pthread_mutex.c revision 1.31.2.3 1 1.31.2.3 matt /* pthread_mutex.c,v 1.31.2.2 2008/01/09 01:36:37 matt Exp */
2 1.2 thorpej
3 1.2 thorpej /*-
4 1.31.2.3 matt * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 thorpej * All rights reserved.
6 1.2 thorpej *
7 1.2 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.27 ad * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 1.2 thorpej *
10 1.2 thorpej * Redistribution and use in source and binary forms, with or without
11 1.2 thorpej * modification, are permitted provided that the following conditions
12 1.2 thorpej * are met:
13 1.2 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.2 thorpej * notice, this list of conditions and the following disclaimer.
15 1.2 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.2 thorpej * documentation and/or other materials provided with the distribution.
18 1.2 thorpej * 3. All advertising materials mentioning features or use of this software
19 1.2 thorpej * must display the following acknowledgement:
20 1.2 thorpej * This product includes software developed by the NetBSD
21 1.2 thorpej * Foundation, Inc. and its contributors.
22 1.2 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.2 thorpej * contributors may be used to endorse or promote products derived
24 1.2 thorpej * from this software without specific prior written permission.
25 1.2 thorpej *
26 1.2 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.2 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.2 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.2 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.2 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.2 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.2 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.2 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.2 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.2 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.2 thorpej * POSSIBILITY OF SUCH DAMAGE.
37 1.2 thorpej */
38 1.2 thorpej
39 1.2 thorpej #include <sys/cdefs.h>
40 1.31.2.3 matt __RCSID("pthread_mutex.c,v 1.31.2.2 2008/01/09 01:36:37 matt Exp");
41 1.31.2.2 matt
42 1.31.2.2 matt #include <sys/types.h>
43 1.31.2.3 matt #include <sys/lwpctl.h>
44 1.10 lukem
45 1.2 thorpej #include <errno.h>
46 1.2 thorpej #include <limits.h>
47 1.2 thorpej #include <stdlib.h>
48 1.6 scw #include <string.h>
49 1.31.2.3 matt #include <stdio.h>
50 1.2 thorpej
51 1.2 thorpej #include "pthread.h"
52 1.2 thorpej #include "pthread_int.h"
53 1.2 thorpej
54 1.31.2.3 matt #define pt_nextwaiter pt_sleep.ptqe_next
55 1.31.2.1 matt
56 1.31.2.3 matt #define MUTEX_WAITERS_BIT ((uintptr_t)0x01)
57 1.31.2.3 matt #define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02)
58 1.31.2.3 matt #define MUTEX_DEFERRED_BIT ((uintptr_t)0x04)
59 1.31.2.3 matt #define MUTEX_THREAD ((uintptr_t)-16L)
60 1.31.2.3 matt
61 1.31.2.3 matt #define MUTEX_HAS_WAITERS(x) ((uintptr_t)(x) & MUTEX_WAITERS_BIT)
62 1.31.2.3 matt #define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
63 1.31.2.3 matt #define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD)
64 1.31.2.3 matt
65 1.31.2.3 matt #if __GNUC_PREREQ__(3, 0)
66 1.31.2.3 matt #define NOINLINE __attribute ((noinline))
67 1.31.2.3 matt #else
68 1.31.2.3 matt #define NOINLINE /* nothing */
69 1.31.2.3 matt #endif
70 1.31.2.3 matt
71 1.31.2.3 matt static void pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
72 1.31.2.3 matt static int pthread__mutex_lock_slow(pthread_mutex_t *);
73 1.31.2.3 matt static int pthread__mutex_unlock_slow(pthread_mutex_t *);
74 1.31.2.3 matt static void pthread__mutex_pause(void);
75 1.2 thorpej
76 1.31.2.2 matt int _pthread_mutex_held_np(pthread_mutex_t *);
