pthread_mutex.c revision 1.45 1 1.45 ad /* $NetBSD: pthread_mutex.c,v 1.45 2008/02/14 21:40:51 ad Exp $ */
2 1.2 thorpej
3 1.2 thorpej /*-
4 1.44 ad * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 thorpej * All rights reserved.
6 1.2 thorpej *
7 1.2 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.27 ad * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 1.2 thorpej *
10 1.2 thorpej * Redistribution and use in source and binary forms, with or without
11 1.2 thorpej * modification, are permitted provided that the following conditions
12 1.2 thorpej * are met:
13 1.2 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.2 thorpej * notice, this list of conditions and the following disclaimer.
15 1.2 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.2 thorpej * documentation and/or other materials provided with the distribution.
18 1.2 thorpej * 3. All advertising materials mentioning features or use of this software
19 1.2 thorpej * must display the following acknowledgement:
20 1.2 thorpej * This product includes software developed by the NetBSD
21 1.2 thorpej * Foundation, Inc. and its contributors.
22 1.2 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.2 thorpej * contributors may be used to endorse or promote products derived
24 1.2 thorpej * from this software without specific prior written permission.
25 1.2 thorpej *
26 1.2 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.2 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.2 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.2 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.2 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.2 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.2 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.2 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.2 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.2 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.2 thorpej * POSSIBILITY OF SUCH DAMAGE.
37 1.2 thorpej */
38 1.2 thorpej
39 1.2 thorpej #include <sys/cdefs.h>
40 1.45 ad __RCSID("$NetBSD: pthread_mutex.c,v 1.45 2008/02/14 21:40:51 ad Exp $");
41 1.40 ad
42 1.40 ad #include <sys/types.h>
43 1.44 ad #include <sys/lwpctl.h>
44 1.10 lukem
45 1.2 thorpej #include <errno.h>
46 1.2 thorpej #include <limits.h>
47 1.2 thorpej #include <stdlib.h>
48 1.6 scw #include <string.h>
49 1.44 ad #include <stdio.h>
50 1.2 thorpej
51 1.2 thorpej #include "pthread.h"
52 1.2 thorpej #include "pthread_int.h"
53 1.2 thorpej
54 1.44 ad #define pt_nextwaiter pt_sleep.ptqe_next
55 1.44 ad
56 1.44 ad #define MUTEX_WAITERS_BIT ((uintptr_t)0x01)
57 1.44 ad #define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02)
58 1.44 ad #define MUTEX_DEFERRED_BIT ((uintptr_t)0x04)
59 1.44 ad #define MUTEX_THREAD ((uintptr_t)-16L)
60 1.44 ad
61 1.44 ad #define MUTEX_HAS_WAITERS(x) ((uintptr_t)(x) & MUTEX_WAITERS_BIT)
62 1.44 ad #define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
63 1.44 ad #define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD)
64 1.44 ad
65 1.44 ad #if __GNUC_PREREQ__(3, 0)
66 1.44 ad #define NOINLINE __attribute ((noinline))
67 1.44 ad #else
68 1.44 ad #define NOINLINE /* nothing */
69 1.44 ad #endif
70 1.44 ad
71 1.44 ad static void pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
72 1.44 ad static int pthread__mutex_lock_slow(pthread_mutex_t *);
73 1.44 ad static int pthread__mutex_unlock_slow(pthread_mutex_t *);
74 1.44 ad static void pthread__mutex_pause(void);
75 1.2 thorpej
