pthread_mutex.c revision 1.51 1 1.51 matt /* $NetBSD: pthread_mutex.c,v 1.51 2008/08/02 19:46:30 matt Exp $ */
2 1.2 thorpej
3 1.2 thorpej /*-
4 1.44 ad * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 thorpej * All rights reserved.
6 1.2 thorpej *
7 1.2 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.27 ad * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 1.2 thorpej *
10 1.2 thorpej * Redistribution and use in source and binary forms, with or without
11 1.2 thorpej * modification, are permitted provided that the following conditions
12 1.2 thorpej * are met:
13 1.2 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.2 thorpej * notice, this list of conditions and the following disclaimer.
15 1.2 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.2 thorpej * documentation and/or other materials provided with the distribution.
18 1.2 thorpej *
19 1.2 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.2 thorpej */
31 1.2 thorpej
32 1.49 ad /*
33 1.49 ad * To track threads waiting for mutexes to be released, we use lockless
34 1.49 ad * lists built on atomic operations and memory barriers.
35 1.49 ad *
36 1.49 ad * A simple spinlock would be faster and make the code easier to
37 1.49 ad * follow, but spinlocks are problematic in userspace. If a thread is
38 1.49 ad * preempted by the kernel while holding a spinlock, any other thread
39 1.49 ad * attempting to acquire that spinlock will needlessly busy wait.
40 1.49 ad *
41 1.49 ad * There is no good way to know that the holding thread is no longer
42 1.49 ad * running, nor to request a wake-up once it has begun running again.
43 1.49 ad * Of more concern, threads in the SCHED_FIFO class do not have a
44 1.49 ad * limited time quantum and so could spin forever, preventing the
45 1.49 ad * thread holding the spinlock from getting CPU time: it would never
46 1.49 ad * be released.
47 1.49 ad */
48 1.49 ad
49 1.2 thorpej #include <sys/cdefs.h>
50 1.51 matt __RCSID("$NetBSD: pthread_mutex.c,v 1.51 2008/08/02 19:46:30 matt Exp $");
51 1.40 ad
52 1.40 ad #include <sys/types.h>
53 1.44 ad #include <sys/lwpctl.h>
54 1.51 matt #include <sys/lock.h>
55 1.10 lukem
56 1.2 thorpej #include <errno.h>
57 1.2 thorpej #include <limits.h>
58 1.2 thorpej #include <stdlib.h>
59 1.6 scw #include <string.h>
60 1.44 ad #include <stdio.h>
61 1.2 thorpej
62 1.2 thorpej #include "pthread.h"
63 1.2 thorpej #include "pthread_int.h"
64 1.2 thorpej
65 1.44 ad #define MUTEX_WAITERS_BIT ((uintptr_t)0x01)
66 1.44 ad #define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02)
67 1.44 ad #define MUTEX_DEFERRED_BIT ((uintptr_t)0x04)
68 1.44 ad #define MUTEX_THREAD ((uintptr_t)-16L)
69 1.44 ad
70 1.44 ad #define MUTEX_HAS_WAITERS(x) ((uintptr_t)(x) & MUTEX_WAITERS_BIT)
71 1.44 ad #define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
72 1.44 ad #define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD)
73 1.44 ad
74 1.44 ad #if __GNUC_PREREQ__(3, 0)
75 1.44 ad #define NOINLINE __attribute ((noinline))
76 1.44 ad #else
77 1.44 ad #define NOINLINE /* nothing */
78 1.44 ad #endif
79 1.44 ad
80 1.44 ad static void pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
81 1.44 ad static int pthread__mutex_lock_slow(pthread_mutex_t *);
82 1.44 ad static int pthread__mutex_unlock_slow(pthread_mutex_t *);
83 1.44 ad static void pthread__mutex_pause(void);
84 1.2 thorpej
85 1.39 ad int _pthread_mutex_held_np(pthread_mutex_t *);
86 1.39 ad pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
87 1.39 ad