77 1.31.2.2 matt pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
78 1.31.2.2 matt
79 1.31.2.2 matt __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
80 1.31.2.2 matt __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
81 1.31.2.2 matt
82 1.2 thorpej __strong_alias(__libc_mutex_init,pthread_mutex_init)
83 1.2 thorpej __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
84 1.2 thorpej __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
85 1.2 thorpej __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
86 1.2 thorpej __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
87 1.4 thorpej
88 1.4 thorpej __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
89 1.4 thorpej __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
90 1.5 thorpej __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
91 1.2 thorpej
92 1.2 thorpej __strong_alias(__libc_thr_once,pthread_once)
93 1.2 thorpej
94 1.2 thorpej int
95 1.31.2.3 matt pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
96 1.2 thorpej {
97 1.31.2.3 matt intptr_t type;
98 1.2 thorpej
99 1.31.2.3 matt if (attr == NULL)
100 1.31.2.3 matt type = PTHREAD_MUTEX_NORMAL;
101 1.31.2.3 matt else
102 1.31.2.3 matt type = (intptr_t)attr->ptma_private;
103 1.2 thorpej
104 1.31.2.3 matt switch (type) {
105 1.31.2.3 matt case PTHREAD_MUTEX_ERRORCHECK:
106 1.31.2.3 matt ptm->ptm_errorcheck = 1;
107 1.31.2.3 matt ptm->ptm_owner = NULL;
108 1.31.2.3 matt break;
109 1.31.2.3 matt case PTHREAD_MUTEX_RECURSIVE:
110 1.31.2.3 matt ptm->ptm_errorcheck = 0;
111 1.31.2.3 matt ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
112 1.31.2.3 matt break;
113 1.31.2.3 matt default:
114 1.31.2.3 matt ptm->ptm_errorcheck = 0;
115 1.31.2.3 matt ptm->ptm_owner = NULL;
116 1.31.2.3 matt break;
117 1.2 thorpej }
118 1.2 thorpej
119 1.31.2.3 matt ptm->ptm_magic = _PT_MUTEX_MAGIC;
120 1.31.2.3 matt ptm->ptm_waiters = NULL;
121 1.31.2.3 matt ptm->ptm_recursed = 0;
122 1.2 thorpej
123 1.2 thorpej return 0;
124 1.2 thorpej }
125 1.2 thorpej
126 1.2 thorpej
127 1.2 thorpej int
128 1.31.2.3 matt pthread_mutex_destroy(pthread_mutex_t *ptm)
129 1.2 thorpej {
130 1.2 thorpej
131 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
132 1.31.2.3 matt ptm->ptm_magic == _PT_MUTEX_MAGIC);
133 1.14 nathanw pthread__error(EBUSY, "Destroying locked mutex",
134 1.31.2.3 matt MUTEX_OWNER(ptm->ptm_owner) == 0);
135 1.2 thorpej
136 1.31.2.3 matt ptm->ptm_magic = _PT_MUTEX_DEAD;
137 1.2 thorpej return 0;
138 1.2 thorpej }
139 1.2 thorpej
140 1.2 thorpej int
141 1.31.2.3 matt pthread_mutex_lock(pthread_mutex_t *ptm)
142 1.2 thorpej {
143 1.27 ad pthread_t self;
144 1.31.2.3 matt void *val;
145 1.2 thorpej
146 1.27 ad self = pthread__self();
147 1.31.2.3 matt val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
148 1.31.2.3 matt if (__predict_true(val == NULL)) {
149 1.31.2.3 matt #ifndef PTHREAD__ATOMIC_IS_MEMBAR
150 1.31.2.3 matt membar_enter();
151 1.31.2.3 matt #endif
152 1.31.2.3 matt return 0;
153 1.2 thorpej }
154 1.31.2.3 matt return pthread__mutex_lock_slow(ptm);
155 1.31.2.3 matt }
156 1.2 thorpej
157 1.31.2.3 matt /* We want function call overhead. */
158 1.31.2.3 matt NOINLINE static void
159 1.31.2.3 matt pthread__mutex_pause(void)
160 1.31.2.3 matt {
161 1.2 thorpej
162 1.31.2.3 matt pthread__smt_pause();
163 1.2 thorpej }
164 1.2 thorpej
165 1.31.2.3 matt /*
166 1.31.2.3 matt * Spin while the holder is running. 'lwpctl' gives us the true
167 1.31.2.3 matt * status of the thread. pt_blocking is set by libpthread in order
168 1.31.2.3 matt * to cut out system call and kernel spinlock overhead on remote CPUs
169 1.31.2.3 matt * (could represent many thousands of clock cycles). pt_blocking also
170 1.31.2.3 matt * makes this thread yield if the target is calling sched_yield().
