Home | History | Annotate | Line # | Download | only in libpthread
pthread_mutex.c revision 1.47.2.2
      1  1.47.2.2     yamt /*	$NetBSD: pthread_mutex.c,v 1.47.2.2 2008/06/04 02:04:34 yamt Exp $	*/
      2       1.2  thorpej 
      3       1.2  thorpej /*-
      4      1.44       ad  * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5       1.2  thorpej  * All rights reserved.
      6       1.2  thorpej  *
      7       1.2  thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8      1.27       ad  * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
      9       1.2  thorpej  *
     10       1.2  thorpej  * Redistribution and use in source and binary forms, with or without
     11       1.2  thorpej  * modification, are permitted provided that the following conditions
     12       1.2  thorpej  * are met:
     13       1.2  thorpej  * 1. Redistributions of source code must retain the above copyright
     14       1.2  thorpej  *    notice, this list of conditions and the following disclaimer.
     15       1.2  thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.2  thorpej  *    notice, this list of conditions and the following disclaimer in the
     17       1.2  thorpej  *    documentation and/or other materials provided with the distribution.
     18       1.2  thorpej  *
     19       1.2  thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.2  thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.2  thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.2  thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.2  thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.2  thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.2  thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.2  thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.2  thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.2  thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.2  thorpej  * POSSIBILITY OF SUCH DAMAGE.
     30       1.2  thorpej  */
     31       1.2  thorpej 
     32  1.47.2.2     yamt /*
     33  1.47.2.2     yamt  * To track threads waiting for mutexes to be released, we use lockless
     34  1.47.2.2     yamt  * lists built on atomic operations and memory barriers.
     35  1.47.2.2     yamt  *
     36  1.47.2.2     yamt  * A simple spinlock would be faster and make the code easier to
     37  1.47.2.2     yamt  * follow, but spinlocks are problematic in userspace.  If a thread is
     38  1.47.2.2     yamt  * preempted by the kernel while holding a spinlock, any other thread
     39  1.47.2.2     yamt  * attempting to acquire that spinlock will needlessly busy wait.
     40  1.47.2.2     yamt  *
     41  1.47.2.2     yamt  * There is no good way to know that the holding thread is no longer
     42  1.47.2.2     yamt  * running, nor to request a wake-up once it has begun running again.
     43  1.47.2.2     yamt  * Of more concern, threads in the SCHED_FIFO class do not have a
     44  1.47.2.2     yamt  * limited time quantum and so could spin forever, preventing the
     45  1.47.2.2     yamt  * thread holding the spinlock from getting CPU time: it would never
     46  1.47.2.2     yamt  * be released.
     47  1.47.2.2     yamt  */
     48  1.47.2.2     yamt 
     49       1.2  thorpej #include <sys/cdefs.h>
     50  1.47.2.2     yamt __RCSID("$NetBSD: pthread_mutex.c,v 1.47.2.2 2008/06/04 02:04:34 yamt Exp $");
     51      1.40       ad 
     52      1.40       ad #include <sys/types.h>
     53      1.44       ad #include <sys/lwpctl.h>
     54      1.10    lukem 
     55       1.2  thorpej #include <errno.h>
     56       1.2  thorpej #include <limits.h>
     57       1.2  thorpej #include <stdlib.h>
     58       1.6      scw #include <string.h>
     59      1.44       ad #include <stdio.h>
     60       1.2  thorpej 
     61       1.2  thorpej #include "pthread.h"
     62       1.2  thorpej #include "pthread_int.h"
     63       1.2  thorpej 
     64      1.44       ad #define	MUTEX_WAITERS_BIT		((uintptr_t)0x01)
     65      1.44       ad #define	MUTEX_RECURSIVE_BIT		((uintptr_t)0x02)
     66      1.44       ad #define	MUTEX_DEFERRED_BIT		((uintptr_t)0x04)
     67      1.44       ad #define	MUTEX_THREAD			((uintptr_t)-16L)
     68      1.44       ad 
     69      1.44       ad #define	MUTEX_HAS_WAITERS(x)		((uintptr_t)(x) & MUTEX_WAITERS_BIT)
     70      1.44       ad #define	MUTEX_RECURSIVE(x)		((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
     71      1.44       ad #define	MUTEX_OWNER(x)			((uintptr_t)(x) & MUTEX_THREAD)