88 1.39 ad __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
89 1.39 ad __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
90 1.39 ad
91 1.2 thorpej __strong_alias(__libc_mutex_init,pthread_mutex_init)
92 1.2 thorpej __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
93 1.2 thorpej __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
94 1.2 thorpej __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
95 1.2 thorpej __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
96 1.4 thorpej
97 1.4 thorpej __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
98 1.4 thorpej __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
99 1.5 thorpej __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
100 1.2 thorpej
101 1.2 thorpej __strong_alias(__libc_thr_once,pthread_once)
102 1.2 thorpej
103 1.2 thorpej int
104 1.44 ad pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
105 1.2 thorpej {
106 1.44 ad intptr_t type;
107 1.2 thorpej
108 1.44 ad if (attr == NULL)
109 1.44 ad type = PTHREAD_MUTEX_NORMAL;
110 1.44 ad else
111 1.44 ad type = (intptr_t)attr->ptma_private;
112 1.2 thorpej
113 1.44 ad switch (type) {
114 1.44 ad case PTHREAD_MUTEX_ERRORCHECK:
115 1.51 matt __cpu_simple_lock_set(&ptm->ptm_errorcheck);
116 1.44 ad ptm->ptm_owner = NULL;
117 1.44 ad break;
118 1.44 ad case PTHREAD_MUTEX_RECURSIVE:
119 1.51 matt __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
120 1.44 ad ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
121 1.44 ad break;
122 1.44 ad default:
123 1.51 matt __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
124 1.44 ad ptm->ptm_owner = NULL;
125 1.44 ad break;
126 1.2 thorpej }
127 1.2 thorpej
128 1.44 ad ptm->ptm_magic = _PT_MUTEX_MAGIC;
129 1.44 ad ptm->ptm_waiters = NULL;
130 1.45 ad ptm->ptm_recursed = 0;
131 1.2 thorpej
132 1.2 thorpej return 0;
133 1.2 thorpej }
134 1.2 thorpej
135 1.2 thorpej
136 1.2 thorpej int
137 1.44 ad pthread_mutex_destroy(pthread_mutex_t *ptm)
138 1.2 thorpej {
139 1.2 thorpej
140 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
141 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
142 1.14 nathanw pthread__error(EBUSY, "Destroying locked mutex",
143 1.44 ad MUTEX_OWNER(ptm->ptm_owner) == 0);
144 1.2 thorpej
145 1.44 ad ptm->ptm_magic = _PT_MUTEX_DEAD;
146 1.2 thorpej return 0;
147 1.2 thorpej }
148 1.2 thorpej
149 1.2 thorpej int
150 1.44 ad pthread_mutex_lock(pthread_mutex_t *ptm)
151 1.2 thorpej {
152 1.27 ad pthread_t self;
153 1.44 ad void *val;
154 1.2 thorpej
155 1.27 ad self = pthread__self();
156 1.44 ad val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
157 1.44 ad if (__predict_true(val == NULL)) {
158 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
159 1.44 ad membar_enter();
160 1.44 ad #endif
161 1.44 ad return 0;
162 1.2 thorpej }
163 1.44 ad return pthread__mutex_lock_slow(ptm);
164 1.44 ad }
165 1.2 thorpej
166 1.44 ad /* We want function call overhead. */
167 1.44 ad NOINLINE static void
168 1.44 ad pthread__mutex_pause(void)
169 1.44 ad {
170 1.2 thorpej
171 1.44 ad pthread__smt_pause();
172 1.2 thorpej }
173 1.2 thorpej
174 1.44 ad /*
175 1.44 ad * Spin while the holder is running. 'lwpctl' gives us the true
176 1.44 ad * status of the thread. pt_blocking is set by libpthread in order
177 1.44 ad * to cut out system call and kernel spinlock overhead on remote CPUs
178 1.44 ad * (could represent many thousands of clock cycles). pt_blocking also
179 1.44 ad * makes this thread yield if the target is calling sched_yield().