171 1.31.2.3 matt */
172 1.31.2.3 matt NOINLINE static void *
173 1.31.2.3 matt pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
174 1.31.2.3 matt {
175 1.31.2.3 matt pthread_t thread;
176 1.31.2.3 matt unsigned int count, i;
177 1.31.2.3 matt
178 1.31.2.3 matt for (count = 2;; owner = ptm->ptm_owner) {
179 1.31.2.3 matt thread = (pthread_t)MUTEX_OWNER(owner);
180 1.31.2.3 matt if (thread == NULL)
181 1.31.2.3 matt break;
182 1.31.2.3 matt if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
183 1.31.2.3 matt thread->pt_blocking)
184 1.31.2.3 matt break;
185 1.31.2.3 matt if (count < 128)
186 1.31.2.3 matt count += count;
187 1.31.2.3 matt for (i = count; i != 0; i--)
188 1.31.2.3 matt pthread__mutex_pause();
189 1.31.2.3 matt }
190 1.2 thorpej
191 1.31.2.3 matt return owner;
192 1.31.2.3 matt }
193 1.31.2.3 matt
194 1.31.2.3 matt NOINLINE static int
195 1.31.2.3 matt pthread__mutex_lock_slow(pthread_mutex_t *ptm)
196 1.2 thorpej {
197 1.31.2.3 matt void *waiters, *new, *owner, *next;
198 1.31.2.3 matt pthread_t self;
199 1.2 thorpej
200 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
201 1.31.2.3 matt ptm->ptm_magic == _PT_MUTEX_MAGIC);
202 1.13 nathanw
203 1.31.2.3 matt owner = ptm->ptm_owner;
204 1.31.2.3 matt self = pthread__self();
205 1.31.2.3 matt
206 1.31.2.3 matt /* Recursive or errorcheck? */
207 1.31.2.3 matt if (MUTEX_OWNER(owner) == (uintptr_t)self) {
208 1.31.2.3 matt if (MUTEX_RECURSIVE(owner)) {
209 1.31.2.3 matt if (ptm->ptm_recursed == INT_MAX)
210 1.31.2.3 matt return EAGAIN;
211 1.31.2.3 matt ptm->ptm_recursed++;
212 1.31.2.3 matt return 0;
213 1.29 ad }
214 1.31.2.3 matt if (ptm->ptm_errorcheck)
215 1.31.2.3 matt return EDEADLK;
216 1.31.2.3 matt }
217 1.29 ad
218 1.31.2.3 matt for (;; owner = ptm->ptm_owner) {
219 1.31.2.3 matt /* Spin while the owner is running. */
220 1.31.2.3 matt owner = pthread__mutex_spin(ptm, owner);
221 1.31.2.3 matt
222 1.31.2.3 matt /* If it has become free, try to acquire it again. */
223 1.31.2.3 matt if (MUTEX_OWNER(owner) == 0) {
224 1.31.2.3 matt do {
225 1.31.2.3 matt new = (void *)
226 1.31.2.3 matt ((uintptr_t)self | (uintptr_t)owner);
227 1.31.2.3 matt next = atomic_cas_ptr(&ptm->ptm_owner, owner,
228 1.31.2.3 matt new);
229 1.31.2.3 matt if (next == owner) {
230 1.31.2.3 matt #ifndef PTHREAD__ATOMIC_IS_MEMBAR
231 1.31.2.3 matt membar_enter();
232 1.31.2.3 matt #endif
233 1.31.2.3 matt return 0;
234 1.31.2.3 matt }
235 1.31.2.3 matt owner = next;
236 1.31.2.3 matt } while (MUTEX_OWNER(owner) == 0);
237 1.31.2.3 matt /*
238 1.31.2.3 matt * We have lost the race to acquire the mutex.
