Home | History | Annotate | Line # | Download | only in libpthread
pthread_mutex.c revision 1.51.22.1
      1  1.51.22.1      riz /*	$NetBSD: pthread_mutex.c,v 1.51.22.1 2013/04/29 01:50:18 riz Exp $	*/
      2        1.2  thorpej 
      3        1.2  thorpej /*-
      4       1.44       ad  * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5        1.2  thorpej  * All rights reserved.
      6        1.2  thorpej  *
      7        1.2  thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8       1.27       ad  * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
      9        1.2  thorpej  *
     10        1.2  thorpej  * Redistribution and use in source and binary forms, with or without
     11        1.2  thorpej  * modification, are permitted provided that the following conditions
     12        1.2  thorpej  * are met:
     13        1.2  thorpej  * 1. Redistributions of source code must retain the above copyright
     14        1.2  thorpej  *    notice, this list of conditions and the following disclaimer.
     15        1.2  thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     16        1.2  thorpej  *    notice, this list of conditions and the following disclaimer in the
     17        1.2  thorpej  *    documentation and/or other materials provided with the distribution.
     18        1.2  thorpej  *
     19        1.2  thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20        1.2  thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21        1.2  thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22        1.2  thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23        1.2  thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24        1.2  thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25        1.2  thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26        1.2  thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27        1.2  thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28        1.2  thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29        1.2  thorpej  * POSSIBILITY OF SUCH DAMAGE.
     30        1.2  thorpej  */
     31        1.2  thorpej 
     32       1.49       ad /*
     33       1.49       ad  * To track threads waiting for mutexes to be released, we use lockless
     34       1.49       ad  * lists built on atomic operations and memory barriers.
     35       1.49       ad  *
     36       1.49       ad  * A simple spinlock would be faster and make the code easier to
     37       1.49       ad  * follow, but spinlocks are problematic in userspace.  If a thread is
     38       1.49       ad  * preempted by the kernel while holding a spinlock, any other thread
     39       1.49       ad  * attempting to acquire that spinlock will needlessly busy wait.
     40       1.49       ad  *
     41       1.49       ad  * There is no good way to know that the holding thread is no longer
     42       1.49       ad  * running, nor to request a wake-up once it has begun running again.
     43       1.49       ad  * Of more concern, threads in the SCHED_FIFO class do not have a
     44       1.49       ad  * limited time quantum and so could spin forever, preventing the
     45       1.49       ad  * thread holding the spinlock from getting CPU time: it would never
     46       1.49       ad  * be released.
     47       1.49       ad  */
     48       1.49       ad 
     49        1.2  thorpej #include <sys/cdefs.h>
     50  1.51.22.1      riz __RCSID("$NetBSD: pthread_mutex.c,v 1.51.22.1 2013/04/29 01:50:18 riz Exp $");
     51       1.40       ad 
     52       1.40       ad #include <sys/types.h>
     53       1.44       ad #include <sys/lwpctl.h>
     54       1.51     matt #include <sys/lock.h>
     55       1.10    lukem 
     56        1.2  thorpej #include <errno.h>
     57        1.2  thorpej #include <limits.h>
     58        1.2  thorpej #include <stdlib.h>
     59  1.51.22.1      riz #include <time.h>
     60        1.6      scw #include <string.h>
     61       1.44       ad #include <stdio.h>
     62        1.2  thorpej 
     63        1.2  thorpej #include "pthread.h"
     64        1.2  thorpej #include "pthread_int.h"
     65  1.51.22.1      riz #include "reentrant.h"
     66        1.2  thorpej 
     67       1.44       ad #define	MUTEX_WAITERS_BIT		((uintptr_t)0x01)
     68       1.44       ad #define	MUTEX_RECURSIVE_BIT		((uintptr_t)0x02)
     69       1.44       ad #define	MUTEX_DEFERRED_BIT		((uintptr_t)0x04)
     70       1.44       ad #define	MUTEX_THREAD			((uintptr_t)-16L)
     71       1.44       ad 
     72       1.44       ad #define	MUTEX_HAS_WAITERS(x)		((uintptr_t)(x) & MUTEX_WAITERS_BIT)
     73       1.44       ad #define	MUTEX_RECURSIVE(x)		((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
     74       1.44       ad #define	MUTEX_OWNER(x)			((uintptr_t)(x) & MUTEX_THREAD)
