Home | History | Annotate | Line # | Download | only in libpthread
pthread_mutex.c revision 1.44
      1  1.44       ad /*	$NetBSD: pthread_mutex.c,v 1.44 2008/02/10 18:50:54 ad Exp $	*/
      2   1.2  thorpej 
      3   1.2  thorpej /*-
      4  1.44       ad  * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5   1.2  thorpej  * All rights reserved.
      6   1.2  thorpej  *
      7   1.2  thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8  1.27       ad  * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
      9   1.2  thorpej  *
     10   1.2  thorpej  * Redistribution and use in source and binary forms, with or without
     11   1.2  thorpej  * modification, are permitted provided that the following conditions
     12   1.2  thorpej  * are met:
     13   1.2  thorpej  * 1. Redistributions of source code must retain the above copyright
     14   1.2  thorpej  *    notice, this list of conditions and the following disclaimer.
     15   1.2  thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.2  thorpej  *    notice, this list of conditions and the following disclaimer in the
     17   1.2  thorpej  *    documentation and/or other materials provided with the distribution.
     18   1.2  thorpej  * 3. All advertising materials mentioning features or use of this software
     19   1.2  thorpej  *    must display the following acknowledgement:
     20   1.2  thorpej  *        This product includes software developed by the NetBSD
     21   1.2  thorpej  *        Foundation, Inc. and its contributors.
     22   1.2  thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23   1.2  thorpej  *    contributors may be used to endorse or promote products derived
     24   1.2  thorpej  *    from this software without specific prior written permission.
     25   1.2  thorpej  *
     26   1.2  thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27   1.2  thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28   1.2  thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29   1.2  thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30   1.2  thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31   1.2  thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32   1.2  thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33   1.2  thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34   1.2  thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35   1.2  thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36   1.2  thorpej  * POSSIBILITY OF SUCH DAMAGE.
     37   1.2  thorpej  */
     38   1.2  thorpej 
     39   1.2  thorpej #include <sys/cdefs.h>
     40  1.44       ad __RCSID("$NetBSD: pthread_mutex.c,v 1.44 2008/02/10 18:50:54 ad Exp $");
     41  1.40       ad 
     42  1.40       ad #include <sys/types.h>
     43  1.44       ad #include <sys/lwpctl.h>
     44  1.10    lukem 
     45   1.2  thorpej #include <errno.h>
     46   1.2  thorpej #include <limits.h>
     47   1.2  thorpej #include <stdlib.h>
     48   1.6      scw #include <string.h>
     49  1.44       ad #include <stdio.h>
     50   1.2  thorpej 
     51   1.2  thorpej #include "pthread.h"
     52   1.2  thorpej #include "pthread_int.h"
     53   1.2  thorpej 
     54  1.44       ad /*
     55  1.44       ad  * Note that it's important to use the address of ptm_waiters as
     56  1.44       ad  * the list head in order for the hint arguments to _lwp_park /
     57  1.44       ad  * _lwp_unpark_all to match.