239 1.31.2.3 matt * The new owner could be running on another
240 1.31.2.3 matt * CPU, in which case we should spin and avoid
241 1.31.2.3 matt * the overhead of blocking.
242 1.31.2.3 matt */
243 1.31.2.3 matt continue;
244 1.31.2.3 matt }
245 1.21 chs
246 1.2 thorpej /*
247 1.31.2.3 matt * Nope, still held. Add thread to the list of waiters.
248 1.31.2.3 matt * Issue a memory barrier to ensure sleeponq/nextwaiter
249 1.31.2.3 matt * are visible before we enter the waiters list.
250 1.2 thorpej */
251 1.31.2.3 matt self->pt_sleeponq = 1;
252 1.31.2.3 matt for (waiters = ptm->ptm_waiters;; waiters = next) {
253 1.31.2.3 matt self->pt_nextwaiter = waiters;
254 1.31.2.3 matt membar_producer();
255 1.31.2.3 matt next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
256 1.31.2.3 matt if (next == waiters)
257 1.31.2.3 matt break;
258 1.29 ad }
259 1.2 thorpej
260 1.31.2.3 matt /*
261 1.31.2.3 matt * Set the waiters bit and block.
262 1.31.2.3 matt *
263 1.31.2.3 matt * Note that the mutex can become unlocked before we set
264 1.31.2.3 matt * the waiters bit. If that happens it's not safe to sleep
265 1.31.2.3 matt * as we may never be awoken: we must remove the current
266 1.31.2.3 matt * thread from the waiters list and try again.
267 1.31.2.3 matt *
268 1.31.2.3 matt * Because we are doing this atomically, we can't remove
269 1.31.2.3 matt * one waiter: we must remove all waiters and awken them,
270 1.31.2.3 matt * then sleep in _lwp_park() until we have been awoken.
271 1.31.2.3 matt *
272 1.31.2.3 matt * Issue a memory barrier to ensure that we are reading
273 1.31.2.3 matt * the value of ptm_owner/pt_sleeponq after we have entered
274 1.31.2.3 matt * the waiters list (the CAS itself must be atomic).
275 1.31.2.3 matt */
276 1.31.2.3 matt membar_consumer();
277 1.31.2.3 matt for (owner = ptm->ptm_owner;; owner = next) {
278 1.31.2.3 matt if (MUTEX_HAS_WAITERS(owner))
279 1.31.2.3 matt break;
280 1.31.2.3 matt if (MUTEX_OWNER(owner) == 0) {
281 1.31.2.3 matt pthread__mutex_wakeup(self, ptm);
282 1.31.2.3 matt break;
283 1.31.2.3 matt }
284 1.31.2.3 matt new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
285 1.31.2.3 matt next = atomic_cas_ptr(&ptm->ptm_owner, owner, new);
286 1.31.2.3 matt if (next == owner) {
287 1.21 chs /*
288 1.31.2.3 matt * pthread_mutex_unlock() can do a
289 1.31.2.3 matt * non-interlocked CAS. We cannot
290 1.31.2.3 matt * know if our attempt to set the
291 1.31.2.3 matt * waiters bit has succeeded while
292 1.31.2.3 matt * the holding thread is running.
293 1.31.2.3 matt * There are many assumptions; see
294 1.31.2.3 matt * sys/kern/kern_mutex.c for details.
295 1.31.2.3 matt * In short, we must spin if we see
296 1.31.2.3 matt * that the holder is running again.
297 1.21 chs */
298 1.31.2.3 matt membar_sync();
299 1.31.2.3 matt next = pthread__mutex_spin(ptm, owner);
300 1.29 ad }
301 1.2 thorpej }
302 1.29 ad
303 1.29 ad /*
304 1.31.2.3 matt * We may have been awoken by the current thread above,
305 1.31.2.3 matt * or will be awoken by the current holder of the mutex.