     75       1.44       ad 
     76       1.44       ad #if __GNUC_PREREQ__(3, 0)
     77       1.44       ad #define	NOINLINE		__attribute ((noinline))
     78       1.44       ad #else
     79       1.44       ad #define	NOINLINE		/* nothing */
     80       1.44       ad #endif
     81       1.44       ad 
     82       1.44       ad static void	pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
     83       1.44       ad static int	pthread__mutex_lock_slow(pthread_mutex_t *);
     84       1.44       ad static int	pthread__mutex_unlock_slow(pthread_mutex_t *);
     85       1.44       ad static void	pthread__mutex_pause(void);
     86        1.2  thorpej 
     87       1.39       ad int		_pthread_mutex_held_np(pthread_mutex_t *);
     88       1.39       ad pthread_t	_pthread_mutex_owner_np(pthread_mutex_t *);
     89       1.39       ad 
     90       1.39       ad __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
     91       1.39       ad __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
     92       1.39       ad 
     93        1.2  thorpej __strong_alias(__libc_mutex_init,pthread_mutex_init)
     94        1.2  thorpej __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
     95        1.2  thorpej __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
     96        1.2  thorpej __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
     97        1.2  thorpej __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
     98        1.4  thorpej 
     99        1.4  thorpej __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
    100        1.4  thorpej __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
    101        1.5  thorpej __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
    102        1.2  thorpej 
    103        1.2  thorpej __strong_alias(__libc_thr_once,pthread_once)
    104        1.2  thorpej 
    105        1.2  thorpej int
    106       1.44       ad pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
    107        1.2  thorpej {
    108       1.44       ad 	intptr_t type;
    109        1.2  thorpej 
    110  1.51.22.1      riz 	if (__predict_false(__uselibcstub))
    111  1.51.22.1      riz 		return __libc_mutex_init_stub(ptm, attr);
    112  1.51.22.1      riz 
    113       1.44       ad 	if (attr == NULL)
    114       1.44       ad 		type = PTHREAD_MUTEX_NORMAL;
    115       1.44       ad 	else
    116       1.44       ad 		type = (intptr_t)attr->ptma_private;
    117        1.2  thorpej 
    118       1.44       ad 	switch (type) {
    119       1.44       ad 	case PTHREAD_MUTEX_ERRORCHECK:
    120       1.51     matt 		__cpu_simple_lock_set(&ptm->ptm_errorcheck);
    121       1.44       ad 		ptm->ptm_owner = NULL;
    122       1.44       ad 		break;
    123       1.44       ad 	case PTHREAD_MUTEX_RECURSIVE:
    124       1.51     matt 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
    125       1.44       ad 		ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
    126       1.44       ad 		break;
    127       1.44       ad 	default:
    128       1.51     matt 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
    129       1.44       ad 		ptm->ptm_owner = NULL;
    130       1.44       ad 		break;
    131        1.2  thorpej 	}
    132        1.2  thorpej 
    133       1.44       ad 	ptm->ptm_magic = _PT_MUTEX_MAGIC;
    134       1.44       ad 	ptm->ptm_waiters = NULL;
    135       1.45       ad 	ptm->ptm_recursed = 0;
    136        1.2  thorpej 
    137        1.2  thorpej 	return 0;
    138        1.2  thorpej }
    139        1.2  thorpej 
    140        1.2  thorpej 
    141        1.2  thorpej int
    142       1.44       ad pthread_mutex_destroy(pthread_mutex_t *ptm)
    143        1.2  thorpej {
    144        1.2  thorpej 
    145  1.51.22.1      riz 	if (__predict_false(__uselibcstub))
    146  1.51.22.1      riz 		return __libc_mutex_destroy_stub(ptm);
    147  1.51.22.1      riz 
    148       1.14  nathanw 	pthread__error(EINVAL, "Invalid mutex",
    149       1.44       ad 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    150       1.14  nathanw 	pthread__error(EBUSY, "Destroying locked mutex",
    151       1.44       ad 	    MUTEX_OWNER(ptm->ptm_owner) == 0);
    152        1.2  thorpej 
    153       1.44       ad 	ptm->ptm_magic = _PT_MUTEX_DEAD;
    154        1.2  thorpej 	return 0;
    155        1.2  thorpej }
    156        1.2  thorpej 
    157        1.2  thorpej int
    158       1.44       ad pthread_mutex_lock(pthread_mutex_t *ptm)
    159        1.2  thorpej {
    160       1.27       ad 	pthread_t self;
    161       1.44       ad 	void *val;
    162        1.2  thorpej 
    163  1.51.22.1      riz 	if (__predict_false(__uselibcstub))
    164  1.51.22.1      riz 		return __libc_mutex_lock_stub(ptm);
    165  1.51.22.1      riz 
