libnvmm_x86.c revision 1.40 1 /* $NetBSD: libnvmm_x86.c,v 1.40 2020/09/05 07:22:25 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018-2020 Maxime Villard, m00nbsd.net
5 * All rights reserved.
6 *
7 * This code is part of the NVMM hypervisor.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include <sys/cdefs.h>
32
33 #include <stdio.h>
34 #include <stdlib.h>
35 #include <string.h>
36 #include <unistd.h>
37 #include <fcntl.h>
38 #include <errno.h>
39 #include <sys/ioctl.h>
40 #include <sys/mman.h>
41 #include <machine/vmparam.h>
42 #include <machine/pte.h>
43 #include <machine/psl.h>
44
45 #define MIN(X, Y) (((X) < (Y)) ? (X) : (Y))
46 #define __cacheline_aligned __attribute__((__aligned__(64)))
47
48 #include <x86/specialreg.h>
49
50 /* -------------------------------------------------------------------------- */
51
52 /*
53 * Undocumented debugging function. Helpful.
54 */
55 int
56 nvmm_vcpu_dump(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
57 {
58 struct nvmm_x64_state *state = vcpu->state;
59 uint16_t *attr;
60 size_t i;
61 int ret;
62
63 const char *segnames[] = {
64 "ES", "CS", "SS", "DS", "FS", "GS", "GDT", "IDT", "LDT", "TR"
65 };
66
67 ret = nvmm_vcpu_getstate(mach, vcpu, NVMM_X64_STATE_ALL);
68 if (ret == -1)
69 return -1;
70
71 printf("+ VCPU id=%d\n", (int)vcpu->cpuid);
72 printf("| -> RAX=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RAX]);
73 printf("| -> RCX=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RCX]);
74 printf("| -> RDX=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RDX]);
75 printf("| -> RBX=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RBX]);
76 printf("| -> RSP=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RSP]);
77 printf("| -> RBP=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RBP]);
78 printf("| -> RSI=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RSI]);
79 printf("| -> RDI=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RDI]);
80 printf("| -> RIP=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RIP]);
81 printf("| -> RFLAGS=%p\n", (void *)state->gprs[NVMM_X64_GPR_RFLAGS]);
82 for (i = 0; i < NVMM_X64_NSEG; i++) {
83 attr = (uint16_t *)&state->segs[i].attrib;
84 printf("| -> %s: sel=0x%x base=%"PRIx64", limit=%x, "
85 "attrib=%x [type=%d,l=%d,def=%d]\n",
86 segnames[i],
87 state->segs[i].selector,
88 state->segs[i].base,
89 state->segs[i].limit,
90 *attr,
91 state->segs[i].attrib.type,
92 state->segs[i].attrib.l,
93 state->segs[i].attrib.def);
94 }
95 printf("| -> MSR_EFER=%"PRIx64"\n", state->msrs[NVMM_X64_MSR_EFER]);
96 printf("| -> CR0=%"PRIx64"\n", state->crs[NVMM_X64_CR_CR0]);
97 printf("| -> CR3=%"PRIx64"\n", state->crs[NVMM_X64_CR_CR3]);
98 printf("| -> CR4=%"PRIx64"\n", state->crs[NVMM_X64_CR_CR4]);
99 printf("| -> CR8=%"PRIx64"\n", state->crs[NVMM_X64_CR_CR8]);
100
101 return 0;
102 }
103
104 /* -------------------------------------------------------------------------- */
105
106 #define PTE32_L1_SHIFT 12
107 #define PTE32_L2_SHIFT 22
108
109 #define PTE32_L2_MASK 0xffc00000
110 #define PTE32_L1_MASK 0x003ff000
111
112 #define PTE32_L2_FRAME (PTE32_L2_MASK)
113 #define PTE32_L1_FRAME (PTE32_L2_FRAME|PTE32_L1_MASK)
114
115 #define pte32_l1idx(va) (((va) & PTE32_L1_MASK) >> PTE32_L1_SHIFT)
116 #define pte32_l2idx(va) (((va) & PTE32_L2_MASK) >> PTE32_L2_SHIFT)
117
118 #define CR3_FRAME_32BIT __BITS(31, 12)
119
120 typedef uint32_t pte_32bit_t;
121
122 static int
123 x86_gva_to_gpa_32bit(struct nvmm_machine *mach, uint64_t cr3,
124 gvaddr_t gva, gpaddr_t *gpa, bool has_pse, nvmm_prot_t *prot)
125 {
126 gpaddr_t L2gpa, L1gpa;
127 uintptr_t L2hva, L1hva;
128 pte_32bit_t *pdir, pte;
129 nvmm_prot_t pageprot;
130
131 /* We begin with an RWXU access. */
132 *prot = NVMM_PROT_ALL;
133
134 /* Parse L2. */
135 L2gpa = (cr3 & CR3_FRAME_32BIT);
136 if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva, &pageprot) == -1)
137 return -1;
138 pdir = (pte_32bit_t *)L2hva;
139 pte = pdir[pte32_l2idx(gva)];
140 if ((pte & PTE_P) == 0)
141 return -1;
142 if ((pte & PTE_U) == 0)
143 *prot &= ~NVMM_PROT_USER;
144 if ((pte & PTE_W) == 0)
145 *prot &= ~NVMM_PROT_WRITE;
146 if ((pte & PTE_PS) && !has_pse)
147 return -1;
148 if (pte & PTE_PS) {
149 *gpa = (pte & PTE32_L2_FRAME);
150 *gpa = *gpa + (gva & PTE32_L1_MASK);
151 return 0;
152 }
153
154 /* Parse L1. */
155 L1gpa = (pte & PTE_FRAME);
156 if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva, &pageprot) == -1)
157 return -1;
158 pdir = (pte_32bit_t *)L1hva;
159 pte = pdir[pte32_l1idx(gva)];
160 if ((pte & PTE_P) == 0)
161 return -1;
162 if ((pte & PTE_U) == 0)
163 *prot &= ~NVMM_PROT_USER;
164 if ((pte & PTE_W) == 0)
165 *prot &= ~NVMM_PROT_WRITE;
166 if (pte & PTE_PS)
167 return -1;
168
169 *gpa = (pte & PTE_FRAME);
170 return 0;
171 }
172
173 /* -------------------------------------------------------------------------- */
174
175 #define PTE32_PAE_L1_SHIFT 12
176 #define PTE32_PAE_L2_SHIFT 21
177 #define PTE32_PAE_L3_SHIFT 30
178
179 #define PTE32_PAE_L3_MASK 0xc0000000
180 #define PTE32_PAE_L2_MASK 0x3fe00000
181 #define PTE32_PAE_L1_MASK 0x001ff000
182
183 #define PTE32_PAE_L3_FRAME (PTE32_PAE_L3_MASK)
184 #define PTE32_PAE_L2_FRAME (PTE32_PAE_L3_FRAME|PTE32_PAE_L2_MASK)
185 #define PTE32_PAE_L1_FRAME (PTE32_PAE_L2_FRAME|PTE32_PAE_L1_MASK)
186
187 #define pte32_pae_l1idx(va) (((va) & PTE32_PAE_L1_MASK) >> PTE32_PAE_L1_SHIFT)
188 #define pte32_pae_l2idx(va) (((va) & PTE32_PAE_L2_MASK) >> PTE32_PAE_L2_SHIFT)
189 #define pte32_pae_l3idx(va) (((va) & PTE32_PAE_L3_MASK) >> PTE32_PAE_L3_SHIFT)
190
191 #define CR3_FRAME_32BIT_PAE __BITS(31, 5)
192
193 typedef uint64_t pte_32bit_pae_t;
194
195 static int
196 x86_gva_to_gpa_32bit_pae(struct nvmm_machine *mach, uint64_t cr3,
197 gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
198 {
199 gpaddr_t L3gpa, L2gpa, L1gpa;
200 uintptr_t L3hva, L2hva, L1hva;
201 pte_32bit_pae_t *pdir, pte;
202 nvmm_prot_t pageprot;
203
204 /* We begin with an RWXU access. */
205 *prot = NVMM_PROT_ALL;
206
207 /* Parse L3. */
208 L3gpa = (cr3 & CR3_FRAME_32BIT_PAE);
209 if (nvmm_gpa_to_hva(mach, L3gpa, &L3hva, &pageprot) == -1)
210 return -1;
211 pdir = (pte_32bit_pae_t *)L3hva;
212 pte = pdir[pte32_pae_l3idx(gva)];
213 if ((pte & PTE_P) == 0)
214 return -1;
215 if (pte & PTE_NX)
216 *prot &= ~NVMM_PROT_EXEC;
217 if (pte & PTE_PS)
218 return -1;
219
220 /* Parse L2. */
221 L2gpa = (pte & PTE_FRAME);
222 if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva, &pageprot) == -1)
223 return -1;
224 pdir = (pte_32bit_pae_t *)L2hva;
225 pte = pdir[pte32_pae_l2idx(gva)];
226 if ((pte & PTE_P) == 0)
227 return -1;
228 if ((pte & PTE_U) == 0)
229 *prot &= ~NVMM_PROT_USER;
230 if ((pte & PTE_W) == 0)
231 *prot &= ~NVMM_PROT_WRITE;
232 if (pte & PTE_NX)
233 *prot &= ~NVMM_PROT_EXEC;
234 if (pte & PTE_PS) {
235 *gpa = (pte & PTE32_PAE_L2_FRAME);
236 *gpa = *gpa + (gva & PTE32_PAE_L1_MASK);
237 return 0;
238 }
239
240 /* Parse L1. */
241 L1gpa = (pte & PTE_FRAME);
242 if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva, &pageprot) == -1)
243 return -1;
244 pdir = (pte_32bit_pae_t *)L1hva;
245 pte = pdir[pte32_pae_l1idx(gva)];
246 if ((pte & PTE_P) == 0)
247 return -1;
248 if ((pte & PTE_U) == 0)
249 *prot &= ~NVMM_PROT_USER;
250 if ((pte & PTE_W) == 0)
251 *prot &= ~NVMM_PROT_WRITE;
252 if (pte & PTE_NX)
253 *prot &= ~NVMM_PROT_EXEC;
254 if (pte & PTE_PS)
255 return -1;
256
257 *gpa = (pte & PTE_FRAME);
258 return 0;
259 }
260
261 /* -------------------------------------------------------------------------- */
262
263 #define PTE64_L1_SHIFT 12
264 #define PTE64_L2_SHIFT 21
265 #define PTE64_L3_SHIFT 30
266 #define PTE64_L4_SHIFT 39
267
268 #define PTE64_L4_MASK 0x0000ff8000000000
269 #define PTE64_L3_MASK 0x0000007fc0000000
270 #define PTE64_L2_MASK 0x000000003fe00000
271 #define PTE64_L1_MASK 0x00000000001ff000
272
273 #define PTE64_L4_FRAME PTE64_L4_MASK
274 #define PTE64_L3_FRAME (PTE64_L4_FRAME|PTE64_L3_MASK)
275 #define PTE64_L2_FRAME (PTE64_L3_FRAME|PTE64_L2_MASK)
276 #define PTE64_L1_FRAME (PTE64_L2_FRAME|PTE64_L1_MASK)
277
278 #define pte64_l1idx(va) (((va) & PTE64_L1_MASK) >> PTE64_L1_SHIFT)
279 #define pte64_l2idx(va) (((va) & PTE64_L2_MASK) >> PTE64_L2_SHIFT)
280 #define pte64_l3idx(va) (((va) & PTE64_L3_MASK) >> PTE64_L3_SHIFT)
281 #define pte64_l4idx(va) (((va) & PTE64_L4_MASK) >> PTE64_L4_SHIFT)
282
283 #define CR3_FRAME_64BIT __BITS(51, 12)
284
285 typedef uint64_t pte_64bit_t;
286
287 static inline bool
288 x86_gva_64bit_canonical(gvaddr_t gva)
289 {
290 /* Bits 63:47 must have the same value. */
291 #define SIGN_EXTEND 0xffff800000000000ULL
292 return (gva & SIGN_EXTEND) == 0 || (gva & SIGN_EXTEND) == SIGN_EXTEND;
293 }
294
295 static int
296 x86_gva_to_gpa_64bit(struct nvmm_machine *mach, uint64_t cr3,
297 gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
298 {
299 gpaddr_t L4gpa, L3gpa, L2gpa, L1gpa;
300 uintptr_t L4hva, L3hva, L2hva, L1hva;
301 pte_64bit_t *pdir, pte;
302 nvmm_prot_t pageprot;
303
304 /* We begin with an RWXU access. */
305 *prot = NVMM_PROT_ALL;
306
307 if (!x86_gva_64bit_canonical(gva))
308 return -1;
309
310 /* Parse L4. */
311 L4gpa = (cr3 & CR3_FRAME_64BIT);
312 if (nvmm_gpa_to_hva(mach, L4gpa, &L4hva, &pageprot) == -1)
313 return -1;
314 pdir = (pte_64bit_t *)L4hva;
315 pte = pdir[pte64_l4idx(gva)];
316 if ((pte & PTE_P) == 0)
317 return -1;
318 if ((pte & PTE_U) == 0)
319 *prot &= ~NVMM_PROT_USER;
320 if ((pte & PTE_W) == 0)
321 *prot &= ~NVMM_PROT_WRITE;
322 if (pte & PTE_NX)
323 *prot &= ~NVMM_PROT_EXEC;
324 if (pte & PTE_PS)
325 return -1;
326
327 /* Parse L3. */
328 L3gpa = (pte & PTE_FRAME);
329 if (nvmm_gpa_to_hva(mach, L3gpa, &L3hva, &pageprot) == -1)
330 return -1;
331 pdir = (pte_64bit_t *)L3hva;
332 pte = pdir[pte64_l3idx(gva)];
333 if ((pte & PTE_P) == 0)
334 return -1;
335 if ((pte & PTE_U) == 0)
336 *prot &= ~NVMM_PROT_USER;
337 if ((pte & PTE_W) == 0)
338 *prot &= ~NVMM_PROT_WRITE;
