Home | History | Annotate | Line # | Download | only in libpthread
pthread_mutex.c revision 1.47.2.1
      1  1.47.2.1     yamt /*	$NetBSD: pthread_mutex.c,v 1.47.2.1 2008/05/18 12:30:40 yamt Exp $	*/
      2       1.2  thorpej 
      3       1.2  thorpej /*-
      4      1.44       ad  * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5       1.2  thorpej  * All rights reserved.
      6       1.2  thorpej  *
      7       1.2  thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8      1.27       ad  * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
      9       1.2  thorpej  *
     10       1.2  thorpej  * Redistribution and use in source and binary forms, with or without
     11       1.2  thorpej  * modification, are permitted provided that the following conditions
     12       1.2  thorpej  * are met:
     13       1.2  thorpej  * 1. Redistributions of source code must retain the above copyright
     14       1.2  thorpej  *    notice, this list of conditions and the following disclaimer.
     15       1.2  thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.2  thorpej  *    notice, this list of conditions and the following disclaimer in the
     17       1.2  thorpej  *    documentation and/or other materials provided with the distribution.
     18       1.2  thorpej  *
     19       1.2  thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.2  thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.2  thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.2  thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.2  thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.2  thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.2  thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.2  thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.2  thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.2  thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.2  thorpej  * POSSIBILITY OF SUCH DAMAGE.
     30       1.2  thorpej  */
     31       1.2  thorpej 
     32       1.2  thorpej #include <sys/cdefs.h>
     33  1.47.2.1     yamt __RCSID("$NetBSD: pthread_mutex.c,v 1.47.2.1 2008/05/18 12:30:40 yamt Exp $");
     34      1.40       ad 
     35      1.40       ad #include <sys/types.h>
     36      1.44       ad #include <sys/lwpctl.h>
     37      1.10    lukem 
     38       1.2  thorpej #include <errno.h>
     39       1.2  thorpej #include <limits.h>
     40       1.2  thorpej #include <stdlib.h>
     41       1.6      scw #include <string.h>
     42      1.44       ad #include <stdio.h>
     43       1.2  thorpej 
     44       1.2  thorpej #include "pthread.h"
     45       1.2  thorpej #include "pthread_int.h"
     46       1.2  thorpej 
     47      1.44       ad #define	pt_nextwaiter			pt_sleep.ptqe_next
     48      1.44       ad 
     49      1.44       ad #define	MUTEX_WAITERS_BIT		((uintptr_t)0x01)
     50      1.44       ad #define	MUTEX_RECURSIVE_BIT		((uintptr_t)0x02)
     51      1.44       ad #define	MUTEX_DEFERRED_BIT		((uintptr_t)0x04)
     52      1.44       ad #define	MUTEX_THREAD			((uintptr_t)-16L)
     53      1.44       ad 
     54      1.44       ad #define	MUTEX_HAS_WAITERS(x)		((uintptr_t)(x) & MUTEX_WAITERS_BIT)
     55      1.44       ad #define	MUTEX_RECURSIVE(x)		((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
     56      1.44       ad #define	MUTEX_OWNER(x)			((uintptr_t)(x) & MUTEX_THREAD)
     57      1.44       ad 
     58      1.44       ad #if __GNUC_PREREQ__(3, 0)
     59      1.44       ad #define	NOINLINE		__attribute ((noinline))
     60      1.44       ad #else
     61      1.44       ad #define	NOINLINE		/* nothing */
     62      1.44       ad #endif
     63      1.44       ad 
     64      1.44       ad static void	pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
     65      1.44       ad static int	pthread__mutex_lock_slow(pthread_mutex_t *);
     66      1.44       ad static int	pthread__mutex_unlock_slow(pthread_mutex_t *);
     67      1.44       ad static void	pthread__mutex_pause(void);
     68       1.2  thorpej 
     69      1.39       ad int		_pthread_mutex_held_np(pthread_mutex_t *);
     70      1.39       ad pthread_t	_pthread_mutex_owner_np(pthread_mutex_t *);
     71      1.39       ad 
     72      1.39       ad __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
     73      1.39       ad __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
     74      1.39       ad 