     58  1.44       ad  */
     59  1.44       ad #define	pt_nextwaiter			pt_sleep.ptqe_next
     60  1.44       ad #define	ptm_waiters			ptm_blocked.ptqh_first
     61  1.44       ad #define	ptm_errorcheck			ptm_lock
     62  1.44       ad 
     63  1.44       ad #define	MUTEX_WAITERS_BIT		((uintptr_t)0x01)
     64  1.44       ad #define	MUTEX_RECURSIVE_BIT		((uintptr_t)0x02)
     65  1.44       ad #define	MUTEX_DEFERRED_BIT		((uintptr_t)0x04)
     66  1.44       ad #define	MUTEX_THREAD			((uintptr_t)-16L)
     67  1.44       ad 
     68  1.44       ad #define	MUTEX_HAS_WAITERS(x)		((uintptr_t)(x) & MUTEX_WAITERS_BIT)
     69  1.44       ad #define	MUTEX_RECURSIVE(x)		((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
     70  1.44       ad #define	MUTEX_OWNER(x)			((uintptr_t)(x) & MUTEX_THREAD)
     71  1.44       ad #define	MUTEX_GET_RECURSE(ptm)		((intptr_t)(ptm)->ptm_private)
     72  1.44       ad #define	MUTEX_SET_RECURSE(ptm, delta)	\
     73  1.44       ad     ((ptm)->ptm_private = (void *)((intptr_t)(ptm)->ptm_private + delta))
     74  1.44       ad 
     75  1.44       ad #if __GNUC_PREREQ__(3, 0)
     76  1.44       ad #define	NOINLINE		__attribute ((noinline))
     77  1.44       ad #else
     78  1.44       ad #define	NOINLINE		/* nothing */
     79  1.44       ad #endif
     80  1.44       ad 
     81  1.44       ad static void	pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
     82  1.44       ad static int	pthread__mutex_lock_slow(pthread_mutex_t *);
     83  1.44       ad static int	pthread__mutex_unlock_slow(pthread_mutex_t *);
     84  1.44       ad static void	pthread__mutex_pause(void);
     85   1.2  thorpej 
     86  1.39       ad int		_pthread_mutex_held_np(pthread_mutex_t *);
     87  1.39       ad pthread_t	_pthread_mutex_owner_np(pthread_mutex_t *);
     88  1.39       ad 
     89  1.39       ad __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
     90  1.39       ad __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
     91  1.39       ad 
     92   1.2  thorpej __strong_alias(__libc_mutex_init,pthread_mutex_init)
     93   1.2  thorpej __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
     94   1.2  thorpej __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
     95   1.2  thorpej __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
     96   1.2  thorpej __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
     97   1.4  thorpej 
     98   1.4  thorpej __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
     99   1.4  thorpej __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
    100   1.5  thorpej __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
    101   1.2  thorpej 
    102   1.2  thorpej __strong_alias(__libc_thr_once,pthread_once)
    103   1.2  thorpej 
    104   1.2  thorpej int
    105  1.44       ad pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
    106   1.2  thorpej {
    107  1.44       ad 	intptr_t type;
    108   1.2  thorpej 
    109  1.44       ad 	if (attr == NULL)
    110  1.44       ad 		type = PTHREAD_MUTEX_NORMAL;
    111  1.44       ad 	else
    112  1.44       ad 		type = (intptr_t)attr->ptma_private;
    113   1.2  thorpej 
    114  1.44       ad 	switch (type) {
    115  1.44       ad 	case PTHREAD_MUTEX_ERRORCHECK:
    116  1.44       ad 		ptm->ptm_errorcheck = 1;
    117  1.44       ad 		ptm->ptm_owner = NULL;
    118  1.44       ad 		break;
    119  1.44       ad 	case PTHREAD_MUTEX_RECURSIVE:
    120  1.44       ad 		ptm->ptm_errorcheck = 0;
    121  1.44       ad 		ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
    122  1.44       ad 		break;
    123  1.44       ad 	default:
    124  1.44       ad 		ptm->ptm_errorcheck = 0;
    125  1.44       ad 		ptm->ptm_owner = NULL;
    126  1.44       ad 		break;
    127   1.2  thorpej 	}
    128   1.2  thorpej 
    129  1.44       ad 	ptm->ptm_magic = _PT_MUTEX_MAGIC;
    130  1.44       ad 	ptm->ptm_waiters = NULL;
    131  1.44       ad 	ptm->ptm_private = NULL;
    132   1.2  thorpej 
    133   1.2  thorpej 	return 0;
    134   1.2  thorpej }
    135   1.2  thorpej 
    136   1.2  thorpej 
    137   1.2  thorpej int
    138  1.44       ad pthread_mutex_destroy(pthread_mutex_t *ptm)
    139   1.2  thorpej {
    140   1.2  thorpej 
    141  1.14  nathanw 	pthread__error(EINVAL, "Invalid mutex",
    142  1.44       ad 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    143  1.14  nathanw 	pthread__error(EBUSY, "Destroying locked mutex",
    144  1.44       ad 	    MUTEX_OWNER(ptm->ptm_owner) == 0);
    145   1.2  thorpej 
    146  1.44       ad 	ptm->ptm_magic = _PT_MUTEX_DEAD;
    147   1.2  thorpej 	return 0;