339 if (pte & PTE_NX)
340 *prot &= ~NVMM_PROT_EXEC;
341 if (pte & PTE_PS) {
342 *gpa = (pte & PTE64_L3_FRAME);
343 *gpa = *gpa + (gva & (PTE64_L2_MASK|PTE64_L1_MASK));
344 return 0;
345 }
346
347 /* Parse L2. */
348 L2gpa = (pte & PTE_FRAME);
349 if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva, &pageprot) == -1)
350 return -1;
351 pdir = (pte_64bit_t *)L2hva;
352 pte = pdir[pte64_l2idx(gva)];
353 if ((pte & PTE_P) == 0)
354 return -1;
355 if ((pte & PTE_U) == 0)
356 *prot &= ~NVMM_PROT_USER;
357 if ((pte & PTE_W) == 0)
358 *prot &= ~NVMM_PROT_WRITE;
359 if (pte & PTE_NX)
360 *prot &= ~NVMM_PROT_EXEC;
361 if (pte & PTE_PS) {
362 *gpa = (pte & PTE64_L2_FRAME);
363 *gpa = *gpa + (gva & PTE64_L1_MASK);
364 return 0;
365 }
366
367 /* Parse L1. */
368 L1gpa = (pte & PTE_FRAME);
369 if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva, &pageprot) == -1)
370 return -1;
371 pdir = (pte_64bit_t *)L1hva;
372 pte = pdir[pte64_l1idx(gva)];
373 if ((pte & PTE_P) == 0)
374 return -1;
375 if ((pte & PTE_U) == 0)
376 *prot &= ~NVMM_PROT_USER;
377 if ((pte & PTE_W) == 0)
378 *prot &= ~NVMM_PROT_WRITE;
379 if (pte & PTE_NX)
380 *prot &= ~NVMM_PROT_EXEC;
381 if (pte & PTE_PS)
382 return -1;
383
384 *gpa = (pte & PTE_FRAME);
385 return 0;
386 }
387
388 static inline int
389 x86_gva_to_gpa(struct nvmm_machine *mach, struct nvmm_x64_state *state,
390 gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
391 {
392 bool is_pae, is_lng, has_pse;
393 uint64_t cr3;
394 size_t off;
395 int ret;
396
397 if ((state->crs[NVMM_X64_CR_CR0] & CR0_PG) == 0) {
398 /* No paging. */
399 *prot = NVMM_PROT_ALL;
400 *gpa = gva;
401 return 0;
402 }
403
404 off = (gva & PAGE_MASK);
405 gva &= ~PAGE_MASK;
406
407 is_pae = (state->crs[NVMM_X64_CR_CR4] & CR4_PAE) != 0;
408 is_lng = (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) != 0;
409 has_pse = (state->crs[NVMM_X64_CR_CR4] & CR4_PSE) != 0;
410 cr3 = state->crs[NVMM_X64_CR_CR3];
411
412 if (is_pae && is_lng) {
413 /* 64bit */
414 ret = x86_gva_to_gpa_64bit(mach, cr3, gva, gpa, prot);
415 } else if (is_pae && !is_lng) {
416 /* 32bit PAE */
417 ret = x86_gva_to_gpa_32bit_pae(mach, cr3, gva, gpa, prot);
418 } else if (!is_pae && !is_lng) {
419 /* 32bit */
420 ret = x86_gva_to_gpa_32bit(mach, cr3, gva, gpa, has_pse, prot);
421 } else {
422 ret = -1;
423 }
424
425 if (ret == -1) {
426 errno = EFAULT;
427 }
428
429 *gpa = *gpa + off;
430
431 return ret;
432 }
433
434 int
435 nvmm_gva_to_gpa(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
436 gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
437 {
438 struct nvmm_x64_state *state = vcpu->state;
439 int ret;
440
441 ret = nvmm_vcpu_getstate(mach, vcpu,
442 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
443 if (ret == -1)
444 return -1;
445
446 return x86_gva_to_gpa(mach, state, gva, gpa, prot);
447 }
448
449 /* -------------------------------------------------------------------------- */
450
451 #define DISASSEMBLER_BUG() \
452 do { \
453 errno = EINVAL; \
454 return -1; \
455 } while (0);
456
457 static inline bool
458 is_long_mode(struct nvmm_x64_state *state)
459 {
460 return (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) != 0;
461 }
462
463 static inline bool
464 is_64bit(struct nvmm_x64_state *state)
465 {
466 return (state->segs[NVMM_X64_SEG_CS].attrib.l != 0);
467 }
468
469 static inline bool
470 is_32bit(struct nvmm_x64_state *state)
471 {
472 return (state->segs[NVMM_X64_SEG_CS].attrib.l == 0) &&
473 (state->segs[NVMM_X64_SEG_CS].attrib.def == 1);
474 }
475
476 static inline bool
477 is_16bit(struct nvmm_x64_state *state)
478 {
479 return (state->segs[NVMM_X64_SEG_CS].attrib.l == 0) &&
480 (state->segs[NVMM_X64_SEG_CS].attrib.def == 0);
481 }
482
483 static int
484 segment_check(struct nvmm_x64_state_seg *seg, gvaddr_t gva, size_t size)
485 {
486 uint64_t limit;
487
488 /*
489 * This is incomplete. We should check topdown, etc, really that's
490 * tiring.
491 */
492 if (__predict_false(!seg->attrib.p)) {
493 goto error;
494 }
495
496 limit = (uint64_t)seg->limit + 1;
497 if (__predict_true(seg->attrib.g)) {
498 limit *= PAGE_SIZE;
499 }
500
501 if (__predict_false(gva + size > limit)) {
502 goto error;
503 }
504
505 return 0;
506
507 error:
508 errno = EFAULT;
509 return -1;
510 }
511
512 static inline void
513 segment_apply(struct nvmm_x64_state_seg *seg, gvaddr_t *gva)
514 {
515 *gva += seg->base;
516 }
517
518 static inline uint64_t
519 size_to_mask(size_t size)
520 {
521 switch (size) {
522 case 1:
523 return 0x00000000000000FF;
524 case 2:
525 return 0x000000000000FFFF;
526 case 4:
527 return 0x00000000FFFFFFFF;
528 case 8:
529 default:
530 return 0xFFFFFFFFFFFFFFFF;
531 }
532 }
533
534 static uint64_t
535 rep_get_cnt(struct nvmm_x64_state *state, size_t adsize)
536 {
537 uint64_t mask, cnt;
538
539 mask = size_to_mask(adsize);
540 cnt = state->gprs[NVMM_X64_GPR_RCX] & mask;
541
542 return cnt;
543 }
544
545 static void
546 rep_set_cnt(struct nvmm_x64_state *state, size_t adsize, uint64_t cnt)
547 {
548 uint64_t mask;
549
550 /* XXX: should we zero-extend? */
551 mask = size_to_mask(adsize);
552 state->gprs[NVMM_X64_GPR_RCX] &= ~mask;
553 state->gprs[NVMM_X64_GPR_RCX] |= cnt;
554 }
555
556 static int
557 read_guest_memory(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
558 gvaddr_t gva, uint8_t *data, size_t size)
559 {
560 struct nvmm_x64_state *state = vcpu->state;
561 struct nvmm_mem mem;
562 nvmm_prot_t prot;
563 gpaddr_t gpa;
564 uintptr_t hva;
565 bool is_mmio;
566 int ret, remain;
567
568 ret = x86_gva_to_gpa(mach, state, gva, &gpa, &prot);
569 if (__predict_false(ret == -1)) {
570 return -1;
571 }
572 if (__predict_false(!(prot & NVMM_PROT_READ))) {
573 errno = EFAULT;
574 return -1;
575 }
576
577 if ((gva & PAGE_MASK) + size > PAGE_SIZE) {
578 remain = ((gva & PAGE_MASK) + size - PAGE_SIZE);
579 } else {
580 remain = 0;
581 }
582 size -= remain;
583
584 ret = nvmm_gpa_to_hva(mach, gpa, &hva, &prot);
585 is_mmio = (ret == -1);
586
587 if (is_mmio) {
588 mem.mach = mach;
589 mem.vcpu = vcpu;
590 mem.data = data;
591 mem.gpa = gpa;
592 mem.write = false;
593 mem.size = size;
594 (*vcpu->cbs.mem)(&mem);
595 } else {
596 if (__predict_false(!(prot & NVMM_PROT_READ))) {
597 errno = EFAULT;
598 return -1;
599 }
600 memcpy(data, (uint8_t *)hva, size);
601 }
602
603 if (remain > 0) {
604 ret = read_guest_memory(mach, vcpu, gva + size,
605 data + size, remain);
606 } else {
607 ret = 0;
608 }
609
610 return ret;
611 }
612
613 static int
614 write_guest_memory(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
615 gvaddr_t gva, uint8_t *data, size_t size)
616 {
617 struct nvmm_x64_state *state = vcpu->state;
618 struct nvmm_mem mem;
619 nvmm_prot_t prot;
620 gpaddr_t gpa;
621 uintptr_t hva;
622 bool is_mmio;
623 int ret, remain;
624
625 ret = x86_gva_to_gpa(mach, state, gva, &gpa, &prot);
626 if (__predict_false(ret == -1)) {
627 return -1;
628 }
629 if (__predict_false(!(prot & NVMM_PROT_WRITE))) {
630 errno = EFAULT;
631 return -1;
632 }
633
634 if ((gva & PAGE_MASK) + size > PAGE_SIZE) {
635 remain = ((gva & PAGE_MASK) + size - PAGE_SIZE);
636 } else {
637 remain = 0;
638 }
639 size -= remain;
640
641 ret = nvmm_gpa_to_hva(mach, gpa, &hva, &prot);
642 is_mmio = (ret == -1);
643
644 if (is_mmio) {
645 mem.mach = mach;
646 mem.vcpu = vcpu;
647 mem.data = data;
648 mem.gpa = gpa;
649 mem.write = true;
650 mem.size = size;
651 (*vcpu->cbs.mem)(&mem);
652 } else {
653 if (__predict_false(!(prot & NVMM_PROT_WRITE))) {
654 errno = EFAULT;
655 return -1;
656 }
657 memcpy((uint8_t *)hva, data, size);
658 }
659
660 if (remain > 0) {
661 ret = write_guest_memory(mach, vcpu, gva + size,
662 data + size, remain);
663 } else {
664 ret = 0;
665 }
666
667 return ret;
668 }
669
670 /* -------------------------------------------------------------------------- */
671
672 static int fetch_segment(struct nvmm_machine *, struct nvmm_vcpu *);
673
674 #define NVMM_IO_BATCH_SIZE 32
675
676 static int
677 assist_io_batch(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
678 struct nvmm_io *io, gvaddr_t gva, uint64_t cnt)
679 {
680 uint8_t iobuf[NVMM_IO_BATCH_SIZE];
681 size_t i, iosize, iocnt;
682 int ret;
683
684 cnt = MIN(cnt, NVMM_IO_BATCH_SIZE);
685 iosize = MIN(io->size * cnt, NVMM_IO_BATCH_SIZE);
686 iocnt = iosize / io->size;
687
688 io->data = iobuf;
689
690 if (!io->in) {
691 ret = read_guest_memory(mach, vcpu, gva, iobuf, iosize);
692 if (ret == -1)
693 return -1;
694 }
695
696 for (i = 0; i < iocnt; i++) {
697 (*vcpu->cbs.io)(io);
698 io->data += io->size;
699 }
700
701 if (io->in) {
702 ret = write_guest_memory(mach, vcpu, gva, iobuf, iosize);
703 if (ret == -1)
704 return -1;
705 }
706
707 return iocnt;
708 }
709
710 int
711 nvmm_assist_io(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
712 {
713 struct nvmm_x64_state *state = vcpu->state;
714 struct nvmm_vcpu_exit *exit = vcpu->exit;
715 struct nvmm_io io;
716 uint64_t cnt = 0; /* GCC */
717 uint8_t iobuf[8];
718 int iocnt = 1;
719 gvaddr_t gva = 0; /* GCC */
720 int reg = 0; /* GCC */
721 int ret, seg;
722 bool psld = false;
723
724 if (__predict_false(exit->reason != NVMM_VCPU_EXIT_IO)) {
725 errno = EINVAL;
726 return -1;
727 }
728
729 io.mach = mach;
730 io.vcpu = vcpu;
731 io.port = exit->u.io.port;
732 io.in = exit->u.io.in;
733 io.size = exit->u.io.operand_size;
734 io.data = iobuf;
735
736 ret = nvmm_vcpu_getstate(mach, vcpu,
737 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
738 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
739 if (ret == -1)
740 return -1;
741
742 if (exit->u.io.rep) {
743 cnt = rep_get_cnt(state, exit->u.io.address_size);
744 if (__predict_false(cnt == 0)) {
745 state->gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
746 goto out;
747 }
748 }
749
750 if (__predict_false(state->gprs[NVMM_X64_GPR_RFLAGS] & PSL_D)) {
751 psld = true;
752 }
753
754 /*
755 * Determine GVA.