     75       1.2  thorpej __strong_alias(__libc_mutex_init,pthread_mutex_init)
     76       1.2  thorpej __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
     77       1.2  thorpej __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
     78       1.2  thorpej __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
     79       1.2  thorpej __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
     80       1.4  thorpej 
     81       1.4  thorpej __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
     82       1.4  thorpej __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
     83       1.5  thorpej __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
     84       1.2  thorpej 
     85       1.2  thorpej __strong_alias(__libc_thr_once,pthread_once)
     86       1.2  thorpej 
     87       1.2  thorpej int
     88      1.44       ad pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
     89       1.2  thorpej {
     90      1.44       ad 	intptr_t type;
     91       1.2  thorpej 
     92      1.44       ad 	if (attr == NULL)
     93      1.44       ad 		type = PTHREAD_MUTEX_NORMAL;
     94      1.44       ad 	else
     95      1.44       ad 		type = (intptr_t)attr->ptma_private;
     96       1.2  thorpej 
     97      1.44       ad 	switch (type) {
     98      1.44       ad 	case PTHREAD_MUTEX_ERRORCHECK:
     99      1.44       ad 		ptm->ptm_errorcheck = 1;
    100      1.44       ad 		ptm->ptm_owner = NULL;
    101      1.44       ad 		break;
    102      1.44       ad 	case PTHREAD_MUTEX_RECURSIVE:
    103      1.44       ad 		ptm->ptm_errorcheck = 0;
    104      1.44       ad 		ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
    105      1.44       ad 		break;
    106      1.44       ad 	default:
    107      1.44       ad 		ptm->ptm_errorcheck = 0;
    108      1.44       ad 		ptm->ptm_owner = NULL;
    109      1.44       ad 		break;
    110       1.2  thorpej 	}
    111       1.2  thorpej 
    112      1.44       ad 	ptm->ptm_magic = _PT_MUTEX_MAGIC;
    113      1.44       ad 	ptm->ptm_waiters = NULL;
    114      1.45       ad 	ptm->ptm_recursed = 0;
    115       1.2  thorpej 
    116       1.2  thorpej 	return 0;
    117       1.2  thorpej }
    118       1.2  thorpej 
    119       1.2  thorpej 
    120       1.2  thorpej int
    121      1.44       ad pthread_mutex_destroy(pthread_mutex_t *ptm)
    122       1.2  thorpej {
    123       1.2  thorpej 
    124      1.14  nathanw 	pthread__error(EINVAL, "Invalid mutex",
    125      1.44       ad 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    126      1.14  nathanw 	pthread__error(EBUSY, "Destroying locked mutex",
    127      1.44       ad 	    MUTEX_OWNER(ptm->ptm_owner) == 0);
    128       1.2  thorpej 
    129      1.44       ad 	ptm->ptm_magic = _PT_MUTEX_DEAD;
    130       1.2  thorpej 	return 0;
    131       1.2  thorpej }
    132       1.2  thorpej 
    133       1.2  thorpej int
    134      1.44       ad pthread_mutex_lock(pthread_mutex_t *ptm)
    135       1.2  thorpej {
    136      1.27       ad 	pthread_t self;
    137      1.44       ad 	void *val;
    138       1.2  thorpej 
    139      1.27       ad 	self = pthread__self();
    140      1.44       ad 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    141      1.44       ad 	if (__predict_true(val == NULL)) {
    142      1.44       ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    143      1.44       ad 		membar_enter();
    144      1.44       ad #endif
    145      1.44       ad 		return 0;
    146       1.2  thorpej 	}
    147      1.44       ad 	return pthread__mutex_lock_slow(ptm);
    148      1.44       ad }
    149       1.2  thorpej 
    150      1.44       ad /* We want function call overhead. */
    151      1.44       ad NOINLINE static void
    152      1.44       ad pthread__mutex_pause(void)
    153      1.44       ad {
    154       1.2  thorpej 
    155      1.44       ad 	pthread__smt_pause();
    156       1.2  thorpej }
    157       1.2  thorpej 
    158      1.44       ad /*
    159      1.44       ad  * Spin while the holder is running.  'lwpctl' gives us the true
    160      1.44       ad  * status of the thread.  pt_blocking is set by libpthread in order
    161      1.44       ad  * to cut out system call and kernel spinlock overhead on remote CPUs
    162      1.44       ad  * (could represent many thousands of clock cycles).  pt_blocking also
    163      1.44       ad  * makes this thread yield if the target is calling sched_yield().