    148   1.2  thorpej }
    149   1.2  thorpej 
    150   1.2  thorpej int
    151  1.44       ad pthread_mutex_lock(pthread_mutex_t *ptm)
    152   1.2  thorpej {
    153  1.27       ad 	pthread_t self;
    154  1.44       ad 	void *val;
    155   1.2  thorpej 
    156  1.27       ad 	self = pthread__self();
    157  1.44       ad 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    158  1.44       ad 	if (__predict_true(val == NULL)) {
    159  1.44       ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    160  1.44       ad 		membar_enter();
    161  1.44       ad #endif
    162  1.44       ad 		return 0;
    163   1.2  thorpej 	}
    164  1.44       ad 	return pthread__mutex_lock_slow(ptm);
    165  1.44       ad }
    166   1.2  thorpej 
    167  1.44       ad /* We want function call overhead. */
    168  1.44       ad NOINLINE static void
    169  1.44       ad pthread__mutex_pause(void)
    170  1.44       ad {
    171   1.2  thorpej 
    172  1.44       ad 	pthread__smt_pause();
    173   1.2  thorpej }
    174   1.2  thorpej 
    175  1.44       ad /*
    176  1.44       ad  * Spin while the holder is running.  'lwpctl' gives us the true
    177  1.44       ad  * status of the thread.  pt_blocking is set by libpthread in order
    178  1.44       ad  * to cut out system call and kernel spinlock overhead on remote CPUs
    179  1.44       ad  * (could represent many thousands of clock cycles).  pt_blocking also
    180  1.44       ad  * makes this thread yield if the target is calling sched_yield().
    181  1.44       ad  */
    182  1.44       ad NOINLINE static void *
    183  1.44       ad pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
    184  1.44       ad {
    185  1.44       ad 	pthread_t thread;
    186  1.44       ad 	unsigned int count, i;
    187  1.44       ad 
    188  1.44       ad 	for (count = 2;; owner = ptm->ptm_owner) {
    189  1.44       ad 		thread = (pthread_t)MUTEX_OWNER(owner);
    190  1.44       ad 		if (thread == NULL)
    191  1.44       ad 			break;
    192  1.44       ad 		if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
    193  1.44       ad 		    thread->pt_blocking)
    194  1.44       ad 			break;
    195  1.44       ad 		if (count < 128)
    196  1.44       ad 			count += count;
    197  1.44       ad 		for (i = count; i != 0; i--)
    198  1.44       ad 			pthread__mutex_pause();
    199  1.44       ad 	}
    200   1.2  thorpej 
    201  1.44       ad 	return owner;
    202  1.44       ad }
    203  1.44       ad 
    204  1.44       ad NOINLINE static int
    205  1.44       ad pthread__mutex_lock_slow(pthread_mutex_t *ptm)
    206   1.2  thorpej {
    207  1.44       ad 	void *waiters, *new, *owner, *next;
    208  1.44       ad 	pthread_t self;
    209   1.2  thorpej 
    210  1.14  nathanw 	pthread__error(EINVAL, "Invalid mutex",
    211  1.44       ad 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    212  1.44       ad 
    213  1.44       ad 	owner = ptm->ptm_owner;
    214  1.44       ad 	self = pthread__self();
    215  1.13  nathanw 
    216  1.44       ad 	/* Recursive or errorcheck? */
    217  1.44       ad 	if (MUTEX_OWNER(owner) == (uintptr_t)self) {
    218  1.44       ad 		if (MUTEX_RECURSIVE(owner)) {
    219  1.44       ad 			if (MUTEX_GET_RECURSE(ptm) == INT_MAX)
    220  1.44       ad 				return EAGAIN;
    221  1.44       ad 			MUTEX_SET_RECURSE(ptm, +1);
    222  1.44       ad 			return 0;
    223  1.29       ad 		}
    224  1.44       ad 		if (ptm->ptm_errorcheck)
    225  1.44       ad 			return EDEADLK;
    226  1.44       ad 	}
    227  1.29       ad 
    228  1.44       ad 	for (;; owner = ptm->ptm_owner) {
    229  1.44       ad 		/* Spin while the owner is running. */
    230  1.44       ad 		owner = pthread__mutex_spin(ptm, owner);
    231  1.44       ad 
    232  1.44       ad 		/* If it has become free, try to acquire it again. */
    233  1.44       ad 		if (MUTEX_OWNER(owner) == 0) {
    234  1.44       ad 			for (; MUTEX_OWNER(owner) == 0; owner = next) {
    235  1.44       ad 				new = (void *)
    236  1.44       ad 				    ((uintptr_t)self | (uintptr_t)owner);
    237  1.44       ad 				next = atomic_cas_ptr(&ptm->ptm_owner, owner,
    238  1.44       ad 				    new);
    239  1.44       ad 				if (next == owner) {
    240  1.44       ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    241  1.44       ad 					membar_enter();
    242  1.44       ad #endif
    243  1.44       ad 					return 0;
    244  1.44       ad 				}
    245  1.44       ad 			}
    246  1.44       ad 			/*
    247  1.44       ad 			 * We have lost the race to acquire the mutex.