756 */
757 if (exit->u.io.str) {
758 if (io.in) {
759 reg = NVMM_X64_GPR_RDI;
760 } else {
761 reg = NVMM_X64_GPR_RSI;
762 }
763
764 gva = state->gprs[reg];
765 gva &= size_to_mask(exit->u.io.address_size);
766
767 if (exit->u.io.seg != -1) {
768 seg = exit->u.io.seg;
769 } else {
770 if (io.in) {
771 seg = NVMM_X64_SEG_ES;
772 } else {
773 seg = fetch_segment(mach, vcpu);
774 if (seg == -1)
775 return -1;
776 }
777 }
778
779 if (__predict_true(is_long_mode(state))) {
780 if (seg == NVMM_X64_SEG_GS || seg == NVMM_X64_SEG_FS) {
781 segment_apply(&state->segs[seg], &gva);
782 }
783 } else {
784 ret = segment_check(&state->segs[seg], gva, io.size);
785 if (ret == -1)
786 return -1;
787 segment_apply(&state->segs[seg], &gva);
788 }
789
790 if (exit->u.io.rep && !psld) {
791 iocnt = assist_io_batch(mach, vcpu, &io, gva, cnt);
792 if (iocnt == -1)
793 return -1;
794 goto done;
795 }
796 }
797
798 if (!io.in) {
799 if (!exit->u.io.str) {
800 memcpy(io.data, &state->gprs[NVMM_X64_GPR_RAX], io.size);
801 } else {
802 ret = read_guest_memory(mach, vcpu, gva, io.data,
803 io.size);
804 if (ret == -1)
805 return -1;
806 }
807 }
808
809 (*vcpu->cbs.io)(&io);
810
811 if (io.in) {
812 if (!exit->u.io.str) {
813 memcpy(&state->gprs[NVMM_X64_GPR_RAX], io.data, io.size);
814 if (io.size == 4) {
815 /* Zero-extend to 64 bits. */
816 state->gprs[NVMM_X64_GPR_RAX] &= size_to_mask(4);
817 }
818 } else {
819 ret = write_guest_memory(mach, vcpu, gva, io.data,
820 io.size);
821 if (ret == -1)
822 return -1;
823 }
824 }
825
826 done:
827 if (exit->u.io.str) {
828 if (__predict_false(psld)) {
829 state->gprs[reg] -= iocnt * io.size;
830 } else {
831 state->gprs[reg] += iocnt * io.size;
832 }
833 }
834
835 if (exit->u.io.rep) {
836 cnt -= iocnt;
837 rep_set_cnt(state, exit->u.io.address_size, cnt);
838 if (cnt == 0) {
839 state->gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
840 }
841 } else {
842 state->gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
843 }
844
845 out:
846 ret = nvmm_vcpu_setstate(mach, vcpu, NVMM_X64_STATE_GPRS);
847 if (ret == -1)
848 return -1;
849
850 return 0;
851 }
852
853 /* -------------------------------------------------------------------------- */
854
855 struct x86_emul {
856 bool readreg;
857 bool backprop;
858 bool notouch;
859 void (*func)(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
860 };
861
862 static void x86_func_or(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
863 static void x86_func_and(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
864 static void x86_func_xchg(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
865 static void x86_func_sub(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
866 static void x86_func_xor(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
867 static void x86_func_cmp(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
868 static void x86_func_test(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
869 static void x86_func_mov(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
870 static void x86_func_stos(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
871 static void x86_func_lods(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
872 static void x86_func_movs(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
873
874 static const struct x86_emul x86_emul_or = {
875 .readreg = true,
876 .func = x86_func_or
877 };
878
879 static const struct x86_emul x86_emul_and = {
880 .readreg = true,
881 .func = x86_func_and
882 };
883
884 static const struct x86_emul x86_emul_xchg = {
885 .readreg = true,
886 .backprop = true,
887 .func = x86_func_xchg
888 };
889
890 static const struct x86_emul x86_emul_sub = {
891 .readreg = true,
892 .func = x86_func_sub
893 };
894
895 static const struct x86_emul x86_emul_xor = {
896 .readreg = true,
897 .func = x86_func_xor
898 };
899
900 static const struct x86_emul x86_emul_cmp = {
901 .notouch = true,
902 .func = x86_func_cmp
903 };
904
905 static const struct x86_emul x86_emul_test = {
906 .notouch = true,
907 .func = x86_func_test
908 };
909
910 static const struct x86_emul x86_emul_mov = {
911 .func = x86_func_mov
912 };
913
914 static const struct x86_emul x86_emul_stos = {
915 .func = x86_func_stos
916 };
917
918 static const struct x86_emul x86_emul_lods = {
919 .func = x86_func_lods
920 };
921
922 static const struct x86_emul x86_emul_movs = {
923 .func = x86_func_movs
924 };
925
926 /* Legacy prefixes. */
927 #define LEG_LOCK 0xF0
928 #define LEG_REPN 0xF2
929 #define LEG_REP 0xF3
930 #define LEG_OVR_CS 0x2E
931 #define LEG_OVR_SS 0x36
932 #define LEG_OVR_DS 0x3E
933 #define LEG_OVR_ES 0x26
934 #define LEG_OVR_FS 0x64
935 #define LEG_OVR_GS 0x65
936 #define LEG_OPR_OVR 0x66
937 #define LEG_ADR_OVR 0x67
938
939 struct x86_legpref {
940 bool opr_ovr:1;
941 bool adr_ovr:1;
942 bool rep:1;
943 bool repn:1;
944 int8_t seg;
945 };
946
947 struct x86_rexpref {
948 bool b:1;
949 bool x:1;
950 bool r:1;
951 bool w:1;
952 bool present:1;
953 };
954
955 struct x86_reg {
956 int num; /* NVMM GPR state index */
957 uint64_t mask;
958 };
959
960 struct x86_dualreg {
961 int reg1;
962 int reg2;
963 };
964
965 enum x86_disp_type {
966 DISP_NONE,
967 DISP_0,
968 DISP_1,
969 DISP_2,
970 DISP_4
971 };
972
973 struct x86_disp {
974 enum x86_disp_type type;
975 uint64_t data; /* 4 bytes, but can be sign-extended */
976 };
977
978 struct x86_regmodrm {
979 uint8_t mod:2;
980 uint8_t reg:3;
981 uint8_t rm:3;
982 };
983
984 struct x86_immediate {
985 uint64_t data;
986 };
987
988 struct x86_sib {
989 uint8_t scale;
990 const struct x86_reg *idx;
991 const struct x86_reg *bas;
992 };
993
994 enum x86_store_type {
995 STORE_NONE,
996 STORE_REG,
997 STORE_DUALREG,
998 STORE_IMM,
999 STORE_SIB,
1000 STORE_DMO
1001 };
1002
1003 struct x86_store {
1004 enum x86_store_type type;
1005 union {
1006 const struct x86_reg *reg;
1007 struct x86_dualreg dualreg;
1008 struct x86_immediate imm;
1009 struct x86_sib sib;
1010 uint64_t dmo;
1011 } u;
1012 struct x86_disp disp;
1013 int hardseg;
1014 };
1015
1016 struct x86_instr {
1017 uint8_t len;
1018 struct x86_legpref legpref;
1019 struct x86_rexpref rexpref;
1020 struct x86_regmodrm regmodrm;
1021 uint8_t operand_size;
1022 uint8_t address_size;
1023 uint64_t zeroextend_mask;
1024
1025 const struct x86_opcode *opcode;
1026 const struct x86_emul *emul;
1027
1028 struct x86_store src;
1029 struct x86_store dst;
1030 struct x86_store *strm;
1031 };
1032
1033 struct x86_decode_fsm {
1034 /* vcpu */
1035 bool is64bit;
1036 bool is32bit;
1037 bool is16bit;
1038
1039 /* fsm */
1040 int (*fn)(struct x86_decode_fsm *, struct x86_instr *);
1041 uint8_t *buf;
1042 uint8_t *end;
1043 };
1044
1045 struct x86_opcode {
1046 bool valid:1;
1047 bool regmodrm:1;
1048 bool regtorm:1;
1049 bool dmo:1;
1050 bool todmo:1;
1051 bool movs:1;
1052 bool stos:1;
1053 bool lods:1;
1054 bool szoverride:1;
1055 bool group1:1;
1056 bool group3:1;
1057 bool group11:1;
1058 bool immediate:1;
1059 uint8_t defsize;
1060 uint8_t flags;
1061 const struct x86_emul *emul;
1062 };
1063
1064 struct x86_group_entry {
1065 const struct x86_emul *emul;
1066 };
1067
1068 #define OPSIZE_BYTE 0x01
1069 #define OPSIZE_WORD 0x02 /* 2 bytes */
1070 #define OPSIZE_DOUB 0x04 /* 4 bytes */
1071 #define OPSIZE_QUAD 0x08 /* 8 bytes */
1072
1073 #define FLAG_imm8 0x01
1074 #define FLAG_immz 0x02
1075 #define FLAG_ze 0x04
1076
1077 static const struct x86_group_entry group1[8] __cacheline_aligned = {
1078 [1] = { .emul = &x86_emul_or },
1079 [4] = { .emul = &x86_emul_and },
1080 [6] = { .emul = &x86_emul_xor },
1081 [7] = { .emul = &x86_emul_cmp }
1082 };
1083
1084 static const struct x86_group_entry group3[8] __cacheline_aligned = {
1085 [0] = { .emul = &x86_emul_test },
1086 [1] = { .emul = &x86_emul_test }
1087 };
1088
1089 static const struct x86_group_entry group11[8] __cacheline_aligned = {
1090 [0] = { .emul = &x86_emul_mov }
1091 };
1092
1093 static const struct x86_opcode primary_opcode_table[256] __cacheline_aligned = {
1094 /*
1095 * Group1
1096 */
1097 [0x80] = {
1098 /* Eb, Ib */
1099 .valid = true,
1100 .regmodrm = true,
1101 .regtorm = true,
1102 .szoverride = false,
1103 .defsize = OPSIZE_BYTE,
1104 .group1 = true,
1105 .immediate = true,
1106 .emul = NULL /* group1 */
1107 },
1108 [0x81] = {
1109 /* Ev, Iz */
1110 .valid = true,
1111 .regmodrm = true,
1112 .regtorm = true,
1113 .szoverride = true,
1114 .defsize = -1,
1115 .group1 = true,
1116 .immediate = true,
1117 .flags = FLAG_immz,
1118 .emul = NULL /* group1 */
1119 },
1120 [0x83] = {
1121 /* Ev, Ib */
1122 .valid = true,
1123 .regmodrm = true,
1124 .regtorm = true,
1125 .szoverride = true,
1126 .defsize = -1,
1127 .group1 = true,
1128 .immediate = true,
1129 .flags = FLAG_imm8,
1130 .emul = NULL /* group1 */
1131 },
1132
1133 /*
1134 * Group3
1135 */
1136 [0xF6] = {
1137 /* Eb, Ib */
1138 .valid = true,
1139 .regmodrm = true,
1140 .regtorm = true,
1141 .szoverride = false,
1142 .defsize = OPSIZE_BYTE,
1143 .group3 = true,
1144 .immediate = true,
1145 .emul = NULL /* group3 */
1146 },
1147 [0xF7] = {
1148 /* Ev, Iz */
1149 .valid = true,
1150 .regmodrm = true,
1151 .regtorm = true,
1152 .szoverride = true,
1153 .defsize = -1,
1154 .group3 = true,
1155 .immediate = true,
1156 .flags = FLAG_immz,
1157 .emul = NULL /* group3 */
1158 },
1159
1160 /*
1161 * Group11
1162 */
1163 [0xC6] = {
1164 /* Eb, Ib */
1165 .valid = true,
1166 .regmodrm = true,
1167 .regtorm = true,
1168 .szoverride = false,
1169 .defsize = OPSIZE_BYTE,
1170 .group11 = true,
1171 .immediate = true,
1172 .emul = NULL /* group11 */
1173 },
1174 [0xC7] = {
1175 /* Ev, Iz */
1176 .valid = true,
1177 .regmodrm = true,
1178 .regtorm = true,
1179 .szoverride = true,
1180 .defsize = -1,
1181 .group11 = true,
1182 .immediate = true,
1183 .flags = FLAG_immz,
1184 .emul = NULL /* group11 */
1185 },
1186
1187 /*
1188 * OR
1189 */
1190 [0x08] = {
1191 /* Eb, Gb */
1192 .valid = true,
1193 .regmodrm = true,
1194 .regtorm = true,
1195 .szoverride = false,
1196 .defsize = OPSIZE_BYTE,
1197 .emul = &x86_emul_or
1198 },
1199 [0x09] = {
1200 /* Ev, Gv */
1201 .valid = true,
1202 .regmodrm = true,
1203 .regtorm = true,
1204 .szoverride = true,
1205 .defsize = -1,
1206 .emul = &x86_emul_or
1207 },
1208 [0x0A] = {
1209 /* Gb, Eb */
1210 .valid = true,
1211 .regmodrm = true,
1212 .regtorm = false,
1213 .szoverride = false,
1214 .defsize = OPSIZE_BYTE,
