pthread_mutex.c revision 1.49 1 1.49 ad /* $NetBSD: pthread_mutex.c,v 1.49 2008/05/25 12:29:59 ad Exp $ */
2 1.2 thorpej
3 1.2 thorpej /*-
4 1.44 ad * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 thorpej * All rights reserved.
6 1.2 thorpej *
7 1.2 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.27 ad * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 1.2 thorpej *
10 1.2 thorpej * Redistribution and use in source and binary forms, with or without
11 1.2 thorpej * modification, are permitted provided that the following conditions
12 1.2 thorpej * are met:
13 1.2 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.2 thorpej * notice, this list of conditions and the following disclaimer.
15 1.2 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.2 thorpej * documentation and/or other materials provided with the distribution.
18 1.2 thorpej *
19 1.2 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.2 thorpej */
31 1.2 thorpej
32 1.49 ad /*
33 1.49 ad * To track threads waiting for mutexes to be released, we use lockless
34 1.49 ad * lists built on atomic operations and memory barriers.
35 1.49 ad *
36 1.49 ad * A simple spinlock would be faster and make the code easier to
37 1.49 ad * follow, but spinlocks are problematic in userspace. If a thread is
38 1.49 ad * preempted by the kernel while holding a spinlock, any other thread
39 1.49 ad * attempting to acquire that spinlock will needlessly busy wait.
40 1.49 ad *
41 1.49 ad * There is no good way to know that the holding thread is no longer
42 1.49 ad * running, nor to request a wake-up once it has begun running again.
43 1.49 ad * Of more concern, threads in the SCHED_FIFO class do not have a
44 1.49 ad * limited time quantum and so could spin forever, preventing the
45 1.49 ad * thread holding the spinlock from getting CPU time: it would never
46 1.49 ad * be released.
47 1.49 ad */
48 1.49 ad
49 1.2 thorpej #include <sys/cdefs.h>
50 1.49 ad __RCSID("$NetBSD: pthread_mutex.c,v 1.49 2008/05/25 12:29:59 ad Exp $");
51 1.40 ad
52 1.40 ad #include <sys/types.h>
53 1.44 ad #include <sys/lwpctl.h>
54 1.10 lukem
55 1.2 thorpej #include <errno.h>
56 1.2 thorpej #include <limits.h>
57 1.2 thorpej #include <stdlib.h>
58 1.6 scw #include <string.h>
59 1.44 ad #include <stdio.h>
60 1.2 thorpej
61 1.2 thorpej #include "pthread.h"
62 1.2 thorpej #include "pthread_int.h"
63 1.2 thorpej
64 1.44 ad #define pt_nextwaiter pt_sleep.ptqe_next
65 1.44 ad
66 1.44 ad #define MUTEX_WAITERS_BIT ((uintptr_t)0x01)
67 1.44 ad #define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02)
68 1.44 ad #define MUTEX_DEFERRED_BIT ((uintptr_t)0x04)
69 1.44 ad #define MUTEX_THREAD ((uintptr_t)-16L)
70 1.44 ad
71 1.44 ad #define MUTEX_HAS_WAITERS(x) ((uintptr_t)(x) & MUTEX_WAITERS_BIT)
72 1.44 ad #define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
73 1.44 ad #define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD)
74 1.44 ad
75 1.44 ad #if __GNUC_PREREQ__(3, 0)
76 1.44 ad #define NOINLINE __attribute ((noinline))
77 1.44 ad #else
78 1.44 ad #define NOINLINE /* nothing */
79 1.44 ad #endif
80 1.44 ad
81 1.44 ad static void pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
82 1.44 ad static int pthread__mutex_lock_slow(pthread_mutex_t *);
83 1.44 ad static int pthread__mutex_unlock_slow(pthread_mutex_t *);
84 1.44 ad static void pthread__mutex_pause(void);
85 1.2 thorpej
86 1.39 ad int _pthread_mutex_held_np(pthread_mutex_t *);