    164      1.44       ad  */
    165      1.44       ad NOINLINE static void *
    166      1.44       ad pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
    167      1.44       ad {
    168      1.44       ad 	pthread_t thread;
    169      1.44       ad 	unsigned int count, i;
    170      1.44       ad 
    171      1.44       ad 	for (count = 2;; owner = ptm->ptm_owner) {
    172      1.44       ad 		thread = (pthread_t)MUTEX_OWNER(owner);
    173      1.44       ad 		if (thread == NULL)
    174      1.44       ad 			break;
    175      1.44       ad 		if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
    176      1.44       ad 		    thread->pt_blocking)
    177      1.44       ad 			break;
    178      1.44       ad 		if (count < 128)
    179      1.44       ad 			count += count;
    180      1.44       ad 		for (i = count; i != 0; i--)
    181      1.44       ad 			pthread__mutex_pause();
    182      1.44       ad 	}
    183       1.2  thorpej 
    184      1.44       ad 	return owner;
    185      1.44       ad }
    186      1.44       ad 
    187      1.44       ad NOINLINE static int
    188      1.44       ad pthread__mutex_lock_slow(pthread_mutex_t *ptm)
    189       1.2  thorpej {
    190      1.44       ad 	void *waiters, *new, *owner, *next;
    191      1.44       ad 	pthread_t self;
    192       1.2  thorpej 
    193      1.14  nathanw 	pthread__error(EINVAL, "Invalid mutex",
    194      1.44       ad 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    195      1.44       ad 
    196      1.44       ad 	owner = ptm->ptm_owner;
    197      1.44       ad 	self = pthread__self();
    198      1.13  nathanw 
    199      1.44       ad 	/* Recursive or errorcheck? */
    200      1.44       ad 	if (MUTEX_OWNER(owner) == (uintptr_t)self) {
    201      1.44       ad 		if (MUTEX_RECURSIVE(owner)) {
    202      1.45       ad 			if (ptm->ptm_recursed == INT_MAX)
    203      1.44       ad 				return EAGAIN;
    204      1.45       ad 			ptm->ptm_recursed++;
    205      1.44       ad 			return 0;
    206      1.29       ad 		}
    207      1.44       ad 		if (ptm->ptm_errorcheck)
    208      1.44       ad 			return EDEADLK;
    209      1.44       ad 	}
    210      1.29       ad 
    211      1.44       ad 	for (;; owner = ptm->ptm_owner) {
    212      1.44       ad 		/* Spin while the owner is running. */
    213      1.44       ad 		owner = pthread__mutex_spin(ptm, owner);
    214      1.44       ad 
    215      1.44       ad 		/* If it has become free, try to acquire it again. */
    216      1.44       ad 		if (MUTEX_OWNER(owner) == 0) {
    217      1.47       ad 			do {
    218      1.44       ad 				new = (void *)
    219      1.44       ad 				    ((uintptr_t)self | (uintptr_t)owner);
    220      1.44       ad 				next = atomic_cas_ptr(&ptm->ptm_owner, owner,
    221      1.44       ad 				    new);
    222      1.44       ad 				if (next == owner) {
    223      1.44       ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    224      1.44       ad 					membar_enter();
    225      1.44       ad #endif
    226      1.44       ad 					return 0;
    227      1.44       ad 				}
    228      1.47       ad 				owner = next;
    229      1.47       ad 			} while (MUTEX_OWNER(owner) == 0);
    230      1.44       ad 			/*
    231      1.44       ad 			 * We have lost the race to acquire the mutex.