    248  1.44       ad 			 * The new owner could be running on another
    249  1.44       ad 			 * CPU, in which case we should spin and avoid
    250  1.44       ad 			 * the overhead of blocking.
    251  1.44       ad 			 */
    252  1.44       ad 			if (!MUTEX_HAS_WAITERS(owner))
    253  1.44       ad 				continue;
    254  1.44       ad 		}
    255  1.21      chs 
    256   1.2  thorpej 		/*
    257  1.44       ad 		 * Nope, still held.  Add thread to the list of waiters.
    258  1.44       ad 		 * Issue a memory barrier to ensure sleeponq/nextwaiter
    259  1.44       ad 		 * are visible before we enter the waiters list.
    260   1.2  thorpej 		 */
    261  1.44       ad 		self->pt_sleeponq = 1;
    262  1.44       ad 		for (waiters = ptm->ptm_waiters;; waiters = next) {
    263  1.44       ad 			self->pt_nextwaiter = waiters;
    264  1.44       ad 			membar_producer();
    265  1.44       ad 			next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
    266  1.44       ad 			if (next == waiters)
    267  1.44       ad 			    	break;
    268  1.44       ad 		}
    269  1.21      chs 
    270  1.44       ad 		/*
    271  1.44       ad 		 * Set the waiters bit and block.
    272  1.44       ad 		 *
    273  1.44       ad 		 * Note that the mutex can become unlocked before we set
    274  1.44       ad 		 * the waiters bit.  If that happens it's not safe to sleep
    275  1.44       ad 		 * as we may never be awoken: we must remove the current
    276  1.44       ad 		 * thread from the waiters list and try again.
    277  1.44       ad 		 *
    278  1.44       ad 		 * Because we are doing this atomically, we can't remove
    279  1.44       ad 		 * one waiter: we must remove all waiters and awken them,
    280  1.44       ad 		 * then sleep in _lwp_park() until we have been awoken.
    281  1.44       ad 		 *
    282  1.44       ad 		 * Issue a memory barrier to ensure that we are reading
    283  1.44       ad 		 * the value of ptm_owner/pt_sleeponq after we have entered
    284  1.44       ad 		 * the waiters list (the CAS itself must be atomic).
    285  1.44       ad 		 */
    286  1.44       ad 		membar_consumer();
    287  1.44       ad 		for (owner = ptm->ptm_owner;; owner = next) {
    288  1.44       ad 			if (MUTEX_HAS_WAITERS(owner))
    289  1.44       ad 				break;
    290  1.44       ad 			if (MUTEX_OWNER(owner) == 0) {
    291  1.44       ad 				pthread__mutex_wakeup(self, ptm);
    292  1.44       ad 				break;
    293  1.44       ad 			}
    294  1.44       ad 			new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
    295  1.44       ad 			next = atomic_cas_ptr(&ptm->ptm_owner, owner, new);
    296  1.44       ad 			if (next == owner) {
    297  1.21      chs 				/*
    298  1.44       ad 				 * pthread_mutex_unlock() can do a
    299  1.44       ad 				 * non-interlocked CAS.  We cannot
    300  1.44       ad 				 * know if our attempt to set the
    301  1.44       ad 				 * waiters bit has succeeded while
    302  1.44       ad 				 * the holding thread is running.