87 1.39 ad pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
88 1.39 ad
89 1.39 ad __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
90 1.39 ad __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
91 1.39 ad
92 1.2 thorpej __strong_alias(__libc_mutex_init,pthread_mutex_init)
93 1.2 thorpej __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
94 1.2 thorpej __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
95 1.2 thorpej __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
96 1.2 thorpej __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
97 1.4 thorpej
98 1.4 thorpej __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
99 1.4 thorpej __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
100 1.5 thorpej __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
101 1.2 thorpej
102 1.2 thorpej __strong_alias(__libc_thr_once,pthread_once)
103 1.2 thorpej
104 1.2 thorpej int
105 1.44 ad pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
106 1.2 thorpej {
107 1.44 ad intptr_t type;
108 1.2 thorpej
109 1.44 ad if (attr == NULL)
110 1.44 ad type = PTHREAD_MUTEX_NORMAL;
111 1.44 ad else
112 1.44 ad type = (intptr_t)attr->ptma_private;
113 1.2 thorpej
114 1.44 ad switch (type) {
115 1.44 ad case PTHREAD_MUTEX_ERRORCHECK:
116 1.44 ad ptm->ptm_errorcheck = 1;
117 1.44 ad ptm->ptm_owner = NULL;
118 1.44 ad break;
119 1.44 ad case PTHREAD_MUTEX_RECURSIVE:
120 1.44 ad ptm->ptm_errorcheck = 0;
121 1.44 ad ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
122 1.44 ad break;
123 1.44 ad default:
124 1.44 ad ptm->ptm_errorcheck = 0;
125 1.44 ad ptm->ptm_owner = NULL;
126 1.44 ad break;
127 1.2 thorpej }
128 1.2 thorpej
129 1.44 ad ptm->ptm_magic = _PT_MUTEX_MAGIC;
130 1.44 ad ptm->ptm_waiters = NULL;
131 1.45 ad ptm->ptm_recursed = 0;
132 1.2 thorpej
133 1.2 thorpej return 0;
134 1.2 thorpej }
135 1.2 thorpej
136 1.2 thorpej
137 1.2 thorpej int
138 1.44 ad pthread_mutex_destroy(pthread_mutex_t *ptm)
139 1.2 thorpej {
140 1.2 thorpej
141 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
142 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
143 1.14 nathanw pthread__error(EBUSY, "Destroying locked mutex",
144 1.44 ad MUTEX_OWNER(ptm->ptm_owner) == 0);
145 1.2 thorpej
146 1.44 ad ptm->ptm_magic = _PT_MUTEX_DEAD;
147 1.2 thorpej return 0;
148 1.2 thorpej }
149 1.2 thorpej
150 1.2 thorpej int
151 1.44 ad pthread_mutex_lock(pthread_mutex_t *ptm)
152 1.2 thorpej {
153 1.27 ad pthread_t self;
154 1.44 ad void *val;
155 1.2 thorpej
156 1.27 ad self = pthread__self();
157 1.44 ad val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
158 1.44 ad if (__predict_true(val == NULL)) {
159 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
160 1.44 ad membar_enter();
161 1.44 ad #endif
162 1.44 ad return 0;
163 1.2 thorpej }
164 1.44 ad return pthread__mutex_lock_slow(ptm);
165 1.44 ad }
166 1.2 thorpej
167 1.44 ad /* We want function call overhead. */
168 1.44 ad NOINLINE static void
169 1.44 ad pthread__mutex_pause(void)
170 1.44 ad {
171 1.2 thorpej
172 1.44 ad pthread__smt_pause();
173 1.2 thorpej }
174 1.2 thorpej
175 1.44 ad /*
176 1.44 ad * Spin while the holder is running. 'lwpctl' gives us the true
177 1.44 ad * status of the thread. pt_blocking is set by libpthread in order
178 1.44 ad * to cut out system call and kernel spinlock overhead on remote CPUs
179 1.44 ad * (could represent many thousands of clock cycles). pt_blocking also
180 1.44 ad * makes this thread yield if the target is calling sched_yield().