     72      1.44       ad 
     73      1.44       ad #if __GNUC_PREREQ__(3, 0)
     74      1.44       ad #define	NOINLINE		__attribute ((noinline))
     75      1.44       ad #else
     76      1.44       ad #define	NOINLINE		/* nothing */
     77      1.44       ad #endif
     78      1.44       ad 
     79      1.44       ad static void	pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
     80      1.44       ad static int	pthread__mutex_lock_slow(pthread_mutex_t *);
     81      1.44       ad static int	pthread__mutex_unlock_slow(pthread_mutex_t *);
     82      1.44       ad static void	pthread__mutex_pause(void);
     83       1.2  thorpej 
     84      1.39       ad int		_pthread_mutex_held_np(pthread_mutex_t *);
     85      1.39       ad pthread_t	_pthread_mutex_owner_np(pthread_mutex_t *);
     86      1.39       ad 
     87      1.39       ad __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
     88      1.39       ad __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
     89      1.39       ad 
     90       1.2  thorpej __strong_alias(__libc_mutex_init,pthread_mutex_init)
     91       1.2  thorpej __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
     92       1.2  thorpej __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
     93       1.2  thorpej __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
     94       1.2  thorpej __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
     95       1.4  thorpej 
     96       1.4  thorpej __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
     97       1.4  thorpej __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
     98       1.5  thorpej __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
     99       1.2  thorpej 
    100       1.2  thorpej __strong_alias(__libc_thr_once,pthread_once)
    101       1.2  thorpej 
    102       1.2  thorpej int
    103      1.44       ad pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
    104       1.2  thorpej {
    105      1.44       ad 	intptr_t type;
    106       1.2  thorpej 
    107      1.44       ad 	if (attr == NULL)
    108      1.44       ad 		type = PTHREAD_MUTEX_NORMAL;
    109      1.44       ad 	else
    110      1.44       ad 		type = (intptr_t)attr->ptma_private;
    111       1.2  thorpej 
    112      1.44       ad 	switch (type) {
    113      1.44       ad 	case PTHREAD_MUTEX_ERRORCHECK:
    114      1.44       ad 		ptm->ptm_errorcheck = 1;
    115      1.44       ad 		ptm->ptm_owner = NULL;
    116      1.44       ad 		break;
    117      1.44       ad 	case PTHREAD_MUTEX_RECURSIVE:
    118      1.44       ad 		ptm->ptm_errorcheck = 0;
    119      1.44       ad 		ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
    120      1.44       ad 		break;
    121      1.44       ad 	default:
    122      1.44       ad 		ptm->ptm_errorcheck = 0;
    123      1.44       ad 		ptm->ptm_owner = NULL;
    124      1.44       ad 		break;
    125       1.2  thorpej 	}
    126       1.2  thorpej 
    127      1.44       ad 	ptm->ptm_magic = _PT_MUTEX_MAGIC;
    128      1.44       ad 	ptm->ptm_waiters = NULL;
    129      1.45       ad 	ptm->ptm_recursed = 0;
    130       1.2  thorpej 
    131       1.2  thorpej 	return 0;
    132       1.2  thorpej }
    133       1.2  thorpej 
    134       1.2  thorpej 
    135       1.2  thorpej int
    136      1.44       ad pthread_mutex_destroy(pthread_mutex_t *ptm)
    137       1.2  thorpej {
    138       1.2  thorpej 
    139      1.14  nathanw 	pthread__error(EINVAL, "Invalid mutex",
    140      1.44       ad 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    141      1.14  nathanw 	pthread__error(EBUSY, "Destroying locked mutex",
    142      1.44       ad 	    MUTEX_OWNER(ptm->ptm_owner) == 0);
    143       1.2  thorpej 
    144      1.44       ad 	ptm->ptm_magic = _PT_MUTEX_DEAD;
    145       1.2  thorpej 	return 0;
    146       1.2  thorpej }
    147       1.2  thorpej 
    148       1.2  thorpej int
    149      1.44       ad pthread_mutex_lock(pthread_mutex_t *ptm)
    150       1.2  thorpej {
    151      1.27       ad 	pthread_t self;
    152      1.44       ad 	void *val;
    153       1.2  thorpej 
    154      1.27       ad 	self = pthread__self();
    155      1.44       ad 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    156      1.44       ad 	if (__predict_true(val == NULL)) {
    157      1.44       ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    158      1.44       ad 		membar_enter();
