)state.gprs[NVMM_X64_GPR_RIP]);
     74  1.6  maxv 	printf("| -> RSP=%p\n", (void *)state.gprs[NVMM_X64_GPR_RSP]);
     75  1.6  maxv 	printf("| -> RAX=%p\n", (void *)state.gprs[NVMM_X64_GPR_RAX]);
     76  1.6  maxv 	printf("| -> RBX=%p\n", (void *)state.gprs[NVMM_X64_GPR_RBX]);
     77  1.6  maxv 	printf("| -> RCX=%p\n", (void *)state.gprs[NVMM_X64_GPR_RCX]);
     78  1.6  maxv 	for (i = 0; i < NVMM_X64_NSEG; i++) {
     79  1.8  maxv 		printf("| -> %s: sel=0x%lx base=%p, limit=%p, P=%d, D=%d\n",
     80  1.6  maxv 		    segnames[i],
     81  1.6  maxv 		    state.segs[i].selector,
     82  1.6  maxv 		    (void *)state.segs[i].base,
     83  1.6  maxv 		    (void *)state.segs[i].limit,
     84  1.8  maxv 		    state.segs[i].attrib.p, state.segs[i].attrib.def32);
     85  1.6  maxv 	}
     86  1.8  maxv 	printf("| -> CPL=%p\n", (void *)state.misc[NVMM_X64_MISC_CPL]);
     87  1.6  maxv 
     88  1.6  maxv 	return 0;
     89  1.6  maxv }
     90  1.6  maxv 
     91  1.1  maxv /* -------------------------------------------------------------------------- */
     92  1.1  maxv 
     93  1.1  maxv #define PTE32_L1_SHIFT	12
     94  1.1  maxv #define PTE32_L2_SHIFT	22
     95  1.1  maxv 
     96  1.1  maxv #define PTE32_L2_MASK	0xffc00000
     97  1.1  maxv #define PTE32_L1_MASK	0x003ff000
     98  1.1  maxv 
     99  1.1  maxv #define PTE32_L2_FRAME	(PTE32_L2_MASK)
    100  1.1  maxv #define PTE32_L1_FRAME	(PTE32_L2_FRAME|PTE32_L1_MASK)
    101  1.1  maxv 
    102  1.1  maxv #define pte32_l1idx(va)	(((va) & PTE32_L1_MASK) >> PTE32_L1_SHIFT)
    103  1.1  maxv #define pte32_l2idx(va)	(((va) & PTE32_L2_MASK) >> PTE32_L2_SHIFT)
    104  1.1  maxv 
    105  1.1  maxv typedef uint32_t pte_32bit_t;
    106  1.1  maxv 
    107  1.1  maxv static int
    108  1.1  maxv x86_gva_to_gpa_32bit(struct nvmm_machine *mach, uint64_t cr3,
    109  1.1  maxv     gvaddr_t gva, gpaddr_t *gpa, bool has_pse, nvmm_prot_t *prot)
    110  1.1  maxv {
    111  1.1  maxv 	gpaddr_t L2gpa, L1gpa;
    112  1.1  maxv 	uintptr_t L2hva, L1hva;
    113  1.1  maxv 	pte_32bit_t *pdir, pte;
    114  1.1  maxv 
    115  1.1  maxv 	/* We begin with an RWXU access. */
    116  1.1  maxv 	*prot = NVMM_PROT_ALL;
    117  1.1  maxv 
    118  1.1  maxv 	/* Parse L2. */
    119  1.1  maxv 	L2gpa = (cr3 & PG_FRAME);
    120  1.1  maxv 	if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva) == -1)
    121  1.1  maxv 		return -1;
    122  1.1  maxv 	pdir = (pte_32bit_t *)L2hva;
    123  1.1  maxv 	pte = pdir[pte32_l2idx(gva)];
    124  1.1  maxv 	if ((pte & PG_V) == 0)
    125  1.1  maxv 		return -1;
    126  1.1  maxv 	if ((pte & PG_u) == 0)
    127  1.1  maxv 		*prot &= ~NVMM_PROT_USER;
    128  1.1  maxv 	if ((pte & PG_KW) == 0)
    129  1.1  maxv 		*prot &= ~NVMM_PROT_WRITE;
    130  1.1  maxv 	if ((pte & PG_PS) && !has_pse)
    131  1.1  maxv 		return -1;
    132  1.1  maxv 	if (pte & PG_PS) {
    133  1.1  maxv 		*gpa = (pte & PTE32_L2_FRAME);
    134  1.1  maxv 		return 0;
    135  1.1  maxv 	}
    136  1.1  maxv 
    137  1.1  maxv 	/* Parse L1. */
    138  1.1  maxv 	L1gpa = (pte & PG_FRAME);
    139  1.1  maxv 	if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva) == -1)
    140  1.1  maxv 		return -1;
    141  1.1  maxv 	pdir = (pte_32bit_t *)L1hva;
    142  1.1  maxv 	pte = pdir[pte32_l1idx(gva)];
    143  1.1  maxv 	if ((pte & PG_V) == 0)
    144  1.1  maxv 		return -1;
    145  1.1  maxv 	if ((pte & PG_u) == 0)
    146  1.1  maxv 		*prot &= ~NVMM_PROT_USER;
    147  1.1  maxv 	if ((pte & PG_KW) == 0)
    148  1.1  maxv 		*prot &= ~NVMM_PROT_WRITE;
    149  1.1  maxv 	if (pte & PG_PS)
    150  1.1  maxv 		return -1;
    151  1.1  maxv 
    152  1.1  maxv 	*gpa = (pte & PG_FRAME);
    153  1.1  maxv 	return 0;
    154  1.1  maxv }
    155  1.1  maxv 
    156  1.1  maxv /* -------------------------------------------------------------------------- */
    157  1.1  maxv 
    158  1.1  maxv #define	PTE32_PAE_L1_SHIFT	12
    159  1.1  maxv #define	PTE32_PAE_L2_SHIFT	21
    160  1.1  maxv #define	PTE32_PAE_L3_SHIFT	30
    161  1.1  maxv 
    162  1.1  maxv #define	PTE32_PAE_L3_MASK	0xc0000000
    163  1.1  maxv #define	PTE32_PAE_L2_MASK	0x3fe00000
    164  1.1  maxv #define	PTE32_PAE_L1_MASK	0x001ff000
    165  1.1  maxv 
    166  1.1  maxv #define	PTE32_PAE_L3_FRAME	(PTE32_PAE_L3_MASK)
    167  1.1  maxv #define	PTE32_PAE_L2_FRAME	(PTE32_PAE_L3_FRAME|PTE32_PAE_L2_MASK)
    168  1.1  maxv #define	PTE32_PAE_L1_FRAME	(PTE32_PAE_L2_FRAME|PTE32_PAE_L1_MASK)
    169  1.1  maxv 
    170  1.1  maxv #define pte32_pae_l1idx(va)	(((va) & PTE32_PAE_L1_MASK) >> PTE32_PAE_L1_SHIFT)
    171  1.1  maxv #define pte32_pae_l2idx(va)	(((va) & PTE32_PAE_L2_MASK) >> PTE32_PAE_L2_SHIFT)
    172  1.1  maxv #define pte32_pae_l3idx(va)	(((va) & PTE32_PAE_L3_MASK) >> PTE32_PAE_L3_SHIFT)
    173  1.1  maxv 
    174  1.1  maxv typedef uint64_t pte_32bit_pae_t;
    175  1.1  maxv 
    176  1.1  maxv static int
    177  1.1  maxv x86_gva_to_gpa_32bit_pae(struct nvmm_machine *mach, uint64_t cr3,
    178  1.1  maxv     gvaddr_t gva, gpaddr_t *gpa, bool has_pse, nvmm_prot_t *prot)
    179  1.1  maxv {
    180  1.1  maxv 	gpaddr_t L3gpa, L2gpa, L1gpa;
    181  1.1  maxv 	uintptr_t L3hva, L2hva, L1hva;
    182  1.1  maxv 	pte_32bit_pae_t *pdir, pte;
    183  1.1  maxv 
    184  1.1  maxv 	/* We begin with an RWXU access. */
    185  1.1  maxv 	*prot = NVMM_PROT_ALL;
    186  1.1  maxv 
    187  1.1  maxv 	/* Parse L3. */
    188  1.1  maxv 	L3gpa = (cr3 & PG_FRAME);
    189  1.1  maxv 	if (nvmm_gpa_to_hva(mach, L3gpa, &L3hva) == -1)
    190  1.1  maxv 		return -1;
    191  1.1  maxv 	pdir = (pte_32bit_pae_t *)L3hva;
    192  1.1  maxv 	pte = pdir[pte32_pae_l3idx(gva)];
    193  1.1  maxv 	if ((pte & PG_V) == 0)
    194  1.1  maxv 		return -1;
    195  1.1  maxv 	if (pte & PG_NX)
    196  1.1  maxv 		*prot &= ~NVMM_PROT_EXEC;
    197  1.1  maxv 	if (pte & PG_PS)
    198  1.1  maxv 		return -1;
    199  1.1  maxv 
    200  1.1  maxv 	/* Parse L2. */
    201  1.1  maxv 	L2gpa = (pte & PG_FRAME);
    202  1.1  maxv 	if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva) == -1)
    203  1.1  maxv 		return -1;
    204  1.1  maxv 	pdir = (pte_32bit_pae_t *)L2hva;
    205  1.1  maxv 	pte = pdir[pte32_pae_l2idx(gva)];
    206  1.1  maxv 	if ((pte & PG_V) == 0)
    207  1.1  maxv 		return -1;
    208  1.1  maxv 	if ((pte & PG_u) == 0)
    209  1.1  maxv 		*prot &= ~NVMM_PROT_USER;
    210  1.1  maxv 	if ((pte & PG_KW) == 0)
    211  1.1  maxv 		*prot &= ~NVMM_PROT_WRITE;
    212  1.1  maxv 	if (pte & PG_NX)
    213  1.1  maxv 		*prot &= ~NVMM_PROT_EXEC;
    214  1.1  maxv 	if ((pte & PG_PS) && !has_pse)
    215  1.1  maxv 		return -1;
    216  1.1  maxv 	if (pte & PG_PS) {
    217  1.1  maxv 		*gpa = (pte & PTE32_PAE_L2_FRAME);
    218  1.1  maxv 		return 0;
    219  1.1  maxv 	}
    220  1.1  maxv 
    221  1.1  maxv 	/* Parse L1. */
    222  1.1  maxv 	L1gpa = (pte & PG_FRAME);
    223  1.1  maxv 	if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva) == -1)
    224  1.1  maxv 		return -1;
    225  1.1  maxv 	pdir = (pte_32bit_pae_t *)L1hva;
    226  1.1  maxv 	pte = pdir[pte32_pae_l1idx(gva)];
    227  1.1  maxv 	if ((pte & PG_V) == 0)
    228  1.1  maxv 		return -1;
    229  1.1  maxv 	if ((pte & PG_u) == 0)
    230  1.1  maxv 		*prot &= ~NVMM_PROT_USER;
    231  1.1  maxv 	if ((pte & PG_KW) == 0)
    232  1.1  maxv 		*prot &= ~NVMM_PROT_WRITE;
    233  1.1  maxv 	if (pte & PG_NX)
    234  1.1  maxv 		*prot &= ~NVMM_PROT_EXEC;
    235  1.1  maxv 	if (pte & PG_PS)
    236  1.1  maxv 		return -1;
    237  1.1  maxv 
    238  1.1  maxv 	*gpa = (pte & PG_FRAME);
    239  1.1  maxv 	return 0;
    240  1.1  maxv }
    241  1.1  maxv 
    242  1.1  maxv /* -------------------------------------------------------------------------- */
    243  1.1  maxv 
    244  1.1  maxv #define PTE64_L1_SHIFT	12
    245  1.1  maxv #define PTE64_L2_SHIFT	21
    246  1.1  maxv #define PTE64_L3_SHIFT	30
    247  1.1  maxv #define PTE64_L4_SHIFT	39
    248  1.1  maxv 
    249  1.1  maxv #define PTE64_L4_MASK	0x0000ff8000000000
    250  1.1  maxv #define PTE64_L3_MASK	0x0000007fc0000000
    251  1.1  maxv #define PTE64_L2_MASK	0x000000003fe00000
    252  1.1  maxv #define PTE64_L1_MASK	0x00000000001ff000
    253  1.1  maxv 
    254  1.1  maxv #define PTE64_L4_FRAME	PTE64_L4_MASK
    255  1.1  maxv #define PTE64_L3_FRAME	(PTE64_L4_FRAME|PTE64_L3_MASK)
    256  1.1  maxv #define PTE64_L2_FRAME	(PTE64_L3_FRAME|PTE64_L2_MASK)
    257  1.1  maxv #define PTE64_L1_FRAME	(PTE64_L2_FRAME|PTE64_L1_MASK)
    258  1.1  maxv 
    259  1.1  maxv #define pte64_l1idx(va)	(((va) & PTE64_L1_MASK) >> PTE64_L1_SHIFT)
    260  1.1  maxv #define pte64_l2idx(va)	(((va) & PTE64_L2_MASK) >> PTE64_L2_SHIFT)
    261  1.1  maxv #define pte64_l3idx(va)	(((va) & PTE64_L3_MASK) >> PTE64_L3_SHIFT)
    262  1.1  maxv #define pte64_l4idx(va)	(((va) & PTE64_L4_MASK) >> PTE64_L4_SHIFT)
    263  1.1  maxv 
    264  1.1  maxv typedef uint64_t pte_64bit_t;
    265  1.1  maxv 
    266  1.1  maxv static inline bool
    267  1.1  maxv x86_gva_64bit_canonical(gvaddr_t gva)
    268  1.1  maxv {
    269  1.1  maxv 	/* Bits 63:47 must have the same value. */
    270  1.1  maxv #define SIGN_EXTEND	0xffff800000000000ULL
    271  1.1  maxv 	return (gva & SIGN_EXTEND) == 0 || (gva & SIGN_EXTEND) == SIGN_EXTEND;
    272  1.1  maxv }
    273  1.1  maxv 
    274  1.1  maxv static int
    275  1.1  maxv x86_gva_to_gpa_64bit(struct nvmm_machine *mach, uint64_t cr3,
    276  1.1  maxv     gvaddr_t gva, gpaddr_t *gpa, bool has_pse, nvmm_prot_t *prot)
    277  1.1  maxv {
    278  1.1  maxv 	gpaddr_t L4gpa, L3gpa, L2gpa, L1gpa;
    279  1.1  maxv 	uintptr_t L4hva, L3hva, L2hva, L1hva;
    280  1.1  maxv 	pte_64bit_t *pdir, pte;
    281  1.1  maxv 
    282  1.1  maxv 	/* We begin with an RWXU access. */
    283  1.1  maxv 	*prot = NVMM_PROT_ALL;
    284  1.1  maxv 
    285  1.1  maxv 	if (!x86_gva_64bit_canonical(gva))
    286  1.1  maxv 		return -1;
    287  1.1  maxv 
    288  1.1  maxv 	/* Parse L4. */
    289  1.1  maxv 	L4gpa = (cr3 & PG_FRAME);
    290  1.1  maxv 	if (nvmm_gpa_to_hva(mach, L4gpa, &L4hva) == -1)
    291  1.1  maxv 		return -1;
    292  1.1  maxv 	pdir = (pte_64bit_t *)L4hva;
    293  1.1  maxv 	pte = pdir[pte64_l4idx(gva)];
    294  1.1  maxv 	if ((pte & PG_V) == 0)
    295  1.1  maxv 		return -1;
    296  1.1  maxv 	if ((pte & PG_u) == 0)
    297  1.1  maxv 		*prot &= ~NVMM_PROT_USER;
    298  1.1  maxv 	if ((pte & PG_KW) == 0)
    299  1.1  maxv 		*prot &= ~NVMM_PROT_WRITE;
    300  1.1  maxv 	if (pte & PG_NX)
    301  1.1  maxv 		*prot &= ~NVMM_PROT_EXEC;
    302  1.1  maxv 	if (pte & PG_PS)
    303  1.1  maxv 		return -1;
    304  1.1  maxv 
    305  1.1  maxv 	/* Parse L3. */
    306  1.1  maxv 	L3gpa = (pte & PG_FRAME);
    307  1.1  maxv 	if (nvmm_gpa_to_hva(mach, L3gpa, &L3hva) == -1)
    308  1.1  maxv 		return -1;
    309  1.1  maxv 	pdir = (pte_64bit_t *)L3hva;
    310  1.1  maxv 	pte = pdir[pte64_l3idx(gva)];
    311  1.1  maxv 	if ((pte & PG_V) == 0)
    312  1.1  maxv 		return -1;
    313  1.1  maxv 	if ((pte & PG_u) == 0)
    314  1.1  maxv 		*prot &= ~NVMM_PROT_USER;
    315  1.1  maxv 	if ((pte & PG_KW) == 0)
    316  1.1  maxv 		*prot &= ~NVMM_PROT_WRITE;
    317  1.1  maxv 	if (pte & PG_NX)
    318  1.1  maxv 		*prot &= ~NVMM_PROT_EXEC;
    319  1.1  maxv 	if ((pte & PG_PS) && !has_pse)
    320  1.1  maxv 		return -1;
    321  1.1  maxv 	if (pte & PG_PS) {
    322  1.1  maxv 		*gpa = (pte & PTE64_L3_FRAME);
    323  1.1  maxv 		return 0;
    324  1.1  maxv 	}
    325  1.1  maxv 
    326  1.1  maxv 	/* Parse L2. */
    327  1.1  maxv 	L2gpa = (pte & PG_FRAME);
    328  1.1  maxv 	if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva) == -1)
    329  1.1  maxv 		return -1;
    330  1.1  maxv 	pdir = (pte_64bit_t *)L2hva;
    331  1.1  maxv 	pte = pdir[pte64_l2idx(gva)];
    332  1.1  maxv 	if ((pte & PG_V) == 0)
    333  1.1  maxv 		return -1;
    334  1.1  maxv 	if ((pte & PG_u) == 0)
    335  1.1  maxv 		*prot &= ~NVMM_PROT_USER;
    336  1.1  maxv 	if ((pte & PG_KW) == 0)
    337  1.1  maxv 		*prot &= ~NVMM_PROT_WRITE;
    338  1.1  maxv 	if (pte & PG_NX)
    339  1.1  maxv 		*prot &= ~NVMM_PROT_EXEC;
    340  1.1  maxv 	if ((pte & PG_PS) && !has_pse)
    341  1.1  maxv 		return -1;
    342  1.1  maxv 	if (pte & PG_PS) {
    343  1.1  maxv 		*gpa = (pte & PTE64_L2_FRAME);
    344  1.1  maxv 		return 0;
    345  1.1  maxv 	}
    346  1.1  maxv 
    347  1.1  maxv 	/* Parse L1. */
    348  1.1  maxv 	L1gpa = (pte & PG_FRAME);
    349  1.1  maxv 	if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva) == -1)
    350  1.1  maxv 		return -1;
    351  1.1  maxv 	pdir = (pte_64bit_t *)L1hva;
    352  1.1  maxv 	pte = pdir[pte64_l1idx(gva)];
    353  1.1  maxv 	if ((pte & PG_V) == 0)
    354  1.1  maxv 		return -1;
    355  1.1  maxv 	if ((pte & PG_u) == 0)
    356  1.1  maxv 		*prot &= ~NVMM_PROT_USER;
    357  1.1  maxv 	if ((pte & PG_KW) == 0)
    358  1.1  maxv 		*prot &= ~NVMM_PROT_WRITE;
    359  1.1  maxv 	if (pte & PG_NX)
    360  1.1  maxv 		*prot &= ~NVMM_PROT_EXEC;
    361  1.1  maxv 	if (pte & PG_PS)
    362  1.1  maxv 		return -1;
    363  1.1  maxv 
    364  1.1  maxv 	*gpa = (pte & PG_FRAME);
    365  1.1  maxv 	return 0;
    366  1.1  maxv }
    367  1.1  maxv 
    368  1.1  maxv static inline int
    369  1.1  maxv x86_gva_to_gpa(struct nvmm_machine *mach, struct nvmm_x64_state *state,
    370  1.1  maxv     gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
    371  1.1  maxv {
    372  1.1  maxv 	bool is_pae, is_lng, has_pse;
    373  1.1  maxv 	uint64_t cr3;
    374  1.6  maxv 	size_t off;
    375  1.1  maxv 	int ret;
    376  1.1  maxv 
    377  1.1  maxv 	if ((state->crs[NVMM_X64_CR_CR0] & CR0_PG) == 0) {
    378  1.1  maxv 		/* No paging. */
    379  1.4  maxv 		*prot = NVMM_PROT_ALL;
    380  1.1  maxv 		*gpa = gva;
    381  1.1  maxv 		return 0;
    382  1.1  maxv 	}
    383  1.1  maxv 
    384  1.6  maxv 	off = (gva & PAGE_MASK);
    385  1.6  maxv 	gva &= ~PAGE_MASK;
    386  1.6  maxv 
    387  1.1  maxv 	is_pae = (state->crs[NVMM_X64_CR_CR4] & CR4_PAE) != 0;
    388  1.1  maxv 	is_lng = (state->msrs[NVMM_X64_MSR_EFER] & EFER_LME) != 0;
    389  1.1  maxv 	has_pse = (state->crs[NVMM_X64_CR_CR4] & CR4_PSE) != 0;
    390  1.1  maxv 	cr3 = state->crs[NVMM_X64_CR_CR3];
    391  1.1  maxv 
    392  1.1  maxv 	if (is_pae && is_lng) {
    393  1.1  maxv 		/* 64bit */
    394  1.1  maxv 		ret = x86_gva_to_gpa_64bit(mach, cr3, gva, gpa, has_pse, prot);
    395  1.1  maxv 	} else if (is_pae && !is_lng) {
    396  1.1  maxv 		/* 32bit PAE */
    397  1.1  maxv 		ret = x86_gva_to_gpa_32bit_pae(mach, cr3, gva, gpa, has_pse,
    398  1.1  maxv 		    prot);
    399  1.1  maxv 	} else if (!is_pae && !is_lng) {
    400  1.1  maxv 		/* 32bit */
    401  1.1  maxv 		ret = x86_gva_to_gpa_32bit(mach, cr3, gva, gpa, has_pse, prot);
    402  1.1  maxv 	} else {
    403  1.1  maxv 		ret = -1;
    404  1.1  maxv 	}
    405  1.1  maxv 
    406  1.1  maxv 	if (ret == -1) {
    407  1.1  maxv 		errno = EFAULT;
    408  1.1  maxv 	}
    409  1.1  maxv 
    410  1.6  maxv 	*gpa = *gpa + off;
    411  1.6  maxv 
    412  1.1  maxv 	return ret;
    413  1.1  maxv }
    414  1.1  maxv 
    415  1.1  maxv int
    416  1.1  maxv nvmm_gva_to_gpa(struct nvmm_machine *mach, nvmm_cpuid_t cpuid,
    417  1.1  maxv     gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
    418  1.1  maxv {
    419  1.1  maxv 	struct nvmm_x64_state state;
    420  1.1  maxv 	int ret;
    421  1.1  maxv 
    422  1.1  maxv 	ret = nvmm_vcpu_getstate(mach, cpuid, &state,
    423  1.1  maxv 	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
    424  1.1  maxv 	if (ret == -1)
    425  1.1  maxv 		return -1;
    426  1.1  maxv 
    427  1.1  maxv 	return x86_gva_to_gpa(mach, &state, gva, gpa, prot);
    428  1.1  maxv }
    429  1.1  maxv 
    430  1.1  maxv /* -------------------------------------------------------------------------- */
    431  1.1  maxv 
    432  1.1  maxv static inline bool
    433  1.5  maxv is_64bit(struct nvmm_x64_state *state)
    434  1.5  maxv {
    435  1.5  maxv 	return (state->segs[NVMM_X64_SEG_CS].attrib.lng != 0);
    436  1.5  maxv }
    437  1.5  maxv 
    438  1.5  maxv static inline bool
    439  1.5  maxv is_32bit(struct nvmm_x64_state *state)
    440  1.5  maxv {
    441  1.5  maxv 	return (state->segs[NVMM_X64_SEG_CS].attrib.lng == 0) &&
    442  1.5  maxv 	    (state->segs[NVMM_X64_SEG_CS].attrib.def32 == 1);
    443  1.5  maxv }
    444  1.5  maxv 
    445  1.5  maxv static inline bool
    446  1.5  maxv is_16bit(struct nvmm_x64_state *state)
    447  1.5  maxv {
    448  1.5  maxv 	return (state->segs[NVMM_X64_SEG_CS].attrib.lng == 0) &&
    449  1.5  maxv 	    (state->segs[NVMM_X64_SEG_CS].attrib.def32 == 0);
    450  1.5  maxv }
    451  1.5  maxv 
    452  1.5  maxv static inline bool
    453  1.1  maxv is_long_mode(struct nvmm_x64_state *state)
    454  1.1  maxv {
    455  1.1  maxv 	return (state->msrs[NVMM_X64_MSR_EFER] & EFER_LME) != 0;
    456  1.1  maxv }
    457  1.1  maxv 
    458  1.1  maxv static int
    459  1.1  maxv segment_apply(struct nvmm_x64_state_seg *seg, gvaddr_t *gva, size_t size)
    460  1.1  maxv {
    461  1.1  maxv 	uint64_t limit;
    462  1.1  maxv 
    463  1.1  maxv 	/*
    464  1.1  maxv 	 * This is incomplete. We should check topdown, etc, really that's
    465  1.1  maxv 	 * tiring.