181 1.44 ad */
182 1.44 ad NOINLINE static void *
183 1.44 ad pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
184 1.44 ad {
185 1.44 ad pthread_t thread;
186 1.44 ad unsigned int count, i;
187 1.44 ad
188 1.44 ad for (count = 2;; owner = ptm->ptm_owner) {
189 1.44 ad thread = (pthread_t)MUTEX_OWNER(owner);
190 1.44 ad if (thread == NULL)
191 1.44 ad break;
192 1.44 ad if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
193 1.44 ad thread->pt_blocking)
194 1.44 ad break;
195 1.44 ad if (count < 128)
196 1.44 ad count += count;
197 1.44 ad for (i = count; i != 0; i--)
198 1.44 ad pthread__mutex_pause();
199 1.44 ad }
200 1.2 thorpej
201 1.44 ad return owner;
202 1.44 ad }
203 1.44 ad
204 1.44 ad NOINLINE static int
205 1.44 ad pthread__mutex_lock_slow(pthread_mutex_t *ptm)
206 1.2 thorpej {
207 1.44 ad void *waiters, *new, *owner, *next;
208 1.44 ad pthread_t self;
209 1.2 thorpej
210 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
211 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
212 1.44 ad
213 1.44 ad owner = ptm->ptm_owner;
214 1.44 ad self = pthread__self();
215 1.13 nathanw
216 1.44 ad /* Recursive or errorcheck? */
217 1.44 ad if (MUTEX_OWNER(owner) == (uintptr_t)self) {
218 1.44 ad if (MUTEX_RECURSIVE(owner)) {
219 1.45 ad if (ptm->ptm_recursed == INT_MAX)
220 1.44 ad return EAGAIN;
221 1.45 ad ptm->ptm_recursed++;
222 1.44 ad return 0;
223 1.29 ad }
224 1.44 ad if (ptm->ptm_errorcheck)
225 1.44 ad return EDEADLK;
226 1.44 ad }
227 1.29 ad
228 1.44 ad for (;; owner = ptm->ptm_owner) {
229 1.44 ad /* Spin while the owner is running. */
230 1.44 ad owner = pthread__mutex_spin(ptm, owner);
231 1.44 ad
232 1.44 ad /* If it has become free, try to acquire it again. */
233 1.44 ad if (MUTEX_OWNER(owner) == 0) {
234 1.47 ad do {
235 1.44 ad new = (void *)
236 1.44 ad ((uintptr_t)self | (uintptr_t)owner);
237 1.44 ad next = atomic_cas_ptr(&ptm->ptm_owner, owner,
238 1.44 ad new);
239 1.44 ad if (next == owner) {
240 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
241 1.44 ad membar_enter();
242 1.44 ad #endif
243 1.44 ad return 0;
244 1.44 ad }
245 1.47 ad owner = next;
246 1.47 ad } while (MUTEX_OWNER(owner) == 0);
247 1.44 ad /*
248 1.44 ad * We have lost the race to acquire the mutex.
249 1.44 ad * The new owner could be running on another
250 1.44 ad * CPU, in which case we should spin and avoid
251 1.44 ad * the overhead of blocking.
252 1.44 ad */
253 1.47 ad continue;
254 1.44 ad }
255 1.21 chs
256 1.2 thorpej /*
257 1.44 ad * Nope, still held. Add thread to the list of waiters.
258 1.44 ad * Issue a memory barrier to ensure sleeponq/nextwaiter
259 1.44 ad * are visible before we enter the waiters list.
260 1.2 thorpej */
261 1.44 ad self->pt_sleeponq = 1;
262 1.44 ad for (waiters = ptm->ptm_waiters;; waiters = next) {
263 1.44 ad self->pt_nextwaiter = waiters;
264 1.44 ad membar_producer();
265 1.44 ad next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
266 1.44 ad if (next == waiters)
267 1.44 ad break;
268 1.44 ad }
269 1.21 chs
270 1.44 ad /*
271 1.44 ad * Set the waiters bit and block.