    166       1.27       ad 	self = pthread__self();
    167       1.44       ad 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    168       1.44       ad 	if (__predict_true(val == NULL)) {
    169       1.44       ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    170       1.44       ad 		membar_enter();
    171       1.44       ad #endif
    172       1.44       ad 		return 0;
    173        1.2  thorpej 	}
    174       1.44       ad 	return pthread__mutex_lock_slow(ptm);
    175       1.44       ad }
    176        1.2  thorpej 
    177       1.44       ad /* We want function call overhead. */
    178       1.44       ad NOINLINE static void
    179       1.44       ad pthread__mutex_pause(void)
    180       1.44       ad {
    181        1.2  thorpej 
    182       1.44       ad 	pthread__smt_pause();
    183        1.2  thorpej }
    184        1.2  thorpej 
    185       1.44       ad /*
    186       1.44       ad  * Spin while the holder is running.  'lwpctl' gives us the true
    187       1.44       ad  * status of the thread.  pt_blocking is set by libpthread in order
    188       1.44       ad  * to cut out system call and kernel spinlock overhead on remote CPUs
    189       1.44       ad  * (could represent many thousands of clock cycles).  pt_blocking also
    190       1.44       ad  * makes this thread yield if the target is calling sched_yield().
    191       1.44       ad  */
    192       1.44       ad NOINLINE static void *
    193       1.44       ad pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
    194       1.44       ad {
    195       1.44       ad 	pthread_t thread;
    196       1.44       ad 	unsigned int count, i;
    197       1.44       ad 
    198       1.44       ad 	for (count = 2;; owner = ptm->ptm_owner) {
    199       1.44       ad 		thread = (pthread_t)MUTEX_OWNER(owner);
    200       1.44       ad 		if (thread == NULL)
    201       1.44       ad 			break;
    202       1.44       ad 		if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
    203       1.44       ad 		    thread->pt_blocking)
    204       1.44       ad 			break;
    205       1.44       ad 		if (count < 128)
    206       1.44       ad 			count += count;
    207       1.44       ad 		for (i = count; i != 0; i--)
    208       1.44       ad 			pthread__mutex_pause();
    209       1.44       ad 	}
    210        1.2  thorpej 
    211       1.44       ad 	return owner;
    212       1.44       ad }
    213       1.44       ad 
    214       1.44       ad NOINLINE static int
    215       1.44       ad pthread__mutex_lock_slow(pthread_mutex_t *ptm)
    216        1.2  thorpej {
    217       1.44       ad 	void *waiters, *new, *owner, *next;
    218       1.44       ad 	pthread_t self;
    219        1.2  thorpej 
    220       1.14  nathanw 	pthread__error(EINVAL, "Invalid mutex",
    221       1.44       ad 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    222       1.44       ad 
    223       1.44       ad 	owner = ptm->ptm_owner;
    224       1.44       ad 	self = pthread__self();
    225       1.13  nathanw 
    226       1.44       ad 	/* Recursive or errorcheck? */
    227       1.44       ad 	if (MUTEX_OWNER(owner) == (uintptr_t)self) {
    228       1.44       ad 		if (MUTEX_RECURSIVE(owner)) {
    229       1.45       ad 			if (ptm->ptm_recursed == INT_MAX)
    230       1.44       ad 				return EAGAIN;
    231       1.45       ad 			ptm->ptm_recursed++;
    232       1.44       ad 			return 0;
    233       1.29       ad 		}
    234       1.51     matt 		if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
    235       1.44       ad 			return EDEADLK;
    236       1.44       ad 	}
    237       1.29       ad 
    238       1.44       ad 	for (;; owner = ptm->ptm_owner) {
    239       1.44       ad 		/* Spin while the owner is running. */
    240       1.44       ad 		owner = pthread__mutex_spin(ptm, owner);
    241       1.44       ad 
    242       1.44       ad 		/* If it has become free, try to acquire it again. */
    243       1.44       ad 		if (MUTEX_OWNER(owner) == 0) {
    244       1.47       ad 			do {
    245       1.44       ad 				new = (void *)
    246       1.44       ad 				    ((uintptr_t)self | (uintptr_t)owner);
    247       1.44       ad 				next = atomic_cas_ptr(&ptm->ptm_owner, owner,
    248       1.44       ad 				    new);
    249       1.44       ad 				if (next == owner) {
    250       1.44       ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    251       1.44       ad 					membar_enter();
    252       1.44       ad #endif
    253       1.44       ad 					return 0;
    254       1.44       ad 				}
    255       1.47       ad 				owner = next;
    256       1.47       ad 			} while (MUTEX_OWNER(owner) == 0);
    257       1.44       ad 			/*
    258       1.44       ad 			 * We have lost the race to acquire the mutex.