    466  1.1  maxv 	 */
    467  1.1  maxv 	if (__predict_false(!seg->attrib.p)) {
    468  1.1  maxv 		goto error;
    469  1.1  maxv 	}
    470  1.1  maxv 
    471  1.1  maxv 	limit = (seg->limit + 1);
    472  1.1  maxv 	if (__predict_true(seg->attrib.gran)) {
    473  1.1  maxv 		limit *= PAGE_SIZE;
    474  1.1  maxv 	}
    475  1.1  maxv 
    476  1.7  maxv 	if (__predict_false(*gva + size > limit)) {
    477  1.1  maxv 		goto error;
    478  1.1  maxv 	}
    479  1.1  maxv 
    480  1.1  maxv 	*gva += seg->base;
    481  1.1  maxv 	return 0;
    482  1.1  maxv 
    483  1.1  maxv error:
    484  1.1  maxv 	errno = EFAULT;
    485  1.1  maxv 	return -1;
    486  1.1  maxv }
    487  1.1  maxv 
    488  1.6  maxv static uint64_t
    489  1.6  maxv mask_from_adsize(size_t adsize)
    490  1.6  maxv {
    491  1.6  maxv 	switch (adsize) {
    492  1.6  maxv 	case 8:
    493  1.6  maxv 		return 0xFFFFFFFFFFFFFFFF;
    494  1.6  maxv 	case 4:
    495  1.6  maxv 		return 0x00000000FFFFFFFF;
    496  1.6  maxv 	case 2:
    497  1.6  maxv 	default: /* impossible */
    498  1.6  maxv 		return 0x000000000000FFFF;
    499  1.6  maxv 	}
    500  1.6  maxv }
    501  1.6  maxv 
    502  1.6  maxv static uint64_t
    503  1.6  maxv rep_dec_apply(struct nvmm_x64_state *state, size_t adsize)
    504  1.6  maxv {
    505  1.6  maxv 	uint64_t mask, cnt;
    506  1.6  maxv 
    507  1.6  maxv 	mask = mask_from_adsize(adsize);
    508  1.6  maxv 
    509  1.6  maxv 	cnt = state->gprs[NVMM_X64_GPR_RCX] & mask;
    510  1.6  maxv 	cnt -= 1;
    511  1.6  maxv 	cnt &= mask;
    512  1.6  maxv 
    513  1.6  maxv 	state->gprs[NVMM_X64_GPR_RCX] &= ~mask;
    514  1.6  maxv 	state->gprs[NVMM_X64_GPR_RCX] |= cnt;
    515  1.6  maxv 
    516  1.6  maxv 	return cnt;
    517  1.6  maxv }
    518  1.6  maxv 
    519  1.6  maxv static int
    520  1.6  maxv read_guest_memory(struct nvmm_machine *mach, struct nvmm_x64_state *state,
    521  1.6  maxv     gvaddr_t gva, uint8_t *data, size_t size)
    522  1.6  maxv {
    523  1.6  maxv 	struct nvmm_mem mem;
    524  1.6  maxv 	nvmm_prot_t prot;
    525  1.6  maxv 	gpaddr_t gpa;
    526  1.6  maxv 	uintptr_t hva;
    527  1.6  maxv 	bool is_mmio;
    528  1.6  maxv 	int ret, remain;
    529  1.6  maxv 
    530  1.6  maxv 	ret = x86_gva_to_gpa(mach, state, gva, &gpa, &prot);
    531  1.6  maxv 	if (__predict_false(ret == -1)) {
    532  1.6  maxv 		return -1;
    533  1.6  maxv 	}
    534  1.6  maxv 	if (__predict_false(!(prot & NVMM_PROT_READ))) {
    535  1.6  maxv 		errno = EFAULT;
    536  1.6  maxv 		return -1;
    537  1.6  maxv 	}
    538  1.6  maxv 
    539  1.6  maxv 	if ((gva & PAGE_MASK) + size > PAGE_SIZE) {
    540  1.6  maxv 		remain = ((gva & PAGE_MASK) + size - PAGE_SIZE);
    541  1.6  maxv 	} else {
    542  1.6  maxv 		remain = 0;
    543  1.6  maxv 	}
    544  1.6  maxv 	size -= remain;
    545  1.6  maxv 
    546  1.6  maxv 	ret = nvmm_gpa_to_hva(mach, gpa, &hva);
    547  1.6  maxv 	is_mmio = (ret == -1);
    548  1.6  maxv 
    549  1.6  maxv 	if (is_mmio) {
    550  1.6  maxv 		mem.gva = gva;
    551  1.6  maxv 		mem.gpa = gpa;
    552  1.6  maxv 		mem.write = false;
    553  1.6  maxv 		mem.size = size;
    554  1.6  maxv 		(*__callbacks.mem)(&mem);
    555  1.6  maxv 		memcpy(data, mem.data, size);
    556  1.6  maxv 	} else {
    557  1.6  maxv 		memcpy(data, (uint8_t *)hva, size);
    558  1.6  maxv 	}
    559  1.6  maxv 
    560  1.6  maxv 	if (remain > 0) {
    561  1.6  maxv 		ret = read_guest_memory(mach, state, gva + size,
    562  1.6  maxv 		    data + size, remain);
    563  1.6  maxv 	} else {
    564  1.6  maxv 		ret = 0;
    565  1.6  maxv 	}
    566  1.6  maxv 
    567  1.6  maxv 	return ret;
    568  1.6  maxv }
    569  1.6  maxv 
    570  1.6  maxv static int
    571  1.6  maxv write_guest_memory(struct nvmm_machine *mach, struct nvmm_x64_state *state,
    572  1.6  maxv     gvaddr_t gva, uint8_t *data, size_t size)
    573  1.6  maxv {
    574  1.6  maxv 	struct nvmm_mem mem;
    575  1.6  maxv 	nvmm_prot_t prot;
    576  1.6  maxv 	gpaddr_t gpa;
    577  1.6  maxv 	uintptr_t hva;
    578  1.6  maxv 	bool is_mmio;
    579  1.6  maxv 	int ret, remain;
    580  1.6  maxv 
    581  1.6  maxv 	ret = x86_gva_to_gpa(mach, state, gva, &gpa, &prot);
    582  1.6  maxv 	if (__predict_false(ret == -1)) {
    583  1.6  maxv 		return -1;
    584  1.6  maxv 	}
    585  1.6  maxv 	if (__predict_false(!(prot & NVMM_PROT_WRITE))) {
    586  1.6  maxv 		errno = EFAULT;
    587  1.6  maxv 		return -1;
    588  1.6  maxv 	}
    589  1.6  maxv 
    590  1.6  maxv 	if ((gva & PAGE_MASK) + size > PAGE_SIZE) {
    591  1.6  maxv 		remain = ((gva & PAGE_MASK) + size - PAGE_SIZE);
    592  1.6  maxv 	} else {
    593  1.6  maxv 		remain = 0;
    594  1.6  maxv 	}
    595  1.6  maxv 	size -= remain;
    596  1.6  maxv 
    597  1.6  maxv 	ret = nvmm_gpa_to_hva(mach, gpa, &hva);
    598  1.6  maxv 	is_mmio = (ret == -1);
    599  1.6  maxv 
    600  1.6  maxv 	if (is_mmio) {
    601  1.6  maxv 		mem.gva = gva;
    602  1.6  maxv 		mem.gpa = gpa;
    603  1.6  maxv 		mem.write = true;
    604  1.6  maxv 		memcpy(mem.data, data, size);
    605  1.6  maxv 		mem.size = size;
    606  1.6  maxv 		(*__callbacks.mem)(&mem);
    607  1.6  maxv 	} else {
    608  1.6  maxv 		memcpy((uint8_t *)hva, data, size);
    609  1.6  maxv 	}
    610  1.6  maxv 
    611  1.6  maxv 	if (remain > 0) {
    612  1.6  maxv 		ret = write_guest_memory(mach, state, gva + size,
    613  1.6  maxv 		    data + size, remain);
    614  1.6  maxv 	} else {
    615  1.6  maxv 		ret = 0;
    616  1.6  maxv 	}
    617  1.6  maxv 
    618  1.6  maxv 	return ret;
    619  1.6  maxv }
    620  1.6  maxv 
    621  1.6  maxv /* -------------------------------------------------------------------------- */
    622  1.6  maxv 
    623  1.8  maxv static int fetch_segment(struct nvmm_machine *, struct nvmm_x64_state *);
    624  1.8  maxv 
    625  1.1  maxv int
    626  1.1  maxv nvmm_assist_io(struct nvmm_machine *mach, nvmm_cpuid_t cpuid,
    627  1.6  maxv     struct nvmm_exit *exit)
    628  1.1  maxv {
    629  1.1  maxv 	struct nvmm_x64_state state;
    630  1.1  maxv 	struct nvmm_io io;
    631  1.6  maxv 	uint64_t cnt;
    632  1.6  maxv 	gvaddr_t gva;
    633  1.5  maxv 	int reg = 0; /* GCC */
    634  1.8  maxv 	int ret, seg;
    635  1.1  maxv 
    636  1.1  maxv 	if (__predict_false(exit->reason != NVMM_EXIT_IO)) {
    637  1.1  maxv 		errno = EINVAL;
    638  1.1  maxv 		return -1;
    639  1.1  maxv 	}
    640  1.1  maxv 
    641  1.1  maxv 	io.port = exit->u.io.port;
    642  1.1  maxv 	io.in = (exit->u.io.type == NVMM_EXIT_IO_IN);
    643  1.1  maxv 	io.size = exit->u.io.operand_size;
    644  1.1  maxv 
    645  1.1  maxv 	ret = nvmm_vcpu_getstate(mach, cpuid, &state,
    646  1.1  maxv 	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
    647  1.1  maxv 	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
    648  1.1  maxv 	if (ret == -1)
    649  1.1  maxv 		return -1;
    650  1.1  maxv 
    651  1.6  maxv 	/*
    652  1.6  maxv 	 * Determine GVA.