    159      1.44       ad #endif
    160      1.44       ad 		return 0;
    161       1.2  thorpej 	}
    162      1.44       ad 	return pthread__mutex_lock_slow(ptm);
    163      1.44       ad }
    164       1.2  thorpej 
    165      1.44       ad /* We want function call overhead. */
    166      1.44       ad NOINLINE static void
    167      1.44       ad pthread__mutex_pause(void)
    168      1.44       ad {
    169       1.2  thorpej 
    170      1.44       ad 	pthread__smt_pause();
    171       1.2  thorpej }
    172       1.2  thorpej 
    173      1.44       ad /*
    174      1.44       ad  * Spin while the holder is running.  'lwpctl' gives us the true
    175      1.44       ad  * status of the thread.  pt_blocking is set by libpthread in order
    176      1.44       ad  * to cut out system call and kernel spinlock overhead on remote CPUs
    177      1.44       ad  * (could represent many thousands of clock cycles).  pt_blocking also
    178      1.44       ad  * makes this thread yield if the target is calling sched_yield().
    179      1.44       ad  */
    180      1.44       ad NOINLINE static void *
    181      1.44       ad pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
    182      1.44       ad {
    183      1.44       ad 	pthread_t thread;
    184      1.44       ad 	unsigned int count, i;
    185      1.44       ad 
    186      1.44       ad 	for (count = 2;; owner = ptm->ptm_owner) {
    187      1.44       ad 		thread = (pthread_t)MUTEX_OWNER(owner);
    188      1.44       ad 		if (thread == NULL)
    189      1.44       ad 			break;
    190      1.44       ad 		if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
    191      1.44       ad 		    thread->pt_blocking)
    192      1.44       ad 			break;
    193      1.44       ad 		if (count < 128)
    194      1.44       ad 			count += count;
    195      1.44       ad 		for (i = count; i != 0; i--)
    196      1.44       ad 			pthread__mutex_pause();
    197      1.44       ad 	}
    198       1.2  thorpej 
    199      1.44       ad 	return owner;
    200      1.44       ad }
    201      1.44       ad 
    202      1.44       ad NOINLINE static int
    203      1.44       ad pthread__mutex_lock_slow(pthread_mutex_t *ptm)
    204       1.2  thorpej {
    205      1.44       ad 	void *waiters, *new, *owner, *next;
    206      1.44       ad 	pthread_t self;
    207       1.2  thorpej 
    208      1.14  nathanw 	pthread__error(EINVAL, "Invalid mutex",
    209      1.44       ad 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    210      1.44       ad 
    211      1.44       ad 	owner = ptm->ptm_owner;
    212      1.44       ad 	self = pthread__self();
    213      1.13  nathanw 
    214      1.44       ad 	/* Recursive or errorcheck? */
    215      1.44       ad 	if (MUTEX_OWNER(owner) == (uintptr_t)self) {
    216      1.44       ad 		if (MUTEX_RECURSIVE(owner)) {
    217      1.45       ad 			if (ptm->ptm_recursed == INT_MAX)
    218      1.44       ad 				return EAGAIN;
    219      1.45       ad 			ptm->ptm_recursed++;
    220      1.44       ad 			return 0;
    221      1.29       ad 		}
    222      1.44       ad 		if (ptm->ptm_errorcheck)
    223      1.44       ad 			return EDEADLK;
    224      1.44       ad 	}
    225      1.29       ad 
    226      1.44       ad 	for (;; owner = ptm->ptm_owner) {
    227      1.44       ad 		/* Spin while the owner is running. */
    228      1.44       ad 		owner = pthread__mutex_spin(ptm, owner);
    229      1.44       ad 
    230      1.44       ad 		/* If it has become free, try to acquire it again. */
    231      1.44       ad 		if (MUTEX_OWNER(owner) == 0) {
    232      1.47       ad 			do {
    233      1.44       ad 				new = (void *)
    234      1.44       ad 				    ((uintptr_t)self | (uintptr_t)owner);
    235      1.44       ad 				next = atomic_cas_ptr(&ptm->ptm_owner, owner,
    236      1.44       ad 				    new);
    237      1.44       ad 				if (next == owner) {
    238      1.44       ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    239      1.44       ad 					membar_enter();
    240      1.44       ad #endif
    241      1.44       ad 					return 0;
    242      1.44       ad 				}
    243      1.47       ad 				owner = next;
    244      1.47       ad 			} while (MUTEX_OWNER(owner) == 0);
    245      1.44       ad 			/*
    246      1.44       ad 			 * We have lost the race to acquire the mutex.