180 1.44 ad */
181 1.44 ad NOINLINE static void *
182 1.44 ad pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
183 1.44 ad {
184 1.44 ad pthread_t thread;
185 1.44 ad unsigned int count, i;
186 1.44 ad
187 1.44 ad for (count = 2;; owner = ptm->ptm_owner) {
188 1.44 ad thread = (pthread_t)MUTEX_OWNER(owner);
189 1.44 ad if (thread == NULL)
190 1.44 ad break;
191 1.44 ad if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
192 1.44 ad thread->pt_blocking)
193 1.44 ad break;
194 1.44 ad if (count < 128)
195 1.44 ad count += count;
196 1.44 ad for (i = count; i != 0; i--)
197 1.44 ad pthread__mutex_pause();
198 1.44 ad }
199 1.2 thorpej
200 1.44 ad return owner;
201 1.44 ad }
202 1.44 ad
203 1.44 ad NOINLINE static int
204 1.44 ad pthread__mutex_lock_slow(pthread_mutex_t *ptm)
205 1.2 thorpej {
206 1.44 ad void *waiters, *new, *owner, *next;
207 1.44 ad pthread_t self;
208 1.2 thorpej
209 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
210 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
211 1.44 ad
212 1.44 ad owner = ptm->ptm_owner;
213 1.44 ad self = pthread__self();
214 1.13 nathanw
215 1.44 ad /* Recursive or errorcheck? */
216 1.44 ad if (MUTEX_OWNER(owner) == (uintptr_t)self) {
217 1.44 ad if (MUTEX_RECURSIVE(owner)) {
218 1.45 ad if (ptm->ptm_recursed == INT_MAX)
219 1.44 ad return EAGAIN;
220 1.45 ad ptm->ptm_recursed++;
221 1.44 ad return 0;
222 1.29 ad }
223 1.51 matt if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
224 1.44 ad return EDEADLK;
225 1.44 ad }
226 1.29 ad
227 1.44 ad for (;; owner = ptm->ptm_owner) {
228 1.44 ad /* Spin while the owner is running. */
229 1.44 ad owner = pthread__mutex_spin(ptm, owner);
230 1.44 ad
231 1.44 ad /* If it has become free, try to acquire it again. */
232 1.44 ad if (MUTEX_OWNER(owner) == 0) {
233 1.47 ad do {
234 1.44 ad new = (void *)
235 1.44 ad ((uintptr_t)self | (uintptr_t)owner);
236 1.44 ad next = atomic_cas_ptr(&ptm->ptm_owner, owner,
237 1.44 ad new);
238 1.44 ad if (next == owner) {
239 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
240 1.44 ad membar_enter();
241 1.44 ad #endif
242 1.44 ad return 0;
243 1.44 ad }
244 1.47 ad owner = next;
245 1.47 ad } while (MUTEX_OWNER(owner) == 0);
246 1.44 ad /*
247 1.44 ad * We have lost the race to acquire the mutex.
248 1.44 ad * The new owner could be running on another
249 1.44 ad * CPU, in which case we should spin and avoid
250 1.44 ad * the overhead of blocking.
251 1.44 ad */
252 1.47 ad continue;
253 1.44 ad }
254 1.21 chs
255 1.2 thorpej /*
256 1.44 ad * Nope, still held. Add thread to the list of waiters.
257 1.50 ad * Issue a memory barrier to ensure mutexwait/mutexnext
258 1.44 ad * are visible before we enter the waiters list.
259 1.2 thorpej */
260 1.50 ad self->pt_mutexwait = 1;
261 1.44 ad for (waiters = ptm->ptm_waiters;; waiters = next) {
262 1.50 ad self->pt_mutexnext = waiters;
263 1.44 ad membar_producer();
264 1.44 ad next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
265 1.44 ad if (next == waiters)
266 1.44 ad break;
267 1.44 ad }
268 1.21 chs
269 1.44 ad /*
270 1.44 ad * Set the waiters bit and block.