76 1.39 ad int _pthread_mutex_held_np(pthread_mutex_t *);
77 1.39 ad pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
78 1.39 ad
79 1.39 ad __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
80 1.39 ad __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
81 1.39 ad
82 1.2 thorpej __strong_alias(__libc_mutex_init,pthread_mutex_init)
83 1.2 thorpej __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
84 1.2 thorpej __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
85 1.2 thorpej __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
86 1.2 thorpej __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
87 1.4 thorpej
88 1.4 thorpej __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
89 1.4 thorpej __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
90 1.5 thorpej __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
91 1.2 thorpej
92 1.2 thorpej __strong_alias(__libc_thr_once,pthread_once)
93 1.2 thorpej
94 1.2 thorpej int
95 1.44 ad pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
96 1.2 thorpej {
97 1.44 ad intptr_t type;
98 1.2 thorpej
99 1.44 ad if (attr == NULL)
100 1.44 ad type = PTHREAD_MUTEX_NORMAL;
101 1.44 ad else
102 1.44 ad type = (intptr_t)attr->ptma_private;
103 1.2 thorpej
104 1.44 ad switch (type) {
105 1.44 ad case PTHREAD_MUTEX_ERRORCHECK:
106 1.44 ad ptm->ptm_errorcheck = 1;
107 1.44 ad ptm->ptm_owner = NULL;
108 1.44 ad break;
109 1.44 ad case PTHREAD_MUTEX_RECURSIVE:
110 1.44 ad ptm->ptm_errorcheck = 0;
111 1.44 ad ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
112 1.44 ad break;
113 1.44 ad default:
114 1.44 ad ptm->ptm_errorcheck = 0;
115 1.44 ad ptm->ptm_owner = NULL;
116 1.44 ad break;
117 1.2 thorpej }
118 1.2 thorpej
119 1.44 ad ptm->ptm_magic = _PT_MUTEX_MAGIC;
120 1.44 ad ptm->ptm_waiters = NULL;
121 1.45 ad ptm->ptm_recursed = 0;
122 1.2 thorpej
123 1.2 thorpej return 0;
124 1.2 thorpej }
125 1.2 thorpej
126 1.2 thorpej
127 1.2 thorpej int
128 1.44 ad pthread_mutex_destroy(pthread_mutex_t *ptm)
129 1.2 thorpej {
130 1.2 thorpej
131 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
132 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
133 1.14 nathanw pthread__error(EBUSY, "Destroying locked mutex",
134 1.44 ad MUTEX_OWNER(ptm->ptm_owner) == 0);
135 1.2 thorpej
136 1.44 ad ptm->ptm_magic = _PT_MUTEX_DEAD;
137 1.2 thorpej return 0;
138 1.2 thorpej }
139 1.2 thorpej
140 1.2 thorpej int
141 1.44 ad pthread_mutex_lock(pthread_mutex_t *ptm)
142 1.2 thorpej {
143 1.27 ad pthread_t self;
144 1.44 ad void *val;
145 1.2 thorpej
146 1.27 ad self = pthread__self();
147 1.44 ad val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
148 1.44 ad if (__predict_true(val == NULL)) {
149 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
150 1.44 ad membar_enter();
151 1.44 ad #endif
152 1.44 ad return 0;
153 1.2 thorpej }
154 1.44 ad return pthread__mutex_lock_slow(ptm);
155 1.44 ad }
156 1.2 thorpej
157 1.44 ad /* We want function call overhead. */
158 1.44 ad NOINLINE static void
159 1.44 ad pthread__mutex_pause(void)
160 1.44 ad {
161 1.2 thorpej
162 1.44 ad pthread__smt_pause();
163 1.2 thorpej }
164 1.2 thorpej
165 1.44 ad /*
166 1.44 ad * Spin while the holder is running. 'lwpctl' gives us the true
167 1.44 ad * status of the thread. pt_blocking is set by libpthread in order
168 1.44 ad * to cut out system call and kernel spinlock overhead on remote CPUs
169 1.44 ad * (could represent many thousands of clock cycles). pt_blocking also
170 1.44 ad * makes this thread yield if the target is calling sched_yield().
