pthread_mutex.c revision 1.47.2.1 1 1.47.2.1 yamt /* $NetBSD: pthread_mutex.c,v 1.47.2.1 2008/05/18 12:30:40 yamt Exp $ */
2 1.2 thorpej
3 1.2 thorpej /*-
4 1.44 ad * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 thorpej * All rights reserved.
6 1.2 thorpej *
7 1.2 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.27 ad * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 1.2 thorpej *
10 1.2 thorpej * Redistribution and use in source and binary forms, with or without
11 1.2 thorpej * modification, are permitted provided that the following conditions
12 1.2 thorpej * are met:
13 1.2 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.2 thorpej * notice, this list of conditions and the following disclaimer.
15 1.2 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.2 thorpej * documentation and/or other materials provided with the distribution.
18 1.2 thorpej *
19 1.2 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.2 thorpej */
31 1.2 thorpej
32 1.2 thorpej #include <sys/cdefs.h>
33 1.47.2.1 yamt __RCSID("$NetBSD: pthread_mutex.c,v 1.47.2.1 2008/05/18 12:30:40 yamt Exp $");
34 1.40 ad
35 1.40 ad #include <sys/types.h>
36 1.44 ad #include <sys/lwpctl.h>
37 1.10 lukem
38 1.2 thorpej #include <errno.h>
39 1.2 thorpej #include <limits.h>
40 1.2 thorpej #include <stdlib.h>
41 1.6 scw #include <string.h>
42 1.44 ad #include <stdio.h>
43 1.2 thorpej
44 1.2 thorpej #include "pthread.h"
45 1.2 thorpej #include "pthread_int.h"
46 1.2 thorpej
47 1.44 ad #define pt_nextwaiter pt_sleep.ptqe_next
48 1.44 ad
49 1.44 ad #define MUTEX_WAITERS_BIT ((uintptr_t)0x01)
50 1.44 ad #define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02)
51 1.44 ad #define MUTEX_DEFERRED_BIT ((uintptr_t)0x04)
52 1.44 ad #define MUTEX_THREAD ((uintptr_t)-16L)
53 1.44 ad
54 1.44 ad #define MUTEX_HAS_WAITERS(x) ((uintptr_t)(x) & MUTEX_WAITERS_BIT)
55 1.44 ad #define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
56 1.44 ad #define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD)
57 1.44 ad
58 1.44 ad #if __GNUC_PREREQ__(3, 0)
59 1.44 ad #define NOINLINE __attribute ((noinline))
60 1.44 ad #else
61 1.44 ad #define NOINLINE /* nothing */
62 1.44 ad #endif
63 1.44 ad
64 1.44 ad static void pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
65 1.44 ad static int pthread__mutex_lock_slow(pthread_mutex_t *);
66 1.44 ad static int pthread__mutex_unlock_slow(pthread_mutex_t *);
67 1.44 ad static void pthread__mutex_pause(void);
68 1.2 thorpej
69 1.39 ad int _pthread_mutex_held_np(pthread_mutex_t *);
70 1.39 ad pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
71 1.39 ad
72 1.39 ad __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
73 1.39 ad __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
74 1.39 ad
75 1.2 thorpej __strong_alias(__libc_mutex_init,pthread_mutex_init)
76 1.2 thorpej __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
77 1.2 thorpej __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
78 1.2 thorpej __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
79 1.2 thorpej __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
80 1.4 thorpej
81 1.4 thorpej __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
82 1.4 thorpej __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
83 1.5 thorpej __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
84 1.2 thorpej
85 1.2 thorpej __strong_alias(__libc_thr_once,pthread_once)
86 1.2 thorpej
87 1.2 thorpej int
88 1.44 ad pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
89 1.2 thorpej {
90 1.44 ad intptr_t type;
91 1.2 thorpej
92 1.44 ad if (attr == NULL)
93 1.44 ad type = PTHREAD_MUTEX_NORMAL;
94 1.44 ad else
95 1.44 ad type = (intptr_t)attr->ptma_private;
96 1.2 thorpej
97 1.44 ad switch (type) {
98 1.44 ad case PTHREAD_MUTEX_ERRORCHECK:
99 1.44 ad ptm->ptm_errorcheck = 1;
100 1.44 ad ptm->ptm_owner = NULL;
101 1.44 ad break;
102 1.44 ad case PTHREAD_MUTEX_RECURSIVE:
103 1.44 ad ptm->ptm_errorcheck = 0;
104 1.44 ad ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
105 1.44 ad break;
106 1.44 ad default:
107 1.44 ad ptm->ptm_errorcheck = 0;
108 1.44 ad ptm->ptm_owner = NULL;