    232      1.44       ad 			 * The new owner could be running on another
    233      1.44       ad 			 * CPU, in which case we should spin and avoid
    234      1.44       ad 			 * the overhead of blocking.
    235      1.44       ad 			 */
    236      1.47       ad 			continue;
    237      1.44       ad 		}
    238      1.21      chs 
    239       1.2  thorpej 		/*
    240      1.44       ad 		 * Nope, still held.  Add thread to the list of waiters.
    241      1.44       ad 		 * Issue a memory barrier to ensure sleeponq/nextwaiter
    242      1.44       ad 		 * are visible before we enter the waiters list.
    243       1.2  thorpej 		 */
    244      1.44       ad 		self->pt_sleeponq = 1;
    245      1.44       ad 		for (waiters = ptm->ptm_waiters;; waiters = next) {
    246      1.44       ad 			self->pt_nextwaiter = waiters;
    247      1.44       ad 			membar_producer();
    248      1.44       ad 			next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
    249      1.44       ad 			if (next == waiters)
    250      1.44       ad 			    	break;
    251      1.44       ad 		}
    252      1.21      chs 
    253      1.44       ad 		/*
    254      1.44       ad 		 * Set the waiters bit and block.
    255      1.44       ad 		 *
    256      1.44       ad 		 * Note that the mutex can become unlocked before we set
    257      1.44       ad 		 * the waiters bit.  If that happens it's not safe to sleep
    258      1.44       ad 		 * as we may never be awoken: we must remove the current
    259      1.44       ad 		 * thread from the waiters list and try again.
    260      1.44       ad 		 *
    261      1.44       ad 		 * Because we are doing this atomically, we can't remove
    262      1.44       ad 		 * one waiter: we must remove all waiters and awken them,
    263      1.44       ad 		 * then sleep in _lwp_park() until we have been awoken.
    264      1.44       ad 		 *
    265      1.44       ad 		 * Issue a memory barrier to ensure that we are reading
    266      1.44       ad 		 * the value of ptm_owner/pt_sleeponq after we have entered
    267      1.44       ad 		 * the waiters list (the CAS itself must be atomic).
    268      1.44       ad 		 */
    269      1.44       ad 		membar_consumer();
    270      1.44       ad 		for (owner = ptm->ptm_owner;; owner = next) {
    271      1.44       ad 			if (MUTEX_HAS_WAITERS(owner))
    272      1.44       ad 				break;
    273      1.44       ad 			if (MUTEX_OWNER(owner) == 0) {
    274      1.44       ad 				pthread__mutex_wakeup(self, ptm);
    275      1.44       ad 				break;
    276      1.44       ad 			}
    277      1.44       ad 			new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
    278      1.44       ad 			next = atomic_cas_ptr(&ptm->ptm_owner, owner, new);
    279      1.44       ad 			if (next == owner) {
    280      1.21      chs 				/*
    281      1.44       ad 				 * pthread_mutex_unlock() can do a
    282      1.44       ad 				 * non-interlocked CAS.  We cannot
    283      1.44       ad 				 * know if our attempt to set the
    284      1.44       ad 				 * waiters bit has succeeded while
    285      1.44       ad 				 * the holding thread is running.
    286      1.44       ad 				 * There are many assumptions; see
    287      1.44       ad 				 * sys/kern/kern_mutex.c for details.
    288      1.44       ad 				 * In short, we must spin if we see
    289      1.44       ad 				 * that the holder is running again.
    290      1.21      chs 				 */
    291      1.44       ad 				membar_sync();
    292      1.44       ad 				next = pthread__mutex_spin(ptm, owner);
    293      1.21      chs 			}
    294      1.29       ad 		}
    295      1.21      chs 
    296      1.29       ad 		/*
    297      1.44       ad 		 * We may have been awoken by the current thread above,
    298      1.44       ad 		 * or will be awoken by the current holder of the mutex.