1215 .emul = &x86_emul_or
1216 },
1217 [0x0B] = {
1218 /* Gv, Ev */
1219 .valid = true,
1220 .regmodrm = true,
1221 .regtorm = false,
1222 .szoverride = true,
1223 .defsize = -1,
1224 .emul = &x86_emul_or
1225 },
1226
1227 /*
1228 * AND
1229 */
1230 [0x20] = {
1231 /* Eb, Gb */
1232 .valid = true,
1233 .regmodrm = true,
1234 .regtorm = true,
1235 .szoverride = false,
1236 .defsize = OPSIZE_BYTE,
1237 .emul = &x86_emul_and
1238 },
1239 [0x21] = {
1240 /* Ev, Gv */
1241 .valid = true,
1242 .regmodrm = true,
1243 .regtorm = true,
1244 .szoverride = true,
1245 .defsize = -1,
1246 .emul = &x86_emul_and
1247 },
1248 [0x22] = {
1249 /* Gb, Eb */
1250 .valid = true,
1251 .regmodrm = true,
1252 .regtorm = false,
1253 .szoverride = false,
1254 .defsize = OPSIZE_BYTE,
1255 .emul = &x86_emul_and
1256 },
1257 [0x23] = {
1258 /* Gv, Ev */
1259 .valid = true,
1260 .regmodrm = true,
1261 .regtorm = false,
1262 .szoverride = true,
1263 .defsize = -1,
1264 .emul = &x86_emul_and
1265 },
1266
1267 /*
1268 * SUB
1269 */
1270 [0x28] = {
1271 /* Eb, Gb */
1272 .valid = true,
1273 .regmodrm = true,
1274 .regtorm = true,
1275 .szoverride = false,
1276 .defsize = OPSIZE_BYTE,
1277 .emul = &x86_emul_sub
1278 },
1279 [0x29] = {
1280 /* Ev, Gv */
1281 .valid = true,
1282 .regmodrm = true,
1283 .regtorm = true,
1284 .szoverride = true,
1285 .defsize = -1,
1286 .emul = &x86_emul_sub
1287 },
1288 [0x2A] = {
1289 /* Gb, Eb */
1290 .valid = true,
1291 .regmodrm = true,
1292 .regtorm = false,
1293 .szoverride = false,
1294 .defsize = OPSIZE_BYTE,
1295 .emul = &x86_emul_sub
1296 },
1297 [0x2B] = {
1298 /* Gv, Ev */
1299 .valid = true,
1300 .regmodrm = true,
1301 .regtorm = false,
1302 .szoverride = true,
1303 .defsize = -1,
1304 .emul = &x86_emul_sub
1305 },
1306
1307 /*
1308 * XOR
1309 */
1310 [0x30] = {
1311 /* Eb, Gb */
1312 .valid = true,
1313 .regmodrm = true,
1314 .regtorm = true,
1315 .szoverride = false,
1316 .defsize = OPSIZE_BYTE,
1317 .emul = &x86_emul_xor
1318 },
1319 [0x31] = {
1320 /* Ev, Gv */
1321 .valid = true,
1322 .regmodrm = true,
1323 .regtorm = true,
1324 .szoverride = true,
1325 .defsize = -1,
1326 .emul = &x86_emul_xor
1327 },
1328 [0x32] = {
1329 /* Gb, Eb */
1330 .valid = true,
1331 .regmodrm = true,
1332 .regtorm = false,
1333 .szoverride = false,
1334 .defsize = OPSIZE_BYTE,
1335 .emul = &x86_emul_xor
1336 },
1337 [0x33] = {
1338 /* Gv, Ev */
1339 .valid = true,
1340 .regmodrm = true,
1341 .regtorm = false,
1342 .szoverride = true,
1343 .defsize = -1,
1344 .emul = &x86_emul_xor
1345 },
1346
1347 /*
1348 * XCHG
1349 */
1350 [0x86] = {
1351 /* Eb, Gb */
1352 .valid = true,
1353 .regmodrm = true,
1354 .regtorm = true,
1355 .szoverride = false,
1356 .defsize = OPSIZE_BYTE,
1357 .emul = &x86_emul_xchg
1358 },
1359 [0x87] = {
1360 /* Ev, Gv */
1361 .valid = true,
1362 .regmodrm = true,
1363 .regtorm = true,
1364 .szoverride = true,
1365 .defsize = -1,
1366 .emul = &x86_emul_xchg
1367 },
1368
1369 /*
1370 * MOV
1371 */
1372 [0x88] = {
1373 /* Eb, Gb */
1374 .valid = true,
1375 .regmodrm = true,
1376 .regtorm = true,
1377 .szoverride = false,
1378 .defsize = OPSIZE_BYTE,
1379 .emul = &x86_emul_mov
1380 },
1381 [0x89] = {
1382 /* Ev, Gv */
1383 .valid = true,
1384 .regmodrm = true,
1385 .regtorm = true,
1386 .szoverride = true,
1387 .defsize = -1,
1388 .emul = &x86_emul_mov
1389 },
1390 [0x8A] = {
1391 /* Gb, Eb */
1392 .valid = true,
1393 .regmodrm = true,
1394 .regtorm = false,
1395 .szoverride = false,
1396 .defsize = OPSIZE_BYTE,
1397 .emul = &x86_emul_mov
1398 },
1399 [0x8B] = {
1400 /* Gv, Ev */
1401 .valid = true,
1402 .regmodrm = true,
1403 .regtorm = false,
1404 .szoverride = true,
1405 .defsize = -1,
1406 .emul = &x86_emul_mov
1407 },
1408 [0xA0] = {
1409 /* AL, Ob */
1410 .valid = true,
1411 .dmo = true,
1412 .todmo = false,
1413 .szoverride = false,
1414 .defsize = OPSIZE_BYTE,
1415 .emul = &x86_emul_mov
1416 },
1417 [0xA1] = {
1418 /* rAX, Ov */
1419 .valid = true,
1420 .dmo = true,
1421 .todmo = false,
1422 .szoverride = true,
1423 .defsize = -1,
1424 .emul = &x86_emul_mov
1425 },
1426 [0xA2] = {
1427 /* Ob, AL */
1428 .valid = true,
1429 .dmo = true,
1430 .todmo = true,
1431 .szoverride = false,
1432 .defsize = OPSIZE_BYTE,
1433 .emul = &x86_emul_mov
1434 },
1435 [0xA3] = {
1436 /* Ov, rAX */
1437 .valid = true,
1438 .dmo = true,
1439 .todmo = true,
1440 .szoverride = true,
1441 .defsize = -1,
1442 .emul = &x86_emul_mov
1443 },
1444
1445 /*
1446 * MOVS
1447 */
1448 [0xA4] = {
1449 /* Yb, Xb */
1450 .valid = true,
1451 .movs = true,
1452 .szoverride = false,
1453 .defsize = OPSIZE_BYTE,
1454 .emul = &x86_emul_movs
1455 },
1456 [0xA5] = {
1457 /* Yv, Xv */
1458 .valid = true,
1459 .movs = true,
1460 .szoverride = true,
1461 .defsize = -1,
1462 .emul = &x86_emul_movs
1463 },
1464
1465 /*
1466 * STOS
1467 */
1468 [0xAA] = {
1469 /* Yb, AL */
1470 .valid = true,
1471 .stos = true,
1472 .szoverride = false,
1473 .defsize = OPSIZE_BYTE,
1474 .emul = &x86_emul_stos
1475 },
1476 [0xAB] = {
1477 /* Yv, rAX */
1478 .valid = true,
1479 .stos = true,
1480 .szoverride = true,
1481 .defsize = -1,
1482 .emul = &x86_emul_stos
1483 },
1484
1485 /*
1486 * LODS
1487 */
1488 [0xAC] = {
1489 /* AL, Xb */
1490 .valid = true,
1491 .lods = true,
1492 .szoverride = false,
1493 .defsize = OPSIZE_BYTE,
1494 .emul = &x86_emul_lods
1495 },
1496 [0xAD] = {
1497 /* rAX, Xv */
1498 .valid = true,
1499 .lods = true,
1500 .szoverride = true,
1501 .defsize = -1,
1502 .emul = &x86_emul_lods
1503 },
1504 };
1505
1506 static const struct x86_opcode secondary_opcode_table[256] __cacheline_aligned = {
1507 /*
1508 * MOVZX
1509 */
1510 [0xB6] = {
1511 /* Gv, Eb */
1512 .valid = true,
1513 .regmodrm = true,
1514 .regtorm = false,
1515 .szoverride = true,
1516 .defsize = OPSIZE_BYTE,
1517 .flags = FLAG_ze,
1518 .emul = &x86_emul_mov
1519 },
1520 [0xB7] = {
1521 /* Gv, Ew */
1522 .valid = true,
1523 .regmodrm = true,
1524 .regtorm = false,
1525 .szoverride = true,
1526 .defsize = OPSIZE_WORD,
1527 .flags = FLAG_ze,
1528 .emul = &x86_emul_mov
1529 },
1530 };
1531
1532 static const struct x86_reg gpr_map__rip = { NVMM_X64_GPR_RIP, 0xFFFFFFFFFFFFFFFF };
1533
1534 /* [REX-present][enc][opsize] */
1535 static const struct x86_reg gpr_map__special[2][4][8] __cacheline_aligned = {
1536 [false] = {
1537 /* No REX prefix. */
1538 [0b00] = {
1539 [0] = { NVMM_X64_GPR_RAX, 0x000000000000FF00 }, /* AH */
1540 [1] = { NVMM_X64_GPR_RSP, 0x000000000000FFFF }, /* SP */
1541 [2] = { -1, 0 },
1542 [3] = { NVMM_X64_GPR_RSP, 0x00000000FFFFFFFF }, /* ESP */
1543 [4] = { -1, 0 },
1544 [5] = { -1, 0 },
1545 [6] = { -1, 0 },
1546 [7] = { -1, 0 },
1547 },
1548 [0b01] = {
1549 [0] = { NVMM_X64_GPR_RCX, 0x000000000000FF00 }, /* CH */
1550 [1] = { NVMM_X64_GPR_RBP, 0x000000000000FFFF }, /* BP */
1551 [2] = { -1, 0 },
1552 [3] = { NVMM_X64_GPR_RBP, 0x00000000FFFFFFFF }, /* EBP */
1553 [4] = { -1, 0 },
1554 [5] = { -1, 0 },
1555 [6] = { -1, 0 },
1556 [7] = { -1, 0 },
1557 },
1558 [0b10] = {
1559 [0] = { NVMM_X64_GPR_RDX, 0x000000000000FF00 }, /* DH */
1560 [1] = { NVMM_X64_GPR_RSI, 0x000000000000FFFF }, /* SI */
1561 [2] = { -1, 0 },
1562 [3] = { NVMM_X64_GPR_RSI, 0x00000000FFFFFFFF }, /* ESI */
1563 [4] = { -1, 0 },
1564 [5] = { -1, 0 },
1565 [6] = { -1, 0 },
1566 [7] = { -1, 0 },
1567 },
1568 [0b11] = {
1569 [0] = { NVMM_X64_GPR_RBX, 0x000000000000FF00 }, /* BH */
1570 [1] = { NVMM_X64_GPR_RDI, 0x000000000000FFFF }, /* DI */
1571 [2] = { -1, 0 },
1572 [3] = { NVMM_X64_GPR_RDI, 0x00000000FFFFFFFF }, /* EDI */
1573 [4] = { -1, 0 },
1574 [5] = { -1, 0 },
1575 [6] = { -1, 0 },
1576 [7] = { -1, 0 },
1577 }
1578 },
1579 [true] = {
1580 /* Has REX prefix. */
1581 [0b00] = {
1582 [0] = { NVMM_X64_GPR_RSP, 0x00000000000000FF }, /* SPL */
1583 [1] = { NVMM_X64_GPR_RSP, 0x000000000000FFFF }, /* SP */
1584 [2] = { -1, 0 },
1585 [3] = { NVMM_X64_GPR_RSP, 0x00000000FFFFFFFF }, /* ESP */
1586 [4] = { -1, 0 },
1587 [5] = { -1, 0 },
1588 [6] = { -1, 0 },
1589 [7] = { NVMM_X64_GPR_RSP, 0xFFFFFFFFFFFFFFFF }, /* RSP */
1590 },
1591 [0b01] = {
1592 [0] = { NVMM_X64_GPR_RBP, 0x00000000000000FF }, /* BPL */
1593 [1] = { NVMM_X64_GPR_RBP, 0x000000000000FFFF }, /* BP */
1594 [2] = { -1, 0 },
1595 [3] = { NVMM_X64_GPR_RBP, 0x00000000FFFFFFFF }, /* EBP */
1596 [4] = { -1, 0 },
1597 [5] = { -1, 0 },
1598 [6] = { -1, 0 },
1599 [7] = { NVMM_X64_GPR_RBP, 0xFFFFFFFFFFFFFFFF }, /* RBP */
1600 },
1601 [0b10] = {
1602 [0] = { NVMM_X64_GPR_RSI, 0x00000000000000FF }, /* SIL */
1603 [1] = { NVMM_X64_GPR_RSI, 0x000000000000FFFF }, /* SI */
1604 [2] = { -1, 0 },
1605 [3] = { NVMM_X64_GPR_RSI, 0x00000000FFFFFFFF }, /* ESI */
1606 [4] = { -1, 0 },
1607 [5] = { -1, 0 },
1608 [6] = { -1, 0 },
1609 [7] = { NVMM_X64_GPR_RSI, 0xFFFFFFFFFFFFFFFF }, /* RSI */
1610 },
1611 [0b11] = {
1612 [0] = { NVMM_X64_GPR_RDI, 0x00000000000000FF }, /* DIL */
1613 [1] = { NVMM_X64_GPR_RDI, 0x000000000000FFFF }, /* DI */
1614 [2] = { -1, 0 },
1615 [3] = { NVMM_X64_GPR_RDI, 0x00000000FFFFFFFF }, /* EDI */
1616 [4] = { -1, 0 },
1617 [5] = { -1, 0 },
1618 [6] = { -1, 0 },
1619 [7] = { NVMM_X64_GPR_RDI, 0xFFFFFFFFFFFFFFFF }, /* RDI */
1620 }
1621 }
1622 };
1623
1624 /* [depends][enc][size] */
1625 static const struct x86_reg gpr_map[2][8][8] __cacheline_aligned = {
1626 [false] = {
1627 /* Not extended. */
1628 [0b000] = {
1629 [0] = { NVMM_X64_GPR_RAX, 0x00000000000000FF }, /* AL */
1630 [1] = { NVMM_X64_GPR_RAX, 0x000000000000FFFF }, /* AX */
1631 [2] = { -1, 0 },
1632 [3] = { NVMM_X64_GPR_RAX, 0x00000000FFFFFFFF }, /* EAX */
1633 [4] = { -1, 0 },
1634 [5] = { -1, 0 },
1635 [6] = { -1, 0 },
1636 [7] = { NVMM_X64_GPR_RAX, 0xFFFFFFFFFFFFFFFF }, /* RAX */
1637 },
1638 [0b001] = {
1639 [0] = { NVMM_X64_GPR_RCX, 0x00000000000000FF }, /* CL */
1640 [1] = { NVMM_X64_GPR_RCX, 0x000000000000FFFF }, /* CX */
1641 [2] = { -1, 0 },
1642 [3] = { NVMM_X64_GPR_RCX, 0x00000000FFFFFFFF }, /* ECX */
1643 [4] = { -1, 0 },
1644 [5] = { -1, 0 },
1645 [6] = { -1, 0 },
1646 [7] = { NVMM_X64_GPR_RCX, 0xFFFFFFFFFFFFFFFF }, /* RCX */
1647 },
1648 [0b010] = {
1649 [0] = { NVMM_X64_GPR_RDX, 0x00000000000000FF }, /* DL */
1650 [1] = { NVMM_X64_GPR_RDX, 0x000000000000FFFF }, /* DX */
1651 [2] = { -1, 0 },
1652 [3] = { NVMM_X64_GPR_RDX, 0x00000000FFFFFFFF }, /* EDX */
1653 [4] = { -1, 0 },
1654 [5] = { -1, 0 },
1655 [6] = { -1, 0 },
1656 [7] = { NVMM_X64_GPR_RDX, 0xFFFFFFFFFFFFFFFF }, /* RDX */
1657 },
1658 [0b011] = {