272 1.44 ad *
273 1.44 ad * Note that the mutex can become unlocked before we set
274 1.44 ad * the waiters bit. If that happens it's not safe to sleep
275 1.44 ad * as we may never be awoken: we must remove the current
276 1.44 ad * thread from the waiters list and try again.
277 1.44 ad *
278 1.44 ad * Because we are doing this atomically, we can't remove
279 1.44 ad * one waiter: we must remove all waiters and awken them,
280 1.44 ad * then sleep in _lwp_park() until we have been awoken.
281 1.44 ad *
282 1.44 ad * Issue a memory barrier to ensure that we are reading
283 1.44 ad * the value of ptm_owner/pt_sleeponq after we have entered
284 1.44 ad * the waiters list (the CAS itself must be atomic).
285 1.44 ad */
286 1.44 ad membar_consumer();
287 1.44 ad for (owner = ptm->ptm_owner;; owner = next) {
288 1.44 ad if (MUTEX_HAS_WAITERS(owner))
289 1.44 ad break;
290 1.44 ad if (MUTEX_OWNER(owner) == 0) {
291 1.44 ad pthread__mutex_wakeup(self, ptm);
292 1.44 ad break;
293 1.44 ad }
294 1.44 ad new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
295 1.44 ad next = atomic_cas_ptr(&ptm->ptm_owner, owner, new);
296 1.44 ad if (next == owner) {
297 1.21 chs /*
298 1.44 ad * pthread_mutex_unlock() can do a
299 1.44 ad * non-interlocked CAS. We cannot
300 1.44 ad * know if our attempt to set the
301 1.44 ad * waiters bit has succeeded while
302 1.44 ad * the holding thread is running.
303 1.44 ad * There are many assumptions; see
304 1.44 ad * sys/kern/kern_mutex.c for details.
305 1.44 ad * In short, we must spin if we see
306 1.44 ad * that the holder is running again.
307 1.21 chs */
308 1.44 ad membar_sync();
309 1.44 ad next = pthread__mutex_spin(ptm, owner);
310 1.21 chs }
311 1.29 ad }
312 1.21 chs
313 1.29 ad /*
314 1.44 ad * We may have been awoken by the current thread above,
315 1.44 ad * or will be awoken by the current holder of the mutex.
316 1.44 ad * The key requirement is that we must not proceed until
317 1.44 ad * told that we are no longer waiting (via pt_sleeponq
318 1.44 ad * being set to zero). Otherwise it is unsafe to re-enter
319 1.44 ad * the thread onto the waiters list.
320 1.29 ad */
321 1.44 ad while (self->pt_sleeponq) {
322 1.44 ad self->pt_blocking++;
323 1.45 ad (void)_lwp_park(NULL, 0,
324 1.45 ad __UNVOLATILE(&ptm->ptm_waiters), NULL);
325 1.44 ad self->pt_blocking--;
326 1.44 ad membar_sync();
327 1.44 ad }
328 1.2 thorpej }
329 1.2 thorpej }
330 1.2 thorpej
331 1.2 thorpej int
332 1.44 ad pthread_mutex_trylock(pthread_mutex_t *ptm)
333 1.2 thorpej {
334 1.27 ad pthread_t self;
335 1.46 ad void *val, *new, *next;
336 1.2 thorpej
337 1.27 ad self = pthread__self();
338 1.44 ad val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
339 1.44 ad if (__predict_true(val == NULL)) {
340 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
341 1.44 ad membar_enter();
342 1.44 ad #endif
343 1.44 ad return 0;
344 1.44 ad }
345 1.27 ad
346 1.46 ad if (MUTEX_RECURSIVE(val)) {
347 1.46 ad if (MUTEX_OWNER(val) == 0) {
348 1.46 ad new = (void *)((uintptr_t)self | (uintptr_t)val);