    247      1.44       ad 			 * The new owner could be running on another
    248      1.44       ad 			 * CPU, in which case we should spin and avoid
    249      1.44       ad 			 * the overhead of blocking.
    250      1.44       ad 			 */
    251      1.47       ad 			continue;
    252      1.44       ad 		}
    253      1.21      chs 
    254       1.2  thorpej 		/*
    255      1.44       ad 		 * Nope, still held.  Add thread to the list of waiters.
    256  1.47.2.2     yamt 		 * Issue a memory barrier to ensure mutexwait/mutexnext
    257      1.44       ad 		 * are visible before we enter the waiters list.
    258       1.2  thorpej 		 */
    259  1.47.2.2     yamt 		self->pt_mutexwait = 1;
    260      1.44       ad 		for (waiters = ptm->ptm_waiters;; waiters = next) {
    261  1.47.2.2     yamt 			self->pt_mutexnext = waiters;
    262      1.44       ad 			membar_producer();
    263      1.44       ad 			next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
    264      1.44       ad 			if (next == waiters)
    265      1.44       ad 			    	break;
    266      1.44       ad 		}
    267      1.21      chs 
    268      1.44       ad 		/*
    269      1.44       ad 		 * Set the waiters bit and block.
    270      1.44       ad 		 *
    271      1.44       ad 		 * Note that the mutex can become unlocked before we set
    272      1.44       ad 		 * the waiters bit.  If that happens it's not safe to sleep
    273      1.44       ad 		 * as we may never be awoken: we must remove the current
    274      1.44       ad 		 * thread from the waiters list and try again.
    275      1.44       ad 		 *
    276      1.44       ad 		 * Because we are doing this atomically, we can't remove
    277      1.44       ad 		 * one waiter: we must remove all waiters and awken them,
    278      1.44       ad 		 * then sleep in _lwp_park() until we have been awoken.
    279      1.44       ad 		 *
    280      1.44       ad 		 * Issue a memory barrier to ensure that we are reading
    281  1.47.2.2     yamt 		 * the value of ptm_owner/pt_mutexwait after we have entered
    282      1.44       ad 		 * the waiters list (the CAS itself must be atomic).
    283      1.44       ad 		 */
    284      1.44       ad 		membar_consumer();
    285      1.44       ad 		for (owner = ptm->ptm_owner;; owner = next) {
    286      1.44       ad 			if (MUTEX_HAS_WAITERS(owner))
    287      1.44       ad 				break;
    288      1.44       ad 			if (MUTEX_OWNER(owner) == 0) {
    289      1.44       ad 				pthread__mutex_wakeup(self, ptm);
    290      1.44       ad 				break;
    291      1.44       ad 			}
    292      1.44       ad 			new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
    293      1.44       ad 			next = atomic_cas_ptr(&ptm->ptm_owner, owner, new);
    294      1.44       ad 			if (next == owner) {
    295      1.21      chs 				/*
    296      1.44       ad 				 * pthread_mutex_unlock() can do a
    297      1.44       ad 				 * non-interlocked CAS.  We cannot
    298      1.44       ad 				 * know if our attempt to set the
    299      1.44       ad 				 * waiters bit has succeeded while
    300      1.44       ad 				 * the holding thread is running.
    301      1.44       ad 				 * There are many assumptions; see
    302      1.44       ad 				 * sys/kern/kern_mutex.c for details.
    303      1.44       ad 				 * In short, we must spin if we see
    304      1.44       ad 				 * that the holder is running again.