306 1.31.2.3 matt * The key requirement is that we must not proceed until
307 1.31.2.3 matt * told that we are no longer waiting (via pt_sleeponq
308 1.31.2.3 matt * being set to zero). Otherwise it is unsafe to re-enter
309 1.31.2.3 matt * the thread onto the waiters list.
310 1.29 ad */
311 1.31.2.3 matt while (self->pt_sleeponq) {
312 1.31.2.3 matt self->pt_blocking++;
313 1.31.2.3 matt (void)_lwp_park(NULL, 0,
314 1.31.2.3 matt __UNVOLATILE(&ptm->ptm_waiters), NULL);
315 1.31.2.3 matt self->pt_blocking--;
316 1.31.2.3 matt membar_sync();
317 1.31.2.3 matt }
318 1.2 thorpej }
319 1.2 thorpej }
320 1.2 thorpej
321 1.2 thorpej int
322 1.31.2.3 matt pthread_mutex_trylock(pthread_mutex_t *ptm)
323 1.2 thorpej {
324 1.27 ad pthread_t self;
325 1.31.2.3 matt void *val, *new, *next;
326 1.2 thorpej
327 1.27 ad self = pthread__self();
328 1.31.2.3 matt val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
329 1.31.2.3 matt if (__predict_true(val == NULL)) {
330 1.31.2.3 matt #ifndef PTHREAD__ATOMIC_IS_MEMBAR
331 1.31.2.3 matt membar_enter();
332 1.31.2.3 matt #endif
333 1.31.2.3 matt return 0;
334 1.31.2.3 matt }
335 1.27 ad
336 1.31.2.3 matt if (MUTEX_RECURSIVE(val)) {
337 1.31.2.3 matt if (MUTEX_OWNER(val) == 0) {
338 1.31.2.3 matt new = (void *)((uintptr_t)self | (uintptr_t)val);
339 1.31.2.3 matt next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
340 1.31.2.3 matt if (__predict_true(next == val)) {
341 1.31.2.3 matt #ifndef PTHREAD__ATOMIC_IS_MEMBAR
342 1.31.2.3 matt membar_enter();
343 1.31.2.3 matt #endif
344 1.31.2.3 matt return 0;
345 1.31.2.3 matt }
346 1.31.2.3 matt }
347 1.31.2.3 matt if (MUTEX_OWNER(val) == (uintptr_t)self) {
348 1.31.2.3 matt if (ptm->ptm_recursed == INT_MAX)
349 1.13 nathanw return EAGAIN;
350 1.31.2.3 matt ptm->ptm_recursed++;
351 1.13 nathanw return 0;
352 1.2 thorpej }
353 1.2 thorpej }
354 1.2 thorpej
355 1.31.2.3 matt return EBUSY;
356 1.2 thorpej }
357 1.2 thorpej
358 1.2 thorpej int
359 1.31.2.3 matt pthread_mutex_unlock(pthread_mutex_t *ptm)
360 1.2 thorpej {
361 1.27 ad pthread_t self;
362 1.31.2.3 matt void *value;
363 1.2 thorpej
364 1.2 thorpej /*
365 1.31.2.3 matt * Note this may be a non-interlocked CAS. See lock_slow()
366 1.31.2.3 matt * above and sys/kern/kern_mutex.c for details.