1659 [0] = { NVMM_X64_GPR_RBX, 0x00000000000000FF }, /* BL */
1660 [1] = { NVMM_X64_GPR_RBX, 0x000000000000FFFF }, /* BX */
1661 [2] = { -1, 0 },
1662 [3] = { NVMM_X64_GPR_RBX, 0x00000000FFFFFFFF }, /* EBX */
1663 [4] = { -1, 0 },
1664 [5] = { -1, 0 },
1665 [6] = { -1, 0 },
1666 [7] = { NVMM_X64_GPR_RBX, 0xFFFFFFFFFFFFFFFF }, /* RBX */
1667 },
1668 [0b100] = {
1669 [0] = { -1, 0 }, /* SPECIAL */
1670 [1] = { -1, 0 }, /* SPECIAL */
1671 [2] = { -1, 0 },
1672 [3] = { -1, 0 }, /* SPECIAL */
1673 [4] = { -1, 0 },
1674 [5] = { -1, 0 },
1675 [6] = { -1, 0 },
1676 [7] = { -1, 0 }, /* SPECIAL */
1677 },
1678 [0b101] = {
1679 [0] = { -1, 0 }, /* SPECIAL */
1680 [1] = { -1, 0 }, /* SPECIAL */
1681 [2] = { -1, 0 },
1682 [3] = { -1, 0 }, /* SPECIAL */
1683 [4] = { -1, 0 },
1684 [5] = { -1, 0 },
1685 [6] = { -1, 0 },
1686 [7] = { -1, 0 }, /* SPECIAL */
1687 },
1688 [0b110] = {
1689 [0] = { -1, 0 }, /* SPECIAL */
1690 [1] = { -1, 0 }, /* SPECIAL */
1691 [2] = { -1, 0 },
1692 [3] = { -1, 0 }, /* SPECIAL */
1693 [4] = { -1, 0 },
1694 [5] = { -1, 0 },
1695 [6] = { -1, 0 },
1696 [7] = { -1, 0 }, /* SPECIAL */
1697 },
1698 [0b111] = {
1699 [0] = { -1, 0 }, /* SPECIAL */
1700 [1] = { -1, 0 }, /* SPECIAL */
1701 [2] = { -1, 0 },
1702 [3] = { -1, 0 }, /* SPECIAL */
1703 [4] = { -1, 0 },
1704 [5] = { -1, 0 },
1705 [6] = { -1, 0 },
1706 [7] = { -1, 0 }, /* SPECIAL */
1707 },
1708 },
1709 [true] = {
1710 /* Extended. */
1711 [0b000] = {
1712 [0] = { NVMM_X64_GPR_R8, 0x00000000000000FF }, /* R8B */
1713 [1] = { NVMM_X64_GPR_R8, 0x000000000000FFFF }, /* R8W */
1714 [2] = { -1, 0 },
1715 [3] = { NVMM_X64_GPR_R8, 0x00000000FFFFFFFF }, /* R8D */
1716 [4] = { -1, 0 },
1717 [5] = { -1, 0 },
1718 [6] = { -1, 0 },
1719 [7] = { NVMM_X64_GPR_R8, 0xFFFFFFFFFFFFFFFF }, /* R8 */
1720 },
1721 [0b001] = {
1722 [0] = { NVMM_X64_GPR_R9, 0x00000000000000FF }, /* R9B */
1723 [1] = { NVMM_X64_GPR_R9, 0x000000000000FFFF }, /* R9W */
1724 [2] = { -1, 0 },
1725 [3] = { NVMM_X64_GPR_R9, 0x00000000FFFFFFFF }, /* R9D */
1726 [4] = { -1, 0 },
1727 [5] = { -1, 0 },
1728 [6] = { -1, 0 },
1729 [7] = { NVMM_X64_GPR_R9, 0xFFFFFFFFFFFFFFFF }, /* R9 */
1730 },
1731 [0b010] = {
1732 [0] = { NVMM_X64_GPR_R10, 0x00000000000000FF }, /* R10B */
1733 [1] = { NVMM_X64_GPR_R10, 0x000000000000FFFF }, /* R10W */
1734 [2] = { -1, 0 },
1735 [3] = { NVMM_X64_GPR_R10, 0x00000000FFFFFFFF }, /* R10D */
1736 [4] = { -1, 0 },
1737 [5] = { -1, 0 },
1738 [6] = { -1, 0 },
1739 [7] = { NVMM_X64_GPR_R10, 0xFFFFFFFFFFFFFFFF }, /* R10 */
1740 },
1741 [0b011] = {
1742 [0] = { NVMM_X64_GPR_R11, 0x00000000000000FF }, /* R11B */
1743 [1] = { NVMM_X64_GPR_R11, 0x000000000000FFFF }, /* R11W */
1744 [2] = { -1, 0 },
1745 [3] = { NVMM_X64_GPR_R11, 0x00000000FFFFFFFF }, /* R11D */
1746 [4] = { -1, 0 },
1747 [5] = { -1, 0 },
1748 [6] = { -1, 0 },
1749 [7] = { NVMM_X64_GPR_R11, 0xFFFFFFFFFFFFFFFF }, /* R11 */
1750 },
1751 [0b100] = {
1752 [0] = { NVMM_X64_GPR_R12, 0x00000000000000FF }, /* R12B */
1753 [1] = { NVMM_X64_GPR_R12, 0x000000000000FFFF }, /* R12W */
1754 [2] = { -1, 0 },
1755 [3] = { NVMM_X64_GPR_R12, 0x00000000FFFFFFFF }, /* R12D */
1756 [4] = { -1, 0 },
1757 [5] = { -1, 0 },
1758 [6] = { -1, 0 },
1759 [7] = { NVMM_X64_GPR_R12, 0xFFFFFFFFFFFFFFFF }, /* R12 */
1760 },
1761 [0b101] = {
1762 [0] = { NVMM_X64_GPR_R13, 0x00000000000000FF }, /* R13B */
1763 [1] = { NVMM_X64_GPR_R13, 0x000000000000FFFF }, /* R13W */
1764 [2] = { -1, 0 },
1765 [3] = { NVMM_X64_GPR_R13, 0x00000000FFFFFFFF }, /* R13D */
1766 [4] = { -1, 0 },
1767 [5] = { -1, 0 },
1768 [6] = { -1, 0 },
1769 [7] = { NVMM_X64_GPR_R13, 0xFFFFFFFFFFFFFFFF }, /* R13 */
1770 },
1771 [0b110] = {
1772 [0] = { NVMM_X64_GPR_R14, 0x00000000000000FF }, /* R14B */
1773 [1] = { NVMM_X64_GPR_R14, 0x000000000000FFFF }, /* R14W */
1774 [2] = { -1, 0 },
1775 [3] = { NVMM_X64_GPR_R14, 0x00000000FFFFFFFF }, /* R14D */
1776 [4] = { -1, 0 },
1777 [5] = { -1, 0 },
1778 [6] = { -1, 0 },
1779 [7] = { NVMM_X64_GPR_R14, 0xFFFFFFFFFFFFFFFF }, /* R14 */
1780 },
1781 [0b111] = {
1782 [0] = { NVMM_X64_GPR_R15, 0x00000000000000FF }, /* R15B */
1783 [1] = { NVMM_X64_GPR_R15, 0x000000000000FFFF }, /* R15W */
1784 [2] = { -1, 0 },
1785 [3] = { NVMM_X64_GPR_R15, 0x00000000FFFFFFFF }, /* R15D */
1786 [4] = { -1, 0 },
1787 [5] = { -1, 0 },
1788 [6] = { -1, 0 },
1789 [7] = { NVMM_X64_GPR_R15, 0xFFFFFFFFFFFFFFFF }, /* R15 */
1790 },
1791 }
1792 };
1793
1794 /* [enc] */
1795 static const int gpr_dual_reg1_rm[8] __cacheline_aligned = {
1796 [0b000] = NVMM_X64_GPR_RBX, /* BX (+SI) */
1797 [0b001] = NVMM_X64_GPR_RBX, /* BX (+DI) */
1798 [0b010] = NVMM_X64_GPR_RBP, /* BP (+SI) */
1799 [0b011] = NVMM_X64_GPR_RBP, /* BP (+DI) */
1800 [0b100] = NVMM_X64_GPR_RSI, /* SI */
1801 [0b101] = NVMM_X64_GPR_RDI, /* DI */
1802 [0b110] = NVMM_X64_GPR_RBP, /* BP */
1803 [0b111] = NVMM_X64_GPR_RBX, /* BX */
1804 };
1805
1806 static int
1807 node_overflow(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1808 {
1809 fsm->fn = NULL;
1810 return -1;
1811 }
1812
1813 static int
1814 fsm_read(struct x86_decode_fsm *fsm, uint8_t *bytes, size_t n)
1815 {
1816 if (fsm->buf + n > fsm->end) {
1817 return -1;
1818 }
1819 memcpy(bytes, fsm->buf, n);
1820 return 0;
1821 }
1822
1823 static inline void
1824 fsm_advance(struct x86_decode_fsm *fsm, size_t n,
1825 int (*fn)(struct x86_decode_fsm *, struct x86_instr *))
1826 {
1827 fsm->buf += n;
1828 if (fsm->buf > fsm->end) {
1829 fsm->fn = node_overflow;
1830 } else {
1831 fsm->fn = fn;
1832 }
1833 }
1834
1835 static const struct x86_reg *
1836 resolve_special_register(struct x86_instr *instr, uint8_t enc, size_t regsize)
1837 {
1838 enc &= 0b11;
1839 if (regsize == 8) {
1840 /* May be 64bit without REX */
1841 return &gpr_map__special[1][enc][regsize-1];
1842 }
1843 return &gpr_map__special[instr->rexpref.present][enc][regsize-1];
1844 }
1845
1846 /*
1847 * Special node, for MOVS. Fake two displacements of zero on the source and
1848 * destination registers.
1849 */
1850 static int
1851 node_movs(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1852 {
1853 size_t adrsize;
1854
1855 adrsize = instr->address_size;
1856
1857 /* DS:RSI */
1858 instr->src.type = STORE_REG;
1859 instr->src.u.reg = &gpr_map__special[1][2][adrsize-1];
1860 instr->src.disp.type = DISP_0;
1861
1862 /* ES:RDI, force ES */
1863 instr->dst.type = STORE_REG;
1864 instr->dst.u.reg = &gpr_map__special[1][3][adrsize-1];
1865 instr->dst.disp.type = DISP_0;
1866 instr->dst.hardseg = NVMM_X64_SEG_ES;
1867
1868 fsm_advance(fsm, 0, NULL);
1869
1870 return 0;
1871 }
1872
1873 /*
1874 * Special node, for STOS and LODS. Fake a displacement of zero on the
1875 * destination register.
1876 */
1877 static int
1878 node_stlo(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1879 {
1880 const struct x86_opcode *opcode = instr->opcode;
1881 struct x86_store *stlo, *streg;
1882 size_t adrsize, regsize;
1883
1884 adrsize = instr->address_size;
1885 regsize = instr->operand_size;
1886
1887 if (opcode->stos) {
1888 streg = &instr->src;
1889 stlo = &instr->dst;
1890 } else {
1891 streg = &instr->dst;
1892 stlo = &instr->src;
1893 }
1894
1895 streg->type = STORE_REG;
1896 streg->u.reg = &gpr_map[0][0][regsize-1]; /* ?AX */
1897
1898 stlo->type = STORE_REG;
1899 if (opcode->stos) {
1900 /* ES:RDI, force ES */
1901 stlo->u.reg = &gpr_map__special[1][3][adrsize-1];
1902 stlo->hardseg = NVMM_X64_SEG_ES;
1903 } else {
1904 /* DS:RSI */
1905 stlo->u.reg = &gpr_map__special[1][2][adrsize-1];
1906 }
1907 stlo->disp.type = DISP_0;
1908
1909 fsm_advance(fsm, 0, NULL);
1910
1911 return 0;
1912 }
1913
1914 static int
1915 node_dmo(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1916 {
1917 const struct x86_opcode *opcode = instr->opcode;
1918 struct x86_store *stdmo, *streg;
1919 size_t adrsize, regsize;
1920
1921 adrsize = instr->address_size;
1922 regsize = instr->operand_size;
1923
1924 if (opcode->todmo) {
1925 streg = &instr->src;
1926 stdmo = &instr->dst;
1927 } else {
1928 streg = &instr->dst;
1929 stdmo = &instr->src;
1930 }
1931
1932 streg->type = STORE_REG;
1933 streg->u.reg = &gpr_map[0][0][regsize-1]; /* ?AX */
1934
1935 stdmo->type = STORE_DMO;
1936 if (fsm_read(fsm, (uint8_t *)&stdmo->u.dmo, adrsize) == -1) {
1937 return -1;
1938 }
1939 fsm_advance(fsm, adrsize, NULL);
1940
1941 return 0;
1942 }
1943
1944 static inline uint64_t
1945 sign_extend(uint64_t val, int size)
1946 {
1947 if (size == 1) {
1948 if (val & __BIT(7))
1949 val |= 0xFFFFFFFFFFFFFF00;
1950 } else if (size == 2) {
1951 if (val & __BIT(15))
1952 val |= 0xFFFFFFFFFFFF0000;
1953 } else if (size == 4) {
1954 if (val & __BIT(31))
1955 val |= 0xFFFFFFFF00000000;
1956 }
1957 return val;
1958 }
1959
1960 static int
1961 node_immediate(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1962 {
1963 const struct x86_opcode *opcode = instr->opcode;
1964 struct x86_store *store;
1965 uint8_t immsize;
1966 size_t sesize = 0;
1967
1968 /* The immediate is the source */
1969 store = &instr->src;
1970 immsize = instr->operand_size;
1971
1972 if (opcode->flags & FLAG_imm8) {
1973 sesize = immsize;
1974 immsize = 1;
1975 } else if ((opcode->flags & FLAG_immz) && (immsize == 8)) {
1976 sesize = immsize;
1977 immsize = 4;
1978 }
1979
1980 store->type = STORE_IMM;
1981 if (fsm_read(fsm, (uint8_t *)&store->u.imm.data, immsize) == -1) {
1982 return -1;
1983 }
1984 fsm_advance(fsm, immsize, NULL);
1985
1986 if (sesize != 0) {
1987 store->u.imm.data = sign_extend(store->u.imm.data, sesize);
1988 }
1989
1990 return 0;
1991 }
1992
1993 static int
1994 node_disp(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1995 {
1996 const struct x86_opcode *opcode = instr->opcode;
1997 uint64_t data = 0;
1998 size_t n;
1999
2000 if (instr->strm->disp.type == DISP_1) {
2001 n = 1;
2002 } else if (instr->strm->disp.type == DISP_2) {
2003 n = 2;
2004 } else if (instr->strm->disp.type == DISP_4) {
2005 n = 4;
2006 } else {
2007 DISASSEMBLER_BUG();
2008 }
2009
2010 if (fsm_read(fsm, (uint8_t *)&data, n) == -1) {
2011 return -1;
2012 }
2013
2014 if (__predict_true(fsm->is64bit)) {
2015 data = sign_extend(data, n);
2016 }
2017
2018 instr->strm->disp.data = data;
2019
2020 if (opcode->immediate) {
2021 fsm_advance(fsm, n, node_immediate);
2022 } else {
2023 fsm_advance(fsm, n, NULL);
2024 }
2025
2026 return 0;
2027 }
2028
2029 /*
2030 * Special node to handle 16bit addressing encoding, which can reference two
2031 * registers at once.