171 1.44 ad */
172 1.44 ad NOINLINE static void *
173 1.44 ad pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
174 1.44 ad {
175 1.44 ad pthread_t thread;
176 1.44 ad unsigned int count, i;
177 1.44 ad
178 1.44 ad for (count = 2;; owner = ptm->ptm_owner) {
179 1.44 ad thread = (pthread_t)MUTEX_OWNER(owner);
180 1.44 ad if (thread == NULL)
181 1.44 ad break;
182 1.44 ad if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
183 1.44 ad thread->pt_blocking)
184 1.44 ad break;
185 1.44 ad if (count < 128)
186 1.44 ad count += count;
187 1.44 ad for (i = count; i != 0; i--)
188 1.44 ad pthread__mutex_pause();
189 1.44 ad }
190 1.2 thorpej
191 1.44 ad return owner;
192 1.44 ad }
193 1.44 ad
194 1.44 ad NOINLINE static int
195 1.44 ad pthread__mutex_lock_slow(pthread_mutex_t *ptm)
196 1.2 thorpej {
197 1.44 ad void *waiters, *new, *owner, *next;
198 1.44 ad pthread_t self;
199 1.2 thorpej
200 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
201 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
202 1.44 ad
203 1.44 ad owner = ptm->ptm_owner;
204 1.44 ad self = pthread__self();
205 1.13 nathanw
206 1.44 ad /* Recursive or errorcheck? */
207 1.44 ad if (MUTEX_OWNER(owner) == (uintptr_t)self) {
208 1.44 ad if (MUTEX_RECURSIVE(owner)) {
209 1.45 ad if (ptm->ptm_recursed == INT_MAX)
210 1.44 ad return EAGAIN;
211 1.45 ad ptm->ptm_recursed++;
212 1.44 ad return 0;
213 1.29 ad }
214 1.44 ad if (ptm->ptm_errorcheck)
215 1.44 ad return EDEADLK;
216 1.44 ad }
217 1.29 ad
218 1.44 ad for (;; owner = ptm->ptm_owner) {
219 1.44 ad /* Spin while the owner is running. */
220 1.44 ad owner = pthread__mutex_spin(ptm, owner);
221 1.44 ad
222 1.44 ad /* If it has become free, try to acquire it again. */
223 1.44 ad if (MUTEX_OWNER(owner) == 0) {
224 1.44 ad for (; MUTEX_OWNER(owner) == 0; owner = next) {
225 1.44 ad new = (void *)
226 1.44 ad ((uintptr_t)self | (uintptr_t)owner);
227 1.44 ad next = atomic_cas_ptr(&ptm->ptm_owner, owner,
228 1.44 ad new);
229 1.44 ad if (next == owner) {
230 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
231 1.44 ad membar_enter();
232 1.44 ad #endif
233 1.44 ad return 0;
234 1.44 ad }
235 1.44 ad }
236 1.44 ad /*
237 1.44 ad * We have lost the race to acquire the mutex.
238 1.44 ad * The new owner could be running on another
239 1.44 ad * CPU, in which case we should spin and avoid
240 1.44 ad * the overhead of blocking.
241 1.44 ad */
242 1.44 ad if (!MUTEX_HAS_WAITERS(owner))
243 1.44 ad continue;
244 1.44 ad }
245 1.21 chs
246 1.2 thorpej /*
247 1.44 ad * Nope, still held. Add thread to the list of waiters.
248 1.44 ad * Issue a memory barrier to ensure sleeponq/nextwaiter
249 1.44 ad * are visible before we enter the waiters list.
250 1.2 thorpej */
251 1.44 ad self->pt_sleeponq = 1;
252 1.44 ad for (waiters = ptm->ptm_waiters;; waiters = next) {
253 1.44 ad self->pt_nextwaiter = waiters;
254 1.44 ad membar_producer();
255 1.44 ad next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
256 1.44 ad if (next == waiters)
257 1.44 ad break;
258 1.44 ad }
259 1.21 chs
260 1.44 ad /*
261 1.44 ad * Set the waiters bit and block.
262 1.44 ad *
263 1.44 ad * Note that the mutex can become unlocked before we set
264 1.44 ad * the waiters bit. If that happens it's not safe to sleep
265 1.44 ad * as we may never be awoken: we must remove the current
266 1.44 ad * thread from the waiters list and try again.
267 1.44 ad *
268 1.44 ad * Because we are doing this atomically, we can't remove
269 1.44 ad * one waiter: we must remove all waiters and awken them,
270 1.44 ad * then sleep in _lwp_park() until we have been awoken.
271 1.44 ad *
272 1.44 ad * Issue a memory barrier to ensure that we are reading
273 1.44 ad * the value of ptm_owner/pt_sleeponq after we have entered
274 1.44 ad * the waiters list (the CAS itself must be atomic).
275 1.44 ad */
276 1.44 ad membar_consumer();
277 1.44 ad for (owner = ptm->ptm_owner;; owner = next) {
278 1.44 ad if (MUTEX_HAS_WAITERS(owner))
279 1.44 ad break;
280 1.44 ad if (MUTEX_OWNER(owner) == 0) {
281 1.44 ad pthread__mutex_wakeup(self, ptm);
282 1.44 ad break;
283 1.44 ad }
284 1.44 ad new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
285 1.44 ad next = atomic_cas_ptr(&ptm->ptm_owner, owner, new);
286 1.44 ad if (next == owner) {
287 1.21 chs /*
288 1.44 ad * pthread_mutex_unlock() can do a
289 1.44 ad * non-interlocked CAS. We cannot
290 1.44 ad * know if our attempt to set the
291 1.44 ad * waiters bit has succeeded while
292 1.44 ad * the holding thread is running.