271 1.44 ad *
272 1.44 ad * Note that the mutex can become unlocked before we set
273 1.44 ad * the waiters bit. If that happens it's not safe to sleep
274 1.44 ad * as we may never be awoken: we must remove the current
275 1.44 ad * thread from the waiters list and try again.
276 1.44 ad *
277 1.44 ad * Because we are doing this atomically, we can't remove
278 1.44 ad * one waiter: we must remove all waiters and awken them,
279 1.44 ad * then sleep in _lwp_park() until we have been awoken.
280 1.44 ad *
281 1.44 ad * Issue a memory barrier to ensure that we are reading
282 1.50 ad * the value of ptm_owner/pt_mutexwait after we have entered
283 1.44 ad * the waiters list (the CAS itself must be atomic).
284 1.44 ad */
285 1.44 ad membar_consumer();
286 1.44 ad for (owner = ptm->ptm_owner;; owner = next) {
287 1.44 ad if (MUTEX_HAS_WAITERS(owner))
288 1.44 ad break;
289 1.44 ad if (MUTEX_OWNER(owner) == 0) {
290 1.44 ad pthread__mutex_wakeup(self, ptm);
291 1.44 ad break;
292 1.44 ad }
293 1.44 ad new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
294 1.44 ad next = atomic_cas_ptr(&ptm->ptm_owner, owner, new);
295 1.44 ad if (next == owner) {
296 1.21 chs /*
297 1.44 ad * pthread_mutex_unlock() can do a
298 1.44 ad * non-interlocked CAS. We cannot
299 1.44 ad * know if our attempt to set the
300 1.44 ad * waiters bit has succeeded while
301 1.44 ad * the holding thread is running.
302 1.44 ad * There are many assumptions; see
303 1.44 ad * sys/kern/kern_mutex.c for details.
304 1.44 ad * In short, we must spin if we see
305 1.44 ad * that the holder is running again.
306 1.21 chs */
307 1.44 ad membar_sync();
308 1.44 ad next = pthread__mutex_spin(ptm, owner);
309 1.21 chs }
310 1.29 ad }
311 1.21 chs
312 1.29 ad /*
313 1.44 ad * We may have been awoken by the current thread above,
314 1.44 ad * or will be awoken by the current holder of the mutex.
315 1.44 ad * The key requirement is that we must not proceed until
316 1.50 ad * told that we are no longer waiting (via pt_mutexwait
317 1.44 ad * being set to zero). Otherwise it is unsafe to re-enter
318 1.44 ad * the thread onto the waiters list.
319 1.29 ad */
320 1.50 ad while (self->pt_mutexwait) {
321 1.44 ad self->pt_blocking++;
322 1.50 ad (void)_lwp_park(NULL, self->pt_unpark,
323 1.50 ad __UNVOLATILE(&ptm->ptm_waiters),
324 1.50 ad __UNVOLATILE(&ptm->ptm_waiters));
325 1.50 ad self->pt_unpark = 0;
326 1.44 ad self->pt_blocking--;
327 1.44 ad membar_sync();
328 1.44 ad }
329 1.2 thorpej }
330 1.2 thorpej }
331 1.2 thorpej
332 1.2 thorpej int
333 1.44 ad pthread_mutex_trylock(pthread_mutex_t *ptm)
334 1.2 thorpej {
335 1.27 ad pthread_t self;
336 1.46 ad void *val, *new, *next;
337 1.2 thorpej
338 1.27 ad self = pthread__self();
339 1.44 ad val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
340 1.44 ad if (__predict_true(val == NULL)) {
341 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
342 1.44 ad membar_enter();
343 1.44 ad #endif
344 1.44 ad return 0;
345 1.44 ad }
346 1.27 ad
347 1.46 ad if (MUTEX_RECURSIVE(val)) {
348 1.46 ad if (MUTEX_OWNER(val) == 0) {
349 1.46 ad new = (void *)((uintptr_t)self | (uintptr_t)val);