    299      1.44       ad 		 * The key requirement is that we must not proceed until
    300      1.44       ad 		 * told that we are no longer waiting (via pt_sleeponq
    301      1.44       ad 		 * being set to zero).  Otherwise it is unsafe to re-enter
    302      1.44       ad 		 * the thread onto the waiters list.
    303      1.29       ad 		 */
    304      1.44       ad 		while (self->pt_sleeponq) {
    305      1.44       ad 			self->pt_blocking++;
    306      1.45       ad 			(void)_lwp_park(NULL, 0,
    307      1.45       ad 			    __UNVOLATILE(&ptm->ptm_waiters), NULL);
    308      1.44       ad 			self->pt_blocking--;
    309      1.44       ad 			membar_sync();
    310      1.44       ad 		}
    311       1.2  thorpej 	}
    312       1.2  thorpej }
    313       1.2  thorpej 
    314       1.2  thorpej int
    315      1.44       ad pthread_mutex_trylock(pthread_mutex_t *ptm)
    316       1.2  thorpej {
    317      1.27       ad 	pthread_t self;
    318      1.46       ad 	void *val, *new, *next;
    319       1.2  thorpej 
    320      1.27       ad 	self = pthread__self();
    321      1.44       ad 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    322      1.44       ad 	if (__predict_true(val == NULL)) {
    323      1.44       ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    324      1.44       ad 		membar_enter();
    325      1.44       ad #endif
    326      1.44       ad 		return 0;
    327      1.44       ad 	}
    328      1.27       ad 
    329      1.46       ad 	if (MUTEX_RECURSIVE(val)) {
    330      1.46       ad 		if (MUTEX_OWNER(val) == 0) {
    331      1.46       ad 			new = (void *)((uintptr_t)self | (uintptr_t)val);
    332      1.46       ad 			next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
    333      1.46       ad 			if (__predict_true(next == val)) {
    334      1.46       ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    335      1.46       ad 				membar_enter();
    336      1.46       ad #endif
    337      1.46       ad 				return 0;
    338      1.46       ad 			}
    339      1.46       ad 		}
    340      1.46       ad 		if (MUTEX_OWNER(val) == (uintptr_t)self) {
    341      1.46       ad 			if (ptm->ptm_recursed == INT_MAX)
    342      1.46       ad 				return EAGAIN;
    343      1.46       ad 			ptm->ptm_recursed++;
    344      1.46       ad 			return 0;
    345      1.46       ad 		}
    346       1.2  thorpej 	}
    347       1.2  thorpej 
    348      1.44       ad 	return EBUSY;
    349       1.2  thorpej }
    350       1.2  thorpej 
    351       1.2  thorpej int
    352      1.44       ad pthread_mutex_unlock(pthread_mutex_t *ptm)
    353       1.2  thorpej {
    354      1.27       ad 	pthread_t self;
    355      1.44       ad 	void *value;
    356      1.44       ad 
    357      1.44       ad 	/*
    358      1.44       ad 	 * Note this may be a non-interlocked CAS.  See lock_slow()
    359      1.44       ad 	 * above and sys/kern/kern_mutex.c for details.