    303  1.44       ad 				 * There are many assumptions; see
    304  1.44       ad 				 * sys/kern/kern_mutex.c for details.
    305  1.44       ad 				 * In short, we must spin if we see
    306  1.44       ad 				 * that the holder is running again.
    307  1.21      chs 				 */
    308  1.44       ad 				membar_sync();
    309  1.44       ad 				next = pthread__mutex_spin(ptm, owner);
    310  1.21      chs 			}
    311  1.29       ad 		}
    312  1.21      chs 
    313  1.29       ad 		/*
    314  1.44       ad 		 * We may have been awoken by the current thread above,
    315  1.44       ad 		 * or will be awoken by the current holder of the mutex.
    316  1.44       ad 		 * The key requirement is that we must not proceed until
    317  1.44       ad 		 * told that we are no longer waiting (via pt_sleeponq
    318  1.44       ad 		 * being set to zero).  Otherwise it is unsafe to re-enter
    319  1.44       ad 		 * the thread onto the waiters list.
    320  1.29       ad 		 */
    321  1.44       ad 		while (self->pt_sleeponq) {
    322  1.44       ad 			self->pt_blocking++;
    323  1.44       ad 			(void)_lwp_park(NULL, 0, &ptm->ptm_waiters, NULL);
    324  1.44       ad 			self->pt_blocking--;
    325  1.44       ad 			membar_sync();
    326  1.44       ad 		}
    327   1.2  thorpej 	}
    328   1.2  thorpej }
    329   1.2  thorpej 
    330   1.2  thorpej int
    331  1.44       ad pthread_mutex_trylock(pthread_mutex_t *ptm)
    332   1.2  thorpej {
    333  1.27       ad 	pthread_t self;
    334  1.44       ad 	void *val;
    335   1.2  thorpej 
    336  1.27       ad 	self = pthread__self();
    337  1.44       ad 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    338  1.44       ad 	if (__predict_true(val == NULL)) {
    339  1.44       ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    340  1.44       ad 		membar_enter();
    341  1.44       ad #endif
    342  1.44       ad 		return 0;
    343  1.44       ad 	}
    344  1.27       ad 
    345  1.44       ad 	if (MUTEX_OWNER(val) == (uintptr_t)self && MUTEX_RECURSIVE(val)) {
    346  1.44       ad 		if (MUTEX_GET_RECURSE(ptm) == INT_MAX)
    347  1.44       ad 			return EAGAIN;
    348  1.44       ad 		MUTEX_SET_RECURSE(ptm, +1);
    349  1.44       ad 		return 0;
    350   1.2  thorpej 	}
    351   1.2  thorpej 
    352  1.44       ad 	return EBUSY;
    353   1.2  thorpej }
    354   1.2  thorpej 
    355   1.2  thorpej int
    356  1.44       ad pthread_mutex_unlock(pthread_mutex_t *ptm)
    357   1.2  thorpej {
    358  1.27       ad 	pthread_t self;
    359  1.44       ad 	void *value;
    360  1.44       ad 
    361  1.44       ad 	/*
    362  1.44       ad 	 * Note this may be a non-interlocked CAS.  See lock_slow()
    363  1.44       ad 	 * above and sys/kern/kern_mutex.c for details.