109 1.44 ad break;
110 1.2 thorpej }
111 1.2 thorpej
112 1.44 ad ptm->ptm_magic = _PT_MUTEX_MAGIC;
113 1.44 ad ptm->ptm_waiters = NULL;
114 1.45 ad ptm->ptm_recursed = 0;
115 1.2 thorpej
116 1.2 thorpej return 0;
117 1.2 thorpej }
118 1.2 thorpej
119 1.2 thorpej
120 1.2 thorpej int
121 1.44 ad pthread_mutex_destroy(pthread_mutex_t *ptm)
122 1.2 thorpej {
123 1.2 thorpej
124 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
125 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
126 1.14 nathanw pthread__error(EBUSY, "Destroying locked mutex",
127 1.44 ad MUTEX_OWNER(ptm->ptm_owner) == 0);
128 1.2 thorpej
129 1.44 ad ptm->ptm_magic = _PT_MUTEX_DEAD;
130 1.2 thorpej return 0;
131 1.2 thorpej }
132 1.2 thorpej
133 1.2 thorpej int
134 1.44 ad pthread_mutex_lock(pthread_mutex_t *ptm)
135 1.2 thorpej {
136 1.27 ad pthread_t self;
137 1.44 ad void *val;
138 1.2 thorpej
139 1.27 ad self = pthread__self();
140 1.44 ad val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
141 1.44 ad if (__predict_true(val == NULL)) {
142 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
143 1.44 ad membar_enter();
144 1.44 ad #endif
145 1.44 ad return 0;
146 1.2 thorpej }
147 1.44 ad return pthread__mutex_lock_slow(ptm);
148 1.44 ad }
149 1.2 thorpej
150 1.44 ad /* We want function call overhead. */
151 1.44 ad NOINLINE static void
152 1.44 ad pthread__mutex_pause(void)
153 1.44 ad {
154 1.2 thorpej
155 1.44 ad pthread__smt_pause();
156 1.2 thorpej }
157 1.2 thorpej
158 1.44 ad /*
159 1.44 ad * Spin while the holder is running. 'lwpctl' gives us the true
160 1.44 ad * status of the thread. pt_blocking is set by libpthread in order
161 1.44 ad * to cut out system call and kernel spinlock overhead on remote CPUs
162 1.44 ad * (could represent many thousands of clock cycles). pt_blocking also
163 1.44 ad * makes this thread yield if the target is calling sched_yield().
164 1.44 ad */
165 1.44 ad NOINLINE static void *
166 1.44 ad pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
167 1.44 ad {
168 1.44 ad pthread_t thread;
169 1.44 ad unsigned int count, i;
170 1.44 ad
171 1.44 ad for (count = 2;; owner = ptm->ptm_owner) {
172 1.44 ad thread = (pthread_t)MUTEX_OWNER(owner);
173 1.44 ad if (thread == NULL)
174 1.44 ad break;
175 1.44 ad if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
176 1.44 ad thread->pt_blocking)
177 1.44 ad break;
178 1.44 ad if (count < 128)
179 1.44 ad count += count;
180 1.44 ad for (i = count; i != 0; i--)
181 1.44 ad pthread__mutex_pause();
182 1.44 ad }
183 1.2 thorpej
184 1.44 ad return owner;
185 1.44 ad }
186 1.44 ad
187 1.44 ad NOINLINE static int
188 1.44 ad pthread__mutex_lock_slow(pthread_mutex_t *ptm)
189 1.2 thorpej {
190 1.44 ad void *waiters, *new, *owner, *next;
191 1.44 ad pthread_t self;
192 1.2 thorpej
193 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
194 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
195 1.44 ad
196 1.44 ad owner = ptm->ptm_owner;
197 1.44 ad self = pthread__self();
198 1.13 nathanw
199 1.44 ad /* Recursive or errorcheck? */
200 1.44 ad if (MUTEX_OWNER(owner) == (uintptr_t)self) {
201 1.44 ad if (MUTEX_RECURSIVE(owner)) {
202 1.45 ad if (ptm->ptm_recursed == INT_MAX)
203 1.44 ad return EAGAIN;
204 1.45 ad ptm->ptm_recursed++;
205 1.44 ad return 0;
206 1.29 ad }
207 1.44 ad if (ptm->ptm_errorcheck)
208 1.44 ad return EDEADLK;
209 1.44 ad }
210 1.29 ad
211 1.44 ad for (;; owner = ptm->ptm_owner) {
212 1.44 ad /* Spin while the owner is running. */
213 1.44 ad owner = pthread__mutex_spin(ptm, owner);
214 1.44 ad
215 1.44 ad /* If it has become free, try to acquire it again. */
216 1.44 ad if (MUTEX_OWNER(owner) == 0) {
217 1.47 ad do {
218 1.44 ad new = (void *)
219 1.44 ad ((uintptr_t)self | (uintptr_t)owner);
220 1.44 ad next = atomic_cas_ptr(&ptm->ptm_owner, owner,
221 1.44 ad new);
222 1.44 ad if (next == owner) {
223 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
224 1.44 ad membar_enter();
225 1.44 ad #endif
226 1.44 ad return 0;
227 1.44 ad }
228 1.47 ad owner = next;
229 1.47 ad } while (MUTEX_OWNER(owner) == 0);
230 1.44 ad /*
231 1.44 ad * We have lost the race to acquire the mutex.