    305      1.21      chs 				 */
    306      1.44       ad 				membar_sync();
    307      1.44       ad 				next = pthread__mutex_spin(ptm, owner);
    308      1.21      chs 			}
    309      1.29       ad 		}
    310      1.21      chs 
    311      1.29       ad 		/*
    312      1.44       ad 		 * We may have been awoken by the current thread above,
    313      1.44       ad 		 * or will be awoken by the current holder of the mutex.
    314      1.44       ad 		 * The key requirement is that we must not proceed until
    315  1.47.2.2     yamt 		 * told that we are no longer waiting (via pt_mutexwait
    316      1.44       ad 		 * being set to zero).  Otherwise it is unsafe to re-enter
    317      1.44       ad 		 * the thread onto the waiters list.
    318      1.29       ad 		 */
    319  1.47.2.2     yamt 		while (self->pt_mutexwait) {
    320      1.44       ad 			self->pt_blocking++;
    321  1.47.2.2     yamt 			(void)_lwp_park(NULL, self->pt_unpark,
    322  1.47.2.2     yamt 			    __UNVOLATILE(&ptm->ptm_waiters),
    323  1.47.2.2     yamt 			    __UNVOLATILE(&ptm->ptm_waiters));
    324  1.47.2.2     yamt 			self->pt_unpark = 0;
    325      1.44       ad 			self->pt_blocking--;
    326      1.44       ad 			membar_sync();
    327      1.44       ad 		}
    328       1.2  thorpej 	}
    329       1.2  thorpej }
    330       1.2  thorpej 
    331       1.2  thorpej int
    332      1.44       ad pthread_mutex_trylock(pthread_mutex_t *ptm)
    333       1.2  thorpej {
    334      1.27       ad 	pthread_t self;
    335      1.46       ad 	void *val, *new, *next;
    336       1.2  thorpej 
    337      1.27       ad 	self = pthread__self();
    338      1.44       ad 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    339      1.44       ad 	if (__predict_true(val == NULL)) {
    340      1.44       ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    341      1.44       ad 		membar_enter();
    342      1.44       ad #endif
    343      1.44       ad 		return 0;
    344      1.44       ad 	}
    345      1.27       ad 
    346      1.46       ad 	if (MUTEX_RECURSIVE(val)) {
    347      1.46       ad 		if (MUTEX_OWNER(val) == 0) {
    348      1.46       ad 			new = (void *)((uintptr_t)self | (uintptr_t)val);
    349      1.46       ad 			next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
    350      1.46       ad 			if (__predict_true(next == val)) {
    351      1.46       ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    352      1.46       ad 				membar_enter();
    353      1.46       ad #endif
    354      1.46       ad 				return 0;
    355      1.46       ad 			}
    356      1.46       ad 		}
    357      1.46       ad 		if (MUTEX_OWNER(val) == (uintptr_t)self) {
    358      1.46       ad 			if (ptm->ptm_recursed == INT_MAX)
    359      1.46       ad 				return EAGAIN;
    360      1.46       ad 			ptm->ptm_recursed++;
    361      1.46       ad 			return 0;
    362      1.46       ad 		}
    363       1.2  thorpej 	}
    364       1.2  thorpej 
    365      1.44       ad 	return EBUSY;
    366       1.2  thorpej }
    367       1.2  thorpej 
    368       1.2  thorpej int
    369      1.44       ad pthread_mutex_unlock(pthread_mutex_t *ptm)
    370       1.2  thorpej {
    371      1.27       ad 	pthread_t self;
    372      1.44       ad 	void *value;
    373      1.44       ad 
    374      1.44       ad 	/*
    375      1.44       ad 	 * Note this may be a non-interlocked CAS.  See lock_slow()
    376      1.44       ad 	 * above and sys/kern/kern_mutex.c for details.