2032 */
2033 static int
2034 node_dual(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2035 {
2036 int reg1, reg2;
2037
2038 reg1 = gpr_dual_reg1_rm[instr->regmodrm.rm];
2039
2040 if (instr->regmodrm.rm == 0b000 ||
2041 instr->regmodrm.rm == 0b010) {
2042 reg2 = NVMM_X64_GPR_RSI;
2043 } else if (instr->regmodrm.rm == 0b001 ||
2044 instr->regmodrm.rm == 0b011) {
2045 reg2 = NVMM_X64_GPR_RDI;
2046 } else {
2047 DISASSEMBLER_BUG();
2048 }
2049
2050 instr->strm->type = STORE_DUALREG;
2051 instr->strm->u.dualreg.reg1 = reg1;
2052 instr->strm->u.dualreg.reg2 = reg2;
2053
2054 if (instr->strm->disp.type == DISP_NONE) {
2055 DISASSEMBLER_BUG();
2056 } else if (instr->strm->disp.type == DISP_0) {
2057 /* Indirect register addressing mode */
2058 if (instr->opcode->immediate) {
2059 fsm_advance(fsm, 1, node_immediate);
2060 } else {
2061 fsm_advance(fsm, 1, NULL);
2062 }
2063 } else {
2064 fsm_advance(fsm, 1, node_disp);
2065 }
2066
2067 return 0;
2068 }
2069
2070 static const struct x86_reg *
2071 get_register_idx(struct x86_instr *instr, uint8_t index)
2072 {
2073 uint8_t enc = index;
2074 const struct x86_reg *reg;
2075 size_t regsize;
2076
2077 regsize = instr->address_size;
2078 reg = &gpr_map[instr->rexpref.x][enc][regsize-1];
2079
2080 if (reg->num == -1) {
2081 reg = resolve_special_register(instr, enc, regsize);
2082 }
2083
2084 return reg;
2085 }
2086
2087 static const struct x86_reg *
2088 get_register_bas(struct x86_instr *instr, uint8_t base)
2089 {
2090 uint8_t enc = base;
2091 const struct x86_reg *reg;
2092 size_t regsize;
2093
2094 regsize = instr->address_size;
2095 reg = &gpr_map[instr->rexpref.b][enc][regsize-1];
2096 if (reg->num == -1) {
2097 reg = resolve_special_register(instr, enc, regsize);
2098 }
2099
2100 return reg;
2101 }
2102
2103 static int
2104 node_sib(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2105 {
2106 const struct x86_opcode *opcode;
2107 uint8_t scale, index, base;
2108 bool noindex, nobase;
2109 uint8_t byte;
2110
2111 if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2112 return -1;
2113 }
2114
2115 scale = ((byte & 0b11000000) >> 6);
2116 index = ((byte & 0b00111000) >> 3);
2117 base = ((byte & 0b00000111) >> 0);
2118
2119 opcode = instr->opcode;
2120
2121 noindex = false;
2122 nobase = false;
2123
2124 if (index == 0b100 && !instr->rexpref.x) {
2125 /* Special case: the index is null */
2126 noindex = true;
2127 }
2128
2129 if (instr->regmodrm.mod == 0b00 && base == 0b101) {
2130 /* Special case: the base is null + disp32 */
2131 instr->strm->disp.type = DISP_4;
2132 nobase = true;
2133 }
2134
2135 instr->strm->type = STORE_SIB;
2136 instr->strm->u.sib.scale = (1 << scale);
2137 if (!noindex)
2138 instr->strm->u.sib.idx = get_register_idx(instr, index);
2139 if (!nobase)
2140 instr->strm->u.sib.bas = get_register_bas(instr, base);
2141
2142 /* May have a displacement, or an immediate */
2143 if (instr->strm->disp.type == DISP_1 ||
2144 instr->strm->disp.type == DISP_2 ||
2145 instr->strm->disp.type == DISP_4) {
2146 fsm_advance(fsm, 1, node_disp);
2147 } else if (opcode->immediate) {
2148 fsm_advance(fsm, 1, node_immediate);
2149 } else {
2150 fsm_advance(fsm, 1, NULL);
2151 }
2152
2153 return 0;
2154 }
2155
2156 static const struct x86_reg *
2157 get_register_reg(struct x86_instr *instr, const struct x86_opcode *opcode)
2158 {
2159 uint8_t enc = instr->regmodrm.reg;
2160 const struct x86_reg *reg;
2161 size_t regsize;
2162
2163 regsize = instr->operand_size;
2164
2165 reg = &gpr_map[instr->rexpref.r][enc][regsize-1];
2166 if (reg->num == -1) {
2167 reg = resolve_special_register(instr, enc, regsize);
2168 }
2169
2170 return reg;
2171 }
2172
2173 static const struct x86_reg *
2174 get_register_rm(struct x86_instr *instr, const struct x86_opcode *opcode)
2175 {
2176 uint8_t enc = instr->regmodrm.rm;
2177 const struct x86_reg *reg;
2178 size_t regsize;
2179
2180 if (instr->strm->disp.type == DISP_NONE) {
2181 regsize = instr->operand_size;
2182 } else {
2183 /* Indirect access, the size is that of the address. */
2184 regsize = instr->address_size;
2185 }
2186
2187 reg = &gpr_map[instr->rexpref.b][enc][regsize-1];
2188 if (reg->num == -1) {
2189 reg = resolve_special_register(instr, enc, regsize);
2190 }
2191
2192 return reg;
2193 }
2194
2195 static inline bool
2196 has_sib(struct x86_instr *instr)
2197 {
2198 return (instr->address_size != 2 && /* no SIB in 16bit addressing */
2199 instr->regmodrm.mod != 0b11 &&
2200 instr->regmodrm.rm == 0b100);
2201 }
2202
2203 static inline bool
2204 is_rip_relative(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2205 {
2206 return (fsm->is64bit && /* RIP-relative only in 64bit mode */
2207 instr->regmodrm.mod == 0b00 &&
2208 instr->regmodrm.rm == 0b101);
2209 }
2210
2211 static inline bool
2212 is_disp32_only(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2213 {
2214 return (!fsm->is64bit && /* no disp32-only in 64bit mode */
2215 instr->address_size != 2 && /* no disp32-only in 16bit addressing */
2216 instr->regmodrm.mod == 0b00 &&
2217 instr->regmodrm.rm == 0b101);
2218 }
2219
2220 static inline bool
2221 is_disp16_only(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2222 {
2223 return (instr->address_size == 2 && /* disp16-only only in 16bit addr */
2224 instr->regmodrm.mod == 0b00 &&
2225 instr->regmodrm.rm == 0b110);
2226 }
2227
2228 static inline bool
2229 is_dual(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2230 {
2231 return (instr->address_size == 2 &&
2232 instr->regmodrm.mod != 0b11 &&
2233 instr->regmodrm.rm <= 0b011);
2234 }
2235
2236 static enum x86_disp_type
2237 get_disp_type(struct x86_instr *instr)
2238 {
2239 switch (instr->regmodrm.mod) {
2240 case 0b00: /* indirect */
2241 return DISP_0;
2242 case 0b01: /* indirect+1 */
2243 return DISP_1;
2244 case 0b10: /* indirect+{2,4} */
2245 if (__predict_false(instr->address_size == 2)) {
2246 return DISP_2;
2247 }
2248 return DISP_4;
2249 case 0b11: /* direct */
2250 default: /* llvm */
2251 return DISP_NONE;
2252 }
2253 __unreachable();
2254 }
2255
2256 static int
2257 node_regmodrm(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2258 {
2259 struct x86_store *strg, *strm;
2260 const struct x86_opcode *opcode;
2261 const struct x86_reg *reg;
2262 uint8_t byte;
2263
2264 if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2265 return -1;
2266 }
2267
2268 opcode = instr->opcode;
2269
2270 instr->regmodrm.rm = ((byte & 0b00000111) >> 0);
2271 instr->regmodrm.reg = ((byte & 0b00111000) >> 3);
2272 instr->regmodrm.mod = ((byte & 0b11000000) >> 6);
2273
2274 if (opcode->regtorm) {
2275 strg = &instr->src;
2276 strm = &instr->dst;
2277 } else { /* RM to REG */
2278 strm = &instr->src;
2279 strg = &instr->dst;
2280 }
2281
2282 /* Save for later use. */
2283 instr->strm = strm;
2284
2285 /*
2286 * Special cases: Groups. The REG field of REGMODRM is the index in
2287 * the group. op1 gets overwritten in the Immediate node, if any.
2288 */
2289 if (opcode->group1) {
2290 if (group1[instr->regmodrm.reg].emul == NULL) {
2291 return -1;
2292 }
2293 instr->emul = group1[instr->regmodrm.reg].emul;
2294 } else if (opcode->group3) {
2295 if (group3[instr->regmodrm.reg].emul == NULL) {
2296 return -1;
2297 }
2298 instr->emul = group3[instr->regmodrm.reg].emul;
2299 } else if (opcode->group11) {
2300 if (group11[instr->regmodrm.reg].emul == NULL) {
2301 return -1;
2302 }
2303 instr->emul = group11[instr->regmodrm.reg].emul;
2304 }
2305
2306 if (!opcode->immediate) {
2307 reg = get_register_reg(instr, opcode);
2308 if (reg == NULL) {
2309 return -1;
2310 }
2311 strg->type = STORE_REG;
2312 strg->u.reg = reg;
2313 }
2314
2315 /* The displacement applies to RM. */
2316 strm->disp.type = get_disp_type(instr);
2317
2318 if (has_sib(instr)) {
2319 /* Overwrites RM */
2320 fsm_advance(fsm, 1, node_sib);
2321 return 0;
2322 }
2323
2324 if (is_rip_relative(fsm, instr)) {
2325 /* Overwrites RM */
2326 strm->type = STORE_REG;
2327 strm->u.reg = &gpr_map__rip;
2328 strm->disp.type = DISP_4;
2329 fsm_advance(fsm, 1, node_disp);
2330 return 0;
2331 }
2332
2333 if (is_disp32_only(fsm, instr)) {
2334 /* Overwrites RM */
2335 strm->type = STORE_REG;
2336 strm->u.reg = NULL;
2337 strm->disp.type = DISP_4;
2338 fsm_advance(fsm, 1, node_disp);
2339 return 0;
2340 }
2341
2342 if (__predict_false(is_disp16_only(fsm, instr))) {
2343 /* Overwrites RM */
2344 strm->type = STORE_REG;
2345 strm->u.reg = NULL;
2346 strm->disp.type = DISP_2;
2347 fsm_advance(fsm, 1, node_disp);
2348 return 0;
2349 }
2350
2351 if (__predict_false(is_dual(fsm, instr))) {
2352 /* Overwrites RM */
2353 fsm_advance(fsm, 0, node_dual);
2354 return 0;
2355 }
2356
2357 reg = get_register_rm(instr, opcode);
2358 if (reg == NULL) {
2359 return -1;
2360 }
2361 strm->type = STORE_REG;
2362 strm->u.reg = reg;
2363
2364 if (strm->disp.type == DISP_NONE) {
2365 /* Direct register addressing mode */
2366 if (opcode->immediate) {
2367 fsm_advance(fsm, 1, node_immediate);
2368 } else {
2369 fsm_advance(fsm, 1, NULL);
2370 }
2371 } else if (strm->disp.type == DISP_0) {
2372 /* Indirect register addressing mode */
2373 if (opcode->immediate) {
2374 fsm_advance(fsm, 1, node_immediate);
2375 } else {
2376 fsm_advance(fsm, 1, NULL);
2377 }
2378 } else {
2379 fsm_advance(fsm, 1, node_disp);
2380 }
2381
2382 return 0;
2383 }
2384
2385 static size_t
2386 get_operand_size(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2387 {
2388 const struct x86_opcode *opcode = instr->opcode;
2389 int opsize;
2390
2391 /* Get the opsize */
2392 if (!opcode->szoverride) {
2393 opsize = opcode->defsize;
2394 } else if (instr->rexpref.present && instr->rexpref.w) {
2395 opsize = 8;
2396 } else {
2397 if (!fsm->is16bit) {
2398 if (instr->legpref.opr_ovr) {
2399 opsize = 2;
2400 } else {
2401 opsize = 4;
2402 }
2403 } else { /* 16bit */
2404 if (instr->legpref.opr_ovr) {
2405 opsize = 4;
2406 } else {
2407 opsize = 2;
2408 }
2409 }
2410 }
2411
2412 return opsize;
2413 }
2414
2415 static size_t
2416 get_address_size(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2417 {
2418 if (fsm->is64bit) {
2419 if (__predict_false(instr->legpref.adr_ovr)) {
2420 return 4;
2421 }
2422 return 8;
2423 }
2424
2425 if (fsm->is32bit) {
2426 if (__predict_false(instr->legpref.adr_ovr)) {
2427 return 2;
2428 }
2429 return 4;
2430 }
2431
2432 /* 16bit. */
2433 if (__predict_false(instr->legpref.adr_ovr)) {
2434 return 4;
2435 }
2436 return 2;
2437 }
2438
2439 static int
2440 node_primary_opcode(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2441 {
2442 const struct x86_opcode *opcode;
2443 uint8_t byte;
2444
2445 if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2446 return -1;
2447 }
2448
2449 opcode = &primary_opcode_table[byte];
2450 if (__predict_false(!opcode->valid)) {
2451 return -1;
2452 }
2453
2454 instr->opcode = opcode;
2455 instr->emul = opcode->emul;
2456 instr->operand_size = get_operand_size(fsm, instr);
2457 instr->address_size = get_address_size(fsm, instr);
2458
2459 if (fsm->is64bit && (instr->operand_size == 4)) {
2460 /* Zero-extend to 64 bits. */
2461 instr->zeroextend_mask = ~size_to_mask(4);
2462 }
2463
2464 if (opcode->regmodrm) {
2465 fsm_advance(fsm, 1, node_regmodrm);
2466 } else if (opcode->dmo) {
2467 /* Direct-Memory Offsets */
2468 fsm_advance(fsm, 1, node_dmo);
2469 } else if (opcode->stos || opcode->lods) {
2470 fsm_advance(fsm, 1, node_stlo);
2471 } else if (opcode->movs) {
2472 fsm_advance(fsm, 1, node_movs);
2473 } else {
2474 return -1;
2475 }
2476
2477 return 0;
2478 }
2479
2480 static int
2481 node_secondary_opcode(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2482 {
2483 const struct x86_opcode *opcode;
2484 uint8_t byte;
2485
2486 if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2487 return -1;
2488 }
2489
2490 opcode = &secondary_opcode_table[byte];
2491 if (__predict_false(!opcode->valid)) {
2492 return -1;
2493 }
2494
2495 instr->opcode = opcode;
2496 instr->emul = opcode->emul;
2497 instr->operand_size = get_operand_size(fsm, instr);
2498 instr->address_size = get_address_size(fsm, instr);
2499
2500 if (fsm->is64bit && (instr->operand_size == 4)) {
2501 /* Zero-extend to 64 bits. */
2502 instr->zeroextend_mask = ~size_to_mask(4);
2503 }
2504
2505 if (opcode->flags & FLAG_ze) {
2506 /*
2507 * Compute the mask for zero-extend. Update the operand size,
2508 * we move fewer bytes.
2509 */
2510 instr->zeroextend_mask |= size_to_mask(instr->operand_size);
2511 instr->zeroextend_mask &= ~size_to_mask(opcode->defsize);
2512 instr->operand_size = opcode->defsize;
2513 }
2514
2515 if (opcode->regmodrm) {
2516 fsm_advance(fsm, 1, node_regmodrm);
2517 } else {
2518 return -1;
2519 }
2520
2521 return 0;
2522 }
2523
2524 static int
2525 node_main(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2526 {
2527 uint8_t byte;
2528
2529 #define ESCAPE 0x0F
2530 #define VEX_1 0xC5
2531 #define VEX_2 0xC4
2532 #define XOP 0x8F
2533
2534 if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2535 return -1;
2536 }
2537
2538 /*
2539 * We don't take XOP. It is AMD-specific, and it was removed shortly
2540 * after being introduced.