    653  1.6  maxv 	 */
    654  1.6  maxv 	if (exit->u.io.str) {
    655  1.5  maxv 		if (io.in) {
    656  1.5  maxv 			reg = NVMM_X64_GPR_RDI;
    657  1.5  maxv 		} else {
    658  1.5  maxv 			reg = NVMM_X64_GPR_RSI;
    659  1.5  maxv 		}
    660  1.1  maxv 
    661  1.6  maxv 		gva = state.gprs[reg];
    662  1.6  maxv 		gva &= mask_from_adsize(exit->u.io.address_size);
    663  1.1  maxv 
    664  1.1  maxv 		if (!is_long_mode(&state)) {
    665  1.8  maxv 			if (exit->u.io.seg != -1) {
    666  1.8  maxv 				seg = exit->u.io.seg;
    667  1.8  maxv 			} else {
    668  1.8  maxv 				if (io.in) {
    669  1.8  maxv 					seg = NVMM_X64_SEG_ES;
    670  1.8  maxv 				} else {
    671  1.8  maxv 					seg = fetch_segment(mach, &state);
    672  1.8  maxv 					if (seg == -1)
    673  1.8  maxv 						return -1;
    674  1.8  maxv 				}
    675  1.8  maxv 			}
    676  1.8  maxv 
    677  1.8  maxv 			ret = segment_apply(&state.segs[seg], &gva, io.size);
    678  1.1  maxv 			if (ret == -1)
    679  1.1  maxv 				return -1;
    680  1.1  maxv 		}
    681  1.6  maxv 	}
    682  1.1  maxv 
    683  1.6  maxv 	if (!io.in) {
    684  1.6  maxv 		if (!exit->u.io.str) {
    685  1.6  maxv 			memcpy(io.data, &state.gprs[NVMM_X64_GPR_RAX], io.size);
    686  1.6  maxv 		} else {
    687  1.6  maxv 			ret = read_guest_memory(mach, &state, gva, io.data,
    688  1.6  maxv 			    io.size);
    689  1.1  maxv 			if (ret == -1)
    690  1.1  maxv 				return -1;
    691  1.1  maxv 		}
    692  1.1  maxv 	}
    693  1.1  maxv 
    694  1.6  maxv 	(*__callbacks.io)(&io);
    695  1.1  maxv 
    696  1.1  maxv 	if (io.in) {
    697  1.6  maxv 		if (!exit->u.io.str) {
    698  1.6  maxv 			memcpy(&state.gprs[NVMM_X64_GPR_RAX], io.data, io.size);
    699  1.1  maxv 		} else {
    700  1.6  maxv 			ret = write_guest_memory(mach, &state, gva, io.data,
    701  1.6  maxv 			    io.size);
    702  1.6  maxv 			if (ret == -1)
    703  1.6  maxv 				return -1;
    704  1.1  maxv 		}
    705  1.1  maxv 	}
    706  1.1  maxv 
    707  1.5  maxv 	if (exit->u.io.str) {
    708  1.5  maxv 		if (state.gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
    709  1.5  maxv 			state.gprs[reg] -= io.size;
    710  1.5  maxv 		} else {
    711  1.5  maxv 			state.gprs[reg] += io.size;
    712  1.5  maxv 		}
    713  1.5  maxv 	}
    714  1.5  maxv 
    715  1.1  maxv 	if (exit->u.io.rep) {
    716  1.6  maxv 		cnt = rep_dec_apply(&state, exit->u.io.address_size);
    717  1.6  maxv 		if (cnt == 0) {
    718  1.1  maxv 			state.gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
    719  1.1  maxv 		}
    720  1.1  maxv 	} else {
    721  1.1  maxv 		state.gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
    722  1.1  maxv 	}
    723  1.1  maxv 
    724  1.1  maxv 	ret = nvmm_vcpu_setstate(mach, cpuid, &state, NVMM_X64_STATE_GPRS);
    725  1.1  maxv 	if (ret == -1)
    726  1.1  maxv 		return -1;
    727  1.1  maxv 
    728  1.1  maxv 	return 0;
    729  1.1  maxv }
    730  1.1  maxv 
    731  1.1  maxv /* -------------------------------------------------------------------------- */
    732  1.1  maxv 
    733  1.5  maxv static void x86_emul_or(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
    734  1.5  maxv static void x86_emul_and(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
    735  1.5  maxv static void x86_emul_xor(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
    736  1.5  maxv static void x86_emul_mov(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
    737  1.5  maxv static void x86_emul_stos(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
    738  1.5  maxv static void x86_emul_lods(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
    739  1.6  maxv static void x86_emul_movs(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
    740  1.5  maxv 
    741  1.5  maxv enum x86_legpref {
    742  1.5  maxv 	/* Group 1 */
    743  1.5  maxv 	LEG_LOCK = 0,
    744  1.5  maxv 	LEG_REPN,	/* REPNE/REPNZ */
    745  1.5  maxv 	LEG_REP,	/* REP/REPE/REPZ */
    746  1.5  maxv 	/* Group 2 */
    747  1.5  maxv 	LEG_OVR_CS,
    748  1.5  maxv 	LEG_OVR_SS,
    749  1.5  maxv 	LEG_OVR_DS,
    750  1.5  maxv 	LEG_OVR_ES,
    751  1.5  maxv 	LEG_OVR_FS,
    752  1.5  maxv 	LEG_OVR_GS,
    753  1.5  maxv 	LEG_BRN_TAKEN,
    754  1.5  maxv 	LEG_BRN_NTAKEN,
    755  1.5  maxv 	/* Group 3 */
    756  1.5  maxv 	LEG_OPR_OVR,
    757  1.5  maxv 	/* Group 4 */
    758  1.5  maxv 	LEG_ADR_OVR,
    759  1.5  maxv 
    760  1.5  maxv 	NLEG
    761  1.5  maxv };
    762  1.5  maxv 
    763  1.5  maxv struct x86_rexpref {
    764  1.5  maxv 	bool present;
    765  1.5  maxv 	bool w;
    766  1.5  maxv 	bool r;
    767  1.5  maxv 	bool x;
    768  1.5  maxv 	bool b;
    769  1.5  maxv };
    770  1.5  maxv 
    771  1.5  maxv struct x86_reg {
    772  1.5  maxv 	int num;	/* NVMM GPR state index */
    773  1.5  maxv 	uint64_t mask;
    774  1.5  maxv };
    775  1.5  maxv 
    776  1.5  maxv enum x86_disp_type {
    777  1.5  maxv 	DISP_NONE,
    778  1.5  maxv 	DISP_0,
    779  1.5  maxv 	DISP_1,
    780  1.5  maxv 	DISP_4
    781  1.5  maxv };
    782  1.5  maxv 
    783  1.5  maxv struct x86_disp {
    784  1.5  maxv 	enum x86_disp_type type;
    785  1.5  maxv 	uint8_t data[4];
    786  1.5  maxv };
    787  1.5  maxv 
    788  1.5  maxv enum REGMODRM__Mod {
    789  1.5  maxv 	MOD_DIS0, /* also, register indirect */
    790  1.5  maxv 	MOD_DIS1,
    791  1.5  maxv 	MOD_DIS4,
    792  1.5  maxv 	MOD_REG
    793  1.5  maxv };
    794  1.5  maxv 
    795  1.5  maxv enum REGMODRM__Reg {
    796  1.5  maxv 	REG_000, /* these fields are indexes to the register map */
    797  1.5  maxv 	REG_001,
    798  1.5  maxv 	REG_010,
    799  1.5  maxv 	REG_011,
    800  1.5  maxv 	REG_100,
    801  1.5  maxv 	REG_101,
    802  1.5  maxv 	REG_110,
    803  1.5  maxv 	REG_111
    804  1.5  maxv };
    805  1.5  maxv 
    806  1.5  maxv enum REGMODRM__Rm {
    807  1.5  maxv 	RM_000, /* reg */
    808  1.5  maxv 	RM_001, /* reg */
    809  1.5  maxv 	RM_010, /* reg */
    810  1.5  maxv 	RM_011, /* reg */
    811  1.5  maxv 	RM_RSP_SIB, /* reg or SIB, depending on the MOD */
    812  1.5  maxv 	RM_RBP_DISP32, /* reg or displacement-only (= RIP-relative on amd64) */
    813  1.5  maxv 	RM_110,
    814  1.5  maxv 	RM_111
    815  1.5  maxv };
    816  1.5  maxv 
    817  1.5  maxv struct x86_regmodrm {
    818  1.5  maxv 	bool present;
    819  1.5  maxv 	enum REGMODRM__Mod mod;
    820  1.5  maxv 	enum REGMODRM__Reg reg;
    821  1.5  maxv 	enum REGMODRM__Rm rm;
    822  1.5  maxv };
    823  1.5  maxv 
    824  1.5  maxv struct x86_immediate {
    825  1.5  maxv 	size_t size;	/* 1/2/4/8 */
    826  1.5  maxv 	uint8_t data[8];
    827  1.5  maxv };
    828  1.5  maxv 
    829  1.5  maxv struct x86_sib {
    830  1.5  maxv 	uint8_t scale;
    831  1.5  maxv 	const struct x86_reg *idx;
    832  1.5  maxv 	const struct x86_reg *bas;
    833  1.5  maxv };
    834  1.5  maxv 
    835  1.5  maxv enum x86_store_type {
    836  1.5  maxv 	STORE_NONE,
    837  1.5  maxv 	STORE_REG,
    838  1.5  maxv 	STORE_IMM,
    839  1.5  maxv 	STORE_SIB,
    840  1.5  maxv 	STORE_DMO
    841  1.5  maxv };
    842  1.5  maxv 
    843  1.5  maxv struct x86_store {
    844  1.5  maxv 	enum x86_store_type type;
    845  1.5  maxv 	union {
    846  1.5  maxv 		const struct x86_reg *reg;
    847  1.5  maxv 		struct x86_immediate imm;
    848  1.5  maxv 		struct x86_sib sib;
    849  1.5  maxv 		uint64_t dmo;
    850  1.5  maxv 	} u;
    851  1.5  maxv 	struct x86_disp disp;
    852  1.6  maxv 	int hardseg;
    853  1.5  maxv };
    854  1.5  maxv 
    855  1.5  maxv struct x86_instr {
    856  1.5  maxv 	size_t len;
    857  1.5  maxv 	bool legpref[NLEG];
    858  1.5  maxv 	struct x86_rexpref rexpref;
    859  1.5  maxv 	size_t operand_size;
    860  1.5  maxv 	size_t address_size;
    861  1.5  maxv 
    862  1.5  maxv 	struct x86_regmodrm regmodrm;
    863  1.5  maxv 
    864  1.5  maxv 	const struct x86_opcode *opcode;
    865  1.5  maxv 
    866  1.5  maxv 	struct x86_store src;
    867  1.5  maxv 	struct x86_store dst;
    868  1.5  maxv 
    869  1.5  maxv 	struct x86_store *strm;
    870  1.5  maxv 
    871  1.5  maxv 	void (*emul)(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
    872  1.5  maxv };
    873  1.5  maxv 
    874  1.5  maxv struct x86_decode_fsm {
    875  1.5  maxv 	/* vcpu */
    876  1.5  maxv 	bool is64bit;
    877  1.5  maxv 	bool is32bit;
    878  1.5  maxv 	bool is16bit;
    879  1.5  maxv 
    880  1.5  maxv 	/* fsm */
    881  1.5  maxv 	int (*fn)(struct x86_decode_fsm *, struct x86_instr *);
    882  1.5  maxv 	uint8_t *buf;
    883  1.5  maxv 	uint8_t *end;
    884  1.5  maxv };
    885  1.5  maxv 
    886  1.5  maxv struct x86_opcode {
    887  1.5  maxv 	uint8_t byte;
    888  1.5  maxv 	bool regmodrm;
    889  1.5  maxv 	bool regtorm;
    890  1.5  maxv 	bool dmo;
    891  1.5  maxv 	bool todmo;
    892  1.6  maxv 	bool movs;
    893  1.5  maxv 	bool stos;
    894  1.5  maxv 	bool lods;
    895  1.5  maxv 	bool szoverride;
    896  1.5  maxv 	int defsize;
    897  1.5  maxv 	int allsize;
    898  1.5  maxv 	bool group11;
    899  1.5  maxv 	bool immediate;
    900  1.5  maxv 	int immsize;
    901  1.5  maxv 	int flags;
    902  1.5  maxv 	void (*emul)(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
    903  1.5  maxv };
    904  1.5  maxv 
    905  1.5  maxv struct x86_group_entry {
    906  1.5  maxv 	void (*emul)(struct nvmm_mem *, void (*)(struct nvmm_mem *), uint64_t *);
    907  1.5  maxv };
    908  1.5  maxv 
    909  1.5  maxv #define OPSIZE_BYTE 0x01
    910  1.5  maxv #define OPSIZE_WORD 0x02 /* 2 bytes */
    911  1.5  maxv #define OPSIZE_DOUB 0x04 /* 4 bytes */
    912  1.5  maxv #define OPSIZE_QUAD 0x08 /* 8 bytes */
    913  1.5  maxv 
    914  1.5  maxv #define FLAG_z	0x02
    915  1.5  maxv 
    916  1.5  maxv static const struct x86_group_entry group11[8] = {
    917  1.5  maxv 	[0] = { .emul = x86_emul_mov }
    918  1.5  maxv };
    919  1.5  maxv 
    920  1.5  maxv static const struct x86_opcode primary_opcode_table[] = {
    921  1.5  maxv 	/*
    922  1.5  maxv 	 * Group11
    923  1.5  maxv 	 */
    924  1.5  maxv 	{
    925  1.5  maxv 		.byte = 0xC6,
    926  1.5  maxv 		.regmodrm = true,
    927  1.5  maxv 		.regtorm = true,
    928  1.5  maxv 		.szoverride = false,
    929  1.5  maxv 		.defsize = OPSIZE_BYTE,
    930  1.5  maxv 		.allsize = -1,
    931  1.5  maxv 		.group11 = true,
    932  1.5  maxv 		.immediate = true,
    933  1.5  maxv 		.immsize = OPSIZE_BYTE,
    934  1.5  maxv 		.emul = NULL /* group11 */
    935  1.5  maxv 	},
    936  1.5  maxv 	{
    937  1.5  maxv 		.byte = 0xC7,
    938  1.5  maxv 		.regmodrm = true,
    939  1.5  maxv 		.regtorm = true,
    940  1.5  maxv 		.szoverride = true,
    941  1.5  maxv 		.defsize = -1,
    942  1.5  maxv 		.allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
    943  1.5  maxv 		.group11 = true,
    944  1.5  maxv 		.immediate = true,
    945  1.5  maxv 		.immsize = -1, /* special, Z */
    946  1.5  maxv 		.flags = FLAG_z,
    947  1.5  maxv 		.emul = NULL /* group11 */
    948  1.5  maxv 	},
    949  1.5  maxv 
    950  1.5  maxv 	/*
    951  1.5  maxv 	 * OR
    952  1.5  maxv 	 */
    953  1.5  maxv 	{
    954  1.5  maxv 		/* Eb, Gb */
    955  1.5  maxv 		.byte = 0x08,
    956  1.5  maxv 		.regmodrm = true,
    957  1.5  maxv 		.regtorm = true,
    958  1.5  maxv 		.szoverride = false,
    959  1.5  maxv 		.defsize = OPSIZE_BYTE,
    960  1.5  maxv 		.allsize = -1,
    961  1.5  maxv 		.emul = x86_emul_or
    962  1.5  maxv 	},
    963  1.5  maxv 	{
    964  1.5  maxv 		/* Ev, Gv */
    965  1.5  maxv 		.byte = 0x09,
    966  1.5  maxv 		.regmodrm = true,
    967  1.5  maxv 		.regtorm = true,
    968  1.5  maxv 		.szoverride = true,
    969  1.5  maxv 		.defsize = -1,
    970  1.5  maxv 		.allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
    971  1.5  maxv 		.emul = x86_emul_or
    972  1.5  maxv 	},
    973  1.5  maxv 	{
    974  1.5  maxv 		/* Gb, Eb */
    975  1.5  maxv 		.byte = 0x0A,
    976  1.5  maxv 		.regmodrm = true,
    977  1.5  maxv 		.regtorm = false,
    978  1.5  maxv 		.szoverride = false,
    979  1.5  maxv 		.defsize = OPSIZE_BYTE,
    980  1.5  maxv 		.allsize = -1,
    981  1.5  maxv 		.emul = x86_emul_or
    982  1.5  maxv 	},
    983  1.5  maxv 	{
    984  1.5  maxv 		/* Gv, Ev */
    985  1.5  maxv 		.byte = 0x0B,
    986  1.5  maxv 		.regmodrm = true,
    987  1.5  maxv 		.regtorm = false,
    988  1.5  maxv 		.szoverride = true,
    989  1.5  maxv 		.defsize = -1,
    990  1.5  maxv 		.allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
    991  1.5  maxv 		.emul = x86_emul_or
    992  1.5  maxv 	},
    993  1.5  maxv 
    994  1.5  maxv 	/*
    995  1.5  maxv 	 * AND
    996  1.5  maxv 	 */
    997  1.5  maxv 	{
    998  1.5  maxv 		/* Eb, Gb */
    999  1.5  maxv 		.byte = 0x20,
   1000  1.5  maxv 		.regmodrm = true,
   1001  1.5  maxv 		.regtorm = true,
   1002  1.5  maxv 		.szoverride = false,
   1003  1.5  maxv 		.defsize = OPSIZE_BYTE,
   1004  1.5  maxv 		.allsize = -1,
   1005  1.5  maxv 		.emul = x86_emul_and
   1006  1.5  maxv 	},
   1007  1.5  maxv 	{
   1008  1.5  maxv 		/* Ev, Gv */
   1009  1.5  maxv 		.byte = 0x21,
   1010  1.5  maxv 		.regmodrm = true,
   1011  1.5  maxv 		.regtorm = true,
   1012  1.5  maxv 		.szoverride = true,
   1013  1.5  maxv 		.defsize = -1,
   1014  1.5  maxv 		.allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
   1015  1.5  maxv 		.emul = x86_emul_and
   1016  1.5  maxv 	},
   1017  1.5  maxv 	{
   1018  1.5  maxv 		/* Gb, Eb */
   1019  1.5  maxv 		.byte = 0x22,
   1020  1.5  maxv 		.regmodrm = true,
   1021  1.5  maxv 		.regtorm = false,
   1022  1.5  maxv 		.szoverride = false,
   1023  1.5  maxv 		.defsize = OPSIZE_BYTE,
   1024  1.5  maxv 		.allsize = -1,
   1025  1.5  maxv 		.emul = x86_emul_and
   1026  1.5  maxv 	},
   1027  1.5  maxv 	{
   1028  1.5  maxv 		/* Gv, Ev */
   1029  1.5  maxv 		.byte = 0x23,
   1030  1.5  maxv 		.regmodrm = true,
   1031  1.5  maxv 		.regtorm = false,
   1032  1.5  maxv 		.szoverride = true,
   1033  1.5  maxv 		.defsize = -1,
   1034  1.5  maxv 		.allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
   1035  1.5  maxv 		.emul = x86_emul_and
   1036  1.5  maxv 	},
   1037  1.5  maxv 
   1038  1.5  maxv 	/*