    377      1.44       ad 	 */
    378      1.44       ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    379      1.44       ad 	membar_exit();
    380      1.44       ad #endif
    381      1.44       ad 	self = pthread__self();
    382      1.44       ad 	value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
    383      1.44       ad 	if (__predict_true(value == self))
    384      1.44       ad 		return 0;
    385      1.44       ad 	return pthread__mutex_unlock_slow(ptm);
    386      1.44       ad }
    387      1.44       ad 
    388      1.44       ad NOINLINE static int
    389      1.44       ad pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
    390      1.44       ad {
    391      1.44       ad 	pthread_t self, owner, new;
    392      1.44       ad 	int weown, error, deferred;
    393      1.13  nathanw 
    394      1.14  nathanw 	pthread__error(EINVAL, "Invalid mutex",
    395      1.44       ad 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    396      1.44       ad 
    397      1.44       ad 	self = pthread__self();
    398      1.44       ad 	owner = ptm->ptm_owner;
    399      1.44       ad 	weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
    400      1.44       ad 	deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
    401      1.44       ad 	error = 0;
    402      1.44       ad 
    403      1.44       ad 	if (ptm->ptm_errorcheck) {
    404      1.44       ad 		if (!weown) {
    405      1.44       ad 			error = EPERM;
    406      1.44       ad 			new = owner;
    407      1.44       ad 		} else {
    408      1.44       ad 			new = NULL;
    409      1.44       ad 		}
    410      1.44       ad 	} else if (MUTEX_RECURSIVE(owner)) {
    411      1.44       ad 		if (!weown) {
    412      1.44       ad 			error = EPERM;
    413      1.44       ad 			new = owner;
    414      1.45       ad 		} else if (ptm->ptm_recursed) {
    415      1.45       ad 			ptm->ptm_recursed--;
    416      1.44       ad 			new = owner;
    417      1.44       ad 		} else {
    418      1.44       ad 			new = (pthread_t)MUTEX_RECURSIVE_BIT;
    419      1.44       ad 		}
    420      1.44       ad 	} else {
    421      1.44       ad 		pthread__error(EPERM,
    422      1.44       ad 		    "Unlocking unlocked mutex", (owner != NULL));
    423      1.44       ad 		pthread__error(EPERM,
    424      1.44       ad 		    "Unlocking mutex owned by another thread", weown);
    425      1.44       ad 		new = NULL;
    426      1.44       ad 	}
    427       1.2  thorpej 
    428       1.2  thorpej 	/*
    429      1.44       ad 	 * Release the mutex.  If there appear to be waiters, then
    430      1.44       ad 	 * wake them up.
    431       1.2  thorpej 	 */
    432      1.44       ad 	if (new != owner) {
    433      1.44       ad 		owner = atomic_swap_ptr(&ptm->ptm_owner, new);
    434      1.44       ad 		if (MUTEX_HAS_WAITERS(owner) != 0) {
    435      1.44       ad 			pthread__mutex_wakeup(self, ptm);
    436       1.2  thorpej 			return 0;
    437       1.2  thorpej 		}
    438      1.44       ad 	}
    439      1.44       ad 
    440      1.44       ad 	/*
    441      1.44       ad 	 * There were no waiters, but we may have deferred waking
    442      1.44       ad 	 * other threads until mutex unlock - we must wake them now.
    443      1.44       ad 	 */
    444      1.44       ad 	if (!deferred)
    445      1.44       ad 		return error;
    446      1.44       ad 
    447      1.44       ad 	if (self->pt_nwaiters == 1) {
    448      1.44       ad 		/*
    449      1.44       ad 		 * If the calling thread is about to block, defer
    450      1.44       ad 		 * unparking the target until _lwp_park() is called.
    451      1.44       ad 		 */
    452      1.44       ad 		if (self->pt_willpark && self->pt_unpark == 0) {
    453      1.44       ad 			self->pt_unpark = self->pt_waiters[0];
    454      1.44       ad 		} else {
    455      1.44       ad 			(void)_lwp_unpark(self->pt_waiters[0],
    456      1.45       ad 			    __UNVOLATILE(&ptm->ptm_waiters));
    457      1.15  nathanw 		}
    458      1.44       ad 	} else {
    459      1.44       ad 		(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    460      1.45       ad 		    __UNVOLATILE(&ptm->ptm_waiters));
    461       1.2  thorpej 	}
    462      1.44       ad 	self->pt_nwaiters = 0;
    463       1.2  thorpej 
    464      1.44       ad 	return error;
    465      1.44       ad }
    466      1.44       ad 
    467      1.44       ad static void
    468      1.44       ad pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
    469      1.44       ad {
    470      1.44       ad 	pthread_t thread, next;
    471      1.44       ad 	ssize_t n, rv;
    472      1.27       ad 
    473       1.8  nathanw 	/*
    474      1.44       ad 	 * Take ownership of the current set of waiters.  No
    475      1.44       ad 	 * need for a memory barrier following this, all loads
    476      1.44       ad 	 * are dependent upon 'thread'.