    364  1.44       ad 	 */
    365  1.44       ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    366  1.44       ad 	membar_exit();
    367  1.44       ad #endif
    368  1.44       ad 	self = pthread__self();
    369  1.44       ad 	value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
    370  1.44       ad 	if (__predict_true(value == self))
    371  1.44       ad 		return 0;
    372  1.44       ad 	return pthread__mutex_unlock_slow(ptm);
    373  1.44       ad }
    374  1.44       ad 
    375  1.44       ad NOINLINE static int
    376  1.44       ad pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
    377  1.44       ad {
    378  1.44       ad 	pthread_t self, owner, new;
    379  1.44       ad 	int weown, error, deferred;
    380  1.13  nathanw 
    381  1.14  nathanw 	pthread__error(EINVAL, "Invalid mutex",
    382  1.44       ad 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    383  1.44       ad 
    384  1.44       ad 	self = pthread__self();
    385  1.44       ad 	owner = ptm->ptm_owner;
    386  1.44       ad 	weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
    387  1.44       ad 	deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
    388  1.44       ad 	error = 0;
    389  1.44       ad 
    390  1.44       ad 	if (ptm->ptm_errorcheck) {
    391  1.44       ad 		if (!weown) {
    392  1.44       ad 			error = EPERM;
    393  1.44       ad 			new = owner;
    394  1.44       ad 		} else {
    395  1.44       ad 			new = NULL;
    396  1.44       ad 		}
    397  1.44       ad 	} else if (MUTEX_RECURSIVE(owner)) {
    398  1.44       ad 		if (!weown) {
    399  1.44       ad 			error = EPERM;
    400  1.44       ad 			new = owner;
    401  1.44       ad 		} else if (MUTEX_GET_RECURSE(ptm) != 0) {
    402  1.44       ad 			MUTEX_SET_RECURSE(ptm, -1);
    403  1.44       ad 			new = owner;
    404  1.44       ad 		} else {
    405  1.44       ad 			new = (pthread_t)MUTEX_RECURSIVE_BIT;
    406  1.44       ad 		}
    407  1.44       ad 	} else {
    408  1.44       ad 		pthread__error(EPERM,
    409  1.44       ad 		    "Unlocking unlocked mutex", (owner != NULL));
    410  1.44       ad 		pthread__error(EPERM,
    411  1.44       ad 		    "Unlocking mutex owned by another thread", weown);
    412  1.44       ad 		new = NULL;
    413  1.44       ad 	}
    414   1.2  thorpej 
    415   1.2  thorpej 	/*
    416  1.44       ad 	 * Release the mutex.  If there appear to be waiters, then
    417  1.44       ad 	 * wake them up.
    418   1.2  thorpej 	 */
    419  1.44       ad 	if (new != owner) {
    420  1.44       ad 		owner = atomic_swap_ptr(&ptm->ptm_owner, new);
    421  1.44       ad 		if (MUTEX_HAS_WAITERS(owner) != 0) {
    422  1.44       ad 			pthread__mutex_wakeup(self, ptm);
    423   1.2  thorpej 			return 0;
    424   1.2  thorpej 		}
    425  1.44       ad 	}
    426  1.44       ad 
    427  1.44       ad 	/*
    428  1.44       ad 	 * There were no waiters, but we may have deferred waking
    429  1.44       ad 	 * other threads until mutex unlock - we must wake them now.
    430  1.44       ad 	 */
    431  1.44       ad 	if (!deferred)
    432  1.44       ad 		return error;
    433  1.44       ad 
    434  1.44       ad 	if (self->pt_nwaiters == 1) {
    435  1.44       ad 		/*
    436  1.44       ad 		 * If the calling thread is about to block, defer
    437  1.44       ad 		 * unparking the target until _lwp_park() is called.
    438  1.44       ad 		 */
    439  1.44       ad 		if (self->pt_willpark && self->pt_unpark == 0) {
    440  1.44       ad 			self->pt_unpark = self->pt_waiters[0];
    441  1.44       ad 			self->pt_unparkhint = &ptm->ptm_waiters;
    442  1.44       ad 		} else {
    443  1.44       ad 			(void)_lwp_unpark(self->pt_waiters[0],
    444  1.44       ad 			    &ptm->ptm_waiters);
    445  1.15  nathanw 		}
    446  1.44       ad 	} else {
    447  1.44       ad 		(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    448  1.44       ad 		    &ptm->ptm_waiters);
    449   1.2  thorpej 	}
    450  1.44       ad 	self->pt_nwaiters = 0;
    451   1.2  thorpej 
    452  1.44       ad 	return error;
    453  1.44       ad }
    454  1.44       ad 
    455  1.44       ad static void
    456  1.44       ad pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
    457  1.44       ad {
    458  1.44       ad 	pthread_t thread, next;
    459  1.44       ad 	ssize_t n, rv;
    460  1.27       ad 
    461   1.8  nathanw 	/*
    462  1.44       ad 	 * Take ownership of the current set of waiters.  No
    463  1.44       ad 	 * need for a memory barrier following this, all loads
    464  1.44       ad 	 * are dependent upon 'thread'.