    360      1.44       ad 	 */
    361      1.44       ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    362      1.44       ad 	membar_exit();
    363      1.44       ad #endif
    364      1.44       ad 	self = pthread__self();
    365      1.44       ad 	value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
    366      1.44       ad 	if (__predict_true(value == self))
    367      1.44       ad 		return 0;
    368      1.44       ad 	return pthread__mutex_unlock_slow(ptm);
    369      1.44       ad }
    370      1.44       ad 
    371      1.44       ad NOINLINE static int
    372      1.44       ad pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
    373      1.44       ad {
    374      1.44       ad 	pthread_t self, owner, new;
    375      1.44       ad 	int weown, error, deferred;
    376      1.13  nathanw 
    377      1.14  nathanw 	pthread__error(EINVAL, "Invalid mutex",
    378      1.44       ad 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    379      1.44       ad 
    380      1.44       ad 	self = pthread__self();
    381      1.44       ad 	owner = ptm->ptm_owner;
    382      1.44       ad 	weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
    383      1.44       ad 	deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
    384      1.44       ad 	error = 0;
    385      1.44       ad 
    386      1.44       ad 	if (ptm->ptm_errorcheck) {
    387      1.44       ad 		if (!weown) {
    388      1.44       ad 			error = EPERM;
    389      1.44       ad 			new = owner;
    390      1.44       ad 		} else {
    391      1.44       ad 			new = NULL;
    392      1.44       ad 		}
    393      1.44       ad 	} else if (MUTEX_RECURSIVE(owner)) {
    394      1.44       ad 		if (!weown) {
    395      1.44       ad 			error = EPERM;
    396      1.44       ad 			new = owner;
    397      1.45       ad 		} else if (ptm->ptm_recursed) {
    398      1.45       ad 			ptm->ptm_recursed--;
    399      1.44       ad 			new = owner;
    400      1.44       ad 		} else {
    401      1.44       ad 			new = (pthread_t)MUTEX_RECURSIVE_BIT;
    402      1.44       ad 		}
    403      1.44       ad 	} else {
    404      1.44       ad 		pthread__error(EPERM,
    405      1.44       ad 		    "Unlocking unlocked mutex", (owner != NULL));
    406      1.44       ad 		pthread__error(EPERM,
    407      1.44       ad 		    "Unlocking mutex owned by another thread", weown);
    408      1.44       ad 		new = NULL;
    409      1.44       ad 	}
    410       1.2  thorpej 
    411       1.2  thorpej 	/*
    412      1.44       ad 	 * Release the mutex.  If there appear to be waiters, then
    413      1.44       ad 	 * wake them up.
    414       1.2  thorpej 	 */
    415      1.44       ad 	if (new != owner) {
    416      1.44       ad 		owner = atomic_swap_ptr(&ptm->ptm_owner, new);
    417      1.44       ad 		if (MUTEX_HAS_WAITERS(owner) != 0) {
    418      1.44       ad 			pthread__mutex_wakeup(self, ptm);
    419       1.2  thorpej 			return 0;
    420       1.2  thorpej 		}
    421      1.44       ad 	}
    422      1.44       ad 
    423      1.44       ad 	/*
    424      1.44       ad 	 * There were no waiters, but we may have deferred waking
    425      1.44       ad 	 * other threads until mutex unlock - we must wake them now.
    426      1.44       ad 	 */
    427      1.44       ad 	if (!deferred)
    428      1.44       ad 		return error;
    429      1.44       ad 
    430      1.44       ad 	if (self->pt_nwaiters == 1) {
    431      1.44       ad 		/*
    432      1.44       ad 		 * If the calling thread is about to block, defer
    433      1.44       ad 		 * unparking the target until _lwp_park() is called.
    434      1.44       ad 		 */
    435      1.44       ad 		if (self->pt_willpark && self->pt_unpark == 0) {
    436      1.44       ad 			self->pt_unpark = self->pt_waiters[0];
    437      1.45       ad 			self->pt_unparkhint =
    438      1.45       ad 			    __UNVOLATILE(&ptm->ptm_waiters);
    439      1.44       ad 		} else {
    440      1.44       ad 			(void)_lwp_unpark(self->pt_waiters[0],
    441      1.45       ad 			    __UNVOLATILE(&ptm->ptm_waiters));
    442      1.15  nathanw 		}
    443      1.44       ad 	} else {
    444      1.44       ad 		(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    445      1.45       ad 		    __UNVOLATILE(&ptm->ptm_waiters));
    446       1.2  thorpej 	}
    447      1.44       ad 	self->pt_nwaiters = 0;
    448       1.2  thorpej 
    449      1.44       ad 	return error;
    450      1.44       ad }
    451      1.44       ad 
    452      1.44       ad static void
    453      1.44       ad pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
    454      1.44       ad {
    455      1.44       ad 	pthread_t thread, next;
    456      1.44       ad 	ssize_t n, rv;
    457      1.27       ad 
    458       1.8  nathanw 	/*
    459      1.44       ad 	 * Take ownership of the current set of waiters.  No
    460      1.44       ad 	 * need for a memory barrier following this, all loads
    461      1.44       ad 	 * are dependent upon 'thread'.