293 1.44 ad * There are many assumptions; see
294 1.44 ad * sys/kern/kern_mutex.c for details.
295 1.44 ad * In short, we must spin if we see
296 1.44 ad * that the holder is running again.
297 1.21 chs */
298 1.44 ad membar_sync();
299 1.44 ad next = pthread__mutex_spin(ptm, owner);
300 1.21 chs }
301 1.29 ad }
302 1.21 chs
303 1.29 ad /*
304 1.44 ad * We may have been awoken by the current thread above,
305 1.44 ad * or will be awoken by the current holder of the mutex.
306 1.44 ad * The key requirement is that we must not proceed until
307 1.44 ad * told that we are no longer waiting (via pt_sleeponq
308 1.44 ad * being set to zero). Otherwise it is unsafe to re-enter
309 1.44 ad * the thread onto the waiters list.
310 1.29 ad */
311 1.44 ad while (self->pt_sleeponq) {
312 1.44 ad self->pt_blocking++;
313 1.45 ad (void)_lwp_park(NULL, 0,
314 1.45 ad __UNVOLATILE(&ptm->ptm_waiters), NULL);
315 1.44 ad self->pt_blocking--;
316 1.44 ad membar_sync();
317 1.44 ad }
318 1.2 thorpej }
319 1.2 thorpej }
320 1.2 thorpej
321 1.2 thorpej int
322 1.44 ad pthread_mutex_trylock(pthread_mutex_t *ptm)
323 1.2 thorpej {
324 1.27 ad pthread_t self;
325 1.44 ad void *val;
326 1.2 thorpej
327 1.27 ad self = pthread__self();
328 1.44 ad val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
329 1.44 ad if (__predict_true(val == NULL)) {
330 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
331 1.44 ad membar_enter();
332 1.44 ad #endif
333 1.44 ad return 0;
334 1.44 ad }
335 1.27 ad
336 1.44 ad if (MUTEX_OWNER(val) == (uintptr_t)self && MUTEX_RECURSIVE(val)) {
337 1.45 ad if (ptm->ptm_recursed == INT_MAX)
338 1.44 ad return EAGAIN;
339 1.45 ad ptm->ptm_recursed++;
340 1.44 ad return 0;
341 1.2 thorpej }
342 1.2 thorpej
343 1.44 ad return EBUSY;
344 1.2 thorpej }
345 1.2 thorpej
346 1.2 thorpej int
347 1.44 ad pthread_mutex_unlock(pthread_mutex_t *ptm)
348 1.2 thorpej {
349 1.27 ad pthread_t self;
350 1.44 ad void *value;
351 1.44 ad
352 1.44 ad /*
353 1.44 ad * Note this may be a non-interlocked CAS. See lock_slow()
354 1.44 ad * above and sys/kern/kern_mutex.c for details.
355 1.44 ad */
356 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
357 1.44 ad membar_exit();
358 1.44 ad #endif
359 1.44 ad self = pthread__self();
360 1.44 ad value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
361 1.44 ad if (__predict_true(value == self))
362 1.44 ad return 0;
363 1.44 ad return pthread__mutex_unlock_slow(ptm);
364 1.44 ad }
365 1.44 ad
366 1.44 ad NOINLINE static int
367 1.44 ad pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
368 1.44 ad {
369 1.44 ad pthread_t self, owner, new;
370 1.44 ad int weown, error, deferred;
371 1.13 nathanw
372 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
373 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
374 1.44 ad
375 1.44 ad self = pthread__self();
376 1.44 ad owner = ptm->ptm_owner;
377 1.44 ad weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
378 1.44 ad deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
379 1.44 ad error = 0;
380 1.44 ad
381 1.44 ad if (ptm->ptm_errorcheck) {
382 1.44 ad if (!weown) {
383 1.44 ad error = EPERM;
384 1.44 ad new = owner;
385 1.44 ad } else {
386 1.44 ad new = NULL;
387 1.44 ad }
388 1.44 ad } else if (MUTEX_RECURSIVE(owner)) {
389 1.44 ad if (!weown) {
390 1.44 ad error = EPERM;
391 1.44 ad new = owner;
392 1.45 ad } else if (ptm->ptm_recursed) {
393 1.45 ad ptm->ptm_recursed--;
394 1.44 ad new = owner;
395 1.44 ad } else {
396 1.44 ad new = (pthread_t)MUTEX_RECURSIVE_BIT;
397 1.44 ad }
398 1.44 ad } else {
399 1.44 ad pthread__error(EPERM,
400 1.44 ad "Unlocking unlocked mutex", (owner != NULL));
401 1.44 ad pthread__error(EPERM,
402 1.44 ad "Unlocking mutex owned by another thread", weown);
403 1.44 ad new = NULL;
404 1.44 ad }
405 1.2 thorpej
406 1.2 thorpej /*
407 1.44 ad * Release the mutex. If there appear to be waiters, then
408 1.44 ad * wake them up.