350 1.46 ad next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
351 1.46 ad if (__predict_true(next == val)) {
352 1.46 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
353 1.46 ad membar_enter();
354 1.46 ad #endif
355 1.46 ad return 0;
356 1.46 ad }
357 1.46 ad }
358 1.46 ad if (MUTEX_OWNER(val) == (uintptr_t)self) {
359 1.46 ad if (ptm->ptm_recursed == INT_MAX)
360 1.46 ad return EAGAIN;
361 1.46 ad ptm->ptm_recursed++;
362 1.46 ad return 0;
363 1.46 ad }
364 1.2 thorpej }
365 1.2 thorpej
366 1.44 ad return EBUSY;
367 1.2 thorpej }
368 1.2 thorpej
369 1.2 thorpej int
370 1.44 ad pthread_mutex_unlock(pthread_mutex_t *ptm)
371 1.2 thorpej {
372 1.27 ad pthread_t self;
373 1.44 ad void *value;
374 1.44 ad
375 1.44 ad /*
376 1.44 ad * Note this may be a non-interlocked CAS. See lock_slow()
377 1.44 ad * above and sys/kern/kern_mutex.c for details.
378 1.44 ad */
379 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
380 1.44 ad membar_exit();
381 1.44 ad #endif
382 1.44 ad self = pthread__self();
383 1.44 ad value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
384 1.44 ad if (__predict_true(value == self))
385 1.44 ad return 0;
386 1.44 ad return pthread__mutex_unlock_slow(ptm);
387 1.44 ad }
388 1.44 ad
389 1.44 ad NOINLINE static int
390 1.44 ad pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
391 1.44 ad {
392 1.44 ad pthread_t self, owner, new;
393 1.44 ad int weown, error, deferred;
394 1.13 nathanw
395 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
396 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
397 1.44 ad
398 1.44 ad self = pthread__self();
399 1.44 ad owner = ptm->ptm_owner;
400 1.44 ad weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
401 1.44 ad deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
402 1.44 ad error = 0;
403 1.44 ad
404 1.51 matt if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
405 1.44 ad if (!weown) {
406 1.44 ad error = EPERM;
407 1.44 ad new = owner;
408 1.44 ad } else {
409 1.44 ad new = NULL;
410 1.44 ad }
411 1.44 ad } else if (MUTEX_RECURSIVE(owner)) {
412 1.44 ad if (!weown) {
413 1.44 ad error = EPERM;
414 1.44 ad new = owner;
415 1.45 ad } else if (ptm->ptm_recursed) {
416 1.45 ad ptm->ptm_recursed--;
417 1.44 ad new = owner;
418 1.44 ad } else {
419 1.44 ad new = (pthread_t)MUTEX_RECURSIVE_BIT;
420 1.44 ad }
421 1.44 ad } else {
422 1.44 ad pthread__error(EPERM,
423 1.44 ad "Unlocking unlocked mutex", (owner != NULL));
424 1.44 ad pthread__error(EPERM,
425 1.44 ad "Unlocking mutex owned by another thread", weown);
426 1.44 ad new = NULL;
427 1.44 ad }
428 1.2 thorpej
429 1.2 thorpej /*
430 1.44 ad * Release the mutex. If there appear to be waiters, then
431 1.44 ad * wake them up.
432 1.2 thorpej */
433 1.44 ad if (new != owner) {
434 1.44 ad owner = atomic_swap_ptr(&ptm->ptm_owner, new);
435 1.44 ad if (MUTEX_HAS_WAITERS(owner) != 0) {
436 1.44 ad pthread__mutex_wakeup(self, ptm);
437 1.2 thorpej return 0;
438 1.2 thorpej }
439 1.44 ad }
440 1.44 ad
441 1.44 ad /*
442 1.44 ad * There were no waiters, but we may have deferred waking
443 1.44 ad * other threads until mutex unlock - we must wake them now.