    462       1.8  nathanw 	 */
    463      1.44       ad 	thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
    464      1.44       ad 
    465      1.44       ad 	for (;;) {
    466      1.44       ad 		/*
    467      1.44       ad 		 * Pull waiters from the queue and add to our list.
    468      1.44       ad 		 * Use a memory barrier to ensure that we safely
    469      1.44       ad 		 * read the value of pt_nextwaiter before 'thread'
    470      1.44       ad 		 * sees pt_sleeponq being cleared.
    471      1.44       ad 		 */
    472      1.44       ad 		for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
    473      1.44       ad 		    n < pthread__unpark_max && thread != NULL;
    474      1.44       ad 		    thread = next) {
    475      1.44       ad 		    	next = thread->pt_nextwaiter;
    476      1.44       ad 		    	if (thread != self) {
    477      1.44       ad 				self->pt_waiters[n++] = thread->pt_lid;
    478      1.44       ad 				membar_sync();
    479      1.44       ad 			}
    480      1.44       ad 			thread->pt_sleeponq = 0;
    481      1.44       ad 			/* No longer safe to touch 'thread' */
    482      1.44       ad 		}
    483      1.44       ad 
    484      1.44       ad 		switch (n) {
    485      1.44       ad 		case 0:
    486      1.44       ad 			return;
    487      1.44       ad 		case 1:
    488      1.44       ad 			/*
    489      1.44       ad 			 * If the calling thread is about to block,
    490      1.44       ad 			 * defer unparking the target until _lwp_park()
    491      1.44       ad 			 * is called.
    492      1.44       ad 			 */
    493      1.44       ad 			if (self->pt_willpark && self->pt_unpark == 0) {
    494      1.44       ad 				self->pt_unpark = self->pt_waiters[0];
    495      1.45       ad 				self->pt_unparkhint =
    496      1.45       ad 				    __UNVOLATILE(&ptm->ptm_waiters);
    497      1.44       ad 				return;
    498      1.44       ad 			}
    499      1.44       ad 			rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
    500      1.45       ad 			    __UNVOLATILE(&ptm->ptm_waiters));
    501      1.44       ad 			if (rv != 0 && errno != EALREADY && errno != EINTR &&
    502      1.44       ad 			    errno != ESRCH) {
    503      1.44       ad 				pthread__errorfunc(__FILE__, __LINE__,
    504      1.44       ad 				    __func__, "_lwp_unpark failed");
    505      1.44       ad 			}
    506      1.44       ad 			return;
    507      1.44       ad 		default:
    508      1.44       ad 			rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
    509      1.45       ad 			    __UNVOLATILE(&ptm->ptm_waiters));
    510      1.44       ad 			if (rv != 0 && errno != EINTR) {
    511      1.44       ad 				pthread__errorfunc(__FILE__, __LINE__,
    512      1.44       ad 				    __func__, "_lwp_unpark_all failed");
    513      1.44       ad 			}
    514      1.44       ad 			break;
    515      1.44       ad 		}
    516      1.44       ad 	}
    517       1.2  thorpej }
    518       1.2  thorpej int
    519       1.2  thorpej pthread_mutexattr_init(pthread_mutexattr_t *attr)
    520       1.2  thorpej {
    521       1.2  thorpej 
    522       1.2  thorpej 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
    523      1.44       ad 	attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
    524       1.2  thorpej 	return 0;
    525       1.2  thorpej }
    526       1.2  thorpej 
    527       1.2  thorpej int
    528       1.2  thorpej pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
    529       1.2  thorpej {
    530       1.2  thorpej 
    531      1.14  nathanw 	pthread__error(EINVAL, "Invalid mutex attribute",
    532      1.14  nathanw 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    533       1.2  thorpej 
    534       1.2  thorpej 	return 0;