232 1.44 ad * The new owner could be running on another
233 1.44 ad * CPU, in which case we should spin and avoid
234 1.44 ad * the overhead of blocking.
235 1.44 ad */
236 1.47 ad continue;
237 1.44 ad }
238 1.21 chs
239 1.2 thorpej /*
240 1.44 ad * Nope, still held. Add thread to the list of waiters.
241 1.44 ad * Issue a memory barrier to ensure sleeponq/nextwaiter
242 1.44 ad * are visible before we enter the waiters list.
243 1.2 thorpej */
244 1.44 ad self->pt_sleeponq = 1;
245 1.44 ad for (waiters = ptm->ptm_waiters;; waiters = next) {
246 1.44 ad self->pt_nextwaiter = waiters;
247 1.44 ad membar_producer();
248 1.44 ad next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
249 1.44 ad if (next == waiters)
250 1.44 ad break;
251 1.44 ad }
252 1.21 chs
253 1.44 ad /*
254 1.44 ad * Set the waiters bit and block.
255 1.44 ad *
256 1.44 ad * Note that the mutex can become unlocked before we set
257 1.44 ad * the waiters bit. If that happens it's not safe to sleep
258 1.44 ad * as we may never be awoken: we must remove the current
259 1.44 ad * thread from the waiters list and try again.
260 1.44 ad *
261 1.44 ad * Because we are doing this atomically, we can't remove
262 1.44 ad * one waiter: we must remove all waiters and awken them,
263 1.44 ad * then sleep in _lwp_park() until we have been awoken.
264 1.44 ad *
265 1.44 ad * Issue a memory barrier to ensure that we are reading
266 1.44 ad * the value of ptm_owner/pt_sleeponq after we have entered
267 1.44 ad * the waiters list (the CAS itself must be atomic).
268 1.44 ad */
269 1.44 ad membar_consumer();
270 1.44 ad for (owner = ptm->ptm_owner;; owner = next) {
271 1.44 ad if (MUTEX_HAS_WAITERS(owner))
272 1.44 ad break;
273 1.44 ad if (MUTEX_OWNER(owner) == 0) {
274 1.44 ad pthread__mutex_wakeup(self, ptm);
275 1.44 ad break;
276 1.44 ad }
277 1.44 ad new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
278 1.44 ad next = atomic_cas_ptr(&ptm->ptm_owner, owner, new);
279 1.44 ad if (next == owner) {
280 1.21 chs /*
281 1.44 ad * pthread_mutex_unlock() can do a
282 1.44 ad * non-interlocked CAS. We cannot
283 1.44 ad * know if our attempt to set the
284 1.44 ad * waiters bit has succeeded while
285 1.44 ad * the holding thread is running.
286 1.44 ad * There are many assumptions; see
287 1.44 ad * sys/kern/kern_mutex.c for details.
288 1.44 ad * In short, we must spin if we see
289 1.44 ad * that the holder is running again.
290 1.21 chs */
291 1.44 ad membar_sync();
292 1.44 ad next = pthread__mutex_spin(ptm, owner);
293 1.21 chs }
294 1.29 ad }
295 1.21 chs
296 1.29 ad /*
297 1.44 ad * We may have been awoken by the current thread above,
298 1.44 ad * or will be awoken by the current holder of the mutex.