   1039  1.5  maxv 	 * XOR
   1040  1.5  maxv 	 */
   1041  1.5  maxv 	{
   1042  1.5  maxv 		/* Eb, Gb */
   1043  1.5  maxv 		.byte = 0x30,
   1044  1.5  maxv 		.regmodrm = true,
   1045  1.5  maxv 		.regtorm = true,
   1046  1.5  maxv 		.szoverride = false,
   1047  1.5  maxv 		.defsize = OPSIZE_BYTE,
   1048  1.5  maxv 		.allsize = -1,
   1049  1.5  maxv 		.emul = x86_emul_xor
   1050  1.5  maxv 	},
   1051  1.5  maxv 	{
   1052  1.5  maxv 		/* Ev, Gv */
   1053  1.5  maxv 		.byte = 0x31,
   1054  1.5  maxv 		.regmodrm = true,
   1055  1.5  maxv 		.regtorm = true,
   1056  1.5  maxv 		.szoverride = true,
   1057  1.5  maxv 		.defsize = -1,
   1058  1.5  maxv 		.allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
   1059  1.5  maxv 		.emul = x86_emul_xor
   1060  1.5  maxv 	},
   1061  1.5  maxv 	{
   1062  1.5  maxv 		/* Gb, Eb */
   1063  1.5  maxv 		.byte = 0x32,
   1064  1.5  maxv 		.regmodrm = true,
   1065  1.5  maxv 		.regtorm = false,
   1066  1.5  maxv 		.szoverride = false,
   1067  1.5  maxv 		.defsize = OPSIZE_BYTE,
   1068  1.5  maxv 		.allsize = -1,
   1069  1.5  maxv 		.emul = x86_emul_xor
   1070  1.5  maxv 	},
   1071  1.5  maxv 	{
   1072  1.5  maxv 		/* Gv, Ev */
   1073  1.5  maxv 		.byte = 0x33,
   1074  1.5  maxv 		.regmodrm = true,
   1075  1.5  maxv 		.regtorm = false,
   1076  1.5  maxv 		.szoverride = true,
   1077  1.5  maxv 		.defsize = -1,
   1078  1.5  maxv 		.allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
   1079  1.5  maxv 		.emul = x86_emul_xor
   1080  1.5  maxv 	},
   1081  1.5  maxv 
   1082  1.5  maxv 	/*
   1083  1.5  maxv 	 * MOV
   1084  1.5  maxv 	 */
   1085  1.5  maxv 	{
   1086  1.5  maxv 		/* Eb, Gb */
   1087  1.5  maxv 		.byte = 0x88,
   1088  1.5  maxv 		.regmodrm = true,
   1089  1.5  maxv 		.regtorm = true,
   1090  1.5  maxv 		.szoverride = false,
   1091  1.5  maxv 		.defsize = OPSIZE_BYTE,
   1092  1.5  maxv 		.allsize = -1,
   1093  1.5  maxv 		.emul = x86_emul_mov
   1094  1.5  maxv 	},
   1095  1.5  maxv 	{
   1096  1.5  maxv 		/* Ev, Gv */
   1097  1.5  maxv 		.byte = 0x89,
   1098  1.5  maxv 		.regmodrm = true,
   1099  1.5  maxv 		.regtorm = true,
   1100  1.5  maxv 		.szoverride = true,
   1101  1.5  maxv 		.defsize = -1,
   1102  1.5  maxv 		.allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
   1103  1.5  maxv 		.emul = x86_emul_mov
   1104  1.5  maxv 	},
   1105  1.5  maxv 	{
   1106  1.5  maxv 		/* Gb, Eb */
   1107  1.5  maxv 		.byte = 0x8A,
   1108  1.5  maxv 		.regmodrm = true,
   1109  1.5  maxv 		.regtorm = false,
   1110  1.5  maxv 		.szoverride = false,
   1111  1.5  maxv 		.defsize = OPSIZE_BYTE,
   1112  1.5  maxv 		.allsize = -1,
   1113  1.5  maxv 		.emul = x86_emul_mov
   1114  1.5  maxv 	},
   1115  1.5  maxv 	{
   1116  1.5  maxv 		/* Gv, Ev */
   1117  1.5  maxv 		.byte = 0x8B,
   1118  1.5  maxv 		.regmodrm = true,
   1119  1.5  maxv 		.regtorm = false,
   1120  1.5  maxv 		.szoverride = true,
   1121  1.5  maxv 		.defsize = -1,
   1122  1.5  maxv 		.allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
   1123  1.5  maxv 		.emul = x86_emul_mov
   1124  1.5  maxv 	},
   1125  1.5  maxv 	{
   1126  1.5  maxv 		/* AL, Ob */
   1127  1.5  maxv 		.byte = 0xA0,
   1128  1.5  maxv 		.dmo = true,
   1129  1.5  maxv 		.todmo = false,
   1130  1.5  maxv 		.szoverride = false,
   1131  1.5  maxv 		.defsize = OPSIZE_BYTE,
   1132  1.5  maxv 		.allsize = -1,
   1133  1.5  maxv 		.emul = x86_emul_mov
   1134  1.5  maxv 	},
   1135  1.5  maxv 	{
   1136  1.5  maxv 		/* rAX, Ov */
   1137  1.5  maxv 		.byte = 0xA1,
   1138  1.5  maxv 		.dmo = true,
   1139  1.5  maxv 		.todmo = false,
   1140  1.5  maxv 		.szoverride = true,
   1141  1.5  maxv 		.defsize = -1,
   1142  1.5  maxv 		.allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
   1143  1.5  maxv 		.emul = x86_emul_mov
   1144  1.5  maxv 	},
   1145  1.5  maxv 	{
   1146  1.5  maxv 		/* Ob, AL */
   1147  1.5  maxv 		.byte = 0xA2,
   1148  1.5  maxv 		.dmo = true,
   1149  1.5  maxv 		.todmo = true,
   1150  1.5  maxv 		.szoverride = false,
   1151  1.5  maxv 		.defsize = OPSIZE_BYTE,
   1152  1.5  maxv 		.allsize = -1,
   1153  1.5  maxv 		.emul = x86_emul_mov
   1154  1.5  maxv 	},
   1155  1.5  maxv 	{
   1156  1.5  maxv 		/* Ov, rAX */
   1157  1.5  maxv 		.byte = 0xA3,
   1158  1.5  maxv 		.dmo = true,
   1159  1.5  maxv 		.todmo = true,
   1160  1.5  maxv 		.szoverride = true,
   1161  1.5  maxv 		.defsize = -1,
   1162  1.5  maxv 		.allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
   1163  1.5  maxv 		.emul = x86_emul_mov
   1164  1.5  maxv 	},
   1165  1.5  maxv 
   1166  1.5  maxv 	/*
   1167  1.6  maxv 	 * MOVS
   1168  1.6  maxv 	 */
   1169  1.6  maxv 	{
   1170  1.6  maxv 		/* Yb, Xb */
   1171  1.6  maxv 		.byte = 0xA4,
   1172  1.6  maxv 		.movs = true,
   1173  1.6  maxv 		.szoverride = false,
   1174  1.6  maxv 		.defsize = OPSIZE_BYTE,
   1175  1.6  maxv 		.allsize = -1,
   1176  1.6  maxv 		.emul = x86_emul_movs
   1177  1.6  maxv 	},
   1178  1.6  maxv 	{
   1179  1.6  maxv 		/* Yv, Xv */
   1180  1.6  maxv 		.byte = 0xA5,
   1181  1.6  maxv 		.movs = true,
   1182  1.6  maxv 		.szoverride = true,
   1183  1.6  maxv 		.defsize = -1,
   1184  1.6  maxv 		.allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
   1185  1.6  maxv 		.emul = x86_emul_movs
   1186  1.6  maxv 	},
   1187  1.6  maxv 
   1188  1.6  maxv 	/*
   1189  1.5  maxv 	 * STOS
   1190  1.5  maxv 	 */
   1191  1.5  maxv 	{
   1192  1.5  maxv 		/* Yb, AL */
   1193  1.5  maxv 		.byte = 0xAA,
   1194  1.5  maxv 		.stos = true,
   1195  1.5  maxv 		.szoverride = false,
   1196  1.5  maxv 		.defsize = OPSIZE_BYTE,
   1197  1.5  maxv 		.allsize = -1,
   1198  1.5  maxv 		.emul = x86_emul_stos
   1199  1.5  maxv 	},
   1200  1.5  maxv 	{
   1201  1.5  maxv 		/* Yv, rAX */
   1202  1.5  maxv 		.byte = 0xAB,
   1203  1.5  maxv 		.stos = true,
   1204  1.5  maxv 		.szoverride = true,
   1205  1.5  maxv 		.defsize = -1,
   1206  1.5  maxv 		.allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
   1207  1.5  maxv 		.emul = x86_emul_stos
   1208  1.5  maxv 	},
   1209  1.5  maxv 
   1210  1.5  maxv 	/*
   1211  1.5  maxv 	 * LODS
   1212  1.5  maxv 	 */
   1213  1.5  maxv 	{
   1214  1.5  maxv 		/* AL, Xb */
   1215  1.5  maxv 		.byte = 0xAC,
   1216  1.5  maxv 		.lods = true,
   1217  1.5  maxv 		.szoverride = false,
   1218  1.5  maxv 		.defsize = OPSIZE_BYTE,
   1219  1.5  maxv 		.allsize = -1,
   1220  1.5  maxv 		.emul = x86_emul_lods
   1221  1.5  maxv 	},
   1222  1.5  maxv 	{
   1223  1.5  maxv 		/* rAX, Xv */
   1224  1.5  maxv 		.byte = 0xAD,
   1225  1.5  maxv 		.lods = true,
   1226  1.5  maxv 		.szoverride = true,
   1227  1.5  maxv 		.defsize = -1,
   1228  1.5  maxv 		.allsize = OPSIZE_WORD|OPSIZE_DOUB|OPSIZE_QUAD,
   1229  1.5  maxv 		.emul = x86_emul_lods
   1230  1.5  maxv 	},
   1231  1.5  maxv };
   1232  1.5  maxv 
   1233  1.5  maxv static const struct x86_reg gpr_map__rip = { NVMM_X64_GPR_RIP, 0xFFFFFFFFFFFFFFFF };
   1234  1.5  maxv 
   1235  1.5  maxv /* [REX-present][enc][opsize] */
   1236  1.5  maxv static const struct x86_reg gpr_map__special[2][4][8] = {
   1237  1.5  maxv 	[false] = {
   1238  1.5  maxv 		/* No REX prefix. */
   1239  1.5  maxv 		[0b00] = {
   1240  1.5  maxv 			[0] = { NVMM_X64_GPR_RAX, 0x000000000000FF00 }, /* AH */
   1241  1.5  maxv 			[1] = { NVMM_X64_GPR_RSP, 0x000000000000FFFF }, /* SP */
   1242  1.5  maxv 			[2] = { -1, 0 },
   1243  1.5  maxv 			[3] = { NVMM_X64_GPR_RSP, 0x00000000FFFFFFFF }, /* ESP */
   1244  1.5  maxv 			[4] = { -1, 0 },
   1245  1.5  maxv 			[5] = { -1, 0 },
   1246  1.5  maxv 			[6] = { -1, 0 },
   1247  1.5  maxv 			[7] = { -1, 0 },
   1248  1.5  maxv 		},
   1249  1.5  maxv 		[0b01] = {
   1250  1.5  maxv 			[0] = { NVMM_X64_GPR_RCX, 0x000000000000FF00 }, /* CH */
   1251  1.5  maxv 			[1] = { NVMM_X64_GPR_RBP, 0x000000000000FFFF }, /* BP */
   1252  1.5  maxv 			[2] = { -1, 0 },
   1253  1.5  maxv 			[3] = { NVMM_X64_GPR_RBP, 0x00000000FFFFFFFF },	/* EBP */
   1254  1.5  maxv 			[4] = { -1, 0 },
   1255  1.5  maxv 			[5] = { -1, 0 },
   1256  1.5  maxv 			[6] = { -1, 0 },
   1257  1.5  maxv 			[7] = { -1, 0 },
   1258  1.5  maxv 		},
   1259  1.5  maxv 		[0b10] = {
   1260  1.5  maxv 			[0] = { NVMM_X64_GPR_RDX, 0x000000000000FF00 }, /* DH */
   1261  1.5  maxv 			[1] = { NVMM_X64_GPR_RSI, 0x000000000000FFFF }, /* SI */
   1262  1.5  maxv 			[2] = { -1, 0 },
   1263  1.5  maxv 			[3] = { NVMM_X64_GPR_RSI, 0x00000000FFFFFFFF }, /* ESI */
   1264  1.5  maxv 			[4] = { -1, 0 },
   1265  1.5  maxv 			[5] = { -1, 0 },
   1266  1.5  maxv 			[6] = { -1, 0 },
   1267  1.5  maxv 			[7] = { -1, 0 },
   1268  1.5  maxv 		},
   1269  1.5  maxv 		[0b11] = {
   1270  1.5  maxv 			[0] = { NVMM_X64_GPR_RBX, 0x000000000000FF00 }, /* BH */
   1271  1.5  maxv 			[1] = { NVMM_X64_GPR_RDI, 0x000000000000FFFF }, /* DI */
   1272  1.5  maxv 			[2] = { -1, 0 },
   1273  1.5  maxv 			[3] = { NVMM_X64_GPR_RDI, 0x00000000FFFFFFFF }, /* EDI */
   1274  1.5  maxv 			[4] = { -1, 0 },
   1275  1.5  maxv 			[5] = { -1, 0 },
   1276  1.5  maxv 			[6] = { -1, 0 },
   1277  1.5  maxv 			[7] = { -1, 0 },
   1278  1.5  maxv 		}
   1279  1.5  maxv 	},
   1280  1.5  maxv 	[true] = {
   1281  1.5  maxv 		/* Has REX prefix. */
   1282  1.5  maxv 		[0b00] = {
   1283  1.5  maxv 			[0] = { NVMM_X64_GPR_RSP, 0x00000000000000FF }, /* SPL */
   1284  1.5  maxv 			[1] = { NVMM_X64_GPR_RSP, 0x000000000000FFFF }, /* SP */
   1285  1.5  maxv 			[2] = { -1, 0 },
   1286  1.5  maxv 			[3] = { NVMM_X64_GPR_RSP, 0x00000000FFFFFFFF }, /* ESP */
   1287  1.5  maxv 			[4] = { -1, 0 },
   1288  1.5  maxv 			[5] = { -1, 0 },
   1289  1.5  maxv 			[6] = { -1, 0 },
   1290  1.5  maxv 			[7] = { NVMM_X64_GPR_RSP, 0xFFFFFFFFFFFFFFFF }, /* RSP */
   1291  1.5  maxv 		},
   1292  1.5  maxv 		[0b01] = {
   1293  1.5  maxv 			[0] = { NVMM_X64_GPR_RBP, 0x00000000000000FF }, /* BPL */
   1294  1.5  maxv 			[1] = { NVMM_X64_GPR_RBP, 0x000000000000FFFF }, /* BP */
   1295  1.5  maxv 			[2] = { -1, 0 },
   1296  1.5  maxv 			[3] = { NVMM_X64_GPR_RBP, 0x00000000FFFFFFFF }, /* EBP */
   1297  1.5  maxv 			[4] = { -1, 0 },
   1298  1.5  maxv 			[5] = { -1, 0 },
   1299  1.5  maxv 			[6] = { -1, 0 },
   1300  1.5  maxv 			[7] = { NVMM_X64_GPR_RBP, 0xFFFFFFFFFFFFFFFF }, /* RBP */
   1301  1.5  maxv 		},
   1302  1.5  maxv 		[0b10] = {
   1303  1.5  maxv 			[0] = { NVMM_X64_GPR_RSI, 0x00000000000000FF }, /* SIL */
   1304  1.5  maxv 			[1] = { NVMM_X64_GPR_RSI, 0x000000000000FFFF }, /* SI */
   1305  1.5  maxv 			[2] = { -1, 0 },
   1306  1.5  maxv 			[3] = { NVMM_X64_GPR_RSI, 0x00000000FFFFFFFF }, /* ESI */
   1307  1.5  maxv 			[4] = { -1, 0 },
   1308  1.5  maxv 			[5] = { -1, 0 },
   1309  1.5  maxv 			[6] = { -1, 0 },
   1310  1.5  maxv 			[7] = { NVMM_X64_GPR_RSI, 0xFFFFFFFFFFFFFFFF }, /* RSI */
   1311  1.5  maxv 		},
   1312  1.5  maxv 		[0b11] = {
   1313  1.5  maxv 			[0] = { NVMM_X64_GPR_RDI, 0x00000000000000FF }, /* DIL */
   1314  1.5  maxv 			[1] = { NVMM_X64_GPR_RDI, 0x000000000000FFFF }, /* DI */
   1315  1.5  maxv 			[2] = { -1, 0 },
   1316  1.5  maxv 			[3] = { NVMM_X64_GPR_RDI, 0x00000000FFFFFFFF }, /* EDI */
   1317  1.5  maxv 			[4] = { -1, 0 },
   1318  1.5  maxv 			[5] = { -1, 0 },
   1319  1.5  maxv 			[6] = { -1, 0 },
   1320  1.5  maxv 			[7] = { NVMM_X64_GPR_RDI, 0xFFFFFFFFFFFFFFFF }, /* RDI */
   1321  1.5  maxv 		}
   1322  1.5  maxv 	}
   1323  1.5  maxv };
   1324  1.5  maxv 
   1325  1.5  maxv /* [depends][enc][size] */
   1326  1.5  maxv static const struct x86_reg gpr_map[2][8][8] = {
   1327  1.5  maxv 	[false] = {
   1328  1.5  maxv 		/* Not extended. */
   1329  1.5  maxv 		[0b000] = {
   1330  1.5  maxv 			[0] = { NVMM_X64_GPR_RAX, 0x00000000000000FF }, /* AL */
   1331  1.5  maxv 			[1] = { NVMM_X64_GPR_RAX, 0x000000000000FFFF }, /* AX */
   1332  1.5  maxv 			[2] = { -1, 0 },
   1333  1.5  maxv 			[3] = { NVMM_X64_GPR_RAX, 0x00000000FFFFFFFF }, /* EAX */
   1334  1.5  maxv 			[4] = { -1, 0 },
   1335  1.5  maxv 			[5] = { -1, 0 },
   1336  1.5  maxv 			[6] = { -1, 0 },
   1337  1.5  maxv 			[7] = { NVMM_X64_GPR_RAX, 0x00000000FFFFFFFF }, /* RAX */
   1338  1.5  maxv 		},
   1339  1.5  maxv 		[0b001] = {
   1340  1.5  maxv 			[0] = { NVMM_X64_GPR_RCX, 0x00000000000000FF }, /* CL */
   1341  1.5  maxv 			[1] = { NVMM_X64_GPR_RCX, 0x000000000000FFFF }, /* CX */
   1342  1.5  maxv 			[2] = { -1, 0 },
   1343  1.5  maxv 			[3] = { NVMM_X64_GPR_RCX, 0x00000000FFFFFFFF }, /* ECX */
   1344  1.5  maxv 			[4] = { -1, 0 },
   1345  1.5  maxv 			[5] = { -1, 0 },
   1346  1.5  maxv 			[6] = { -1, 0 },
   1347  1.5  maxv 			[7] = { NVMM_X64_GPR_RCX, 0x00000000FFFFFFFF }, /* RCX */
   1348  1.5  maxv 		},
   1349  1.5  maxv 		[0b010] = {
   1350  1.5  maxv 			[0] = { NVMM_X64_GPR_RDX, 0x00000000000000FF }, /* DL */
   1351  1.5  maxv 			[1] = { NVMM_X64_GPR_RDX, 0x000000000000FFFF }, /* DX */
   1352  1.5  maxv 			[2] = { -1, 0 },
   1353  1.5  maxv 			[3] = { NVMM_X64_GPR_RDX, 0x00000000FFFFFFFF }, /* EDX */
   1354  1.5  maxv 			[4] = { -1, 0 },
   1355  1.5  maxv 			[5] = { -1, 0 },
   1356  1.5  maxv 			[6] = { -1, 0 },
   1357  1.5  maxv 			[7] = { NVMM_X64_GPR_RDX, 0x00000000FFFFFFFF }, /* RDX */
   1358  1.5  maxv 		},
   1359  1.5  maxv 		[0b011] = {
   1360  1.5  maxv 			[0] = { NVMM_X64_GPR_RBX, 0x00000000000000FF }, /* BL */
   1361  1.5  maxv 			[1] = { NVMM_X64_GPR_RBX, 0x000000000000FFFF }, /* BX */
   1362  1.5  maxv 			[2] = { -1, 0 },
   1363  1.5  maxv 			[3] = { NVMM_X64_GPR_RBX, 0x00000000FFFFFFFF }, /* EBX */
   1364  1.5  maxv 			[4] = { -1, 0 },
   1365  1.5  maxv 			[5] = { -1, 0 },
   1366  1.5  maxv 			[6] = { -1, 0 },
   1367  1.5  maxv 			[7] = { NVMM_X64_GPR_RBX, 0x00000000FFFFFFFF }, /* RBX */
   1368  1.5  maxv 		},
   1369  1.5  maxv 		[0b100] = {
   1370  1.5  maxv 			[0] = { -1, 0 }, /* SPECIAL */
   1371  1.5  maxv 			[1] = { -1, 0 }, /* SPECIAL */
   1372  1.5  maxv 			[2] = { -1, 0 },
   1373  1.5  maxv 			[3] = { -1, 0 }, /* SPECIAL */
   1374  1.5  maxv 			[4] = { -1, 0 },
   1375  1.5  maxv 			[5] = { -1, 0 },
   1376  1.5  maxv 			[6] = { -1, 0 },
   1377  1.5  maxv 			[7] = { -1, 0 }, /* SPECIAL */
   1378  1.5  maxv 		},
   1379  1.5  maxv 		[0b101] = {
   1380  1.5  maxv 			[0] = { -1, 0 }, /* SPECIAL */
   1381  1.5  maxv 			[1] = { -1, 0 }, /* SPECIAL */
   1382  1.5  maxv 			[2] = { -1, 0 },
   1383  1.5  maxv 			[3] = { -1, 0 }, /* SPECIAL */