    465   1.8  nathanw 	 */
    466  1.44       ad 	thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
    467  1.44       ad 
    468  1.44       ad 	for (;;) {
    469  1.44       ad 		/*
    470  1.44       ad 		 * Pull waiters from the queue and add to our list.
    471  1.44       ad 		 * Use a memory barrier to ensure that we safely
    472  1.44       ad 		 * read the value of pt_nextwaiter before 'thread'
    473  1.44       ad 		 * sees pt_sleeponq being cleared.
    474  1.44       ad 		 */
    475  1.44       ad 		for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
    476  1.44       ad 		    n < pthread__unpark_max && thread != NULL;
    477  1.44       ad 		    thread = next) {
    478  1.44       ad 		    	next = thread->pt_nextwaiter;
    479  1.44       ad 		    	if (thread != self) {
    480  1.44       ad 				self->pt_waiters[n++] = thread->pt_lid;
    481  1.44       ad 				membar_sync();
    482  1.44       ad 			}
    483  1.44       ad 			thread->pt_sleeponq = 0;
    484  1.44       ad 			/* No longer safe to touch 'thread' */
    485  1.44       ad 		}
    486  1.44       ad 
    487  1.44       ad 		switch (n) {
    488  1.44       ad 		case 0:
    489  1.44       ad 			return;
    490  1.44       ad 		case 1:
    491  1.44       ad 			/*
    492  1.44       ad 			 * If the calling thread is about to block,
    493  1.44       ad 			 * defer unparking the target until _lwp_park()
    494  1.44       ad 			 * is called.
    495  1.44       ad 			 */
    496  1.44       ad 			if (self->pt_willpark && self->pt_unpark == 0) {
    497  1.44       ad 				self->pt_unpark = self->pt_waiters[0];
    498  1.44       ad 				self->pt_unparkhint = &ptm->ptm_waiters;
    499  1.44       ad 				return;
    500  1.44       ad 			}
    501  1.44       ad 			rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
    502  1.44       ad 			    &ptm->ptm_waiters);
    503  1.44       ad 			if (rv != 0 && errno != EALREADY && errno != EINTR &&
    504  1.44       ad 			    errno != ESRCH) {
    505  1.44       ad 				pthread__errorfunc(__FILE__, __LINE__,
    506  1.44       ad 				    __func__, "_lwp_unpark failed");
    507  1.44       ad 			}
    508  1.44       ad 			return;
    509  1.44       ad 		default:
    510  1.44       ad 			rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
    511  1.44       ad 			    &ptm->ptm_waiters);
    512  1.44       ad 			if (rv != 0 && errno != EINTR) {
    513  1.44       ad 				pthread__errorfunc(__FILE__, __LINE__,
    514  1.44       ad 				    __func__, "_lwp_unpark_all failed");
    515  1.44       ad 			}
    516  1.44       ad 			break;
    517  1.44       ad 		}
    518  1.44       ad 	}
    519   1.2  thorpej }
    520   1.2  thorpej int
    521   1.2  thorpej pthread_mutexattr_init(pthread_mutexattr_t *attr)
    522   1.2  thorpej {
    523   1.2  thorpej 
    524   1.2  thorpej 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
    525  1.44       ad 	attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
    526   1.2  thorpej 	return 0;
    527   1.2  thorpej }
    528   1.2  thorpej 
    529   1.2  thorpej int
    530   1.2  thorpej pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
    531   1.2  thorpej {
    532   1.2  thorpej 
    533  1.14  nathanw 	pthread__error(EINVAL, "Invalid mutex attribute",
    534  1.14  nathanw 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    535   1.2  thorpej 
    536   1.2  thorpej 	return 0;
    537   1.2  thorpej }