299 1.44 ad * The key requirement is that we must not proceed until
300 1.44 ad * told that we are no longer waiting (via pt_sleeponq
301 1.44 ad * being set to zero). Otherwise it is unsafe to re-enter
302 1.44 ad * the thread onto the waiters list.
303 1.29 ad */
304 1.44 ad while (self->pt_sleeponq) {
305 1.44 ad self->pt_blocking++;
306 1.45 ad (void)_lwp_park(NULL, 0,
307 1.45 ad __UNVOLATILE(&ptm->ptm_waiters), NULL);
308 1.44 ad self->pt_blocking--;
309 1.44 ad membar_sync();
310 1.44 ad }
311 1.2 thorpej }
312 1.2 thorpej }
313 1.2 thorpej
314 1.2 thorpej int
315 1.44 ad pthread_mutex_trylock(pthread_mutex_t *ptm)
316 1.2 thorpej {
317 1.27 ad pthread_t self;
318 1.46 ad void *val, *new, *next;
319 1.2 thorpej
320 1.27 ad self = pthread__self();
321 1.44 ad val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
322 1.44 ad if (__predict_true(val == NULL)) {
323 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
324 1.44 ad membar_enter();
325 1.44 ad #endif
326 1.44 ad return 0;
327 1.44 ad }
328 1.27 ad
329 1.46 ad if (MUTEX_RECURSIVE(val)) {
330 1.46 ad if (MUTEX_OWNER(val) == 0) {
331 1.46 ad new = (void *)((uintptr_t)self | (uintptr_t)val);
332 1.46 ad next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
333 1.46 ad if (__predict_true(next == val)) {
334 1.46 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
335 1.46 ad membar_enter();
336 1.46 ad #endif
337 1.46 ad return 0;
338 1.46 ad }
339 1.46 ad }
340 1.46 ad if (MUTEX_OWNER(val) == (uintptr_t)self) {
341 1.46 ad if (ptm->ptm_recursed == INT_MAX)
342 1.46 ad return EAGAIN;
343 1.46 ad ptm->ptm_recursed++;
344 1.46 ad return 0;
345 1.46 ad }
346 1.2 thorpej }
347 1.2 thorpej
348 1.44 ad return EBUSY;
349 1.2 thorpej }
350 1.2 thorpej
351 1.2 thorpej int
352 1.44 ad pthread_mutex_unlock(pthread_mutex_t *ptm)
353 1.2 thorpej {
354 1.27 ad pthread_t self;
355 1.44 ad void *value;
356 1.44 ad
357 1.44 ad /*
358 1.44 ad * Note this may be a non-interlocked CAS. See lock_slow()
359 1.44 ad * above and sys/kern/kern_mutex.c for details.
360 1.44 ad */
361 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
362 1.44 ad membar_exit();
363 1.44 ad #endif
364 1.44 ad self = pthread__self();
365 1.44 ad value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
366 1.44 ad if (__predict_true(value == self))
367 1.44 ad return 0;
368 1.44 ad return pthread__mutex_unlock_slow(ptm);
369 1.44 ad }
370 1.44 ad
371 1.44 ad NOINLINE static int
372 1.44 ad pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
373 1.44 ad {
374 1.44 ad pthread_t self, owner, new;
375 1.44 ad int weown, error, deferred;
376 1.13 nathanw
377 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
378 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
379 1.44 ad
380 1.44 ad self = pthread__self();
381 1.44 ad owner = ptm->ptm_owner;
382 1.44 ad weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
383 1.44 ad deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
384 1.44 ad error = 0;
385 1.44 ad
386 1.44 ad if (ptm->ptm_errorcheck) {
387 1.44 ad if (!weown) {
388 1.44 ad error = EPERM;
389 1.44 ad new = owner;
390 1.44 ad } else {
391 1.44 ad new = NULL;
392 1.44 ad }
393 1.44 ad } else if (MUTEX_RECURSIVE(owner)) {
394 1.44 ad if (!weown) {
395 1.44 ad error = EPERM;
396 1.44 ad new = owner;
397 1.45 ad } else if (ptm->ptm_recursed) {
398 1.45 ad ptm->ptm_recursed--;
399 1.44 ad new = owner;
400 1.44 ad } else {
401 1.44 ad new = (pthread_t)MUTEX_RECURSIVE_BIT;
402 1.44 ad }
403 1.44 ad } else {
404 1.44 ad pthread__error(EPERM,
405 1.44 ad "Unlocking unlocked mutex", (owner != NULL));
406 1.44 ad pthread__error(EPERM,
407 1.44 ad "Unlocking mutex owned by another thread", weown);
408 1.44 ad new = NULL;
409 1.44 ad }
410 1.2 thorpej
411 1.2 thorpej /*
412 1.44 ad * Release the mutex. If there appear to be waiters, then
413 1.44 ad * wake them up.