    259       1.44       ad 			 * The new owner could be running on another
    260       1.44       ad 			 * CPU, in which case we should spin and avoid
    261       1.44       ad 			 * the overhead of blocking.
    262       1.44       ad 			 */
    263       1.47       ad 			continue;
    264       1.44       ad 		}
    265       1.21      chs 
    266        1.2  thorpej 		/*
    267       1.44       ad 		 * Nope, still held.  Add thread to the list of waiters.
    268       1.50       ad 		 * Issue a memory barrier to ensure mutexwait/mutexnext
    269       1.44       ad 		 * are visible before we enter the waiters list.
    270        1.2  thorpej 		 */
    271       1.50       ad 		self->pt_mutexwait = 1;
    272       1.44       ad 		for (waiters = ptm->ptm_waiters;; waiters = next) {
    273       1.50       ad 			self->pt_mutexnext = waiters;
    274       1.44       ad 			membar_producer();
    275       1.44       ad 			next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
    276       1.44       ad 			if (next == waiters)
    277       1.44       ad 			    	break;
    278       1.44       ad 		}
    279       1.21      chs 
    280       1.44       ad 		/*
    281       1.44       ad 		 * Set the waiters bit and block.
    282       1.44       ad 		 *
    283       1.44       ad 		 * Note that the mutex can become unlocked before we set
    284       1.44       ad 		 * the waiters bit.  If that happens it's not safe to sleep
    285       1.44       ad 		 * as we may never be awoken: we must remove the current
    286       1.44       ad 		 * thread from the waiters list and try again.
    287       1.44       ad 		 *
    288       1.44       ad 		 * Because we are doing this atomically, we can't remove
    289       1.44       ad 		 * one waiter: we must remove all waiters and awken them,
    290       1.44       ad 		 * then sleep in _lwp_park() until we have been awoken.
    291       1.44       ad 		 *
    292       1.44       ad 		 * Issue a memory barrier to ensure that we are reading
    293       1.50       ad 		 * the value of ptm_owner/pt_mutexwait after we have entered
    294       1.44       ad 		 * the waiters list (the CAS itself must be atomic).
    295       1.44       ad 		 */
    296       1.44       ad 		membar_consumer();
    297       1.44       ad 		for (owner = ptm->ptm_owner;; owner = next) {
    298       1.44       ad 			if (MUTEX_HAS_WAITERS(owner))
    299       1.44       ad 				break;
    300       1.44       ad 			if (MUTEX_OWNER(owner) == 0) {
    301       1.44       ad 				pthread__mutex_wakeup(self, ptm);
    302       1.44       ad 				break;
    303       1.44       ad 			}
    304       1.44       ad 			new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
    305       1.44       ad 			next = atomic_cas_ptr(&ptm->ptm_owner, owner, new);
    306       1.44       ad 			if (next == owner) {
    307       1.21      chs 				/*
    308       1.44       ad 				 * pthread_mutex_unlock() can do a
    309       1.44       ad 				 * non-interlocked CAS.  We cannot
    310       1.44       ad 				 * know if our attempt to set the
    311       1.44       ad 				 * waiters bit has succeeded while
    312       1.44       ad 				 * the holding thread is running.
    313       1.44       ad 				 * There are many assumptions; see
    314       1.44       ad 				 * sys/kern/kern_mutex.c for details.
    315       1.44       ad 				 * In short, we must spin if we see
    316       1.44       ad 				 * that the holder is running again.