349 1.46 ad next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
350 1.46 ad if (__predict_true(next == val)) {
351 1.46 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
352 1.46 ad membar_enter();
353 1.46 ad #endif
354 1.46 ad return 0;
355 1.46 ad }
356 1.46 ad }
357 1.46 ad if (MUTEX_OWNER(val) == (uintptr_t)self) {
358 1.46 ad if (ptm->ptm_recursed == INT_MAX)
359 1.46 ad return EAGAIN;
360 1.46 ad ptm->ptm_recursed++;
361 1.46 ad return 0;
362 1.46 ad }
363 1.2 thorpej }
364 1.2 thorpej
365 1.44 ad return EBUSY;
366 1.2 thorpej }
367 1.2 thorpej
368 1.2 thorpej int
369 1.44 ad pthread_mutex_unlock(pthread_mutex_t *ptm)
370 1.2 thorpej {
371 1.27 ad pthread_t self;
372 1.44 ad void *value;
373 1.44 ad
374 1.44 ad /*
375 1.44 ad * Note this may be a non-interlocked CAS. See lock_slow()
376 1.44 ad * above and sys/kern/kern_mutex.c for details.
377 1.44 ad */
378 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
379 1.44 ad membar_exit();
380 1.44 ad #endif
381 1.44 ad self = pthread__self();
382 1.44 ad value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
383 1.44 ad if (__predict_true(value == self))
384 1.44 ad return 0;
385 1.44 ad return pthread__mutex_unlock_slow(ptm);
386 1.44 ad }
387 1.44 ad
388 1.44 ad NOINLINE static int
389 1.44 ad pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
390 1.44 ad {
391 1.44 ad pthread_t self, owner, new;
392 1.44 ad int weown, error, deferred;
393 1.13 nathanw
394 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
395 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
396 1.44 ad
397 1.44 ad self = pthread__self();
398 1.44 ad owner = ptm->ptm_owner;
399 1.44 ad weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
400 1.44 ad deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
401 1.44 ad error = 0;
402 1.44 ad
403 1.44 ad if (ptm->ptm_errorcheck) {
404 1.44 ad if (!weown) {
405 1.44 ad error = EPERM;
406 1.44 ad new = owner;
407 1.44 ad } else {
408 1.44 ad new = NULL;
409 1.44 ad }
410 1.44 ad } else if (MUTEX_RECURSIVE(owner)) {
411 1.44 ad if (!weown) {
412 1.44 ad error = EPERM;
413 1.44 ad new = owner;
414 1.45 ad } else if (ptm->ptm_recursed) {
415 1.45 ad ptm->ptm_recursed--;
416 1.44 ad new = owner;
417 1.44 ad } else {
418 1.44 ad new = (pthread_t)MUTEX_RECURSIVE_BIT;
419 1.44 ad }
420 1.44 ad } else {
421 1.44 ad pthread__error(EPERM,
422 1.44 ad "Unlocking unlocked mutex", (owner != NULL));
423 1.44 ad pthread__error(EPERM,
424 1.44 ad "Unlocking mutex owned by another thread", weown);
425 1.44 ad new = NULL;
426 1.44 ad }
427 1.2 thorpej
428 1.2 thorpej /*
429 1.44 ad * Release the mutex. If there appear to be waiters, then
430 1.44 ad * wake them up.
431 1.2 thorpej */
432 1.44 ad if (new != owner) {
433 1.44 ad owner = atomic_swap_ptr(&ptm->ptm_owner, new);
434 1.44 ad if (MUTEX_HAS_WAITERS(owner) != 0) {
435 1.44 ad pthread__mutex_wakeup(self, ptm);
436 1.2 thorpej return 0;
437 1.2 thorpej }
438 1.44 ad }
439 1.44 ad
440 1.44 ad /*
441 1.44 ad * There were no waiters, but we may have deferred waking
442 1.44 ad * other threads until mutex unlock - we must wake them now.