409 1.2 thorpej */
410 1.44 ad if (new != owner) {
411 1.44 ad owner = atomic_swap_ptr(&ptm->ptm_owner, new);
412 1.44 ad if (MUTEX_HAS_WAITERS(owner) != 0) {
413 1.44 ad pthread__mutex_wakeup(self, ptm);
414 1.2 thorpej return 0;
415 1.2 thorpej }
416 1.44 ad }
417 1.44 ad
418 1.44 ad /*
419 1.44 ad * There were no waiters, but we may have deferred waking
420 1.44 ad * other threads until mutex unlock - we must wake them now.
421 1.44 ad */
422 1.44 ad if (!deferred)
423 1.44 ad return error;
424 1.44 ad
425 1.44 ad if (self->pt_nwaiters == 1) {
426 1.44 ad /*
427 1.44 ad * If the calling thread is about to block, defer
428 1.44 ad * unparking the target until _lwp_park() is called.
429 1.44 ad */
430 1.44 ad if (self->pt_willpark && self->pt_unpark == 0) {
431 1.44 ad self->pt_unpark = self->pt_waiters[0];
432 1.45 ad self->pt_unparkhint =
433 1.45 ad __UNVOLATILE(&ptm->ptm_waiters);
434 1.44 ad } else {
435 1.44 ad (void)_lwp_unpark(self->pt_waiters[0],
436 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
437 1.15 nathanw }
438 1.44 ad } else {
439 1.44 ad (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
440 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
441 1.2 thorpej }
442 1.44 ad self->pt_nwaiters = 0;
443 1.2 thorpej
444 1.44 ad return error;
445 1.44 ad }
446 1.44 ad
447 1.44 ad static void
448 1.44 ad pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
449 1.44 ad {
450 1.44 ad pthread_t thread, next;
451 1.44 ad ssize_t n, rv;
452 1.27 ad
453 1.8 nathanw /*
454 1.44 ad * Take ownership of the current set of waiters. No
455 1.44 ad * need for a memory barrier following this, all loads
456 1.44 ad * are dependent upon 'thread'.
457 1.8 nathanw */
458 1.44 ad thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
459 1.44 ad
460 1.44 ad for (;;) {
461 1.44 ad /*
462 1.44 ad * Pull waiters from the queue and add to our list.
463 1.44 ad * Use a memory barrier to ensure that we safely
464 1.44 ad * read the value of pt_nextwaiter before 'thread'
465 1.44 ad * sees pt_sleeponq being cleared.
466 1.44 ad */
467 1.44 ad for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
468 1.44 ad n < pthread__unpark_max && thread != NULL;
469 1.44 ad thread = next) {
470 1.44 ad next = thread->pt_nextwaiter;
471 1.44 ad if (thread != self) {
472 1.44 ad self->pt_waiters[n++] = thread->pt_lid;
473 1.44 ad membar_sync();
474 1.44 ad }
475 1.44 ad thread->pt_sleeponq = 0;
476 1.44 ad /* No longer safe to touch 'thread' */
477 1.44 ad }
478 1.44 ad
479 1.44 ad switch (n) {
480 1.44 ad case 0:
481 1.44 ad return;
482 1.44 ad case 1:
483 1.44 ad /*
484 1.44 ad * If the calling thread is about to block,
485 1.44 ad * defer unparking the target until _lwp_park()
486 1.44 ad * is called.