444 1.44 ad */
445 1.44 ad if (!deferred)
446 1.44 ad return error;
447 1.44 ad
448 1.44 ad if (self->pt_nwaiters == 1) {
449 1.44 ad /*
450 1.44 ad * If the calling thread is about to block, defer
451 1.44 ad * unparking the target until _lwp_park() is called.
452 1.44 ad */
453 1.44 ad if (self->pt_willpark && self->pt_unpark == 0) {
454 1.44 ad self->pt_unpark = self->pt_waiters[0];
455 1.44 ad } else {
456 1.44 ad (void)_lwp_unpark(self->pt_waiters[0],
457 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
458 1.15 nathanw }
459 1.44 ad } else {
460 1.44 ad (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
461 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
462 1.2 thorpej }
463 1.44 ad self->pt_nwaiters = 0;
464 1.2 thorpej
465 1.44 ad return error;
466 1.44 ad }
467 1.44 ad
468 1.44 ad static void
469 1.44 ad pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
470 1.44 ad {
471 1.44 ad pthread_t thread, next;
472 1.44 ad ssize_t n, rv;
473 1.27 ad
474 1.8 nathanw /*
475 1.44 ad * Take ownership of the current set of waiters. No
476 1.44 ad * need for a memory barrier following this, all loads
477 1.44 ad * are dependent upon 'thread'.
478 1.8 nathanw */
479 1.44 ad thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
480 1.44 ad
481 1.44 ad for (;;) {
482 1.44 ad /*
483 1.44 ad * Pull waiters from the queue and add to our list.
484 1.44 ad * Use a memory barrier to ensure that we safely
485 1.50 ad * read the value of pt_mutexnext before 'thread'
486 1.50 ad * sees pt_mutexwait being cleared.
487 1.44 ad */
488 1.44 ad for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
489 1.44 ad n < pthread__unpark_max && thread != NULL;
490 1.44 ad thread = next) {
491 1.50 ad next = thread->pt_mutexnext;
492 1.44 ad if (thread != self) {
493 1.44 ad self->pt_waiters[n++] = thread->pt_lid;
494 1.44 ad membar_sync();
495 1.44 ad }
496 1.50 ad thread->pt_mutexwait = 0;
497 1.44 ad /* No longer safe to touch 'thread' */
498 1.44 ad }
499 1.44 ad
500 1.44 ad switch (n) {
501 1.44 ad case 0:
502 1.44 ad return;
503 1.44 ad case 1:
504 1.44 ad /*
505 1.44 ad * If the calling thread is about to block,
506 1.44 ad * defer unparking the target until _lwp_park()
507 1.44 ad * is called.