   1384  1.5  maxv 			[4] = { -1, 0 },
   1385  1.5  maxv 			[5] = { -1, 0 },
   1386  1.5  maxv 			[6] = { -1, 0 },
   1387  1.5  maxv 			[7] = { -1, 0 }, /* SPECIAL */
   1388  1.5  maxv 		},
   1389  1.5  maxv 		[0b110] = {
   1390  1.5  maxv 			[0] = { -1, 0 }, /* SPECIAL */
   1391  1.5  maxv 			[1] = { -1, 0 }, /* SPECIAL */
   1392  1.5  maxv 			[2] = { -1, 0 },
   1393  1.5  maxv 			[3] = { -1, 0 }, /* SPECIAL */
   1394  1.5  maxv 			[4] = { -1, 0 },
   1395  1.5  maxv 			[5] = { -1, 0 },
   1396  1.5  maxv 			[6] = { -1, 0 },
   1397  1.5  maxv 			[7] = { -1, 0 }, /* SPECIAL */
   1398  1.5  maxv 		},
   1399  1.5  maxv 		[0b111] = {
   1400  1.5  maxv 			[0] = { -1, 0 }, /* SPECIAL */
   1401  1.5  maxv 			[1] = { -1, 0 }, /* SPECIAL */
   1402  1.5  maxv 			[2] = { -1, 0 },
   1403  1.5  maxv 			[3] = { -1, 0 }, /* SPECIAL */
   1404  1.5  maxv 			[4] = { -1, 0 },
   1405  1.5  maxv 			[5] = { -1, 0 },
   1406  1.5  maxv 			[6] = { -1, 0 },
   1407  1.5  maxv 			[7] = { -1, 0 }, /* SPECIAL */
   1408  1.5  maxv 		},
   1409  1.5  maxv 	},
   1410  1.5  maxv 	[true] = {
   1411  1.5  maxv 		/* Extended. */
   1412  1.5  maxv 		[0b000] = {
   1413  1.5  maxv 			[0] = { NVMM_X64_GPR_R8, 0x00000000000000FF }, /* R8B */
   1414  1.5  maxv 			[1] = { NVMM_X64_GPR_R8, 0x000000000000FFFF }, /* R8W */
   1415  1.5  maxv 			[2] = { -1, 0 },
   1416  1.5  maxv 			[3] = { NVMM_X64_GPR_R8, 0x00000000FFFFFFFF }, /* R8D */
   1417  1.5  maxv 			[4] = { -1, 0 },
   1418  1.5  maxv 			[5] = { -1, 0 },
   1419  1.5  maxv 			[6] = { -1, 0 },
   1420  1.5  maxv 			[7] = { NVMM_X64_GPR_R8, 0x00000000FFFFFFFF }, /* R8 */
   1421  1.5  maxv 		},
   1422  1.5  maxv 		[0b001] = {
   1423  1.5  maxv 			[0] = { NVMM_X64_GPR_R9, 0x00000000000000FF }, /* R9B */
   1424  1.5  maxv 			[1] = { NVMM_X64_GPR_R9, 0x000000000000FFFF }, /* R9W */
   1425  1.5  maxv 			[2] = { -1, 0 },
   1426  1.5  maxv 			[3] = { NVMM_X64_GPR_R9, 0x00000000FFFFFFFF }, /* R9D */
   1427  1.5  maxv 			[4] = { -1, 0 },
   1428  1.5  maxv 			[5] = { -1, 0 },
   1429  1.5  maxv 			[6] = { -1, 0 },
   1430  1.5  maxv 			[7] = { NVMM_X64_GPR_R9, 0x00000000FFFFFFFF }, /* R9 */
   1431  1.5  maxv 		},
   1432  1.5  maxv 		[0b010] = {
   1433  1.5  maxv 			[0] = { NVMM_X64_GPR_R10, 0x00000000000000FF }, /* R10B */
   1434  1.5  maxv 			[1] = { NVMM_X64_GPR_R10, 0x000000000000FFFF }, /* R10W */
   1435  1.5  maxv 			[2] = { -1, 0 },
   1436  1.5  maxv 			[3] = { NVMM_X64_GPR_R10, 0x00000000FFFFFFFF }, /* R10D */
   1437  1.5  maxv 			[4] = { -1, 0 },
   1438  1.5  maxv 			[5] = { -1, 0 },
   1439  1.5  maxv 			[6] = { -1, 0 },
   1440  1.5  maxv 			[7] = { NVMM_X64_GPR_R10, 0x00000000FFFFFFFF }, /* R10 */
   1441  1.5  maxv 		},
   1442  1.5  maxv 		[0b011] = {
   1443  1.5  maxv 			[0] = { NVMM_X64_GPR_R11, 0x00000000000000FF }, /* R11B */
   1444  1.5  maxv 			[1] = { NVMM_X64_GPR_R11, 0x000000000000FFFF }, /* R11W */
   1445  1.5  maxv 			[2] = { -1, 0 },
   1446  1.5  maxv 			[3] = { NVMM_X64_GPR_R11, 0x00000000FFFFFFFF }, /* R11D */
   1447  1.5  maxv 			[4] = { -1, 0 },
   1448  1.5  maxv 			[5] = { -1, 0 },
   1449  1.5  maxv 			[6] = { -1, 0 },
   1450  1.5  maxv 			[7] = { NVMM_X64_GPR_R11, 0x00000000FFFFFFFF }, /* R11 */
   1451  1.5  maxv 		},
   1452  1.5  maxv 		[0b100] = {
   1453  1.5  maxv 			[0] = { NVMM_X64_GPR_R12, 0x00000000000000FF }, /* R12B */
   1454  1.5  maxv 			[1] = { NVMM_X64_GPR_R12, 0x000000000000FFFF }, /* R12W */
   1455  1.5  maxv 			[2] = { -1, 0 },
   1456  1.5  maxv 			[3] = { NVMM_X64_GPR_R12, 0x00000000FFFFFFFF }, /* R12D */
   1457  1.5  maxv 			[4] = { -1, 0 },
   1458  1.5  maxv 			[5] = { -1, 0 },
   1459  1.5  maxv 			[6] = { -1, 0 },
   1460  1.5  maxv 			[7] = { NVMM_X64_GPR_R12, 0x00000000FFFFFFFF }, /* R12 */
   1461  1.5  maxv 		},
   1462  1.5  maxv 		[0b101] = {
   1463  1.5  maxv 			[0] = { NVMM_X64_GPR_R13, 0x00000000000000FF }, /* R13B */
   1464  1.5  maxv 			[1] = { NVMM_X64_GPR_R13, 0x000000000000FFFF }, /* R13W */
   1465  1.5  maxv 			[2] = { -1, 0 },
   1466  1.5  maxv 			[3] = { NVMM_X64_GPR_R13, 0x00000000FFFFFFFF }, /* R13D */
   1467  1.5  maxv 			[4] = { -1, 0 },
   1468  1.5  maxv 			[5] = { -1, 0 },
   1469  1.5  maxv 			[6] = { -1, 0 },
   1470  1.5  maxv 			[7] = { NVMM_X64_GPR_R13, 0x00000000FFFFFFFF }, /* R13 */
   1471  1.5  maxv 		},
   1472  1.5  maxv 		[0b110] = {
   1473  1.5  maxv 			[0] = { NVMM_X64_GPR_R14, 0x00000000000000FF }, /* R14B */
   1474  1.5  maxv 			[1] = { NVMM_X64_GPR_R14, 0x000000000000FFFF }, /* R14W */
   1475  1.5  maxv 			[2] = { -1, 0 },
   1476  1.5  maxv 			[3] = { NVMM_X64_GPR_R14, 0x00000000FFFFFFFF }, /* R14D */
   1477  1.5  maxv 			[4] = { -1, 0 },
   1478  1.5  maxv 			[5] = { -1, 0 },
   1479  1.5  maxv 			[6] = { -1, 0 },
   1480  1.5  maxv 			[7] = { NVMM_X64_GPR_R14, 0x00000000FFFFFFFF }, /* R14 */
   1481  1.5  maxv 		},
   1482  1.5  maxv 		[0b111] = {
   1483  1.5  maxv 			[0] = { NVMM_X64_GPR_R15, 0x00000000000000FF }, /* R15B */
   1484  1.5  maxv 			[1] = { NVMM_X64_GPR_R15, 0x000000000000FFFF }, /* R15W */
   1485  1.5  maxv 			[2] = { -1, 0 },
   1486  1.5  maxv 			[3] = { NVMM_X64_GPR_R15, 0x00000000FFFFFFFF }, /* R15D */
   1487  1.5  maxv 			[4] = { -1, 0 },
   1488  1.5  maxv 			[5] = { -1, 0 },
   1489  1.5  maxv 			[6] = { -1, 0 },
   1490  1.5  maxv 			[7] = { NVMM_X64_GPR_R15, 0x00000000FFFFFFFF }, /* R15 */
   1491  1.5  maxv 		},
   1492  1.5  maxv 	}
   1493  1.5  maxv };
   1494  1.5  maxv 
   1495  1.5  maxv static int
   1496  1.5  maxv node_overflow(struct x86_decode_fsm *fsm, struct x86_instr *instr)
   1497  1.5  maxv {
   1498  1.5  maxv 	fsm->fn = NULL;
   1499  1.5  maxv 	return -1;
   1500  1.5  maxv }
   1501  1.5  maxv 
   1502  1.5  maxv static int
   1503  1.5  maxv fsm_read(struct x86_decode_fsm *fsm, uint8_t *bytes, size_t n)
   1504  1.5  maxv {
   1505  1.5  maxv 	if (fsm->buf + n > fsm->end) {
   1506  1.5  maxv 		return -1;
   1507  1.5  maxv 	}
   1508  1.5  maxv 	memcpy(bytes, fsm->buf, n);
   1509  1.5  maxv 	return 0;
   1510  1.5  maxv }
   1511  1.5  maxv 
   1512  1.5  maxv static void
   1513  1.5  maxv fsm_advance(struct x86_decode_fsm *fsm, size_t n,
   1514  1.5  maxv     int (*fn)(struct x86_decode_fsm *, struct x86_instr *))
   1515  1.5  maxv {
   1516  1.5  maxv 	fsm->buf += n;
   1517  1.5  maxv 	if (fsm->buf > fsm->end) {
   1518  1.5  maxv 		fsm->fn = node_overflow;
   1519  1.5  maxv 	} else {
   1520  1.5  maxv 		fsm->fn = fn;
   1521  1.5  maxv 	}
   1522  1.5  maxv }
   1523  1.5  maxv 
   1524  1.5  maxv static const struct x86_reg *
   1525  1.5  maxv resolve_special_register(struct x86_instr *instr, uint8_t enc, size_t regsize)
   1526  1.5  maxv {
   1527  1.5  maxv 	enc &= 0b11;
   1528  1.5  maxv 	if (regsize == 8) {
   1529  1.5  maxv 		/* May be 64bit without REX */
   1530  1.5  maxv 		return &gpr_map__special[1][enc][regsize-1];
   1531  1.5  maxv 	}
   1532  1.5  maxv 	return &gpr_map__special[instr->rexpref.present][enc][regsize-1];
   1533  1.5  maxv }
   1534  1.5  maxv 
   1535  1.5  maxv /*
   1536  1.6  maxv  * Special node, for MOVS. Fake two displacements of zero on the source and
   1537  1.6  maxv  * destination registers.
   1538  1.6  maxv  */
   1539  1.6  maxv static int
   1540  1.6  maxv node_movs(struct x86_decode_fsm *fsm, struct x86_instr *instr)
   1541  1.6  maxv {
   1542  1.6  maxv 	size_t adrsize;
   1543  1.6  maxv 
   1544  1.6  maxv 	adrsize = instr->address_size;
   1545  1.6  maxv 
   1546  1.6  maxv 	/* DS:RSI */
   1547  1.6  maxv 	instr->src.type = STORE_REG;
   1548  1.6  maxv 	instr->src.u.reg = &gpr_map__special[1][2][adrsize-1];
   1549  1.6  maxv 	instr->src.disp.type = DISP_0;
   1550  1.6  maxv 
   1551  1.6  maxv 	/* ES:RDI, force ES */
   1552  1.6  maxv 	instr->dst.type = STORE_REG;
   1553  1.6  maxv 	instr->dst.u.reg = &gpr_map__special[1][3][adrsize-1];
   1554  1.6  maxv 	instr->dst.disp.type = DISP_0;
   1555  1.6  maxv 	instr->dst.hardseg = NVMM_X64_SEG_ES;
   1556  1.6  maxv 
   1557  1.6  maxv 	fsm_advance(fsm, 0, NULL);
   1558  1.6  maxv 
   1559  1.6  maxv 	return 0;
   1560  1.6  maxv }
   1561  1.6  maxv 
   1562  1.6  maxv /*
   1563  1.5  maxv  * Special node, for STOS and LODS. Fake a displacement of zero on the
   1564  1.5  maxv  * destination register.
   1565  1.5  maxv  */
   1566  1.5  maxv static int
   1567  1.5  maxv node_stlo(struct x86_decode_fsm *fsm, struct x86_instr *instr)
   1568  1.5  maxv {
   1569  1.5  maxv 	const struct x86_opcode *opcode = instr->opcode;
   1570  1.5  maxv 	struct x86_store *stlo, *streg;
   1571  1.5  maxv 	size_t adrsize, regsize;
   1572  1.5  maxv 
   1573  1.5  maxv 	adrsize = instr->address_size;
   1574  1.5  maxv 	regsize = instr->operand_size;
   1575  1.5  maxv 
   1576  1.5  maxv 	if (opcode->stos) {
   1577  1.5  maxv 		streg = &instr->src;
   1578  1.5  maxv 		stlo = &instr->dst;
   1579  1.5  maxv 	} else {
   1580  1.5  maxv 		streg = &instr->dst;
   1581  1.5  maxv 		stlo = &instr->src;
   1582  1.5  maxv 	}
   1583  1.5  maxv 
   1584  1.5  maxv 	streg->type = STORE_REG;
   1585  1.5  maxv 	streg->u.reg = &gpr_map[0][0][regsize-1]; /* ?AX */
   1586  1.5  maxv 
   1587  1.5  maxv 	stlo->type = STORE_REG;
   1588  1.5  maxv 	if (opcode->stos) {
   1589  1.5  maxv 		/* ES:RDI, force ES */
   1590  1.5  maxv 		stlo->u.reg = &gpr_map__special[1][3][adrsize-1];
   1591  1.6  maxv 		stlo->hardseg = NVMM_X64_SEG_ES;
   1592  1.5  maxv 	} else {
   1593  1.5  maxv 		/* DS:RSI */
   1594  1.5  maxv 		stlo->u.reg = &gpr_map__special[1][2][adrsize-1];
   1595  1.5  maxv 	}
   1596  1.5  maxv 	stlo->disp.type = DISP_0;
   1597  1.5  maxv 
   1598  1.5  maxv 	fsm_advance(fsm, 0, NULL);
   1599  1.5  maxv 
   1600  1.5  maxv 	return 0;
   1601  1.5  maxv }
   1602  1.5  maxv 
   1603  1.5  maxv static int
   1604  1.5  maxv node_dmo(struct x86_decode_fsm *fsm, struct x86_instr *instr)
   1605  1.5  maxv {
   1606  1.5  maxv 	const struct x86_opcode *opcode = instr->opcode;
   1607  1.5  maxv 	struct x86_store *stdmo, *streg;
   1608  1.5  maxv 	size_t adrsize, regsize;
   1609  1.5  maxv 
   1610  1.5  maxv 	adrsize = instr->address_size;
   1611  1.5  maxv 	regsize = instr->operand_size;
   1612  1.5  maxv 
   1613  1.5  maxv 	if (opcode->todmo) {
   1614  1.5  maxv 		streg = &instr->src;
   1615  1.5  maxv 		stdmo = &instr->dst;
   1616  1.5  maxv 	} else {
   1617  1.5  maxv 		streg = &instr->dst;
   1618  1.5  maxv 		stdmo = &instr->src;
   1619  1.5  maxv 	}
   1620  1.5  maxv 
   1621  1.5  maxv 	streg->type = STORE_REG;
   1622  1.5  maxv 	streg->u.reg = &gpr_map[0][0][regsize-1]; /* ?AX */
   1623  1.5  maxv 
   1624  1.5  maxv 	stdmo->type = STORE_DMO;
   1625  1.5  maxv 	if (fsm_read(fsm, (uint8_t *)&stdmo->u.dmo, adrsize) == -1) {
   1626  1.5  maxv 		return -1;
   1627  1.5  maxv 	}
   1628  1.5  maxv 	fsm_advance(fsm, adrsize, NULL);
   1629  1.5  maxv 
   1630  1.5  maxv 	return 0;
   1631  1.5  maxv }
   1632  1.5  maxv 
   1633  1.5  maxv static int
   1634  1.5  maxv node_immediate(struct x86_decode_fsm *fsm, struct x86_instr *instr)
   1635  1.5  maxv {
   1636  1.5  maxv 	const struct x86_opcode *opcode = instr->opcode;
   1637  1.5  maxv 	struct x86_store *store;
   1638  1.5  maxv 	uint8_t flags;
   1639  1.5  maxv 	uint8_t immsize;
   1640  1.5  maxv 
   1641  1.5  maxv 	/* The immediate is the source */
   1642  1.5  maxv 	store = &instr->src;
   1643  1.5  maxv 	immsize = instr->operand_size;
   1644  1.5  maxv 
   1645  1.5  maxv 	/* Get the correct flags */
   1646  1.5  maxv 	flags = opcode->flags;
   1647  1.5  maxv 	if ((flags & FLAG_z) && (immsize == 8)) {
   1648  1.5  maxv 		/* 'z' operates here */
   1649  1.5  maxv 		immsize = 4;
   1650  1.5  maxv 	}
   1651  1.5  maxv 
   1652  1.5  maxv 	store->type = STORE_IMM;
   1653  1.5  maxv 	store->u.imm.size = immsize;
   1654  1.5  maxv 
   1655  1.5  maxv 	if (fsm_read(fsm, store->u.imm.data, store->u.imm.size) == -1) {
   1656  1.5  maxv 		return -1;
   1657  1.5  maxv 	}
   1658  1.5  maxv 
   1659  1.5  maxv 	fsm_advance(fsm, store->u.imm.size, NULL);
   1660  1.5  maxv 
   1661  1.5  maxv 	return 0;
   1662  1.5  maxv }
   1663  1.5  maxv 
   1664  1.5  maxv static int
   1665  1.5  maxv node_disp(struct x86_decode_fsm *fsm, struct x86_instr *instr)
   1666  1.5  maxv {
   1667  1.5  maxv 	const struct x86_opcode *opcode = instr->opcode;
   1668  1.5  maxv 	size_t n;
   1669  1.5  maxv 
   1670  1.5  maxv 	if (instr->strm->disp.type == DISP_1) {
   1671  1.5  maxv 		n = 1;
   1672  1.5  maxv 	} else { /* DISP4 */
   1673  1.5  maxv 		n = 4;
   1674  1.5  maxv 	}
   1675  1.5  maxv 
   1676  1.5  maxv 	if (fsm_read(fsm, instr->strm->disp.data, n) == -1) {
   1677  1.5  maxv 		return -1;
   1678  1.5  maxv 	}
   1679  1.5  maxv 
   1680  1.5  maxv 	if (opcode->immediate) {
   1681  1.5  maxv 		fsm_advance(fsm, n, node_immediate);
   1682  1.5  maxv 	} else {
   1683  1.5  maxv 		fsm_advance(fsm, n, NULL);
   1684  1.5  maxv 	}
   1685  1.5  maxv 
   1686  1.5  maxv 	return 0;
   1687  1.5  maxv }
   1688  1.5  maxv 
   1689  1.5  maxv static const struct x86_reg *
   1690  1.5  maxv get_register_idx(struct x86_instr *instr, uint8_t index)
   1691  1.5  maxv {
   1692  1.5  maxv 	uint8_t enc = index;
   1693  1.5  maxv 	const struct x86_reg *reg;
   1694  1.5  maxv 	size_t regsize;
   1695  1.5  maxv 
   1696  1.5  maxv 	regsize = instr->address_size;
   1697  1.5  maxv 	reg = &gpr_map[instr->rexpref.x][enc][regsize-1];
   1698  1.5  maxv 
   1699  1.5  maxv 	if (reg->num == -1) {
   1700  1.5  maxv 		reg = resolve_special_register(instr, enc, regsize);
   1701  1.5  maxv 	}
   1702  1.5  maxv 
   1703  1.5  maxv 	return reg;
   1704  1.5  maxv }
   1705  1.5  maxv 
   1706  1.5  maxv static const struct x86_reg *
   1707  1.5  maxv get_register_bas(struct x86_instr *instr, uint8_t base)
   1708  1.5  maxv {
   1709  1.5  maxv 	uint8_t enc = base;
   1710  1.5  maxv 	const struct x86_reg *reg;
   1711  1.5  maxv 	size_t regsize;
   1712  1.5  maxv 
   1713  1.5  maxv 	regsize = instr->address_size;
   1714  1.5  maxv 	reg = &gpr_map[instr->rexpref.b][enc][regsize-1];
   1715  1.5  maxv 	if (reg->num == -1) {
   1716  1.5  maxv 		reg = resolve_special_register(instr, enc, regsize);
   1717  1.5  maxv 	}
   1718  1.5  maxv 
   1719  1.5  maxv 	return reg;
   1720  1.5  maxv }
   1721  1.5  maxv 
   1722  1.5  maxv static int