    538   1.2  thorpej 
    539   1.2  thorpej 
    540   1.2  thorpej int
    541   1.2  thorpej pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
    542   1.2  thorpej {
    543   1.2  thorpej 
    544  1.14  nathanw 	pthread__error(EINVAL, "Invalid mutex attribute",
    545  1.14  nathanw 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    546   1.2  thorpej 
    547  1.44       ad 	*typep = (int)(intptr_t)attr->ptma_private;
    548   1.2  thorpej 	return 0;
    549   1.2  thorpej }
    550   1.2  thorpej 
    551   1.2  thorpej 
    552   1.2  thorpej int
    553   1.2  thorpej pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
    554   1.2  thorpej {
    555   1.2  thorpej 
    556  1.14  nathanw 	pthread__error(EINVAL, "Invalid mutex attribute",
    557  1.14  nathanw 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    558  1.13  nathanw 
    559   1.2  thorpej 	switch (type) {
    560   1.2  thorpej 	case PTHREAD_MUTEX_NORMAL:
    561   1.2  thorpej 	case PTHREAD_MUTEX_ERRORCHECK:
    562   1.2  thorpej 	case PTHREAD_MUTEX_RECURSIVE:
    563  1.44       ad 		attr->ptma_private = (void *)(intptr_t)type;
    564  1.44       ad 		return 0;
    565   1.2  thorpej 	default:
    566   1.2  thorpej 		return EINVAL;
    567   1.2  thorpej 	}
    568   1.2  thorpej }
    569   1.2  thorpej 
    570   1.2  thorpej 
    571  1.19  nathanw static void
    572  1.19  nathanw once_cleanup(void *closure)
    573  1.19  nathanw {
    574  1.19  nathanw 
    575  1.19  nathanw        pthread_mutex_unlock((pthread_mutex_t *)closure);
    576  1.19  nathanw }
    577  1.19  nathanw 
    578  1.19  nathanw 
    579   1.2  thorpej int
    580   1.2  thorpej pthread_once(pthread_once_t *once_control, void (*routine)(void))
    581   1.2  thorpej {
    582   1.2  thorpej 
    583   1.2  thorpej 	if (once_control->pto_done == 0) {
    584   1.2  thorpej 		pthread_mutex_lock(&once_control->pto_mutex);
    585  1.19  nathanw 		pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
    586   1.2  thorpej 		if (once_control->pto_done == 0) {
    587   1.2  thorpej 			routine();
    588   1.2  thorpej 			once_control->pto_done = 1;
    589   1.2  thorpej 		}
    590  1.19  nathanw 		pthread_cleanup_pop(1);
    591   1.2  thorpej 	}
    592   1.2  thorpej 
    593   1.2  thorpej 	return 0;
    594   1.2  thorpej }
    595  1.32       ad 
    596  1.33       ad int
    597  1.44       ad pthread__mutex_deferwake(pthread_t thread, pthread_mutex_t *ptm)
    598  1.33       ad {
    599  1.33       ad 
    600  1.44       ad 	if (MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)thread)
    601  1.44       ad 		return 0;
    602  1.44       ad 	atomic_or_ulong((volatile unsigned long *)
    603  1.44       ad 	    (uintptr_t)&ptm->ptm_owner,
    604  1.44       ad 	    (unsigned long)MUTEX_DEFERRED_BIT);
    605  1.44       ad 	return 1;
    606  1.33       ad }
    607  1.33       ad 
    608  1.39       ad int
    609  1.44       ad _pthread_mutex_held_np(pthread_mutex_t *ptm)
    610  1.39       ad {
    611  1.39       ad 
    612  1.44       ad 	return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
    613  1.39       ad }
    614  1.39       ad 
    615  1.39       ad pthread_t
    616  1.44       ad _pthread_mutex_owner_np(pthread_mutex_t *ptm)
    617  1.39       ad {
    618  1.39       ad 
    619  1.44       ad 	return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
    620  1.39       ad }
    621