414 1.2 thorpej */
415 1.44 ad if (new != owner) {
416 1.44 ad owner = atomic_swap_ptr(&ptm->ptm_owner, new);
417 1.44 ad if (MUTEX_HAS_WAITERS(owner) != 0) {
418 1.44 ad pthread__mutex_wakeup(self, ptm);
419 1.2 thorpej return 0;
420 1.2 thorpej }
421 1.44 ad }
422 1.44 ad
423 1.44 ad /*
424 1.44 ad * There were no waiters, but we may have deferred waking
425 1.44 ad * other threads until mutex unlock - we must wake them now.
426 1.44 ad */
427 1.44 ad if (!deferred)
428 1.44 ad return error;
429 1.44 ad
430 1.44 ad if (self->pt_nwaiters == 1) {
431 1.44 ad /*
432 1.44 ad * If the calling thread is about to block, defer
433 1.44 ad * unparking the target until _lwp_park() is called.
434 1.44 ad */
435 1.44 ad if (self->pt_willpark && self->pt_unpark == 0) {
436 1.44 ad self->pt_unpark = self->pt_waiters[0];
437 1.45 ad self->pt_unparkhint =
438 1.45 ad __UNVOLATILE(&ptm->ptm_waiters);
439 1.44 ad } else {
440 1.44 ad (void)_lwp_unpark(self->pt_waiters[0],
441 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
442 1.15 nathanw }
443 1.44 ad } else {
444 1.44 ad (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
445 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
446 1.2 thorpej }
447 1.44 ad self->pt_nwaiters = 0;
448 1.2 thorpej
449 1.44 ad return error;
450 1.44 ad }
451 1.44 ad
452 1.44 ad static void
453 1.44 ad pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
454 1.44 ad {
455 1.44 ad pthread_t thread, next;
456 1.44 ad ssize_t n, rv;
457 1.27 ad
458 1.8 nathanw /*
459 1.44 ad * Take ownership of the current set of waiters. No
460 1.44 ad * need for a memory barrier following this, all loads
461 1.44 ad * are dependent upon 'thread'.
462 1.8 nathanw */
463 1.44 ad thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
464 1.44 ad
465 1.44 ad for (;;) {
466 1.44 ad /*
467 1.44 ad * Pull waiters from the queue and add to our list.
468 1.44 ad * Use a memory barrier to ensure that we safely
469 1.44 ad * read the value of pt_nextwaiter before 'thread'
470 1.44 ad * sees pt_sleeponq being cleared.
471 1.44 ad */
472 1.44 ad for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
473 1.44 ad n < pthread__unpark_max && thread != NULL;
474 1.44 ad thread = next) {
475 1.44 ad next = thread->pt_nextwaiter;
476 1.44 ad if (thread != self) {
477 1.44 ad self->pt_waiters[n++] = thread->pt_lid;
478 1.44 ad membar_sync();
479 1.44 ad }
480 1.44 ad thread->pt_sleeponq = 0;
481 1.44 ad /* No longer safe to touch 'thread' */
482 1.44 ad }
483 1.44 ad
484 1.44 ad switch (n) {
485 1.44 ad case 0:
486 1.44 ad return;
487 1.44 ad case 1:
488 1.44 ad /*
489 1.44 ad * If the calling thread is about to block,
490 1.44 ad * defer unparking the target until _lwp_park()
491 1.44 ad * is called.