   1723  1.5  maxv node_sib(struct x86_decode_fsm *fsm, struct x86_instr *instr)
   1724  1.5  maxv {
   1725  1.5  maxv 	const struct x86_opcode *opcode;
   1726  1.5  maxv 	uint8_t scale, index, base;
   1727  1.5  maxv 	bool noindex, nobase;
   1728  1.5  maxv 	uint8_t byte;
   1729  1.5  maxv 
   1730  1.5  maxv 	if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
   1731  1.5  maxv 		return -1;
   1732  1.5  maxv 	}
   1733  1.5  maxv 
   1734  1.5  maxv 	scale = ((byte & 0b11000000) >> 6);
   1735  1.5  maxv 	index = ((byte & 0b00111000) >> 3);
   1736  1.5  maxv 	base  = ((byte & 0b00000111) >> 0);
   1737  1.5  maxv 
   1738  1.5  maxv 	opcode = instr->opcode;
   1739  1.5  maxv 
   1740  1.5  maxv 	noindex = false;
   1741  1.5  maxv 	nobase = false;
   1742  1.5  maxv 
   1743  1.5  maxv 	if (index == 0b100 && !instr->rexpref.x) {
   1744  1.5  maxv 		/* Special case: the index is null */
   1745  1.5  maxv 		noindex = true;
   1746  1.5  maxv 	}
   1747  1.5  maxv 
   1748  1.5  maxv 	if (instr->regmodrm.mod == 0b00 && base == 0b101) {
   1749  1.5  maxv 		/* Special case: the base is null + disp32 */
   1750  1.5  maxv 		instr->strm->disp.type = DISP_4;
   1751  1.5  maxv 		nobase = true;
   1752  1.5  maxv 	}
   1753  1.5  maxv 
   1754  1.5  maxv 	instr->strm->type = STORE_SIB;
   1755  1.5  maxv 	instr->strm->u.sib.scale = (1 << scale);
   1756  1.5  maxv 	if (!noindex)
   1757  1.5  maxv 		instr->strm->u.sib.idx = get_register_idx(instr, index);
   1758  1.5  maxv 	if (!nobase)
   1759  1.5  maxv 		instr->strm->u.sib.bas = get_register_bas(instr, base);
   1760  1.5  maxv 
   1761  1.5  maxv 	/* May have a displacement, or an immediate */
   1762  1.5  maxv 	if (instr->strm->disp.type == DISP_1 || instr->strm->disp.type == DISP_4) {
   1763  1.5  maxv 		fsm_advance(fsm, 1, node_disp);
   1764  1.5  maxv 	} else if (opcode->immediate) {
   1765  1.5  maxv 		fsm_advance(fsm, 1, node_immediate);
   1766  1.5  maxv 	} else {
   1767  1.5  maxv 		fsm_advance(fsm, 1, NULL);
   1768  1.5  maxv 	}
   1769  1.5  maxv 
   1770  1.5  maxv 	return 0;
   1771  1.5  maxv }
   1772  1.5  maxv 
   1773  1.5  maxv static const struct x86_reg *
   1774  1.5  maxv get_register_reg(struct x86_instr *instr, const struct x86_opcode *opcode)
   1775  1.5  maxv {
   1776  1.5  maxv 	uint8_t enc = instr->regmodrm.reg;
   1777  1.5  maxv 	const struct x86_reg *reg;
   1778  1.5  maxv 	size_t regsize;
   1779  1.5  maxv 
   1780  1.5  maxv 	if ((opcode->flags & FLAG_z) && (instr->operand_size == 8)) {
   1781  1.5  maxv 		/* 'z' operates here */
   1782  1.5  maxv 		regsize = 4;
   1783  1.5  maxv 	} else {
   1784  1.5  maxv 		regsize = instr->operand_size;
   1785  1.5  maxv 	}
   1786  1.5  maxv 
   1787  1.5  maxv 	reg = &gpr_map[instr->rexpref.r][enc][regsize-1];
   1788  1.5  maxv 	if (reg->num == -1) {
   1789  1.5  maxv 		reg = resolve_special_register(instr, enc, regsize);
   1790  1.5  maxv 	}
   1791  1.5  maxv 
   1792  1.5  maxv 	return reg;
   1793  1.5  maxv }
   1794  1.5  maxv 
   1795  1.5  maxv static const struct x86_reg *
   1796  1.5  maxv get_register_rm(struct x86_instr *instr, const struct x86_opcode *opcode)
   1797  1.5  maxv {
   1798  1.5  maxv 	uint8_t enc = instr->regmodrm.rm;
   1799  1.5  maxv 	const struct x86_reg *reg;
   1800  1.5  maxv 	size_t regsize;
   1801  1.5  maxv 
   1802  1.5  maxv 	if (instr->strm->disp.type == DISP_NONE) {
   1803  1.5  maxv 		if ((opcode->flags & FLAG_z) && (instr->operand_size == 8)) {
   1804  1.5  maxv 			/* 'z' operates here */
   1805  1.5  maxv 			regsize = 4;
   1806  1.5  maxv 		} else {
   1807  1.5  maxv 			regsize = instr->operand_size;
   1808  1.5  maxv 		}
   1809  1.5  maxv 	} else {
   1810  1.5  maxv 		/* Indirect access, the size is that of the address. */
   1811  1.5  maxv 		regsize = instr->address_size;
   1812  1.5  maxv 	}
   1813  1.5  maxv 
   1814  1.5  maxv 	reg = &gpr_map[instr->rexpref.b][enc][regsize-1];
   1815  1.5  maxv 	if (reg->num == -1) {
   1816  1.5  maxv 		reg = resolve_special_register(instr, enc, regsize);
   1817  1.5  maxv 	}
   1818  1.5  maxv 
   1819  1.5  maxv 	return reg;
   1820  1.5  maxv }
   1821  1.5  maxv 
   1822  1.5  maxv static inline bool
   1823  1.5  maxv has_sib(struct x86_instr *instr)
   1824  1.5  maxv {
   1825  1.5  maxv 	return (instr->regmodrm.mod != 3 && instr->regmodrm.rm == 4);
   1826  1.5  maxv }
   1827  1.5  maxv 
   1828  1.5  maxv static inline bool
   1829  1.9  maxv is_rip_relative(struct x86_decode_fsm *fsm, struct x86_instr *instr)
   1830  1.5  maxv {
   1831  1.9  maxv 	return (fsm->is64bit && instr->strm->disp.type == DISP_0 &&
   1832  1.9  maxv 	    instr->regmodrm.rm == RM_RBP_DISP32);
   1833  1.9  maxv }
   1834  1.9  maxv 
   1835  1.9  maxv static inline bool
   1836  1.9  maxv is_disp32_only(struct x86_decode_fsm *fsm, struct x86_instr *instr)
   1837  1.9  maxv {
   1838  1.9  maxv 	return (!fsm->is64bit && instr->strm->disp.type == DISP_0 &&
   1839  1.5  maxv 	    instr->regmodrm.rm == RM_RBP_DISP32);
   1840  1.5  maxv }
   1841  1.5  maxv 
   1842  1.5  maxv static enum x86_disp_type
   1843  1.5  maxv get_disp_type(struct x86_instr *instr)
   1844  1.5  maxv {
   1845  1.5  maxv 	switch (instr->regmodrm.mod) {
   1846  1.5  maxv 	case MOD_DIS0:	/* indirect */
   1847  1.5  maxv 		return DISP_0;
   1848  1.5  maxv 	case MOD_DIS1:	/* indirect+1 */
   1849  1.5  maxv 		return DISP_1;
   1850  1.5  maxv 	case MOD_DIS4:	/* indirect+4 */
   1851  1.5  maxv 		return DISP_4;
   1852  1.5  maxv 	case MOD_REG:	/* direct */
   1853  1.5  maxv 	default:	/* gcc */
   1854  1.5  maxv 		return DISP_NONE;
   1855  1.5  maxv 	}
   1856  1.5  maxv }
   1857  1.5  maxv 
   1858  1.5  maxv static int
   1859  1.5  maxv node_regmodrm(struct x86_decode_fsm *fsm, struct x86_instr *instr)
   1860  1.5  maxv {
   1861  1.5  maxv 	struct x86_store *strg, *strm;
   1862  1.5  maxv 	const struct x86_opcode *opcode;
   1863  1.5  maxv 	const struct x86_reg *reg;
   1864  1.5  maxv 	uint8_t byte;
   1865  1.5  maxv 
   1866  1.5  maxv 	if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
   1867  1.5  maxv 		return -1;
   1868  1.5  maxv 	}
   1869  1.5  maxv 
   1870  1.5  maxv 	opcode = instr->opcode;
   1871  1.5  maxv 
   1872  1.5  maxv 	instr->regmodrm.present = true;
   1873  1.5  maxv 	instr->regmodrm.mod = ((byte & 0b11000000) >> 6);
   1874  1.5  maxv 	instr->regmodrm.reg = ((byte & 0b00111000) >> 3);
   1875  1.5  maxv 	instr->regmodrm.rm  = ((byte & 0b00000111) >> 0);
   1876  1.5  maxv 
   1877  1.5  maxv 	if (opcode->regtorm) {
   1878  1.5  maxv 		strg = &instr->src;
   1879  1.5  maxv 		strm = &instr->dst;
   1880  1.5  maxv 	} else { /* RM to REG */
   1881  1.5  maxv 		strm = &instr->src;
   1882  1.5  maxv 		strg = &instr->dst;
   1883  1.5  maxv 	}
   1884  1.5  maxv 
   1885  1.5  maxv 	/* Save for later use. */
   1886  1.5  maxv 	instr->strm = strm;
   1887  1.5  maxv 
   1888  1.5  maxv 	/*
   1889  1.5  maxv 	 * Special cases: Groups. The REG field of REGMODRM is the index in
   1890  1.5  maxv 	 * the group. op1 gets overwritten in the Immediate node, if any.
   1891  1.5  maxv 	 */
   1892  1.5  maxv 	if (opcode->group11) {
   1893  1.5  maxv 		if (group11[instr->regmodrm.reg].emul == NULL) {
   1894  1.5  maxv 			return -1;
   1895  1.5  maxv 		}
   1896  1.5  maxv 		instr->emul = group11[instr->regmodrm.reg].emul;
   1897  1.5  maxv 	}
   1898  1.5  maxv 
   1899  1.5  maxv 	reg = get_register_reg(instr, opcode);
   1900  1.5  maxv 	if (reg == NULL) {
   1901  1.5  maxv 		return -1;
   1902  1.5  maxv 	}
   1903  1.5  maxv 	strg->type = STORE_REG;
   1904  1.5  maxv 	strg->u.reg = reg;
   1905  1.5  maxv 
   1906  1.5  maxv 	if (has_sib(instr)) {
   1907  1.5  maxv 		/* Overwrites RM */
   1908  1.5  maxv 		fsm_advance(fsm, 1, node_sib);
   1909  1.5  maxv 		return 0;
   1910  1.5  maxv 	}
   1911  1.5  maxv 
   1912  1.5  maxv 	/* The displacement applies to RM. */
   1913  1.5  maxv 	strm->disp.type = get_disp_type(instr);
   1914  1.5  maxv 
   1915  1.9  maxv 	if (is_rip_relative(fsm, instr)) {
   1916  1.5  maxv 		/* Overwrites RM */
   1917  1.5  maxv 		strm->type = STORE_REG;
   1918  1.5  maxv 		strm->u.reg = &gpr_map__rip;
   1919  1.5  maxv 		strm->disp.type = DISP_4;
   1920  1.5  maxv 		fsm_advance(fsm, 1, node_disp);
   1921  1.5  maxv 		return 0;
   1922  1.5  maxv 	}
   1923  1.5  maxv 
   1924  1.9  maxv 	if (is_disp32_only(fsm, instr)) {
   1925  1.9  maxv 		/* Overwrites RM */
   1926  1.9  maxv 		strm->type = STORE_REG;
   1927  1.9  maxv 		strm->u.reg = NULL;
   1928  1.9  maxv 		strm->disp.type = DISP_4;
   1929  1.9  maxv 		fsm_advance(fsm, 1, node_disp);
   1930  1.9  maxv 		return 0;
   1931  1.9  maxv 	}
   1932  1.9  maxv 
   1933  1.5  maxv 	reg = get_register_rm(instr, opcode);
   1934  1.5  maxv 	if (reg == NULL) {
   1935  1.5  maxv 		return -1;
   1936  1.5  maxv 	}
   1937  1.5  maxv 	strm->type = STORE_REG;
   1938  1.5  maxv 	strm->u.reg = reg;
   1939  1.5  maxv 
   1940  1.5  maxv 	if (strm->disp.type == DISP_NONE) {
   1941  1.5  maxv 		/* Direct register addressing mode */
   1942  1.5  maxv 		if (opcode->immediate) {
   1943  1.5  maxv 			fsm_advance(fsm, 1, node_immediate);
   1944  1.5  maxv 		} else {
   1945  1.5  maxv 			fsm_advance(fsm, 1, NULL);
   1946  1.5  maxv 		}
   1947  1.5  maxv 	} else if (strm->disp.type == DISP_0) {
   1948  1.5  maxv 		/* Indirect register addressing mode */
   1949  1.5  maxv 		if (opcode->immediate) {
   1950  1.5  maxv 			fsm_advance(fsm, 1, node_immediate);
   1951  1.5  maxv 		} else {
   1952  1.5  maxv 			fsm_advance(fsm, 1, NULL);
   1953  1.5  maxv 		}
   1954  1.5  maxv 	} else {
   1955  1.5  maxv 		fsm_advance(fsm, 1, node_disp);
   1956  1.5  maxv 	}
   1957  1.5  maxv 
   1958  1.5  maxv 	return 0;
   1959  1.5  maxv }
   1960  1.5  maxv 
   1961  1.5  maxv static size_t
   1962  1.5  maxv get_operand_size(struct x86_decode_fsm *fsm, struct x86_instr *instr)
   1963  1.5  maxv {
   1964  1.5  maxv 	const struct x86_opcode *opcode = instr->opcode;
   1965  1.5  maxv 	int opsize;
   1966  1.5  maxv 
   1967  1.5  maxv 	/* Get the opsize */
   1968  1.5  maxv 	if (!opcode->szoverride) {
   1969  1.5  maxv 		opsize = opcode->defsize;
   1970  1.5  maxv 	} else if (instr->rexpref.present && instr->rexpref.w) {
   1971  1.5  maxv 		opsize = 8;
   1972  1.5  maxv 	} else {
   1973  1.5  maxv 		if (!fsm->is16bit) {
   1974  1.5  maxv 			if (instr->legpref[LEG_OPR_OVR]) {
   1975  1.5  maxv 				opsize = 2;
   1976  1.5  maxv 			} else {
   1977  1.5  maxv 				opsize = 4;
   1978  1.5  maxv 			}
   1979  1.5  maxv 		} else { /* 16bit */
   1980  1.5  maxv 			if (instr->legpref[LEG_OPR_OVR]) {
   1981  1.5  maxv 				opsize = 4;
   1982  1.5  maxv 			} else {
   1983  1.5  maxv 				opsize = 2;
   1984  1.5  maxv 			}
   1985  1.5  maxv 		}
   1986  1.5  maxv 	}
   1987  1.5  maxv 
   1988  1.5  maxv 	/* See if available */
   1989  1.5  maxv 	if ((opcode->allsize & opsize) == 0) {
   1990  1.5  maxv 		// XXX do we care?
   1991  1.5  maxv 	}
   1992  1.5  maxv 
   1993  1.5  maxv 	return opsize;
   1994  1.5  maxv }
   1995  1.5  maxv 
   1996  1.5  maxv static size_t
   1997  1.5  maxv get_address_size(struct x86_decode_fsm *fsm, struct x86_instr *instr)
   1998  1.5  maxv {
   1999  1.5  maxv 	if (fsm->is64bit) {
   2000  1.5  maxv 		if (__predict_false(instr->legpref[LEG_ADR_OVR])) {
   2001  1.5  maxv 			return 4;
   2002  1.5  maxv 		}
   2003  1.5  maxv 		return 8;
   2004  1.5  maxv 	}
   2005  1.5  maxv 
   2006  1.5  maxv 	if (fsm->is32bit) {
   2007  1.5  maxv 		if (__predict_false(instr->legpref[LEG_ADR_OVR])) {
   2008  1.5  maxv 			return 2;
   2009  1.5  maxv 		}
   2010  1.5  maxv 		return 4;
   2011  1.5  maxv 	}
   2012  1.5  maxv 
   2013  1.5  maxv 	/* 16bit. */
   2014  1.5  maxv 	if (__predict_false(instr->legpref[LEG_ADR_OVR])) {
   2015  1.5  maxv 		return 4;
   2016  1.5  maxv 	}
   2017  1.5  maxv 	return 2;
   2018  1.5  maxv }
   2019  1.5  maxv 
   2020  1.5  maxv static int
   2021  1.5  maxv node_primary_opcode(struct x86_decode_fsm *fsm, struct x86_instr *instr)
   2022  1.1  maxv {
   2023  1.5  maxv 	const struct x86_opcode *opcode;
   2024  1.5  maxv 	uint8_t byte;
   2025  1.5  maxv 	size_t i, n;
   2026  1.5  maxv 
   2027  1.5  maxv 	if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
   2028  1.5  maxv 		return -1;
   2029  1.5  maxv 	}
   2030  1.5  maxv 
   2031  1.5  maxv 	n = sizeof(primary_opcode_table) / sizeof(primary_opcode_table[0]);
   2032  1.5  maxv 	for (i = 0; i < n; i++) {
   2033  1.5  maxv 		if (primary_opcode_table[i].byte == byte)
   2034  1.5  maxv 			break;
   2035  1.5  maxv 	}
   2036  1.5  maxv 	if (i == n) {
   2037  1.1  maxv 		return -1;
   2038  1.1  maxv 	}
   2039  1.5  maxv 	opcode = &primary_opcode_table[i];
   2040  1.1  maxv 
   2041  1.5  maxv 	instr->opcode = opcode;
   2042  1.5  maxv 	instr->emul = opcode->emul;
   2043  1.5  maxv 	instr->operand_size = get_operand_size(fsm, instr);
   2044  1.5  maxv 	instr->address_size = get_address_size(fsm, instr);
   2045  1.5  maxv 
   2046  1.5  maxv 	if (opcode->regmodrm) {
   2047  1.5  maxv 		fsm_advance(fsm, 1, node_regmodrm);
   2048  1.5  maxv 	} else if (opcode->dmo) {
   2049  1.5  maxv 		/* Direct-Memory Offsets */
   2050  1.5  maxv 		fsm_advance(fsm, 1, node_dmo);
   2051  1.5  maxv 	} else if (opcode->stos || opcode->lods) {
   2052  1.5  maxv 		fsm_advance(fsm, 1, node_stlo);
   2053  1.6  maxv 	} else if (opcode->movs) {
   2054  1.6  maxv 		fsm_advance(fsm, 1, node_movs);
   2055  1.5  maxv 	} else {
   2056  1.5  maxv 		return -1;
   2057  1.5  maxv 	}
   2058  1.5  maxv 
   2059  1.5  maxv 	return 0;
   2060  1.5  maxv }
   2061  1.5  maxv 
   2062  1.5  maxv static int
   2063  1.5  maxv node_main(struct x86_decode_fsm *fsm, struct x86_instr *instr)
   2064  1.5  maxv {
   2065  1.5  maxv 	uint8_t byte;
   2066  1.5  maxv 
   2067  1.5  maxv #define ESCAPE	0x0F
   2068  1.5  maxv #define VEX_1	0xC5
   2069  1.5  maxv #define VEX_2	0xC4
   2070  1.5  maxv #define XOP	0x8F
   2071  1.5  maxv 
   2072  1.5  maxv 	if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
   2073  1.5  maxv 		return -1;
   2074  1.5  maxv 	}
   2075  1.5  maxv 
   2076  1.5  maxv 	/*
   2077  1.5  maxv 	 * We don't take XOP. It is AMD-specific, and it was removed shortly
   2078  1.5  maxv 	 * after being introduced.