    317       1.21      chs 				 */
    318       1.44       ad 				membar_sync();
    319       1.44       ad 				next = pthread__mutex_spin(ptm, owner);
    320       1.21      chs 			}
    321       1.29       ad 		}
    322       1.21      chs 
    323       1.29       ad 		/*
    324       1.44       ad 		 * We may have been awoken by the current thread above,
    325       1.44       ad 		 * or will be awoken by the current holder of the mutex.
    326       1.44       ad 		 * The key requirement is that we must not proceed until
    327       1.50       ad 		 * told that we are no longer waiting (via pt_mutexwait
    328       1.44       ad 		 * being set to zero).  Otherwise it is unsafe to re-enter
    329       1.44       ad 		 * the thread onto the waiters list.
    330       1.29       ad 		 */
    331       1.50       ad 		while (self->pt_mutexwait) {
    332       1.44       ad 			self->pt_blocking++;
    333       1.50       ad 			(void)_lwp_park(NULL, self->pt_unpark,
    334       1.50       ad 			    __UNVOLATILE(&ptm->ptm_waiters),
    335       1.50       ad 			    __UNVOLATILE(&ptm->ptm_waiters));
    336       1.50       ad 			self->pt_unpark = 0;
    337       1.44       ad 			self->pt_blocking--;
    338       1.44       ad 			membar_sync();
    339       1.44       ad 		}
    340        1.2  thorpej 	}
    341        1.2  thorpej }
    342        1.2  thorpej 
    343        1.2  thorpej int
    344       1.44       ad pthread_mutex_trylock(pthread_mutex_t *ptm)
    345        1.2  thorpej {
    346       1.27       ad 	pthread_t self;
    347       1.46       ad 	void *val, *new, *next;
    348        1.2  thorpej 
    349  1.51.22.1      riz 	if (__predict_false(__uselibcstub))
    350  1.51.22.1      riz 		return __libc_mutex_trylock_stub(ptm);
    351  1.51.22.1      riz 
    352       1.27       ad 	self = pthread__self();
    353       1.44       ad 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    354       1.44       ad 	if (__predict_true(val == NULL)) {
    355       1.44       ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    356       1.44       ad 		membar_enter();
    357       1.44       ad #endif
    358       1.44       ad 		return 0;
    359       1.44       ad 	}
    360       1.27       ad 
    361       1.46       ad 	if (MUTEX_RECURSIVE(val)) {
    362       1.46       ad 		if (MUTEX_OWNER(val) == 0) {
    363       1.46       ad 			new = (void *)((uintptr_t)self | (uintptr_t)val);
    364       1.46       ad 			next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
    365       1.46       ad 			if (__predict_true(next == val)) {
    366       1.46       ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    367       1.46       ad 				membar_enter();
    368       1.46       ad #endif
    369       1.46       ad 				return 0;
    370       1.46       ad 			}
    371       1.46       ad 		}
    372       1.46       ad 		if (MUTEX_OWNER(val) == (uintptr_t)self) {
    373       1.46       ad 			if (ptm->ptm_recursed == INT_MAX)
    374       1.46       ad 				return EAGAIN;
    375       1.46       ad 			ptm->ptm_recursed++;
    376       1.46       ad 			return 0;
    377       1.46       ad 		}
    378        1.2  thorpej 	}
    379        1.2  thorpej 
    380       1.44       ad 	return EBUSY;
    381        1.2  thorpej }
    382        1.2  thorpej 
    383        1.2  thorpej int
    384       1.44       ad pthread_mutex_unlock(pthread_mutex_t *ptm)
    385        1.2  thorpej {
    386       1.27       ad 	pthread_t self;
    387       1.44       ad 	void *value;
    388       1.44       ad 
    389  1.51.22.1      riz 	if (__predict_false(__uselibcstub))
    390  1.51.22.1      riz 		return __libc_mutex_unlock_stub(ptm);
    391  1.51.22.1      riz 
    392       1.44       ad 	/*
    393       1.44       ad 	 * Note this may be a non-interlocked CAS.  See lock_slow()
    394       1.44       ad 	 * above and sys/kern/kern_mutex.c for details.