492 1.44 ad */
493 1.44 ad if (self->pt_willpark && self->pt_unpark == 0) {
494 1.44 ad self->pt_unpark = self->pt_waiters[0];
495 1.45 ad self->pt_unparkhint =
496 1.45 ad __UNVOLATILE(&ptm->ptm_waiters);
497 1.44 ad return;
498 1.44 ad }
499 1.44 ad rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
500 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
501 1.44 ad if (rv != 0 && errno != EALREADY && errno != EINTR &&
502 1.44 ad errno != ESRCH) {
503 1.44 ad pthread__errorfunc(__FILE__, __LINE__,
504 1.44 ad __func__, "_lwp_unpark failed");
505 1.44 ad }
506 1.44 ad return;
507 1.44 ad default:
508 1.44 ad rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
509 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
510 1.44 ad if (rv != 0 && errno != EINTR) {
511 1.44 ad pthread__errorfunc(__FILE__, __LINE__,
512 1.44 ad __func__, "_lwp_unpark_all failed");
513 1.44 ad }
514 1.44 ad break;
515 1.44 ad }
516 1.44 ad }
517 1.2 thorpej }
518 1.2 thorpej int
519 1.2 thorpej pthread_mutexattr_init(pthread_mutexattr_t *attr)
520 1.2 thorpej {
521 1.2 thorpej
522 1.2 thorpej attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
523 1.44 ad attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
524 1.2 thorpej return 0;
525 1.2 thorpej }
526 1.2 thorpej
527 1.2 thorpej int
528 1.2 thorpej pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
529 1.2 thorpej {
530 1.2 thorpej
531 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
532 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
533 1.2 thorpej
534 1.2 thorpej return 0;
535 1.2 thorpej }
536 1.2 thorpej
537 1.2 thorpej
538 1.2 thorpej int
539 1.2 thorpej pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
540 1.2 thorpej {
541 1.2 thorpej
542 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
543 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
544 1.2 thorpej
545 1.44 ad *typep = (int)(intptr_t)attr->ptma_private;
546 1.2 thorpej return 0;
547 1.2 thorpej }
548 1.2 thorpej
549 1.2 thorpej
550 1.2 thorpej int
551 1.2 thorpej pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
552 1.2 thorpej {
553 1.2 thorpej
554 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
555 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
556 1.13 nathanw
557 1.2 thorpej switch (type) {
558 1.2 thorpej case PTHREAD_MUTEX_NORMAL:
559 1.2 thorpej case PTHREAD_MUTEX_ERRORCHECK:
560 1.2 thorpej case PTHREAD_MUTEX_RECURSIVE:
561 1.44 ad attr->ptma_private = (void *)(intptr_t)type;
562 1.44 ad return 0;
563 1.2 thorpej default:
564 1.2 thorpej return EINVAL;
565 1.2 thorpej }
566 1.2 thorpej }
567 1.2 thorpej
568 1.2 thorpej
569 1.19 nathanw static void
570 1.19 nathanw once_cleanup(void *closure)
571 1.19 nathanw {
572 1.19 nathanw
573 1.19 nathanw pthread_mutex_unlock((pthread_mutex_t *)closure);
574 1.19 nathanw }
575 1.19 nathanw
576 1.19 nathanw
577 1.2 thorpej int
578 1.2 thorpej pthread_once(pthread_once_t *once_control, void (*routine)(void))
579 1.2 thorpej {
580 1.2 thorpej
581 1.2 thorpej if (once_control->pto_done == 0) {
582 1.2 thorpej pthread_mutex_lock(&once_control->pto_mutex);
583 1.19 nathanw pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
584 1.2 thorpej if (once_control->pto_done == 0) {
585 1.2 thorpej routine();
586 1.2 thorpej once_control->pto_done = 1;
587 1.2 thorpej }
588 1.19 nathanw pthread_cleanup_pop(1);
589 1.2 thorpej }
590 1.2 thorpej
591 1.2 thorpej return 0;
592 1.2 thorpej }
593 1.32 ad
594 1.33 ad int
595 1.44 ad pthread__mutex_deferwake(pthread_t thread, pthread_mutex_t *ptm)
596 1.33 ad {
597 1.33 ad
598 1.44 ad if (MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)thread)
599 1.44 ad return 0;
600 1.44 ad atomic_or_ulong((volatile unsigned long *)
601 1.44 ad (uintptr_t)&ptm->ptm_owner,
602 1.44 ad (unsigned long)MUTEX_DEFERRED_BIT);
603 1.44 ad return 1;
604 1.33 ad }
605 1.33 ad
606 1.39 ad int
607 1.44 ad _pthread_mutex_held_np(pthread_mutex_t *ptm)
608 1.39 ad {
609 1.39 ad
610 1.44 ad return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
611 1.39 ad }
612 1.39 ad
613 1.39 ad pthread_t
614 1.44 ad _pthread_mutex_owner_np(pthread_mutex_t *ptm)
615 1.39 ad {
616 1.39 ad
617 1.44 ad return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
618 1.39 ad }
619