443 1.44 ad */
444 1.44 ad if (!deferred)
445 1.44 ad return error;
446 1.44 ad
447 1.44 ad if (self->pt_nwaiters == 1) {
448 1.44 ad /*
449 1.44 ad * If the calling thread is about to block, defer
450 1.44 ad * unparking the target until _lwp_park() is called.
451 1.44 ad */
452 1.44 ad if (self->pt_willpark && self->pt_unpark == 0) {
453 1.44 ad self->pt_unpark = self->pt_waiters[0];
454 1.45 ad self->pt_unparkhint =
455 1.45 ad __UNVOLATILE(&ptm->ptm_waiters);
456 1.44 ad } else {
457 1.44 ad (void)_lwp_unpark(self->pt_waiters[0],
458 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
459 1.15 nathanw }
460 1.44 ad } else {
461 1.44 ad (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
462 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
463 1.2 thorpej }
464 1.44 ad self->pt_nwaiters = 0;
465 1.2 thorpej
466 1.44 ad return error;
467 1.44 ad }
468 1.44 ad
469 1.44 ad static void
470 1.44 ad pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
471 1.44 ad {
472 1.44 ad pthread_t thread, next;
473 1.44 ad ssize_t n, rv;
474 1.27 ad
475 1.8 nathanw /*
476 1.44 ad * Take ownership of the current set of waiters. No
477 1.44 ad * need for a memory barrier following this, all loads
478 1.44 ad * are dependent upon 'thread'.
479 1.8 nathanw */
480 1.44 ad thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
481 1.44 ad
482 1.44 ad for (;;) {
483 1.44 ad /*
484 1.44 ad * Pull waiters from the queue and add to our list.
485 1.44 ad * Use a memory barrier to ensure that we safely
486 1.44 ad * read the value of pt_nextwaiter before 'thread'
487 1.44 ad * sees pt_sleeponq being cleared.
488 1.44 ad */
489 1.44 ad for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
490 1.44 ad n < pthread__unpark_max && thread != NULL;
491 1.44 ad thread = next) {
492 1.44 ad next = thread->pt_nextwaiter;
493 1.44 ad if (thread != self) {
494 1.44 ad self->pt_waiters[n++] = thread->pt_lid;
495 1.44 ad membar_sync();
496 1.44 ad }
497 1.44 ad thread->pt_sleeponq = 0;
498 1.44 ad /* No longer safe to touch 'thread' */
499 1.44 ad }
500 1.44 ad
501 1.44 ad switch (n) {
502 1.44 ad case 0:
503 1.44 ad return;
504 1.44 ad case 1:
505 1.44 ad /*
506 1.44 ad * If the calling thread is about to block,
507 1.44 ad * defer unparking the target until _lwp_park()
508 1.44 ad * is called.