    395       1.44       ad 	 */
    396       1.44       ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    397       1.44       ad 	membar_exit();
    398       1.44       ad #endif
    399       1.44       ad 	self = pthread__self();
    400       1.44       ad 	value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
    401       1.44       ad 	if (__predict_true(value == self))
    402       1.44       ad 		return 0;
    403       1.44       ad 	return pthread__mutex_unlock_slow(ptm);
    404       1.44       ad }
    405       1.44       ad 
    406       1.44       ad NOINLINE static int
    407       1.44       ad pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
    408       1.44       ad {
    409       1.44       ad 	pthread_t self, owner, new;
    410       1.44       ad 	int weown, error, deferred;
    411       1.13  nathanw 
    412       1.14  nathanw 	pthread__error(EINVAL, "Invalid mutex",
    413       1.44       ad 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    414       1.44       ad 
    415       1.44       ad 	self = pthread__self();
    416       1.44       ad 	owner = ptm->ptm_owner;
    417       1.44       ad 	weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
    418       1.44       ad 	deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
    419       1.44       ad 	error = 0;
    420       1.44       ad 
    421       1.51     matt 	if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
    422       1.44       ad 		if (!weown) {
    423       1.44       ad 			error = EPERM;
    424       1.44       ad 			new = owner;
    425       1.44       ad 		} else {
    426       1.44       ad 			new = NULL;
    427       1.44       ad 		}
    428       1.44       ad 	} else if (MUTEX_RECURSIVE(owner)) {
    429       1.44       ad 		if (!weown) {
    430       1.44       ad 			error = EPERM;
    431       1.44       ad 			new = owner;
    432       1.45       ad 		} else if (ptm->ptm_recursed) {
    433       1.45       ad 			ptm->ptm_recursed--;
    434       1.44       ad 			new = owner;
    435       1.44       ad 		} else {
    436       1.44       ad 			new = (pthread_t)MUTEX_RECURSIVE_BIT;
    437       1.44       ad 		}
    438       1.44       ad 	} else {
    439       1.44       ad 		pthread__error(EPERM,
    440       1.44       ad 		    "Unlocking unlocked mutex", (owner != NULL));
    441       1.44       ad 		pthread__error(EPERM,
    442       1.44       ad 		    "Unlocking mutex owned by another thread", weown);
    443       1.44       ad 		new = NULL;
    444       1.44       ad 	}
    445        1.2  thorpej 
    446        1.2  thorpej 	/*
    447       1.44       ad 	 * Release the mutex.  If there appear to be waiters, then
    448       1.44       ad 	 * wake them up.
    449        1.2  thorpej 	 */
    450       1.44       ad 	if (new != owner) {
    451       1.44       ad 		owner = atomic_swap_ptr(&ptm->ptm_owner, new);
    452       1.44       ad 		if (MUTEX_HAS_WAITERS(owner) != 0) {
    453       1.44       ad 			pthread__mutex_wakeup(self, ptm);
    454        1.2  thorpej 			return 0;
    455        1.2  thorpej 		}
    456       1.44       ad 	}
    457       1.44       ad 
    458       1.44       ad 	/*
    459       1.44       ad 	 * There were no waiters, but we may have deferred waking
    460       1.44       ad 	 * other threads until mutex unlock - we must wake them now.
    461       1.44       ad 	 */
    462       1.44       ad 	if (!deferred)
    463       1.44       ad 		return error;
    464       1.44       ad 
    465       1.44       ad 	if (self->pt_nwaiters == 1) {
    466       1.44       ad 		/*
    467       1.44       ad 		 * If the calling thread is about to block, defer
    468       1.44       ad 		 * unparking the target until _lwp_park() is called.
    469       1.44       ad 		 */
    470       1.44       ad 		if (self->pt_willpark && self->pt_unpark == 0) {
    471       1.44       ad 			self->pt_unpark = self->pt_waiters[0];
    472       1.44       ad 		} else {
    473       1.44       ad 			(void)_lwp_unpark(self->pt_waiters[0],
    474       1.45       ad 			    __UNVOLATILE(&ptm->ptm_waiters));
    475       1.15  nathanw 		}
    476       1.44       ad 	} else {
    477       1.44       ad 		(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    478       1.45       ad 		    __UNVOLATILE(&ptm->ptm_waiters));
    479        1.2  thorpej 	}
    480       1.44       ad 	self->pt_nwaiters = 0;
    481        1.2  thorpej 
    482       1.44       ad 	return error;
    483       1.44       ad }
    484       1.44       ad 
    485       1.44       ad static void
    486       1.44       ad pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
    487       1.44       ad {
    488       1.44       ad 	pthread_t thread, next;
    489       1.44       ad 	ssize_t n, rv;
    490       1.27       ad 
    491        1.8  nathanw 	/*
    492       1.44       ad 	 * Take ownership of the current set of waiters.  No
    493       1.44       ad 	 * need for a memory barrier following this, all loads
    494       1.44       ad 	 * are dependent upon 'thread'.