    477       1.8  nathanw 	 */
    478      1.44       ad 	thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
    479      1.44       ad 
    480      1.44       ad 	for (;;) {
    481      1.44       ad 		/*
    482      1.44       ad 		 * Pull waiters from the queue and add to our list.
    483      1.44       ad 		 * Use a memory barrier to ensure that we safely
    484  1.47.2.2     yamt 		 * read the value of pt_mutexnext before 'thread'
    485  1.47.2.2     yamt 		 * sees pt_mutexwait being cleared.
    486      1.44       ad 		 */
    487      1.44       ad 		for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
    488      1.44       ad 		    n < pthread__unpark_max && thread != NULL;
    489      1.44       ad 		    thread = next) {
    490  1.47.2.2     yamt 		    	next = thread->pt_mutexnext;
    491      1.44       ad 		    	if (thread != self) {
    492      1.44       ad 				self->pt_waiters[n++] = thread->pt_lid;
    493      1.44       ad 				membar_sync();
    494      1.44       ad 			}
    495  1.47.2.2     yamt 			thread->pt_mutexwait = 0;
    496      1.44       ad 			/* No longer safe to touch 'thread' */
    497      1.44       ad 		}
    498      1.44       ad 
    499      1.44       ad 		switch (n) {
    500      1.44       ad 		case 0:
    501      1.44       ad 			return;
    502      1.44       ad 		case 1:
    503      1.44       ad 			/*
    504      1.44       ad 			 * If the calling thread is about to block,
    505      1.44       ad 			 * defer unparking the target until _lwp_park()
    506      1.44       ad 			 * is called.
    507      1.44       ad 			 */
    508      1.44       ad 			if (self->pt_willpark && self->pt_unpark == 0) {
    509      1.44       ad 				self->pt_unpark = self->pt_waiters[0];
    510      1.44       ad 				return;
    511      1.44       ad 			}
    512      1.44       ad 			rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
    513      1.45       ad 			    __UNVOLATILE(&ptm->ptm_waiters));
    514      1.44       ad 			if (rv != 0 && errno != EALREADY && errno != EINTR &&
    515      1.44       ad 			    errno != ESRCH) {
    516      1.44       ad 				pthread__errorfunc(__FILE__, __LINE__,
    517      1.44       ad 				    __func__, "_lwp_unpark failed");
    518      1.44       ad 			}
    519      1.44       ad 			return;
    520      1.44       ad 		default:
    521      1.44       ad 			rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
    522      1.45       ad 			    __UNVOLATILE(&ptm->ptm_waiters));
    523      1.44       ad 			if (rv != 0 && errno != EINTR) {
    524      1.44       ad 				pthread__errorfunc(__FILE__, __LINE__,
    525      1.44       ad 				    __func__, "_lwp_unpark_all failed");
    526      1.44       ad 			}
    527      1.44       ad 			break;
    528      1.44       ad 		}
    529      1.44       ad 	}
    530       1.2  thorpej }
    531       1.2  thorpej int
    532       1.2  thorpej pthread_mutexattr_init(pthread_mutexattr_t *attr)
    533       1.2  thorpej {
    534       1.2  thorpej 
    535       1.2  thorpej 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
    536      1.44       ad 	attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
    537       1.2  thorpej 	return 0;
    538       1.2  thorpej }
    539       1.2  thorpej 
    540       1.2  thorpej int
    541       1.2  thorpej pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
    542       1.2  thorpej {
    543       1.2  thorpej 
    544      1.14  nathanw 	pthread__error(EINVAL, "Invalid mutex attribute",
    545      1.14  nathanw 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    546       1.2  thorpej 
    547       1.2  thorpej 	return 0;
    548       1.2  thorpej }
    549       1.2  thorpej 
    550       1.2  thorpej 
    551       1.2  thorpej int
    552       1.2  thorpej pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