509 1.44 ad */
510 1.44 ad if (self->pt_willpark && self->pt_unpark == 0) {
511 1.44 ad self->pt_unpark = self->pt_waiters[0];
512 1.45 ad self->pt_unparkhint =
513 1.45 ad __UNVOLATILE(&ptm->ptm_waiters);
514 1.44 ad return;
515 1.44 ad }
516 1.44 ad rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
517 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
518 1.44 ad if (rv != 0 && errno != EALREADY && errno != EINTR &&
519 1.44 ad errno != ESRCH) {
520 1.44 ad pthread__errorfunc(__FILE__, __LINE__,
521 1.44 ad __func__, "_lwp_unpark failed");
522 1.44 ad }
523 1.44 ad return;
524 1.44 ad default:
525 1.44 ad rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
526 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
527 1.44 ad if (rv != 0 && errno != EINTR) {
528 1.44 ad pthread__errorfunc(__FILE__, __LINE__,
529 1.44 ad __func__, "_lwp_unpark_all failed");
530 1.44 ad }
531 1.44 ad break;
532 1.44 ad }
533 1.44 ad }
534 1.2 thorpej }
535 1.2 thorpej int
536 1.2 thorpej pthread_mutexattr_init(pthread_mutexattr_t *attr)
537 1.2 thorpej {
538 1.2 thorpej
539 1.2 thorpej attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
540 1.44 ad attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
541 1.2 thorpej return 0;
542 1.2 thorpej }
543 1.2 thorpej
544 1.2 thorpej int
545 1.2 thorpej pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
546 1.2 thorpej {
547 1.2 thorpej
548 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
549 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
550 1.2 thorpej
551 1.2 thorpej return 0;
552 1.2 thorpej }
553 1.2 thorpej
554 1.2 thorpej
555 1.2 thorpej int
556 1.2 thorpej pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
557 1.2 thorpej {
558 1.2 thorpej
559 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
560 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
561 1.2 thorpej
562 1.44 ad *typep = (int)(intptr_t)attr->ptma_private;
563 1.2 thorpej return 0;
564 1.2 thorpej }
565 1.2 thorpej
566 1.2 thorpej
567 1.2 thorpej int
568 1.2 thorpej pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
569 1.2 thorpej {
570 1.2 thorpej
571 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
572 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
573 1.13 nathanw
574 1.2 thorpej switch (type) {
575 1.2 thorpej case PTHREAD_MUTEX_NORMAL:
576 1.2 thorpej case PTHREAD_MUTEX_ERRORCHECK:
577 1.2 thorpej case PTHREAD_MUTEX_RECURSIVE:
578 1.44 ad attr->ptma_private = (void *)(intptr_t)type;
579 1.44 ad return 0;
580 1.2 thorpej default:
581 1.2 thorpej return EINVAL;
582 1.2 thorpej }
583 1.2 thorpej }
584 1.2 thorpej
585 1.2 thorpej
586 1.19 nathanw static void
587 1.19 nathanw once_cleanup(void *closure)
588 1.19 nathanw {
589 1.19 nathanw
590 1.19 nathanw pthread_mutex_unlock((pthread_mutex_t *)closure);
591 1.19 nathanw }
592 1.19 nathanw
593 1.19 nathanw
594 1.2 thorpej int
595 1.2 thorpej pthread_once(pthread_once_t *once_control, void (*routine)(void))
596 1.2 thorpej {
597 1.2 thorpej
598 1.2 thorpej if (once_control->pto_done == 0) {
599 1.2 thorpej pthread_mutex_lock(&once_control->pto_mutex);
600 1.19 nathanw pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
601 1.2 thorpej if (once_control->pto_done == 0) {
602 1.2 thorpej routine();
603 1.2 thorpej once_control->pto_done = 1;
604 1.2 thorpej }
605 1.19 nathanw pthread_cleanup_pop(1);
606 1.2 thorpej }
607 1.2 thorpej
608 1.2 thorpej return 0;
609 1.2 thorpej }
610 1.32 ad
611 1.33 ad int
612 1.44 ad pthread__mutex_deferwake(pthread_t thread, pthread_mutex_t *ptm)
613 1.33 ad {
614 1.33 ad
615 1.44 ad if (MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)thread)
616 1.44 ad return 0;
617 1.44 ad atomic_or_ulong((volatile unsigned long *)
618 1.44 ad (uintptr_t)&ptm->ptm_owner,
619 1.44 ad (unsigned long)MUTEX_DEFERRED_BIT);
620 1.44 ad return 1;
621 1.33 ad }
622 1.33 ad
623 1.39 ad int
624 1.44 ad _pthread_mutex_held_np(pthread_mutex_t *ptm)
625 1.39 ad {
626 1.39 ad
627 1.44 ad return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
628 1.39 ad }
629 1.39 ad
630 1.39 ad pthread_t
631 1.44 ad _pthread_mutex_owner_np(pthread_mutex_t *ptm)
632 1.39 ad {
633 1.39 ad
634 1.44 ad return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
635 1.39 ad }
636