   2079  1.5  maxv 	 */
   2080  1.5  maxv 	if (byte == ESCAPE) {
   2081  1.5  maxv 		return -1;
   2082  1.5  maxv 	} else if (!instr->rexpref.present) {
   2083  1.5  maxv 		if (byte == VEX_1) {
   2084  1.5  maxv 			return -1;
   2085  1.5  maxv 		} else if (byte == VEX_2) {
   2086  1.5  maxv 			return -1;
   2087  1.5  maxv 		} else {
   2088  1.5  maxv 			fsm->fn = node_primary_opcode;
   2089  1.5  maxv 		}
   2090  1.5  maxv 	} else {
   2091  1.5  maxv 		fsm->fn = node_primary_opcode;
   2092  1.5  maxv 	}
   2093  1.5  maxv 
   2094  1.5  maxv 	return 0;
   2095  1.5  maxv }
   2096  1.5  maxv 
   2097  1.5  maxv static int
   2098  1.5  maxv node_rex_prefix(struct x86_decode_fsm *fsm, struct x86_instr *instr)
   2099  1.5  maxv {
   2100  1.5  maxv 	struct x86_rexpref *rexpref = &instr->rexpref;
   2101  1.5  maxv 	uint8_t byte;
   2102  1.5  maxv 	size_t n = 0;
   2103  1.5  maxv 
   2104  1.5  maxv 	if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
   2105  1.5  maxv 		return -1;
   2106  1.5  maxv 	}
   2107  1.5  maxv 
   2108  1.5  maxv 	if (byte >= 0x40 && byte <= 0x4F) {
   2109  1.5  maxv 		if (__predict_false(!fsm->is64bit)) {
   2110  1.5  maxv 			return -1;
   2111  1.5  maxv 		}
   2112  1.5  maxv 		rexpref->present = true;
   2113  1.5  maxv 		rexpref->w = ((byte & 0x8) != 0);
   2114  1.5  maxv 		rexpref->r = ((byte & 0x4) != 0);
   2115  1.5  maxv 		rexpref->x = ((byte & 0x2) != 0);
   2116  1.5  maxv 		rexpref->b = ((byte & 0x1) != 0);
   2117  1.5  maxv 		n = 1;
   2118  1.5  maxv 	}
   2119  1.5  maxv 
   2120  1.5  maxv 	fsm_advance(fsm, n, node_main);
   2121  1.5  maxv 	return 0;
   2122  1.5  maxv }
   2123  1.5  maxv 
   2124  1.8  maxv static const struct {
   2125  1.8  maxv 	uint8_t byte;
   2126  1.8  maxv 	int seg;
   2127  1.8  maxv } legpref_table[NLEG] = {
   2128  1.5  maxv 	/* Group 1 */
   2129  1.8  maxv 	[LEG_LOCK] = { 0xF0, -1 },
   2130  1.8  maxv 	[LEG_REPN] = { 0xF2, -1 },
   2131  1.8  maxv 	[LEG_REP]  = { 0xF3, -1 },
   2132  1.5  maxv 	/* Group 2 */
   2133  1.8  maxv 	[LEG_OVR_CS] = { 0x2E, NVMM_X64_SEG_CS },
   2134  1.8  maxv 	[LEG_OVR_SS] = { 0x36, NVMM_X64_SEG_SS },
   2135  1.8  maxv 	[LEG_OVR_DS] = { 0x3E, NVMM_X64_SEG_DS },
   2136  1.8  maxv 	[LEG_OVR_ES] = { 0x26, NVMM_X64_SEG_ES },
   2137  1.8  maxv 	[LEG_OVR_FS] = { 0x64, NVMM_X64_SEG_FS },
   2138  1.8  maxv 	[LEG_OVR_GS] = { 0x65, NVMM_X64_SEG_GS },
   2139  1.8  maxv 	[LEG_BRN_TAKEN]  = { 0x2E, -1 },
   2140  1.8  maxv 	[LEG_BRN_NTAKEN] = { 0x3E, -1 },
   2141  1.5  maxv 	/* Group 3 */
   2142  1.8  maxv 	[LEG_OPR_OVR] = { 0x66, -1 },
   2143  1.5  maxv 	/* Group 4 */
   2144  1.8  maxv 	[LEG_ADR_OVR] = { 0x67, -1 },
   2145  1.5  maxv };
   2146  1.5  maxv 
   2147  1.5  maxv static int
   2148  1.5  maxv node_legacy_prefix(struct x86_decode_fsm *fsm, struct x86_instr *instr)
   2149  1.5  maxv {
   2150  1.5  maxv 	uint8_t byte;
   2151  1.5  maxv 	size_t i;
   2152  1.5  maxv 
   2153  1.5  maxv 	if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
   2154  1.5  maxv 		return -1;
   2155  1.5  maxv 	}
   2156  1.5  maxv 
   2157  1.5  maxv 	for (i = 0; i < NLEG; i++) {
   2158  1.8  maxv 		if (byte == legpref_table[i].byte)
   2159  1.5  maxv 			break;
   2160  1.5  maxv 	}
   2161  1.5  maxv 
   2162  1.5  maxv 	if (i == NLEG) {
   2163  1.5  maxv 		fsm->fn = node_rex_prefix;
   2164  1.5  maxv 	} else {
   2165  1.5  maxv 		instr->legpref[i] = true;
   2166  1.5  maxv 		fsm_advance(fsm, 1, node_legacy_prefix);
   2167  1.5  maxv 	}
   2168  1.5  maxv 
   2169  1.5  maxv 	return 0;
   2170  1.5  maxv }
   2171  1.5  maxv 
   2172  1.5  maxv static int
   2173  1.5  maxv x86_decode(uint8_t *inst_bytes, size_t inst_len, struct x86_instr *instr,
   2174  1.5  maxv     struct nvmm_x64_state *state)
   2175  1.5  maxv {
   2176  1.5  maxv 	struct x86_decode_fsm fsm;
   2177  1.5  maxv 	int ret;
   2178  1.5  maxv 
   2179  1.5  maxv 	memset(instr, 0, sizeof(*instr));
   2180  1.5  maxv 
   2181  1.5  maxv 	fsm.is64bit = is_64bit(state);
   2182  1.5  maxv 	fsm.is32bit = is_32bit(state);
   2183  1.5  maxv 	fsm.is16bit = is_16bit(state);
   2184  1.5  maxv 
   2185  1.5  maxv 	fsm.fn = node_legacy_prefix;
   2186  1.5  maxv 	fsm.buf = inst_bytes;
   2187  1.5  maxv 	fsm.end = inst_bytes + inst_len;
   2188  1.5  maxv 
   2189  1.5  maxv 	while (fsm.fn != NULL) {
   2190  1.5  maxv 		ret = (*fsm.fn)(&fsm, instr);
   2191  1.5  maxv 		if (ret == -1)
   2192  1.5  maxv 			return -1;
   2193  1.5  maxv 	}
   2194  1.5  maxv 
   2195  1.5  maxv 	instr->len = fsm.buf - inst_bytes;
   2196  1.5  maxv 
   2197  1.5  maxv 	return 0;
   2198  1.5  maxv }
   2199  1.5  maxv 
   2200  1.5  maxv /* -------------------------------------------------------------------------- */
   2201  1.5  maxv 
   2202  1.5  maxv static inline uint8_t
   2203  1.5  maxv compute_parity(uint8_t *data)
   2204  1.5  maxv {
   2205  1.5  maxv 	uint64_t *ptr = (uint64_t *)data;
   2206  1.5  maxv 	uint64_t val = *ptr;
   2207  1.5  maxv 
   2208  1.5  maxv 	val ^= val >> 32;
   2209  1.5  maxv 	val ^= val >> 16;
   2210  1.5  maxv 	val ^= val >> 8;
   2211  1.5  maxv 	val ^= val >> 4;
   2212  1.5  maxv 	val ^= val >> 2;
   2213  1.5  maxv 	val ^= val >> 1;
   2214  1.5  maxv 	return (~val) & 1;
   2215  1.5  maxv }
   2216  1.5  maxv 
   2217  1.5  maxv static void
   2218  1.5  maxv x86_emul_or(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
   2219  1.5  maxv     uint64_t *gprs)
   2220  1.5  maxv {
   2221  1.5  maxv 	const bool write = mem->write;
   2222  1.5  maxv 	uint64_t fl = gprs[NVMM_X64_GPR_RFLAGS];
   2223  1.5  maxv 	uint8_t data[8];
   2224  1.5  maxv 	size_t i;
   2225  1.5  maxv 
   2226  1.5  maxv 	fl &= ~(PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF);
   2227  1.5  maxv 
   2228  1.5  maxv 	memcpy(data, mem->data, sizeof(data));
   2229  1.5  maxv 
   2230  1.5  maxv 	/* Fetch the value to be OR'ed. */
   2231  1.5  maxv 	mem->write = false;
   2232  1.5  maxv 	(*cb)(mem);
   2233  1.5  maxv 
   2234  1.5  maxv 	/* Perform the OR. */
   2235  1.5  maxv 	for (i = 0; i < mem->size; i++) {
   2236  1.5  maxv 		mem->data[i] |= data[i];
   2237  1.5  maxv 		if (mem->data[i] != 0)
   2238  1.5  maxv 			fl |= PSL_Z;
   2239  1.5  maxv 	}
   2240  1.5  maxv 	if (mem->data[mem->size-1] & __BIT(7))
   2241  1.5  maxv 		fl |= PSL_N;
   2242  1.5  maxv 	if (compute_parity(mem->data))
   2243  1.5  maxv 		fl |= PSL_PF;
   2244  1.5  maxv 
   2245  1.5  maxv 	if (write) {
   2246  1.5  maxv 		/* Write back the result. */
   2247  1.5  maxv 		mem->write = true;
   2248  1.5  maxv 		(*cb)(mem);
   2249  1.5  maxv 	}
   2250  1.5  maxv 
   2251  1.5  maxv 	gprs[NVMM_X64_GPR_RFLAGS] = fl;
   2252  1.5  maxv }
   2253  1.5  maxv 
   2254  1.5  maxv static void
   2255  1.5  maxv x86_emul_and(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
   2256  1.5  maxv     uint64_t *gprs)
   2257  1.5  maxv {
   2258  1.5  maxv 	const bool write = mem->write;
   2259  1.5  maxv 	uint64_t fl = gprs[NVMM_X64_GPR_RFLAGS];
   2260  1.5  maxv 	uint8_t data[8];
   2261  1.5  maxv 	size_t i;
   2262  1.5  maxv 
   2263  1.5  maxv 	fl &= ~(PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF);
   2264  1.5  maxv 
   2265  1.5  maxv 	memcpy(data, mem->data, sizeof(data));
   2266  1.5  maxv 
   2267  1.5  maxv 	/* Fetch the value to be AND'ed. */
   2268  1.5  maxv 	mem->write = false;
   2269  1.5  maxv 	(*cb)(mem);
   2270  1.5  maxv 
   2271  1.5  maxv 	/* Perform the AND. */
   2272  1.5  maxv 	for (i = 0; i < mem->size; i++) {
   2273  1.5  maxv 		mem->data[i] &= data[i];
   2274  1.5  maxv 		if (mem->data[i] != 0)
   2275  1.5  maxv 			fl |= PSL_Z;
   2276  1.5  maxv 	}
   2277  1.5  maxv 	if (mem->data[mem->size-1] & __BIT(7))
   2278  1.5  maxv 		fl |= PSL_N;
   2279  1.5  maxv 	if (compute_parity(mem->data))
   2280  1.5  maxv 		fl |= PSL_PF;
   2281  1.5  maxv 
   2282  1.5  maxv 	if (write) {
   2283  1.5  maxv 		/* Write back the result. */
   2284  1.5  maxv 		mem->write = true;
   2285  1.5  maxv 		(*cb)(mem);
   2286  1.5  maxv 	}
   2287  1.5  maxv 
   2288  1.5  maxv 	gprs[NVMM_X64_GPR_RFLAGS] = fl;
   2289  1.5  maxv }
   2290  1.5  maxv 
   2291  1.5  maxv static void
   2292  1.5  maxv x86_emul_xor(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
   2293  1.5  maxv     uint64_t *gprs)
   2294  1.5  maxv {
   2295  1.5  maxv 	const bool write = mem->write;
   2296  1.5  maxv 	uint64_t fl = gprs[NVMM_X64_GPR_RFLAGS];
   2297  1.5  maxv 	uint8_t data[8];
   2298  1.5  maxv 	size_t i;
   2299  1.5  maxv 
   2300  1.5  maxv 	fl &= ~(PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF);
   2301  1.5  maxv 
   2302  1.5  maxv 	memcpy(data, mem->data, sizeof(data));
   2303  1.5  maxv 
   2304  1.5  maxv 	/* Fetch the value to be XOR'ed. */
   2305  1.5  maxv 	mem->write = false;
   2306  1.5  maxv 	(*cb)(mem);
   2307  1.5  maxv 
   2308  1.5  maxv 	/* Perform the XOR. */
   2309  1.5  maxv 	for (i = 0; i < mem->size; i++) {
   2310  1.5  maxv 		mem->data[i] ^= data[i];
   2311  1.5  maxv 		if (mem->data[i] != 0)
   2312  1.5  maxv 			fl |= PSL_Z;
   2313  1.5  maxv 	}
   2314  1.5  maxv 	if (mem->data[mem->size-1] & __BIT(7))
   2315  1.5  maxv 		fl |= PSL_N;
   2316  1.5  maxv 	if (compute_parity(mem->data))
   2317  1.5  maxv 		fl |= PSL_PF;
   2318  1.5  maxv 
   2319  1.5  maxv 	if (write) {
   2320  1.5  maxv 		/* Write back the result. */
   2321  1.5  maxv 		mem->write = true;
   2322  1.5  maxv 		(*cb)(mem);
   2323  1.5  maxv 	}
   2324  1.5  maxv 
   2325  1.5  maxv 	gprs[NVMM_X64_GPR_RFLAGS] = fl;
   2326  1.5  maxv }
   2327  1.5  maxv 
   2328  1.5  maxv static void
   2329  1.5  maxv x86_emul_mov(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
   2330  1.5  maxv     uint64_t *gprs)
   2331  1.5  maxv {
   2332  1.5  maxv 	/*
   2333  1.5  maxv 	 * Nothing special, just move without emulation.
   2334  1.5  maxv 	 */
   2335  1.5  maxv 	(*cb)(mem);
   2336  1.5  maxv }
   2337  1.5  maxv 
   2338  1.5  maxv static void
   2339  1.5  maxv x86_emul_stos(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
   2340  1.5  maxv     uint64_t *gprs)
   2341  1.5  maxv {
   2342  1.5  maxv 	/*
   2343  1.5  maxv 	 * Just move, and update RDI.
   2344  1.5  maxv 	 */
   2345  1.5  maxv 	(*cb)(mem);
   2346  1.5  maxv 
   2347  1.5  maxv 	if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
   2348  1.5  maxv 		gprs[NVMM_X64_GPR_RDI] -= mem->size;
   2349  1.5  maxv 	} else {
   2350  1.5  maxv 		gprs[NVMM_X64_GPR_RDI] += mem->size;
   2351  1.5  maxv 	}
   2352  1.5  maxv }
   2353  1.5  maxv 
   2354  1.5  maxv static void
   2355  1.5  maxv x86_emul_lods(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
   2356  1.5  maxv     uint64_t *gprs)
   2357  1.5  maxv {
   2358  1.5  maxv 	/*
   2359  1.5  maxv 	 * Just move, and update RSI.
   2360  1.5  maxv 	 */
   2361  1.5  maxv 	(*cb)(mem);
   2362  1.5  maxv 
   2363  1.5  maxv 	if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
   2364  1.5  maxv 		gprs[NVMM_X64_GPR_RSI] -= mem->size;
   2365  1.5  maxv 	} else {
   2366  1.5  maxv 		gprs[NVMM_X64_GPR_RSI] += mem->size;
   2367  1.5  maxv 	}
   2368  1.5  maxv }
   2369  1.5  maxv 
   2370  1.6  maxv static void
   2371  1.6  maxv x86_emul_movs(struct nvmm_mem *mem, void (*cb)(struct nvmm_mem *),
   2372  1.6  maxv     uint64_t *gprs)
   2373  1.6  maxv {
   2374  1.6  maxv 	/*
   2375  1.6  maxv 	 * Special instruction: double memory operand. Don't call the cb,
   2376  1.6  maxv 	 * because the storage has already been performed earlier.