    553       1.2  thorpej {
    554       1.2  thorpej 
    555      1.14  nathanw 	pthread__error(EINVAL, "Invalid mutex attribute",
    556      1.14  nathanw 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    557       1.2  thorpej 
    558      1.44       ad 	*typep = (int)(intptr_t)attr->ptma_private;
    559       1.2  thorpej 	return 0;
    560       1.2  thorpej }
    561       1.2  thorpej 
    562       1.2  thorpej 
    563       1.2  thorpej int
    564       1.2  thorpej pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
    565       1.2  thorpej {
    566       1.2  thorpej 
    567      1.14  nathanw 	pthread__error(EINVAL, "Invalid mutex attribute",
    568      1.14  nathanw 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    569      1.13  nathanw 
    570       1.2  thorpej 	switch (type) {
    571       1.2  thorpej 	case PTHREAD_MUTEX_NORMAL:
    572       1.2  thorpej 	case PTHREAD_MUTEX_ERRORCHECK:
    573       1.2  thorpej 	case PTHREAD_MUTEX_RECURSIVE:
    574      1.44       ad 		attr->ptma_private = (void *)(intptr_t)type;
    575      1.44       ad 		return 0;
    576       1.2  thorpej 	default:
    577       1.2  thorpej 		return EINVAL;
    578       1.2  thorpej 	}
    579       1.2  thorpej }
    580       1.2  thorpej 
    581       1.2  thorpej 
    582      1.19  nathanw static void
    583      1.19  nathanw once_cleanup(void *closure)
    584      1.19  nathanw {
    585      1.19  nathanw 
    586      1.19  nathanw        pthread_mutex_unlock((pthread_mutex_t *)closure);
    587      1.19  nathanw }
    588      1.19  nathanw 
    589      1.19  nathanw 
    590       1.2  thorpej int
    591       1.2  thorpej pthread_once(pthread_once_t *once_control, void (*routine)(void))
    592       1.2  thorpej {
    593       1.2  thorpej 
    594       1.2  thorpej 	if (once_control->pto_done == 0) {
    595       1.2  thorpej 		pthread_mutex_lock(&once_control->pto_mutex);
    596      1.19  nathanw 		pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
    597       1.2  thorpej 		if (once_control->pto_done == 0) {
    598       1.2  thorpej 			routine();
    599       1.2  thorpej 			once_control->pto_done = 1;
    600       1.2  thorpej 		}
    601      1.19  nathanw 		pthread_cleanup_pop(1);
    602       1.2  thorpej 	}
    603       1.2  thorpej 
    604       1.2  thorpej 	return 0;
    605       1.2  thorpej }
    606      1.32       ad 
    607  1.47.2.2     yamt void
    608  1.47.2.2     yamt pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
    609      1.33       ad {
    610      1.33       ad 
    611  1.47.2.2     yamt 	if (__predict_false(ptm == NULL ||
    612  1.47.2.2     yamt 	    MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
    613  1.47.2.2     yamt 	    	(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    614  1.47.2.2     yamt 	    	    __UNVOLATILE(&ptm->ptm_waiters));
    615  1.47.2.2     yamt 	    	self->pt_nwaiters = 0;
    616  1.47.2.2     yamt 	} else {
    617  1.47.2.2     yamt 		atomic_or_ulong((volatile unsigned long *)
    618  1.47.2.2     yamt 		    (uintptr_t)&ptm->ptm_owner,
    619  1.47.2.2     yamt 		    (unsigned long)MUTEX_DEFERRED_BIT);
    620  1.47.2.2     yamt 	}
    621      1.33       ad }
    622      1.33       ad 
    623      1.39       ad int
    624      1.44       ad _pthread_mutex_held_np(pthread_mutex_t *ptm)
    625      1.39       ad {
    626      1.39       ad 
    627      1.44       ad 	return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
    628      1.39       ad }
    629      1.39       ad 
    630      1.39       ad pthread_t
    631      1.44       ad _pthread_mutex_owner_np(pthread_mutex_t *ptm)
    632      1.39       ad {
    633      1.39       ad 
    634      1.44       ad 	return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
    635      1.39       ad }
    636