    535       1.2  thorpej }
    536       1.2  thorpej 
    537       1.2  thorpej 
    538       1.2  thorpej int
    539       1.2  thorpej pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
    540       1.2  thorpej {
    541       1.2  thorpej 
    542      1.14  nathanw 	pthread__error(EINVAL, "Invalid mutex attribute",
    543      1.14  nathanw 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    544       1.2  thorpej 
    545      1.44       ad 	*typep = (int)(intptr_t)attr->ptma_private;
    546       1.2  thorpej 	return 0;
    547       1.2  thorpej }
    548       1.2  thorpej 
    549       1.2  thorpej 
    550       1.2  thorpej int
    551       1.2  thorpej pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
    552       1.2  thorpej {
    553       1.2  thorpej 
    554      1.14  nathanw 	pthread__error(EINVAL, "Invalid mutex attribute",
    555      1.14  nathanw 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    556      1.13  nathanw 
    557       1.2  thorpej 	switch (type) {
    558       1.2  thorpej 	case PTHREAD_MUTEX_NORMAL:
    559       1.2  thorpej 	case PTHREAD_MUTEX_ERRORCHECK:
    560       1.2  thorpej 	case PTHREAD_MUTEX_RECURSIVE:
    561      1.44       ad 		attr->ptma_private = (void *)(intptr_t)type;
    562      1.44       ad 		return 0;
    563       1.2  thorpej 	default:
    564       1.2  thorpej 		return EINVAL;
    565       1.2  thorpej 	}
    566       1.2  thorpej }
    567       1.2  thorpej 
    568       1.2  thorpej 
    569      1.19  nathanw static void
    570      1.19  nathanw once_cleanup(void *closure)
    571      1.19  nathanw {
    572      1.19  nathanw 
    573      1.19  nathanw        pthread_mutex_unlock((pthread_mutex_t *)closure);
    574      1.19  nathanw }
    575      1.19  nathanw 
    576      1.19  nathanw 
    577       1.2  thorpej int
    578       1.2  thorpej pthread_once(pthread_once_t *once_control, void (*routine)(void))
    579       1.2  thorpej {
    580       1.2  thorpej 
    581       1.2  thorpej 	if (once_control->pto_done == 0) {
    582       1.2  thorpej 		pthread_mutex_lock(&once_control->pto_mutex);
    583      1.19  nathanw 		pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
    584       1.2  thorpej 		if (once_control->pto_done == 0) {
    585       1.2  thorpej 			routine();
    586       1.2  thorpej 			once_control->pto_done = 1;
    587       1.2  thorpej 		}
    588      1.19  nathanw 		pthread_cleanup_pop(1);
    589       1.2  thorpej 	}
    590       1.2  thorpej 
    591       1.2  thorpej 	return 0;
    592       1.2  thorpej }
    593      1.32       ad 
    594      1.33       ad int
    595      1.44       ad pthread__mutex_deferwake(pthread_t thread, pthread_mutex_t *ptm)
    596      1.33       ad {
    597      1.33       ad 
    598      1.44       ad 	if (MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)thread)
    599      1.44       ad 		return 0;
    600      1.44       ad 	atomic_or_ulong((volatile unsigned long *)
    601      1.44       ad 	    (uintptr_t)&ptm->ptm_owner,
    602      1.44       ad 	    (unsigned long)MUTEX_DEFERRED_BIT);
    603      1.44       ad 	return 1;
    604      1.33       ad }
    605      1.33       ad 
    606      1.39       ad int
    607      1.44       ad _pthread_mutex_held_np(pthread_mutex_t *ptm)
    608      1.39       ad {
    609      1.39       ad 
    610      1.44       ad 	return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
    611      1.39       ad }
    612      1.39       ad 
    613      1.39       ad pthread_t
    614      1.44       ad _pthread_mutex_owner_np(pthread_mutex_t *ptm)
    615      1.39       ad {
    616      1.39       ad 
    617      1.44       ad 	return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
    618      1.39       ad }
    619