487 1.44 ad */
488 1.44 ad if (self->pt_willpark && self->pt_unpark == 0) {
489 1.44 ad self->pt_unpark = self->pt_waiters[0];
490 1.45 ad self->pt_unparkhint =
491 1.45 ad __UNVOLATILE(&ptm->ptm_waiters);
492 1.44 ad return;
493 1.44 ad }
494 1.44 ad rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
495 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
496 1.44 ad if (rv != 0 && errno != EALREADY && errno != EINTR &&
497 1.44 ad errno != ESRCH) {
498 1.44 ad pthread__errorfunc(__FILE__, __LINE__,
499 1.44 ad __func__, "_lwp_unpark failed");
500 1.44 ad }
501 1.44 ad return;
502 1.44 ad default:
503 1.44 ad rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
504 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
505 1.44 ad if (rv != 0 && errno != EINTR) {
506 1.44 ad pthread__errorfunc(__FILE__, __LINE__,
507 1.44 ad __func__, "_lwp_unpark_all failed");
508 1.44 ad }
509 1.44 ad break;
510 1.44 ad }
511 1.44 ad }
512 1.2 thorpej }
513 1.2 thorpej int
514 1.2 thorpej pthread_mutexattr_init(pthread_mutexattr_t *attr)
515 1.2 thorpej {
516 1.2 thorpej
517 1.2 thorpej attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
518 1.44 ad attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
519 1.2 thorpej return 0;
520 1.2 thorpej }
521 1.2 thorpej
522 1.2 thorpej int
523 1.2 thorpej pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
524 1.2 thorpej {
525 1.2 thorpej
526 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
527 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
528 1.2 thorpej
529 1.2 thorpej return 0;
530 1.2 thorpej }
531 1.2 thorpej
532 1.2 thorpej
533 1.2 thorpej int
534 1.2 thorpej pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
535 1.2 thorpej {
536 1.2 thorpej
537 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
538 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
539 1.2 thorpej
540 1.44 ad *typep = (int)(intptr_t)attr->ptma_private;
541 1.2 thorpej return 0;
542 1.2 thorpej }
543 1.2 thorpej
544 1.2 thorpej
545 1.2 thorpej int
546 1.2 thorpej pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
547 1.2 thorpej {
548 1.2 thorpej
549 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
550 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
551 1.13 nathanw
552 1.2 thorpej switch (type) {
553 1.2 thorpej case PTHREAD_MUTEX_NORMAL:
554 1.2 thorpej case PTHREAD_MUTEX_ERRORCHECK:
555 1.2 thorpej case PTHREAD_MUTEX_RECURSIVE:
556 1.44 ad attr->ptma_private = (void *)(intptr_t)type;
557 1.44 ad return 0;
558 1.2 thorpej default:
559 1.2 thorpej return EINVAL;
560 1.2 thorpej }
561 1.2 thorpej }
562 1.2 thorpej
563 1.2 thorpej
564 1.19 nathanw static void
565 1.19 nathanw once_cleanup(void *closure)
566 1.19 nathanw {
567 1.19 nathanw
568 1.19 nathanw pthread_mutex_unlock((pthread_mutex_t *)closure);
569 1.19 nathanw }
570 1.19 nathanw
571 1.19 nathanw
572 1.2 thorpej int
573 1.2 thorpej pthread_once(pthread_once_t *once_control, void (*routine)(void))
574 1.2 thorpej {
575 1.2 thorpej
576 1.2 thorpej if (once_control->pto_done == 0) {
577 1.2 thorpej pthread_mutex_lock(&once_control->pto_mutex);
578 1.19 nathanw pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
579 1.2 thorpej if (once_control->pto_done == 0) {
580 1.2 thorpej routine();
581 1.2 thorpej once_control->pto_done = 1;
582 1.2 thorpej }
583 1.19 nathanw pthread_cleanup_pop(1);
584 1.2 thorpej }
585 1.2 thorpej
586 1.2 thorpej return 0;
587 1.2 thorpej }
588 1.32 ad
589 1.33 ad int
590 1.44 ad pthread__mutex_deferwake(pthread_t thread, pthread_mutex_t *ptm)
591 1.33 ad {
592 1.33 ad
593 1.44 ad if (MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)thread)
594 1.44 ad return 0;
595 1.44 ad atomic_or_ulong((volatile unsigned long *)
596 1.44 ad (uintptr_t)&ptm->ptm_owner,
597 1.44 ad (unsigned long)MUTEX_DEFERRED_BIT);
598 1.44 ad return 1;
599 1.33 ad }
600 1.33 ad
601 1.39 ad int
602 1.44 ad _pthread_mutex_held_np(pthread_mutex_t *ptm)
603 1.39 ad {
604 1.39 ad
605 1.44 ad return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
606 1.39 ad }
607 1.39 ad
608 1.39 ad pthread_t
609 1.44 ad _pthread_mutex_owner_np(pthread_mutex_t *ptm)
610 1.39 ad {
611 1.39 ad
612 1.44 ad return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
613 1.39 ad }
614