367 1.2 thorpej */
368 1.31.2.3 matt #ifndef PTHREAD__ATOMIC_IS_MEMBAR
369 1.31.2.3 matt membar_exit();
370 1.31.2.3 matt #endif
371 1.31.2.2 matt self = pthread__self();
372 1.31.2.3 matt value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
373 1.31.2.3 matt if (__predict_true(value == self))
374 1.31.2.3 matt return 0;
375 1.31.2.3 matt return pthread__mutex_unlock_slow(ptm);
376 1.31.2.3 matt }
377 1.31 ad
378 1.31.2.3 matt NOINLINE static int
379 1.31.2.3 matt pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
380 1.31.2.3 matt {
381 1.31.2.3 matt pthread_t self, owner, new;
382 1.31.2.3 matt int weown, error, deferred;
383 1.31.2.3 matt
384 1.31.2.3 matt pthread__error(EINVAL, "Invalid mutex",
385 1.31.2.3 matt ptm->ptm_magic == _PT_MUTEX_MAGIC);
386 1.31.2.3 matt
387 1.31.2.3 matt self = pthread__self();
388 1.31.2.3 matt owner = ptm->ptm_owner;
389 1.31.2.3 matt weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
390 1.31.2.3 matt deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
391 1.31.2.3 matt error = 0;
392 1.31.2.3 matt
393 1.31.2.3 matt if (ptm->ptm_errorcheck) {
394 1.31.2.3 matt if (!weown) {
395 1.31.2.3 matt error = EPERM;
396 1.31.2.3 matt new = owner;
397 1.31.2.3 matt } else {
398 1.31.2.3 matt new = NULL;
399 1.2 thorpej }
400 1.31.2.3 matt } else if (MUTEX_RECURSIVE(owner)) {
401 1.31.2.3 matt if (!weown) {
402 1.31.2.3 matt error = EPERM;
403 1.31.2.3 matt new = owner;
404 1.31.2.3 matt } else if (ptm->ptm_recursed) {
405 1.31.2.3 matt ptm->ptm_recursed--;
406 1.31.2.3 matt new = owner;
407 1.31.2.3 matt } else {
408 1.31.2.3 matt new = (pthread_t)MUTEX_RECURSIVE_BIT;
409 1.15 nathanw }
410 1.31.2.3 matt } else {
411 1.31.2.3 matt pthread__error(EPERM,
412 1.31.2.3 matt "Unlocking unlocked mutex", (owner != NULL));
413 1.31.2.3 matt pthread__error(EPERM,
414 1.31.2.3 matt "Unlocking mutex owned by another thread", weown);
415 1.31.2.3 matt new = NULL;
416 1.2 thorpej }
417 1.2 thorpej
418 1.31.2.3 matt /*
419 1.31.2.3 matt * Release the mutex. If there appear to be waiters, then
420 1.31.2.3 matt * wake them up.
421 1.31.2.3 matt */
422 1.31.2.3 matt if (new != owner) {
423 1.31.2.3 matt owner = atomic_swap_ptr(&ptm->ptm_owner, new);
424 1.31.2.3 matt if (MUTEX_HAS_WAITERS(owner) != 0) {
425 1.31.2.3 matt pthread__mutex_wakeup(self, ptm);
426 1.31.2.3 matt return 0;
427 1.31.2.3 matt }
428 1.31.2.3 matt }
429 1.27 ad
430 1.8 nathanw /*
431 1.31.2.3 matt * There were no waiters, but we may have deferred waking
432 1.31.2.3 matt * other threads until mutex unlock - we must wake them now.
433 1.8 nathanw */
434 1.31.2.3 matt if (!deferred)
435 1.31.2.3 matt return error;
436 1.31.2.3 matt
437 1.31.2.3 matt if (self->pt_nwaiters == 1) {
438 1.31.2.3 matt /*
439 1.31.2.3 matt * If the calling thread is about to block, defer
440 1.31.2.3 matt * unparking the target until _lwp_park() is called.
441 1.31.2.3 matt */
442 1.31.2.3 matt if (self->pt_willpark && self->pt_unpark == 0) {
443 1.31.2.3 matt self->pt_unpark = self->pt_waiters[0];
444 1.31.2.3 matt self->pt_unparkhint =
445 1.31.2.3 matt __UNVOLATILE(&ptm->ptm_waiters);
446 1.31.2.3 matt } else {
447 1.31.2.3 matt (void)_lwp_unpark(self->pt_waiters[0],
448 1.31.2.3 matt __UNVOLATILE(&ptm->ptm_waiters));
449 1.31.2.3 matt }
450 1.31.2.3 matt } else {
451 1.31.2.3 matt (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
452 1.31.2.3 matt __UNVOLATILE(&ptm->ptm_waiters));
453 1.31.2.3 matt }
454 1.31.2.3 matt self->pt_nwaiters = 0;
455 1.31.2.3 matt
456 1.31.2.3 matt return error;
457 1.2 thorpej }
458 1.2 thorpej
459 1.31.2.3 matt static void
460 1.31.2.3 matt pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
461 1.2 thorpej {
462 1.31.2.3 matt pthread_t thread, next;
463 1.31.2.3 matt ssize_t n, rv;
464 1.2 thorpej
465 1.31.2.3 matt /*
466 1.31.2.3 matt * Take ownership of the current set of waiters. No
467 1.31.2.3 matt * need for a memory barrier following this, all loads
468 1.31.2.3 matt * are dependent upon 'thread'.