    495        1.8  nathanw 	 */
    496       1.44       ad 	thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
    497       1.44       ad 
    498       1.44       ad 	for (;;) {
    499       1.44       ad 		/*
    500       1.44       ad 		 * Pull waiters from the queue and add to our list.
    501       1.44       ad 		 * Use a memory barrier to ensure that we safely
    502       1.50       ad 		 * read the value of pt_mutexnext before 'thread'
    503       1.50       ad 		 * sees pt_mutexwait being cleared.
    504       1.44       ad 		 */
    505       1.44       ad 		for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
    506       1.44       ad 		    n < pthread__unpark_max && thread != NULL;
    507       1.44       ad 		    thread = next) {
    508       1.50       ad 		    	next = thread->pt_mutexnext;
    509       1.44       ad 		    	if (thread != self) {
    510       1.44       ad 				self->pt_waiters[n++] = thread->pt_lid;
    511       1.44       ad 				membar_sync();
    512       1.44       ad 			}
    513       1.50       ad 			thread->pt_mutexwait = 0;
    514       1.44       ad 			/* No longer safe to touch 'thread' */
    515       1.44       ad 		}
    516       1.44       ad 
    517       1.44       ad 		switch (n) {
    518       1.44       ad 		case 0:
    519       1.44       ad 			return;
    520       1.44       ad 		case 1:
    521       1.44       ad 			/*
    522       1.44       ad 			 * If the calling thread is about to block,
    523       1.44       ad 			 * defer unparking the target until _lwp_park()
    524       1.44       ad 			 * is called.
    525       1.44       ad 			 */
    526       1.44       ad 			if (self->pt_willpark && self->pt_unpark == 0) {
    527       1.44       ad 				self->pt_unpark = self->pt_waiters[0];
    528       1.44       ad 				return;
    529       1.44       ad 			}
    530       1.44       ad 			rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
    531       1.45       ad 			    __UNVOLATILE(&ptm->ptm_waiters));
    532       1.44       ad 			if (rv != 0 && errno != EALREADY && errno != EINTR &&
    533       1.44       ad 			    errno != ESRCH) {
    534       1.44       ad 				pthread__errorfunc(__FILE__, __LINE__,
    535       1.44       ad 				    __func__, "_lwp_unpark failed");
    536       1.44       ad 			}
    537       1.44       ad 			return;
    538       1.44       ad 		default:
    539       1.44       ad 			rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
    540       1.45       ad 			    __UNVOLATILE(&ptm->ptm_waiters));
    541       1.44       ad 			if (rv != 0 && errno != EINTR) {
    542       1.44       ad 				pthread__errorfunc(__FILE__, __LINE__,
    543       1.44       ad 				    __func__, "_lwp_unpark_all failed");
    544       1.44       ad 			}
    545       1.44       ad 			break;
    546       1.44       ad 		}
    547       1.44       ad 	}
    548        1.2  thorpej }
    549        1.2  thorpej int
    550        1.2  thorpej pthread_mutexattr_init(pthread_mutexattr_t *attr)
    551        1.2  thorpej {
    552  1.51.22.1      riz 	if (__predict_false(__uselibcstub))
    553  1.51.22.1      riz 		return __libc_mutexattr_init_stub(attr);
    554        1.2  thorpej 
    555        1.2  thorpej 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
    556       1.44       ad 	attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
    557        1.2  thorpej 	return 0;
    558        1.2  thorpej }
    559        1.2  thorpej 
    560        1.2  thorpej int
    561        1.2  thorpej pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
    562        1.2  thorpej {
    563  1.51.22.1      riz 	if (__predict_false(__uselibcstub))
    564  1.51.22.1      riz 		return __libc_mutexattr_destroy_stub(attr);
    565        1.2  thorpej 
    566       1.14  nathanw 	pthread__error(EINVAL, "Invalid mutex attribute",
    567       1.14  nathanw 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    568        1.2  thorpej 
    569        1.2  thorpej 	return 0;
    570        1.2  thorpej }
    571        1.2  thorpej 
    572        1.2  thorpej 
    573        1.2  thorpej int
    574        1.2  thorpej pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