508 1.44 ad */
509 1.44 ad if (self->pt_willpark && self->pt_unpark == 0) {
510 1.44 ad self->pt_unpark = self->pt_waiters[0];
511 1.44 ad return;
512 1.44 ad }
513 1.44 ad rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
514 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
515 1.44 ad if (rv != 0 && errno != EALREADY && errno != EINTR &&
516 1.44 ad errno != ESRCH) {
517 1.44 ad pthread__errorfunc(__FILE__, __LINE__,
518 1.44 ad __func__, "_lwp_unpark failed");
519 1.44 ad }
520 1.44 ad return;
521 1.44 ad default:
522 1.44 ad rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
523 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
524 1.44 ad if (rv != 0 && errno != EINTR) {
525 1.44 ad pthread__errorfunc(__FILE__, __LINE__,
526 1.44 ad __func__, "_lwp_unpark_all failed");
527 1.44 ad }
528 1.44 ad break;
529 1.44 ad }
530 1.44 ad }
531 1.2 thorpej }
532 1.2 thorpej int
533 1.2 thorpej pthread_mutexattr_init(pthread_mutexattr_t *attr)
534 1.2 thorpej {
535 1.2 thorpej
536 1.2 thorpej attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
537 1.44 ad attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
538 1.2 thorpej return 0;
539 1.2 thorpej }
540 1.2 thorpej
541 1.2 thorpej int
542 1.2 thorpej pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
543 1.2 thorpej {
544 1.2 thorpej
545 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
546 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
547 1.2 thorpej
548 1.2 thorpej return 0;
549 1.2 thorpej }
550 1.2 thorpej
551 1.2 thorpej
552 1.2 thorpej int
553 1.2 thorpej pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
554 1.2 thorpej {
555 1.2 thorpej
556 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
557 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
558 1.2 thorpej
559 1.44 ad *typep = (int)(intptr_t)attr->ptma_private;
560 1.2 thorpej return 0;
561 1.2 thorpej }
562 1.2 thorpej
563 1.2 thorpej
564 1.2 thorpej int
565 1.2 thorpej pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
566 1.2 thorpej {
567 1.2 thorpej
568 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
569 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
570 1.13 nathanw
571 1.2 thorpej switch (type) {
572 1.2 thorpej case PTHREAD_MUTEX_NORMAL:
573 1.2 thorpej case PTHREAD_MUTEX_ERRORCHECK:
574 1.2 thorpej case PTHREAD_MUTEX_RECURSIVE:
575 1.44 ad attr->ptma_private = (void *)(intptr_t)type;
576 1.44 ad return 0;
577 1.2 thorpej default:
578 1.2 thorpej return EINVAL;
579 1.2 thorpej }
580 1.2 thorpej }
581 1.2 thorpej
582 1.2 thorpej
583 1.19 nathanw static void
584 1.19 nathanw once_cleanup(void *closure)
585 1.19 nathanw {
586 1.19 nathanw
587 1.19 nathanw pthread_mutex_unlock((pthread_mutex_t *)closure);
588 1.19 nathanw }
589 1.19 nathanw
590 1.19 nathanw
591 1.2 thorpej int
592 1.2 thorpej pthread_once(pthread_once_t *once_control, void (*routine)(void))
593 1.2 thorpej {
594 1.2 thorpej
595 1.2 thorpej if (once_control->pto_done == 0) {
596 1.2 thorpej pthread_mutex_lock(&once_control->pto_mutex);
597 1.19 nathanw pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
598 1.2 thorpej if (once_control->pto_done == 0) {
599 1.2 thorpej routine();
600 1.2 thorpej once_control->pto_done = 1;
601 1.2 thorpej }
602 1.19 nathanw pthread_cleanup_pop(1);
603 1.2 thorpej }
604 1.2 thorpej
605 1.2 thorpej return 0;
606 1.2 thorpej }
607 1.32 ad
608 1.50 ad void
609 1.50 ad pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
610 1.33 ad {
611 1.33 ad
612 1.50 ad if (__predict_false(ptm == NULL ||
613 1.50 ad MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
614 1.50 ad (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
615 1.50 ad __UNVOLATILE(&ptm->ptm_waiters));
616 1.50 ad self->pt_nwaiters = 0;
617 1.50 ad } else {
618 1.50 ad atomic_or_ulong((volatile unsigned long *)
619 1.50 ad (uintptr_t)&ptm->ptm_owner,
620 1.50 ad (unsigned long)MUTEX_DEFERRED_BIT);
621 1.50 ad }
622 1.33 ad }
623 1.33 ad
624 1.39 ad int
625 1.44 ad _pthread_mutex_held_np(pthread_mutex_t *ptm)
626 1.39 ad {
627 1.39 ad
628 1.44 ad return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
629 1.39 ad }
630 1.39 ad
631 1.39 ad pthread_t
632 1.44 ad _pthread_mutex_owner_np(pthread_mutex_t *ptm)
633 1.39 ad {
634 1.39 ad
635 1.44 ad return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
636 1.39 ad }
637