469 1.31.2.3 matt */
470 1.31.2.3 matt thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
471 1.2 thorpej
472 1.31.2.3 matt for (;;) {
473 1.31.2.3 matt /*
474 1.31.2.3 matt * Pull waiters from the queue and add to our list.
475 1.31.2.3 matt * Use a memory barrier to ensure that we safely
476 1.31.2.3 matt * read the value of pt_nextwaiter before 'thread'
477 1.31.2.3 matt * sees pt_sleeponq being cleared.
478 1.31.2.3 matt */
479 1.31.2.3 matt for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
480 1.31.2.3 matt n < pthread__unpark_max && thread != NULL;
481 1.31.2.3 matt thread = next) {
482 1.31.2.3 matt next = thread->pt_nextwaiter;
483 1.31.2.3 matt if (thread != self) {
484 1.31.2.3 matt self->pt_waiters[n++] = thread->pt_lid;
485 1.31.2.3 matt membar_sync();
486 1.31.2.3 matt }
487 1.31.2.3 matt thread->pt_sleeponq = 0;
488 1.31.2.3 matt /* No longer safe to touch 'thread' */
489 1.31.2.3 matt }
490 1.2 thorpej
491 1.31.2.3 matt switch (n) {
492 1.31.2.3 matt case 0:
493 1.31.2.3 matt return;
494 1.31.2.3 matt case 1:
495 1.31.2.3 matt /*
496 1.31.2.3 matt * If the calling thread is about to block,
497 1.31.2.3 matt * defer unparking the target until _lwp_park()
498 1.31.2.3 matt * is called.
499 1.31.2.3 matt */
500 1.31.2.3 matt if (self->pt_willpark && self->pt_unpark == 0) {
501 1.31.2.3 matt self->pt_unpark = self->pt_waiters[0];
502 1.31.2.3 matt self->pt_unparkhint =
503 1.31.2.3 matt __UNVOLATILE(&ptm->ptm_waiters);
504 1.31.2.3 matt return;
505 1.31.2.3 matt }
506 1.31.2.3 matt rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
507 1.31.2.3 matt __UNVOLATILE(&ptm->ptm_waiters));
508 1.31.2.3 matt if (rv != 0 && errno != EALREADY && errno != EINTR &&
509 1.31.2.3 matt errno != ESRCH) {
510 1.31.2.3 matt pthread__errorfunc(__FILE__, __LINE__,
511 1.31.2.3 matt __func__, "_lwp_unpark failed");
512 1.31.2.3 matt }
513 1.31.2.3 matt return;
514 1.31.2.3 matt default:
515 1.31.2.3 matt rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
516 1.31.2.3 matt __UNVOLATILE(&ptm->ptm_waiters));
517 1.31.2.3 matt if (rv != 0 && errno != EINTR) {
518 1.31.2.3 matt pthread__errorfunc(__FILE__, __LINE__,
519 1.31.2.3 matt __func__, "_lwp_unpark_all failed");
520 1.31.2.3 matt }
521 1.31.2.3 matt break;
522 1.31.2.3 matt }
523 1.31.2.3 matt }
524 1.31.2.3 matt }
525 1.31.2.3 matt int
526 1.31.2.3 matt pthread_mutexattr_init(pthread_mutexattr_t *attr)
527 1.31.2.3 matt {
528 1.2 thorpej
529 1.31.2.3 matt attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
530 1.31.2.3 matt attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
531 1.2 thorpej return 0;
532 1.2 thorpej }
533 1.2 thorpej
534 1.2 thorpej int
535 1.2 thorpej pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
536 1.2 thorpej {
537 1.2 thorpej
538 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
539 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