   2377  1.6  maxv 	 */
   2378  1.6  maxv 
   2379  1.6  maxv 	if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
   2380  1.6  maxv 		gprs[NVMM_X64_GPR_RSI] -= mem->size;
   2381  1.6  maxv 		gprs[NVMM_X64_GPR_RDI] -= mem->size;
   2382  1.6  maxv 	} else {
   2383  1.6  maxv 		gprs[NVMM_X64_GPR_RSI] += mem->size;
   2384  1.6  maxv 		gprs[NVMM_X64_GPR_RDI] += mem->size;
   2385  1.6  maxv 	}
   2386  1.6  maxv }
   2387  1.6  maxv 
   2388  1.5  maxv /* -------------------------------------------------------------------------- */
   2389  1.5  maxv 
   2390  1.5  maxv static inline uint64_t
   2391  1.5  maxv gpr_read_address(struct x86_instr *instr, struct nvmm_x64_state *state, int gpr)
   2392  1.5  maxv {
   2393  1.5  maxv 	uint64_t val;
   2394  1.5  maxv 
   2395  1.5  maxv 	val = state->gprs[gpr];
   2396  1.5  maxv 	if (__predict_false(instr->address_size == 4)) {
   2397  1.5  maxv 		val &= 0x00000000FFFFFFFF;
   2398  1.5  maxv 	} else if (__predict_false(instr->address_size == 2)) {
   2399  1.5  maxv 		val &= 0x000000000000FFFF;
   2400  1.5  maxv 	}
   2401  1.5  maxv 
   2402  1.5  maxv 	return val;
   2403  1.5  maxv }
   2404  1.5  maxv 
   2405  1.5  maxv static int
   2406  1.6  maxv store_to_gva(struct nvmm_x64_state *state, struct x86_instr *instr,
   2407  1.6  maxv     struct x86_store *store, gvaddr_t *gvap, size_t size)
   2408  1.5  maxv {
   2409  1.5  maxv 	struct x86_sib *sib;
   2410  1.6  maxv 	gvaddr_t gva = 0;
   2411  1.5  maxv 	uint64_t reg;
   2412  1.5  maxv 	int ret, seg;
   2413  1.5  maxv 	uint32_t *p;
   2414  1.5  maxv 
   2415  1.5  maxv 	if (store->type == STORE_SIB) {
   2416  1.5  maxv 		sib = &store->u.sib;
   2417  1.5  maxv 		if (sib->bas != NULL)
   2418  1.5  maxv 			gva += gpr_read_address(instr, state, sib->bas->num);
   2419  1.5  maxv 		if (sib->idx != NULL) {
   2420  1.5  maxv 			reg = gpr_read_address(instr, state, sib->idx->num);
   2421  1.5  maxv 			gva += sib->scale * reg;
   2422  1.5  maxv 		}
   2423  1.5  maxv 	} else if (store->type == STORE_REG) {
   2424  1.9  maxv 		if (store->u.reg == NULL) {
   2425  1.9  maxv 			/* The base is null. Happens with disp32-only. */
   2426  1.9  maxv 		} else {
   2427  1.9  maxv 			gva = gpr_read_address(instr, state, store->u.reg->num);
   2428  1.9  maxv 		}
   2429  1.5  maxv 	} else {
   2430  1.5  maxv 		gva = store->u.dmo;
   2431  1.5  maxv 	}
   2432  1.5  maxv 
   2433  1.5  maxv 	if (store->disp.type != DISP_NONE) {
   2434  1.5  maxv 		p = (uint32_t *)&store->disp.data[0];
   2435  1.5  maxv 		gva += *p;
   2436  1.5  maxv 	}
   2437  1.5  maxv 
   2438  1.5  maxv 	if (!is_long_mode(state)) {
   2439  1.6  maxv 		if (store->hardseg != 0) {
   2440  1.6  maxv 			seg = store->hardseg;
   2441  1.5  maxv 		} else {
   2442  1.6  maxv 			if (instr->legpref[LEG_OVR_CS]) {
   2443  1.6  maxv 				seg = NVMM_X64_SEG_CS;
   2444  1.6  maxv 			} else if (instr->legpref[LEG_OVR_SS]) {
   2445  1.6  maxv 				seg = NVMM_X64_SEG_SS;
   2446  1.6  maxv 			} else if (instr->legpref[LEG_OVR_ES]) {
   2447  1.6  maxv 				seg = NVMM_X64_SEG_ES;
   2448  1.6  maxv 			} else if (instr->legpref[LEG_OVR_FS]) {
   2449  1.6  maxv 				seg = NVMM_X64_SEG_FS;
   2450  1.6  maxv 			} else if (instr->legpref[LEG_OVR_GS]) {
   2451  1.6  maxv 				seg = NVMM_X64_SEG_GS;
   2452  1.6  maxv 			} else {
   2453  1.6  maxv 				seg = NVMM_X64_SEG_DS;
   2454  1.6  maxv 			}
   2455  1.5  maxv 		}
   2456  1.5  maxv 
   2457  1.6  maxv 		ret = segment_apply(&state->segs[seg], &gva, size);
   2458  1.5  maxv 		if (ret == -1)
   2459  1.5  maxv 			return -1;
   2460  1.5  maxv 	}
   2461  1.5  maxv 
   2462  1.6  maxv 	*gvap = gva;
   2463  1.6  maxv 	return 0;
   2464  1.6  maxv }
   2465  1.6  maxv 
   2466  1.6  maxv static int
   2467  1.6  maxv store_to_mem(struct nvmm_machine *mach, struct nvmm_x64_state *state,
   2468  1.6  maxv     struct x86_instr *instr, struct x86_store *store, struct nvmm_mem *mem)
   2469  1.6  maxv {
   2470  1.6  maxv 	nvmm_prot_t prot;
   2471  1.6  maxv 	int ret;
   2472  1.6  maxv 
   2473  1.6  maxv 	ret = store_to_gva(state, instr, store, &mem->gva, mem->size);
   2474  1.6  maxv 	if (ret == -1)
   2475  1.6  maxv 		return -1;
   2476  1.6  maxv 
   2477  1.5  maxv 	if ((mem->gva & PAGE_MASK) + mem->size > PAGE_SIZE) {
   2478  1.5  maxv 		/* Don't allow a cross-page MMIO. */
   2479  1.5  maxv 		errno = EINVAL;
   2480  1.5  maxv 		return -1;
   2481  1.5  maxv 	}
   2482  1.5  maxv 
   2483  1.5  maxv 	ret = x86_gva_to_gpa(mach, state, mem->gva, &mem->gpa, &prot);
   2484  1.5  maxv 	if (ret == -1)
   2485  1.5  maxv 		return -1;
   2486  1.5  maxv 
   2487  1.5  maxv 	return 0;
   2488  1.5  maxv }
   2489  1.5  maxv 
   2490  1.5  maxv static int
   2491  1.8  maxv fetch_segment(struct nvmm_machine *mach, struct nvmm_x64_state *state)
   2492  1.8  maxv {
   2493  1.8  maxv 	uint8_t inst_bytes[15], byte;
   2494  1.8  maxv 	size_t i, n, fetchsize;
   2495  1.8  maxv 	gvaddr_t gva;
   2496  1.8  maxv 	int ret, seg;
   2497  1.8  maxv 
   2498  1.8  maxv 	fetchsize = sizeof(inst_bytes);
   2499  1.8  maxv 
   2500  1.8  maxv 	gva = state->gprs[NVMM_X64_GPR_RIP];
   2501  1.8  maxv 	if (!is_long_mode(state)) {
   2502  1.8  maxv 		ret = segment_apply(&state->segs[NVMM_X64_SEG_CS], &gva,
   2503  1.8  maxv 		    fetchsize);
   2504  1.8  maxv 		if (ret == -1)
   2505  1.8  maxv 			return -1;
   2506  1.8  maxv 	}
   2507  1.8  maxv 
   2508  1.8  maxv 	ret = read_guest_memory(mach, state, gva, inst_bytes, fetchsize);
   2509  1.8  maxv 	if (ret == -1)
   2510  1.8  maxv 		return -1;
   2511  1.8  maxv 
   2512  1.8  maxv 	seg = NVMM_X64_SEG_DS;
   2513  1.8  maxv 	for (n = 0; n < fetchsize; n++) {
   2514  1.8  maxv 		byte = inst_bytes[n];
   2515  1.8  maxv 		for (i = 0; i < NLEG; i++) {
   2516  1.8  maxv 			if (byte != legpref_table[i].byte)
   2517  1.8  maxv 				continue;
   2518  1.8  maxv 			if (i >= LEG_OVR_CS && i <= LEG_OVR_GS)
   2519  1.8  maxv 				seg = legpref_table[i].seg;
   2520  1.8  maxv 			break;
   2521  1.8  maxv 		}
   2522  1.8  maxv 		if (i == NLEG) {
   2523  1.8  maxv 			break;
   2524  1.8  maxv 		}
   2525  1.8  maxv 	}
   2526  1.8  maxv 
   2527  1.8  maxv 	return seg;
   2528  1.8  maxv }
   2529  1.8  maxv 
   2530  1.8  maxv static int
   2531  1.5  maxv fetch_instruction(struct nvmm_machine *mach, struct nvmm_x64_state *state,
   2532  1.5  maxv     struct nvmm_exit *exit)
   2533  1.5  maxv {
   2534  1.6  maxv 	size_t fetchsize;
   2535  1.6  maxv 	gvaddr_t gva;
   2536  1.5  maxv 	int ret;
   2537  1.5  maxv 
   2538  1.5  maxv 	fetchsize = sizeof(exit->u.mem.inst_bytes);
   2539  1.5  maxv 
   2540  1.5  maxv 	gva = state->gprs[NVMM_X64_GPR_RIP];
   2541  1.5  maxv 	if (!is_long_mode(state)) {
   2542  1.5  maxv 		ret = segment_apply(&state->segs[NVMM_X64_SEG_CS], &gva,
   2543  1.5  maxv 		    fetchsize);
   2544  1.5  maxv 		if (ret == -1)
   2545  1.5  maxv 			return -1;
   2546  1.5  maxv 	}
   2547  1.5  maxv 
   2548  1.6  maxv 	ret = read_guest_memory(mach, state, gva, exit->u.mem.inst_bytes,
   2549  1.6  maxv 	    fetchsize);
   2550  1.6  maxv 	if (ret == -1)
   2551  1.6  maxv 		return -1;
   2552  1.6  maxv 
   2553  1.6  maxv 	exit->u.mem.inst_len = fetchsize;
   2554  1.6  maxv 
   2555  1.6  maxv 	return 0;
   2556  1.6  maxv }
   2557  1.6  maxv 
   2558  1.6  maxv static int
   2559  1.6  maxv assist_mem_double(struct nvmm_machine *mach, struct nvmm_x64_state *state,
   2560  1.6  maxv     struct x86_instr *instr)
   2561  1.6  maxv {
   2562  1.6  maxv 	struct nvmm_mem mem;
   2563  1.6  maxv 	uint8_t data[8];
   2564  1.6  maxv 	gvaddr_t gva;
   2565  1.6  maxv 	size_t size;
   2566  1.6  maxv 	int ret;
   2567  1.6  maxv 
   2568  1.6  maxv 	size = instr->operand_size;
   2569  1.5  maxv 
   2570  1.6  maxv 	/* Source. */
   2571  1.6  maxv 	ret = store_to_gva(state, instr, &instr->src, &gva, size);
   2572  1.5  maxv 	if (ret == -1)
   2573  1.5  maxv 		return -1;
   2574  1.6  maxv 	ret = read_guest_memory(mach, state, gva, data, size);
   2575  1.6  maxv 	if (ret == -1)
   2576  1.5  maxv 		return -1;
   2577  1.5  maxv 
   2578  1.6  maxv 	/* Destination. */
   2579  1.6  maxv 	ret = store_to_gva(state, instr, &instr->dst, &gva, size);
   2580  1.6  maxv 	if (ret == -1)
   2581  1.6  maxv 		return -1;
   2582  1.6  maxv 	ret = write_guest_memory(mach, state, gva, data, size);
   2583  1.5  maxv 	if (ret == -1)
   2584  1.5  maxv 		return -1;
   2585  1.5  maxv 
   2586  1.6  maxv 	mem.size = size;
   2587  1.6  maxv 	(*instr->emul)(&mem, NULL, state->gprs);
   2588  1.5  maxv 
   2589  1.5  maxv 	return 0;
   2590  1.5  maxv }
   2591  1.5  maxv 
   2592  1.5  maxv #define DISASSEMBLER_BUG()	\
   2593  1.5  maxv 	do {			\
   2594  1.5  maxv 		errno = EINVAL;	\
   2595  1.5  maxv 		return -1;	\
   2596  1.5  maxv 	} while (0);
   2597  1.5  maxv 
   2598  1.6  maxv static int
   2599  1.6  maxv assist_mem_single(struct nvmm_machine *mach, struct nvmm_x64_state *state,
   2600  1.6  maxv     struct x86_instr *instr)
   2601  1.5  maxv {
   2602  1.5  maxv 	struct nvmm_mem mem;
   2603  1.5  maxv 	uint64_t val;
   2604  1.5  maxv 	int ret;
   2605  1.5  maxv 
   2606  1.5  maxv 	memset(&mem, 0, sizeof(mem));
   2607  1.5  maxv 
   2608  1.6  maxv 	switch (instr->src.type) {
   2609  1.5  maxv 	case STORE_REG:
   2610  1.6  maxv 		if (instr->src.disp.type != DISP_NONE) {
   2611  1.5  maxv 			/* Indirect access. */
   2612  1.5  maxv 			mem.write = false;
   2613  1.6  maxv 			mem.size = instr->operand_size;
   2614  1.6  maxv 			ret = store_to_mem(mach, state, instr, &instr->src,
   2615  1.5  maxv 			    &mem);
   2616  1.5  maxv 			if (ret == -1)
   2617  1.5  maxv 				return -1;
   2618  1.5  maxv 		} else {
   2619  1.5  maxv 			/* Direct access. */
   2620  1.5  maxv 			mem.write = true;
   2621  1.6  maxv 			mem.size = instr->operand_size;
   2622  1.6  maxv 			val = state->gprs[instr->src.u.reg->num];
   2623  1.6  maxv 			val = __SHIFTOUT(val, instr->src.u.reg->mask);
   2624  1.5  maxv 			memcpy(mem.data, &val, mem.size);
   2625  1.5  maxv 		}
   2626  1.5  maxv 		break;
   2627  1.5  maxv 
   2628  1.5  maxv 	case STORE_IMM:
   2629  1.5  maxv 		mem.write = true;
   2630  1.6  maxv 		mem.size = instr->src.u.imm.size;
   2631  1.6  maxv 		memcpy(mem.data, instr->src.u.imm.data, mem.size);
   2632  1.5  maxv 		break;
   2633  1.5  maxv 
   2634  1.5  maxv 	case STORE_SIB:
   2635  1.5  maxv 		mem.write = false;
   2636  1.6  maxv 		mem.size = instr->operand_size;
   2637  1.6  maxv 		ret = store_to_mem(mach, state, instr, &instr->src, &mem);
   2638  1.5  maxv 		if (ret == -1)
   2639  1.5  maxv 			return -1;
   2640  1.5  maxv 		break;
   2641  1.5  maxv 
   2642  1.5  maxv 	case STORE_DMO:
   2643  1.5  maxv 		mem.write = false;
   2644  1.6  maxv 		mem.size = instr->operand_size;
   2645  1.6  maxv 		ret = store_to_mem(mach, state, instr, &instr->src, &mem);
   2646  1.5  maxv 		if (ret == -1)
   2647  1.5  maxv 			return -1;
   2648  1.5  maxv 		break;
   2649  1.5  maxv 
   2650  1.5  maxv 	default:
   2651  1.5  maxv 		return -1;
   2652  1.5  maxv 	}
   2653  1.5  maxv 
   2654  1.6  maxv 	switch (instr->dst.type) {
   2655  1.5  maxv 	case STORE_REG:
   2656  1.6  maxv 		if (instr->dst.disp.type != DISP_NONE) {
   2657  1.5  maxv 			if (__predict_false(!mem.write)) {
   2658  1.5  maxv 				DISASSEMBLER_BUG();
   2659  1.5  maxv 			}
   2660  1.6  maxv 			mem.size = instr->operand_size;
   2661  1.6  maxv 			ret = store_to_mem(mach, state, instr, &instr->dst,
   2662  1.5  maxv 			    &mem);
   2663  1.5  maxv 			if (ret == -1)
   2664  1.5  maxv 				return -1;
   2665  1.5  maxv 		} else {
   2666  1.5  maxv 			/* nothing */
   2667  1.5  maxv 		}
   2668  1.5  maxv 		break;
   2669  1.5  maxv 
   2670  1.5  maxv 	case STORE_IMM:
   2671  1.5  maxv 		/* The dst can't be an immediate. */
   2672  1.5  maxv 		DISASSEMBLER_BUG();
   2673  1.5  maxv 
   2674  1.5  maxv 	case STORE_SIB:
   2675  1.5  maxv 		if (__predict_false(!mem.write)) {
   2676  1.5  maxv 			DISASSEMBLER_BUG();
   2677  1.5  maxv 		}
   2678  1.6  maxv 		mem.size = instr->operand_size;
   2679  1.6  maxv 		ret = store_to_mem(mach, state, instr, &instr->dst, &mem);
   2680  1.5  maxv 		if (ret == -1)
   2681  1.5  maxv 			return -1;
   2682  1.5  maxv 		break;
   2683  1.5  maxv 
   2684  1.5  maxv 	case STORE_DMO:
   2685  1.5  maxv 		if (__predict_false(!mem.write)) {
   2686  1.5  maxv 			DISASSEMBLER_BUG();
   2687  1.5  maxv 		}
   2688  1.6  maxv 		mem.size = instr->operand_size;
   2689  1.6  maxv 		ret = store_to_mem(mach, state, instr, &instr->dst, &mem);
   2690  1.5  maxv 		if (ret == -1)
   2691  1.5  maxv 			return -1;
   2692  1.5  maxv 		break;
   2693  1.5  maxv 
   2694  1.5  maxv 	default:
   2695  1.5  maxv 		return -1;
   2696  1.5  maxv 	}
   2697  1.5  maxv 
   2698  1.6  maxv 	(*instr->emul)(&mem, __callbacks.mem, state->gprs);
   2699  1.5  maxv 
   2700  1.5  maxv 	if (!mem.write) {
   2701  1.6  maxv 		/* instr->dst.type == STORE_REG */
   2702  1.5  maxv 		memcpy(&val, mem.data, sizeof(uint64_t));
   2703  1.6  maxv 		val = __SHIFTIN(val, instr->dst.u.reg->mask);
   2704  1.6  maxv 		state->gprs[instr->dst.u.reg->num] &= ~instr->dst.u.reg->mask;
   2705  1.6  maxv 		state->gprs[instr->dst.u.reg->num] |= val;
   2706  1.6  maxv 	}
   2707  1.6  maxv 
   2708  1.6  maxv 	return 0;
   2709  1.6  maxv }
   2710  1.6  maxv 
   2711  1.6  maxv int
   2712  1.6  maxv nvmm_assist_mem(struct nvmm_machine *mach, nvmm_cpuid_t cpuid,
   2713  1.6  maxv     struct nvmm_exit *exit)
   2714  1.6  maxv {
   2715  1.6  maxv 	struct nvmm_x64_state state;
   2716  1.6  maxv 	struct x86_instr instr;
   2717  1.6  maxv 	uint64_t cnt;
   2718  1.6  maxv 	int ret;
   2719  1.6  maxv 
   2720  1.6  maxv 	if (__predict_false(exit->reason != NVMM_EXIT_MEMORY)) {
   2721  1.6  maxv 		errno = EINVAL;
   2722  1.6  maxv 		return -1;
   2723  1.6  maxv 	}
   2724  1.6  maxv 
   2725  1.6  maxv 	ret = nvmm_vcpu_getstate(mach, cpuid, &state,
   2726  1.6  maxv 	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS | NVMM_X64_STATE_CRS |
   2727  1.6  maxv 	    NVMM_X64_STATE_MSRS);
   2728  1.6  maxv 	if (ret == -1)
   2729  1.6  maxv 		return -1;
   2730  1.6  maxv 
   2731  1.6  maxv 	if (exit->u.mem.inst_len == 0) {
   2732  1.6  maxv 		/*
   2733  1.6  maxv 		 * The instruction was not fetched from the kernel. Fetch
   2734  1.6  maxv 		 * it ourselves.
   2735  1.6  maxv 		 */
   2736  1.6  maxv 		ret = fetch_instruction(mach, &state, exit);
   2737  1.6  maxv 		if (ret == -1)
   2738  1.6  maxv 			return -1;
   2739  1.6  maxv 	}
   2740  1.6  maxv 
   2741  1.6  maxv 	ret = x86_decode(exit->u.mem.inst_bytes, exit->u.mem.inst_len,
   2742  1.6  maxv 	    &instr, &state);
   2743  1.6  maxv 	if (ret == -1) {
   2744  1.6  maxv 		errno = ENODEV;
   2745  1.6  maxv 		return -1;
   2746  1.6  maxv 	}
   2747  1.6  maxv 
   2748  1.6  maxv 	if (__predict_false(instr.legpref[LEG_REPN])) {
   2749  1.6  maxv 		errno = ENODEV;
   2750  1.6  maxv 		return -1;
   2751  1.6  maxv 	}
   2752  1.6  maxv 
   2753  1.6  maxv 	if (instr.opcode->movs) {
   2754  1.6  maxv 		ret = assist_mem_double(mach, &state, &instr);
   2755  1.6  maxv 	} else {
   2756  1.6  maxv 		ret = assist_mem_single(mach, &state, &instr);
   2757  1.6  maxv 	}
   2758  1.6  maxv 	if (ret == -1) {
   2759  1.6  maxv 		errno = ENODEV;
   2760  1.6  maxv 		return -1;
   2761  1.5  maxv 	}
   2762  1.5  maxv 
   2763  1.5  maxv 	if (instr.legpref[LEG_REP]) {
   2764  1.6  maxv 		cnt = rep_dec_apply(&state, instr.address_size);
   2765  1.6  maxv 		if (cnt == 0) {
   2766  1.5  maxv 			state.gprs[NVMM_X64_GPR_RIP] += instr.len;
   2767  1.5  maxv 		}
   2768  1.5  maxv 	} else {
   2769  1.5  maxv 		state.gprs[NVMM_X64_GPR_RIP] += instr.len;
   2770  1.5  maxv 	}
   2771  1.5  maxv 
   2772  1.5  maxv 	ret = nvmm_vcpu_setstate(mach, cpuid, &state, NVMM_X64_STATE_GPRS);
   2773  1.5  maxv 	if (ret == -1)
   2774  1.5  maxv 		return -1;
   2775  1.5  maxv 
   2776  1.5  maxv 	return 0;
   2777  1.1  maxv }
   2778