    575        1.2  thorpej {
    576       1.14  nathanw 	pthread__error(EINVAL, "Invalid mutex attribute",
    577       1.14  nathanw 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    578        1.2  thorpej 
    579       1.44       ad 	*typep = (int)(intptr_t)attr->ptma_private;
    580        1.2  thorpej 	return 0;
    581        1.2  thorpej }
    582        1.2  thorpej 
    583        1.2  thorpej 
    584        1.2  thorpej int
    585        1.2  thorpej pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
    586        1.2  thorpej {
    587  1.51.22.1      riz 	if (__predict_false(__uselibcstub))
    588  1.51.22.1      riz 		return __libc_mutexattr_settype_stub(attr, type);
    589        1.2  thorpej 
    590       1.14  nathanw 	pthread__error(EINVAL, "Invalid mutex attribute",
    591       1.14  nathanw 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    592       1.13  nathanw 
    593        1.2  thorpej 	switch (type) {
    594        1.2  thorpej 	case PTHREAD_MUTEX_NORMAL:
    595        1.2  thorpej 	case PTHREAD_MUTEX_ERRORCHECK:
    596        1.2  thorpej 	case PTHREAD_MUTEX_RECURSIVE:
    597       1.44       ad 		attr->ptma_private = (void *)(intptr_t)type;
    598       1.44       ad 		return 0;
    599        1.2  thorpej 	default:
    600        1.2  thorpej 		return EINVAL;
    601        1.2  thorpej 	}
    602        1.2  thorpej }
    603        1.2  thorpej 
    604        1.2  thorpej 
    605       1.19  nathanw static void
    606       1.19  nathanw once_cleanup(void *closure)
    607       1.19  nathanw {
    608       1.19  nathanw 
    609       1.19  nathanw        pthread_mutex_unlock((pthread_mutex_t *)closure);
    610       1.19  nathanw }
    611       1.19  nathanw 
    612       1.19  nathanw 
    613        1.2  thorpej int
    614        1.2  thorpej pthread_once(pthread_once_t *once_control, void (*routine)(void))
    615        1.2  thorpej {
    616  1.51.22.1      riz 	if (__predict_false(__uselibcstub))
    617  1.51.22.1      riz 		return __libc_thr_once_stub(once_control, routine);
    618        1.2  thorpej 
    619        1.2  thorpej 	if (once_control->pto_done == 0) {
    620        1.2  thorpej 		pthread_mutex_lock(&once_control->pto_mutex);
    621       1.19  nathanw 		pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
    622        1.2  thorpej 		if (once_control->pto_done == 0) {
    623        1.2  thorpej 			routine();
    624        1.2  thorpej 			once_control->pto_done = 1;
    625        1.2  thorpej 		}
    626       1.19  nathanw 		pthread_cleanup_pop(1);
    627        1.2  thorpej 	}
    628        1.2  thorpej 
    629        1.2  thorpej 	return 0;
    630        1.2  thorpej }
    631       1.32       ad 
    632       1.50       ad void
    633       1.50       ad pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
    634       1.33       ad {
    635       1.33       ad 
    636       1.50       ad 	if (__predict_false(ptm == NULL ||
    637       1.50       ad 	    MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
    638       1.50       ad 	    	(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    639       1.50       ad 	    	    __UNVOLATILE(&ptm->ptm_waiters));
    640       1.50       ad 	    	self->pt_nwaiters = 0;
    641       1.50       ad 	} else {
    642       1.50       ad 		atomic_or_ulong((volatile unsigned long *)
    643       1.50       ad 		    (uintptr_t)&ptm->ptm_owner,
    644       1.50       ad 		    (unsigned long)MUTEX_DEFERRED_BIT);
    645       1.50       ad 	}
    646       1.33       ad }
    647       1.33       ad 
    648       1.39       ad int
    649       1.44       ad _pthread_mutex_held_np(pthread_mutex_t *ptm)
    650       1.39       ad {
    651       1.39       ad 
    652       1.44       ad 	return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
    653       1.39       ad }
    654       1.39       ad 
    655       1.39       ad pthread_t
    656       1.44       ad _pthread_mutex_owner_np(pthread_mutex_t *ptm)
    657       1.39       ad {
    658       1.39       ad 
    659       1.44       ad 	return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
    660       1.39       ad }
    661