540 1.2 thorpej
541 1.2 thorpej return 0;
542 1.2 thorpej }
543 1.2 thorpej
544 1.2 thorpej
545 1.2 thorpej int
546 1.2 thorpej pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
547 1.2 thorpej {
548 1.2 thorpej
549 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
550 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
551 1.2 thorpej
552 1.31.2.3 matt *typep = (int)(intptr_t)attr->ptma_private;
553 1.2 thorpej return 0;
554 1.2 thorpej }
555 1.2 thorpej
556 1.2 thorpej
557 1.2 thorpej int
558 1.2 thorpej pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
559 1.2 thorpej {
560 1.2 thorpej
561 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
562 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
563 1.13 nathanw
564 1.2 thorpej switch (type) {
565 1.2 thorpej case PTHREAD_MUTEX_NORMAL:
566 1.2 thorpej case PTHREAD_MUTEX_ERRORCHECK:
567 1.2 thorpej case PTHREAD_MUTEX_RECURSIVE:
568 1.31.2.3 matt attr->ptma_private = (void *)(intptr_t)type;
569 1.31.2.3 matt return 0;
570 1.2 thorpej default:
571 1.2 thorpej return EINVAL;
572 1.2 thorpej }
573 1.2 thorpej }
574 1.2 thorpej
575 1.2 thorpej
576 1.19 nathanw static void
577 1.19 nathanw once_cleanup(void *closure)
578 1.19 nathanw {
579 1.19 nathanw
580 1.19 nathanw pthread_mutex_unlock((pthread_mutex_t *)closure);
581 1.19 nathanw }
582 1.19 nathanw
583 1.19 nathanw
584 1.2 thorpej int
585 1.2 thorpej pthread_once(pthread_once_t *once_control, void (*routine)(void))
586 1.2 thorpej {
587 1.2 thorpej
588 1.2 thorpej if (once_control->pto_done == 0) {
589 1.2 thorpej pthread_mutex_lock(&once_control->pto_mutex);
590 1.19 nathanw pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
591 1.2 thorpej if (once_control->pto_done == 0) {
592 1.2 thorpej routine();
593 1.2 thorpej once_control->pto_done = 1;
594 1.2 thorpej }
595 1.19 nathanw pthread_cleanup_pop(1);
596 1.2 thorpej }
597 1.2 thorpej
598 1.2 thorpej return 0;
599 1.2 thorpej }
600 1.31.2.1 matt
601 1.31.2.1 matt int
602 1.31.2.3 matt pthread__mutex_deferwake(pthread_t thread, pthread_mutex_t *ptm)
603 1.31.2.1 matt {
604 1.31.2.1 matt
605 1.31.2.3 matt if (MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)thread)
606 1.31.2.3 matt return 0;
607 1.31.2.3 matt atomic_or_ulong((volatile unsigned long *)
608 1.31.2.3 matt (uintptr_t)&ptm->ptm_owner,
609 1.31.2.3 matt (unsigned long)MUTEX_DEFERRED_BIT);
610 1.31.2.3 matt return 1;
611 1.31.2.1 matt }
612 1.31.2.1 matt
613 1.31.2.2 matt int
614 1.31.2.3 matt _pthread_mutex_held_np(pthread_mutex_t *ptm)
615 1.31.2.2 matt {
616 1.31.2.2 matt
617 1.31.2.3 matt return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
618 1.31.2.2 matt }
619 1.31.2.2 matt
620 1.31.2.2 matt pthread_t
621 1.31.2.3 matt _pthread_mutex_owner_np(pthread_mutex_t *ptm)
622 1.31.2.2 matt {
623 1.31.2.2 matt
624 1.31.2.3 matt return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
625 1.31.2.2 matt }
626