2541 */
2542 if (byte == ESCAPE) {
2543 fsm_advance(fsm, 1, node_secondary_opcode);
2544 } else if (!instr->rexpref.present) {
2545 if (byte == VEX_1) {
2546 return -1;
2547 } else if (byte == VEX_2) {
2548 return -1;
2549 } else {
2550 fsm->fn = node_primary_opcode;
2551 }
2552 } else {
2553 fsm->fn = node_primary_opcode;
2554 }
2555
2556 return 0;
2557 }
2558
2559 static int
2560 node_rex_prefix(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2561 {
2562 struct x86_rexpref *rexpref = &instr->rexpref;
2563 uint8_t byte;
2564 size_t n = 0;
2565
2566 if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2567 return -1;
2568 }
2569
2570 if (byte >= 0x40 && byte <= 0x4F) {
2571 if (__predict_false(!fsm->is64bit)) {
2572 return -1;
2573 }
2574 rexpref->b = ((byte & 0x1) != 0);
2575 rexpref->x = ((byte & 0x2) != 0);
2576 rexpref->r = ((byte & 0x4) != 0);
2577 rexpref->w = ((byte & 0x8) != 0);
2578 rexpref->present = true;
2579 n = 1;
2580 }
2581
2582 fsm_advance(fsm, n, node_main);
2583 return 0;
2584 }
2585
2586 static int
2587 node_legacy_prefix(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2588 {
2589 uint8_t byte;
2590
2591 if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2592 return -1;
2593 }
2594
2595 if (byte == LEG_OPR_OVR) {
2596 instr->legpref.opr_ovr = 1;
2597 } else if (byte == LEG_OVR_DS) {
2598 instr->legpref.seg = NVMM_X64_SEG_DS;
2599 } else if (byte == LEG_OVR_ES) {
2600 instr->legpref.seg = NVMM_X64_SEG_ES;
2601 } else if (byte == LEG_REP) {
2602 instr->legpref.rep = 1;
2603 } else if (byte == LEG_OVR_GS) {
2604 instr->legpref.seg = NVMM_X64_SEG_GS;
2605 } else if (byte == LEG_OVR_FS) {
2606 instr->legpref.seg = NVMM_X64_SEG_FS;
2607 } else if (byte == LEG_ADR_OVR) {
2608 instr->legpref.adr_ovr = 1;
2609 } else if (byte == LEG_OVR_CS) {
2610 instr->legpref.seg = NVMM_X64_SEG_CS;
2611 } else if (byte == LEG_OVR_SS) {
2612 instr->legpref.seg = NVMM_X64_SEG_SS;
2613 } else if (byte == LEG_REPN) {
2614 instr->legpref.repn = 1;
2615 } else if (byte == LEG_LOCK) {
2616 /* ignore */
2617 } else {
2618 /* not a legacy prefix */
2619 fsm_advance(fsm, 0, node_rex_prefix);
2620 return 0;
2621 }
2622
2623 fsm_advance(fsm, 1, node_legacy_prefix);
2624 return 0;
2625 }
2626
2627 static int
2628 x86_decode(uint8_t *inst_bytes, size_t inst_len, struct x86_instr *instr,
2629 struct nvmm_x64_state *state)
2630 {
2631 struct x86_decode_fsm fsm;
2632 int ret;
2633
2634 memset(instr, 0, sizeof(*instr));
2635 instr->legpref.seg = -1;
2636 instr->src.hardseg = -1;
2637 instr->dst.hardseg = -1;
2638
2639 fsm.is64bit = is_64bit(state);
2640 fsm.is32bit = is_32bit(state);
2641 fsm.is16bit = is_16bit(state);
2642
2643 fsm.fn = node_legacy_prefix;
2644 fsm.buf = inst_bytes;
2645 fsm.end = inst_bytes + inst_len;
2646
2647 while (fsm.fn != NULL) {
2648 ret = (*fsm.fn)(&fsm, instr);
2649 if (ret == -1)
2650 return -1;
2651 }
2652
2653 instr->len = fsm.buf - inst_bytes;
2654
2655 return 0;
2656 }
2657
2658 /* -------------------------------------------------------------------------- */
2659
2660 #define EXEC_INSTR(sz, instr) \
2661 static uint##sz##_t \
2662 exec_##instr##sz(uint##sz##_t op1, uint##sz##_t op2, uint64_t *rflags) \
2663 { \
2664 uint##sz##_t res; \
2665 __asm __volatile ( \
2666 #instr" %2, %3;" \
2667 "mov %3, %1;" \
2668 "pushfq;" \
2669 "popq %0" \
2670 : "=r" (*rflags), "=r" (res) \
2671 : "r" (op1), "r" (op2)); \
2672 return res; \
2673 }
2674
2675 #define EXEC_DISPATCHER(instr) \
2676 static uint64_t \
2677 exec_##instr(uint64_t op1, uint64_t op2, uint64_t *rflags, size_t opsize) \
2678 { \
2679 switch (opsize) { \
2680 case 1: \
2681 return exec_##instr##8(op1, op2, rflags); \
2682 case 2: \
2683 return exec_##instr##16(op1, op2, rflags); \
2684 case 4: \
2685 return exec_##instr##32(op1, op2, rflags); \
2686 default: \
2687 return exec_##instr##64(op1, op2, rflags); \
2688 } \
2689 }
2690
2691 /* SUB: ret = op1 - op2 */
2692 #define PSL_SUB_MASK (PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF|PSL_AF)
2693 EXEC_INSTR(8, sub)
2694 EXEC_INSTR(16, sub)
2695 EXEC_INSTR(32, sub)
2696 EXEC_INSTR(64, sub)
2697 EXEC_DISPATCHER(sub)
2698
2699 /* OR: ret = op1 | op2 */
2700 #define PSL_OR_MASK (PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF)
2701 EXEC_INSTR(8, or)
2702 EXEC_INSTR(16, or)
2703 EXEC_INSTR(32, or)
2704 EXEC_INSTR(64, or)
2705 EXEC_DISPATCHER(or)
2706
2707 /* AND: ret = op1 & op2 */
2708 #define PSL_AND_MASK (PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF)
2709 EXEC_INSTR(8, and)
2710 EXEC_INSTR(16, and)
2711 EXEC_INSTR(32, and)
2712 EXEC_INSTR(64, and)
2713 EXEC_DISPATCHER(and)
2714
2715 /* XOR: ret = op1 ^ op2 */
2716 #define PSL_XOR_MASK (PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF)
2717 EXEC_INSTR(8, xor)
2718 EXEC_INSTR(16, xor)
2719 EXEC_INSTR(32, xor)
2720 EXEC_INSTR(64, xor)
2721 EXEC_DISPATCHER(xor)
2722
2723 /* -------------------------------------------------------------------------- */
2724
2725 /*
2726 * Emulation functions. We don't care about the order of the operands, except
2727 * for SUB, CMP and TEST. For these ones we look at mem->write to determine who
2728 * is op1 and who is op2.
2729 */
2730
2731 static void
2732 x86_func_or(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2733 {
2734 uint64_t *retval = (uint64_t *)mem->data;
2735 const bool write = mem->write;
2736 uint64_t *op1, op2, fl, ret;
2737
2738 op1 = (uint64_t *)mem->data;
2739 op2 = 0;
2740
2741 /* Fetch the value to be OR'ed (op2). */
2742 mem->data = (uint8_t *)&op2;
2743 mem->write = false;
2744 (*vcpu->cbs.mem)(mem);
2745
2746 /* Perform the OR. */
2747 ret = exec_or(*op1, op2, &fl, mem->size);
2748
2749 if (write) {
2750 /* Write back the result. */
2751 mem->data = (uint8_t *)&ret;
2752 mem->write = true;
2753 (*vcpu->cbs.mem)(mem);
2754 } else {
2755 /* Return data to the caller. */
2756 *retval = ret;
2757 }
2758
2759 gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_OR_MASK;
2760 gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_OR_MASK);
2761 }
2762
2763 static void
2764 x86_func_and(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2765 {
2766 uint64_t *retval = (uint64_t *)mem->data;
2767 const bool write = mem->write;
2768 uint64_t *op1, op2, fl, ret;
2769
2770 op1 = (uint64_t *)mem->data;
2771 op2 = 0;
2772
2773 /* Fetch the value to be AND'ed (op2). */
2774 mem->data = (uint8_t *)&op2;
2775 mem->write = false;
2776 (*vcpu->cbs.mem)(mem);
2777
2778 /* Perform the AND. */
2779 ret = exec_and(*op1, op2, &fl, mem->size);
2780
2781 if (write) {
2782 /* Write back the result. */
2783 mem->data = (uint8_t *)&ret;
2784 mem->write = true;
2785 (*vcpu->cbs.mem)(mem);
2786 } else {
2787 /* Return data to the caller. */
2788 *retval = ret;
2789 }
2790
2791 gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_AND_MASK;
2792 gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_AND_MASK);
2793 }
2794
2795 static void
2796 x86_func_xchg(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2797 {
2798 uint64_t *op1, op2;
2799
2800 op1 = (uint64_t *)mem->data;
2801 op2 = 0;
2802
2803 /* Fetch op2. */
2804 mem->data = (uint8_t *)&op2;
2805 mem->write = false;
2806 (*vcpu->cbs.mem)(mem);
2807
2808 /* Write op1 in op2. */
2809 mem->data = (uint8_t *)op1;
2810 mem->write = true;
2811 (*vcpu->cbs.mem)(mem);
2812
2813 /* Write op2 in op1. */
2814 *op1 = op2;
2815 }
2816
2817 static void
2818 x86_func_sub(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2819 {
2820 uint64_t *retval = (uint64_t *)mem->data;
2821 const bool write = mem->write;
2822 uint64_t *op1, *op2, fl, ret;
2823 uint64_t tmp;
2824 bool memop1;
2825
2826 memop1 = !mem->write;
2827 op1 = memop1 ? &tmp : (uint64_t *)mem->data;
2828 op2 = memop1 ? (uint64_t *)mem->data : &tmp;
2829
2830 /* Fetch the value to be SUB'ed (op1 or op2). */
2831 mem->data = (uint8_t *)&tmp;
2832 mem->write = false;
2833 (*vcpu->cbs.mem)(mem);
2834
2835 /* Perform the SUB. */
2836 ret = exec_sub(*op1, *op2, &fl, mem->size);
2837
2838 if (write) {
2839 /* Write back the result. */
2840 mem->data = (uint8_t *)&ret;
2841 mem->write = true;
2842 (*vcpu->cbs.mem)(mem);
2843 } else {
2844 /* Return data to the caller. */
2845 *retval = ret;
2846 }
2847
2848 gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_SUB_MASK;
2849 gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_SUB_MASK);
2850 }
2851
2852 static void
2853 x86_func_xor(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2854 {
2855 uint64_t *retval = (uint64_t *)mem->data;
2856 const bool write = mem->write;
2857 uint64_t *op1, op2, fl, ret;
2858
2859 op1 = (uint64_t *)mem->data;
2860 op2 = 0;
2861
2862 /* Fetch the value to be XOR'ed (op2). */
2863 mem->data = (uint8_t *)&op2;
2864 mem->write = false;
2865 (*vcpu->cbs.mem)(mem);
2866
2867 /* Perform the XOR. */
2868 ret = exec_xor(*op1, op2, &fl, mem->size);
2869
2870 if (write) {
2871 /* Write back the result. */
2872 mem->data = (uint8_t *)&ret;
2873 mem->write = true;
2874 (*vcpu->cbs.mem)(mem);
2875 } else {
2876 /* Return data to the caller. */
2877 *retval = ret;
2878 }
2879
2880 gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_XOR_MASK;
2881 gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_XOR_MASK);
2882 }
2883
2884 static void
2885 x86_func_cmp(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2886 {
2887 uint64_t *op1, *op2, fl;
2888 uint64_t tmp;
2889 bool memop1;
2890
2891 memop1 = !mem->write;
2892 op1 = memop1 ? &tmp : (uint64_t *)mem->data;
2893 op2 = memop1 ? (uint64_t *)mem->data : &tmp;
2894
2895 /* Fetch the value to be CMP'ed (op1 or op2). */
2896 mem->data = (uint8_t *)&tmp;
2897 mem->write = false;
2898 (*vcpu->cbs.mem)(mem);
2899
2900 /* Perform the CMP. */
2901 exec_sub(*op1, *op2, &fl, mem->size);
2902
2903 gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_SUB_MASK;
2904 gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_SUB_MASK);
2905 }
2906
2907 static void
2908 x86_func_test(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2909 {
2910 uint64_t *op1, *op2, fl;
2911 uint64_t tmp;
2912 bool memop1;
2913
2914 memop1 = !mem->write;
2915 op1 = memop1 ? &tmp : (uint64_t *)mem->data;
2916 op2 = memop1 ? (uint64_t *)mem->data : &tmp;
2917
2918 /* Fetch the value to be TEST'ed (op1 or op2). */
2919 mem->data = (uint8_t *)&tmp;
2920 mem->write = false;
2921 (*vcpu->cbs.mem)(mem);
2922
2923 /* Perform the TEST. */
2924 exec_and(*op1, *op2, &fl, mem->size);
2925
2926 gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_AND_MASK;
2927 gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_AND_MASK);
2928 }
2929
2930 static void
2931 x86_func_mov(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2932 {
2933 /*
2934 * Nothing special, just move without emulation.
2935 */
2936 (*vcpu->cbs.mem)(mem);
2937 }
2938
2939 static void
2940 x86_func_stos(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2941 {
2942 /*
2943 * Just move, and update RDI.
2944 */
2945 (*vcpu->cbs.mem)(mem);
2946
2947 if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
2948 gprs[NVMM_X64_GPR_RDI] -= mem->size;
2949 } else {
2950 gprs[NVMM_X64_GPR_RDI] += mem->size;
2951 }
2952 }
2953
2954 static void
2955 x86_func_lods(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2956 {
2957 /*
2958 * Just move, and update RSI.
2959 */
2960 (*vcpu->cbs.mem)(mem);
2961
2962 if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
2963 gprs[NVMM_X64_GPR_RSI] -= mem->size;
2964 } else {
2965 gprs[NVMM_X64_GPR_RSI] += mem->size;
2966 }
2967 }
2968
2969 static void
2970 x86_func_movs(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2971 {
2972 /*
2973 * Special instruction: double memory operand. Don't call the cb,
2974 * because the storage has already been performed earlier.
2975 */
2976
2977 if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
2978 gprs[NVMM_X64_GPR_RSI] -= mem->size;
2979 gprs[NVMM_X64_GPR_RDI] -= mem->size;
2980 } else {
2981 gprs[NVMM_X64_GPR_RSI] += mem->size;
2982 gprs[NVMM_X64_GPR_RDI] += mem->size;
2983 }
2984 }
2985
2986 /* -------------------------------------------------------------------------- */
2987
2988 static inline uint64_t
2989 gpr_read_address(struct x86_instr *instr, struct nvmm_x64_state *state, int gpr)
2990 {
2991 uint64_t val;
2992
2993 val = state->gprs[gpr];
2994 val &= size_to_mask(instr->address_size);
2995
2996 return val;
2997 }
2998
2999 static int
3000 store_to_gva(struct nvmm_x64_state *state, struct x86_instr *instr,
3001 struct x86_store *store, gvaddr_t *gvap, size_t size)
3002 {
3003 struct x86_sib *sib;
3004 gvaddr_t gva = 0;
3005 uint64_t reg;
3006 int ret, seg;
3007
3008 if (store->type == STORE_SIB) {
3009 sib = &store->u.sib;
3010 if (sib->bas != NULL)
3011 gva += gpr_read_address(instr, state, sib->bas->num);
3012 if (sib->idx != NULL) {
3013 reg = gpr_read_address(instr, state, sib->idx->num);
3014 gva += sib->scale * reg;
3015 }
3016 } else if (store->type == STORE_REG) {
3017 if (store->u.reg == NULL) {
3018 /* The base is null. Happens with disp32-only and
3019 * disp16-only. */
3020 } else {
3021 gva = gpr_read_address(instr, state, store->u.reg->num);
3022 }
3023 } else if (store->type == STORE_DUALREG) {
3024 gva = gpr_read_address(instr, state, store->u.dualreg.reg1) +
3025 gpr_read_address(instr, state, store->u.dualreg.reg2);
3026 } else {
3027 gva = store->u.dmo;
3028 }
3029
3030 if (store->disp.type != DISP_NONE) {
3031 gva += store->disp.data;
3032 }
3033
3034 if (store->hardseg != -1) {
3035 seg = store->hardseg;
3036 } else {
3037 if (__predict_false(instr->legpref.seg != -1)) {
3038 seg = instr->legpref.seg;
3039 } else {
3040 seg = NVMM_X64_SEG_DS;
3041 }
3042 }
3043
3044 if (__predict_true(is_long_mode(state))) {
3045 if (seg == NVMM_X64_SEG_GS || seg == NVMM_X64_SEG_FS) {
3046 segment_apply(&state->segs[seg], &gva);
3047 }
3048 } else {
3049 ret = segment_check(&state->segs[seg], gva, size);
3050 if (ret == -1)
3051 return -1;
3052 segment_apply(&state->segs[seg], &gva);
3053 }
3054
3055 *gvap = gva;
3056 return 0;
3057 }
3058
3059 static int
3060 fetch_segment(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
3061 {
3062 struct nvmm_x64_state *state = vcpu->state;
3063 uint8_t inst_bytes[5], byte;
3064 size_t i, fetchsize;
3065 gvaddr_t gva;
3066 int ret, seg;
3067
3068 fetchsize = sizeof(inst_bytes);
3069
3070 gva = state->gprs[NVMM_X64_GPR_RIP];
3071 if (__predict_false(!is_long_mode(state))) {
3072 ret = segment_check(&state->segs[NVMM_X64_SEG_CS], gva,
3073 fetchsize);
3074 if (ret == -1)
3075 return -1;
3076 segment_apply(&state->segs[NVMM_X64_SEG_CS], &gva);
3077 }
3078
3079 ret = read_guest_memory(mach, vcpu, gva, inst_bytes, fetchsize);
3080 if (ret == -1)
3081 return -1;
3082
3083 seg = NVMM_X64_SEG_DS;
3084 for (i = 0; i < fetchsize; i++) {
3085 byte = inst_bytes[i];
3086
3087 if (byte == LEG_OVR_DS) {
3088 seg = NVMM_X64_SEG_DS;
3089 } else if (byte == LEG_OVR_ES) {
3090 seg = NVMM_X64_SEG_ES;
3091 } else if (byte == LEG_OVR_GS) {
3092 seg = NVMM_X64_SEG_GS;
3093 } else if (byte == LEG_OVR_FS) {
3094 seg = NVMM_X64_SEG_FS;
3095 } else if (byte == LEG_OVR_CS) {
3096 seg = NVMM_X64_SEG_CS;
3097 } else if (byte == LEG_OVR_SS) {
3098 seg = NVMM_X64_SEG_SS;
3099 } else if (byte == LEG_OPR_OVR) {
3100 /* nothing */
3101 } else if (byte == LEG_ADR_OVR) {
3102 /* nothing */
3103 } else if (byte == LEG_REP) {
3104 /* nothing */
3105 } else if (byte == LEG_REPN) {
3106 /* nothing */
3107 } else if (byte == LEG_LOCK) {
3108 /* nothing */
3109 } else {
3110 return seg;
3111 }
3112 }
3113
3114 return seg;
3115 }
3116
3117 static int
3118 fetch_instruction(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
3119 struct nvmm_vcpu_exit *exit)
3120 {
3121 struct nvmm_x64_state *state = vcpu->state;
3122 size_t fetchsize;
3123 gvaddr_t gva;
3124 int ret;
3125
3126 fetchsize = sizeof(exit->u.mem.inst_bytes);
3127
3128 gva = state->gprs[NVMM_X64_GPR_RIP];
3129 if (__predict_false(!is_long_mode(state))) {
3130 ret = segment_check(&state->segs[NVMM_X64_SEG_CS], gva,
3131 fetchsize);
3132 if (ret == -1)
3133 return -1;
3134 segment_apply(&state->segs[NVMM_X64_SEG_CS], &gva);
3135 }
3136
3137 ret = read_guest_memory(mach, vcpu, gva, exit->u.mem.inst_bytes,
3138 fetchsize);
3139 if (ret == -1)
3140 return -1;
3141
3142 exit->u.mem.inst_len = fetchsize;
3143
3144 return 0;
3145 }
3146
3147 static int
3148 assist_mem_double(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
3149 struct x86_instr *instr)
3150 {
3151 struct nvmm_x64_state *state = vcpu->state;
3152 struct nvmm_mem mem;
3153 uint8_t data[8];
3154 gvaddr_t gva;
3155 size_t size;
3156 int ret;
3157
3158 size = instr->operand_size;
3159
3160 /* Source. */
3161 ret = store_to_gva(state, instr, &instr->src, &gva, size);
3162 if (ret == -1)
3163 return -1;
3164 ret = read_guest_memory(mach, vcpu, gva, data, size);
3165 if (ret == -1)
3166 return -1;
3167
3168 /* Destination. */
3169 ret = store_to_gva(state, instr, &instr->dst, &gva, size);
3170 if (ret == -1)
3171 return -1;
3172 ret = write_guest_memory(mach, vcpu, gva, data, size);
3173 if (ret == -1)
3174 return -1;
3175
3176 mem.size = size;
3177 (*instr->emul->func)(vcpu, &mem, state->gprs);
3178
3179 return 0;
3180 }
3181
3182 static int
3183 assist_mem_single(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
3184 struct x86_instr *instr)
3185 {
3186 struct nvmm_x64_state *state = vcpu->state;
3187 struct nvmm_vcpu_exit *exit = vcpu->exit;
3188 struct nvmm_mem mem;
3189 uint8_t membuf[8];
3190 uint64_t val;
3191
3192 memset(membuf, 0, sizeof(membuf));
3193
3194 mem.mach = mach;
3195 mem.vcpu = vcpu;
3196 mem.gpa = exit->u.mem.gpa;
3197 mem.size = instr->operand_size;
3198 mem.data = membuf;
3199
3200 /* Determine the direction. */
3201 switch (instr->src.type) {
3202 case STORE_REG:
3203 if (instr->src.disp.type != DISP_NONE) {
3204 /* Indirect access. */
3205 mem.write = false;
3206 } else {
3207 /* Direct access. */
3208 mem.write = true;
3209 }
3210 break;
3211 case STORE_DUALREG:
3212 if (instr->src.disp.type == DISP_NONE) {
3213 DISASSEMBLER_BUG();
3214 }
3215 mem.write = false;
3216 break;
3217 case STORE_IMM:
3218 mem.write = true;
3219 break;
3220 case STORE_SIB:
3221 mem.write = false;
3222 break;
3223 case STORE_DMO:
3224 mem.write = false;
3225 break;
3226 default:
3227 DISASSEMBLER_BUG();
3228 }
3229
3230 if (mem.write) {
3231 switch (instr->src.type) {
3232 case STORE_REG:
3233 /* The instruction was "reg -> mem". Fetch the register
3234 * in membuf. */
3235 if (__predict_false(instr->src.disp.type != DISP_NONE)) {
3236 DISASSEMBLER_BUG();
3237 }
3238 val = state->gprs[instr->src.u.reg->num];
3239 val = __SHIFTOUT(val, instr->src.u.reg->mask);
3240 memcpy(mem.data, &val, mem.size);
3241 break;
3242 case STORE_IMM:
3243 /* The instruction was "imm -> mem". Fetch the immediate
3244 * in membuf. */
3245 memcpy(mem.data, &instr->src.u.imm.data, mem.size);
3246 break;
3247 default:
3248 DISASSEMBLER_BUG();
3249 }
3250 } else if (instr->emul->readreg) {
3251 /* The instruction was "mem -> reg", but the value of the
3252 * register matters for the emul func. Fetch it in membuf. */
3253 if (__predict_false(instr->dst.type != STORE_REG)) {
3254 DISASSEMBLER_BUG();
3255 }
3256 if (__predict_false(instr->dst.disp.type != DISP_NONE)) {
3257 DISASSEMBLER_BUG();
3258 }
3259 val = state->gprs[instr->dst.u.reg->num];
3260 val = __SHIFTOUT(val, instr->dst.u.reg->mask);
3261 memcpy(mem.data, &val, mem.size);
3262 }
3263
3264 (*instr->emul->func)(vcpu, &mem, state->gprs);
3265
3266 if (instr->emul->notouch) {
3267 /* We're done. */
3268 return 0;
3269 }
3270
3271 if (!mem.write) {
3272 /* The instruction was "mem -> reg". The emul func has filled
3273 * membuf with the memory content. Install membuf in the
3274 * register. */
3275 if (__predict_false(instr->dst.type != STORE_REG)) {
3276 DISASSEMBLER_BUG();
3277 }
3278 if (__predict_false(instr->dst.disp.type != DISP_NONE)) {
3279 DISASSEMBLER_BUG();
3280 }
3281 memcpy(&val, membuf, sizeof(uint64_t));
3282 val = __SHIFTIN(val, instr->dst.u.reg->mask);
3283 state->gprs[instr->dst.u.reg->num] &= ~instr->dst.u.reg->mask;
3284 state->gprs[instr->dst.u.reg->num] |= val;
3285 state->gprs[instr->dst.u.reg->num] &= ~instr->zeroextend_mask;
3286 } else if (instr->emul->backprop) {
3287 /* The instruction was "reg -> mem", but the memory must be
3288 * back-propagated to the register. Install membuf in the
3289 * register. */
3290 if (__predict_false(instr->src.type != STORE_REG)) {
3291 DISASSEMBLER_BUG();
3292 }
3293 if (__predict_false(instr->src.disp.type != DISP_NONE)) {
3294 DISASSEMBLER_BUG();
3295 }
3296 memcpy(&val, membuf, sizeof(uint64_t));
3297 val = __SHIFTIN(val, instr->src.u.reg->mask);
3298 state->gprs[instr->src.u.reg->num] &= ~instr->src.u.reg->mask;
3299 state->gprs[instr->src.u.reg->num] |= val;
3300 state->gprs[instr->src.u.reg->num] &= ~instr->zeroextend_mask;
3301 }
3302
3303 return 0;
3304 }
3305
3306 int
3307 nvmm_assist_mem(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
3308 {
3309 struct nvmm_x64_state *state = vcpu->state;
3310 struct nvmm_vcpu_exit *exit = vcpu->exit;
3311 struct x86_instr instr;
3312 uint64_t cnt = 0; /* GCC */
3313 int ret;
3314
3315 if (__predict_false(exit->reason != NVMM_VCPU_EXIT_MEMORY)) {
3316 errno = EINVAL;
3317 return -1;
3318 }
3319
3320 ret = nvmm_vcpu_getstate(mach, vcpu,
3321 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
3322 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
3323 if (ret == -1)
3324 return -1;
3325
3326 if (exit->u.mem.inst_len == 0) {
3327 /*
3328 * The instruction was not fetched from the kernel. Fetch
3329 * it ourselves.
3330 */
3331 ret = fetch_instruction(mach, vcpu, exit);
3332 if (ret == -1)
3333 return -1;
3334 }
3335
3336 ret = x86_decode(exit->u.mem.inst_bytes, exit->u.mem.inst_len,
3337 &instr, state);
3338 if (ret == -1) {
3339 errno = ENODEV;
3340 return -1;
3341 }
3342
3343 if (instr.legpref.rep || instr.legpref.repn) {
3344 cnt = rep_get_cnt(state, instr.address_size);
3345 if (__predict_false(cnt == 0)) {
3346 state->gprs[NVMM_X64_GPR_RIP] += instr.len;
3347 goto out;
3348 }
3349 }
3350
3351 if (instr.opcode->movs) {
3352 ret = assist_mem_double(mach, vcpu, &instr);
3353 } else {
3354 ret = assist_mem_single(mach, vcpu, &instr);
3355 }
3356 if (ret == -1) {
3357 errno = ENODEV;
3358 return -1;
3359 }
3360
3361 if (instr.legpref.rep || instr.legpref.repn) {
3362 cnt -= 1;
3363 rep_set_cnt(state, instr.address_size, cnt);
3364 if (cnt == 0) {
3365 state->gprs[NVMM_X64_GPR_RIP] += instr.len;
3366 } else if (__predict_false(instr.legpref.repn)) {
3367 if (state->gprs[NVMM_X64_GPR_RFLAGS] & PSL_Z) {
3368 state->gprs[NVMM_X64_GPR_RIP] += instr.len;
3369 }
3370 }
3371 } else {
3372 state->gprs[NVMM_X64_GPR_RIP] += instr.len;
3373 }
3374
3375 out:
3376 ret = nvmm_vcpu_setstate(mach, vcpu, NVMM_X64_STATE_GPRS);
3377 if (ret == -1)
3378 return -1;
3379
3380 return 0;
3381 }
3382