Home | History | Annotate | Line # | Download | only in libpthread
pthread_mutex.c revision 1.51.4.1
      1  1.51.4.1  sborrill /*	$NetBSD: pthread_mutex.c,v 1.51.4.1 2014/02/20 13:53:26 sborrill Exp $	*/
      2       1.2   thorpej 
      3       1.2   thorpej /*-
      4      1.44        ad  * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5       1.2   thorpej  * All rights reserved.
      6       1.2   thorpej  *
      7       1.2   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8      1.27        ad  * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
      9       1.2   thorpej  *
     10       1.2   thorpej  * Redistribution and use in source and binary forms, with or without
     11       1.2   thorpej  * modification, are permitted provided that the following conditions
     12       1.2   thorpej  * are met:
     13       1.2   thorpej  * 1. Redistributions of source code must retain the above copyright
     14       1.2   thorpej  *    notice, this list of conditions and the following disclaimer.
     15       1.2   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.2   thorpej  *    notice, this list of conditions and the following disclaimer in the
     17       1.2   thorpej  *    documentation and/or other materials provided with the distribution.
     18       1.2   thorpej  *
     19       1.2   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.2   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.2   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.2   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.2   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.2   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.2   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.2   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.2   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.2   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.2   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     30       1.2   thorpej  */
     31       1.2   thorpej 
     32      1.49        ad /*
     33      1.49        ad  * To track threads waiting for mutexes to be released, we use lockless
     34      1.49        ad  * lists built on atomic operations and memory barriers.
     35      1.49        ad  *
     36      1.49        ad  * A simple spinlock would be faster and make the code easier to
     37      1.49        ad  * follow, but spinlocks are problematic in userspace.  If a thread is
     38      1.49        ad  * preempted by the kernel while holding a spinlock, any other thread
     39      1.49        ad  * attempting to acquire that spinlock will needlessly busy wait.
     40      1.49        ad  *
     41      1.49        ad  * There is no good way to know that the holding thread is no longer
     42      1.49        ad  * running, nor to request a wake-up once it has begun running again.
     43      1.49        ad  * Of more concern, threads in the SCHED_FIFO class do not have a
     44      1.49        ad  * limited time quantum and so could spin forever, preventing the
     45      1.49        ad  * thread holding the spinlock from getting CPU time: it would never
     46      1.49        ad  * be released.
     47      1.49        ad  */
     48      1.49        ad 
     49       1.2   thorpej #include <sys/cdefs.h>
     50  1.51.4.1  sborrill __RCSID("$NetBSD: pthread_mutex.c,v 1.51.4.1 2014/02/20 13:53:26 sborrill Exp $");
     51      1.40        ad 
     52      1.40        ad #include <sys/types.h>
     53      1.44        ad #include <sys/lwpctl.h>
     54      1.51      matt #include <sys/lock.h>
     55      1.10     lukem 
     56       1.2   thorpej #include <errno.h>
     57       1.2   thorpej #include <limits.h>
     58       1.2   thorpej #include <stdlib.h>
     59       1.6       scw #include <string.h>
     60      1.44        ad #include <stdio.h>
     61       1.2   thorpej 
     62       1.2   thorpej #include "pthread.h"
     63       1.2   thorpej #include "pthread_int.h"
     64       1.2   thorpej 
     65      1.44        ad #define	MUTEX_WAITERS_BIT		((uintptr_t)0x01)
     66      1.44        ad #define	MUTEX_RECURSIVE_BIT		((uintptr_t)0x02)
     67      1.44        ad #define	MUTEX_DEFERRED_BIT		((uintptr_t)0x04)
     68      1.44        ad #define	MUTEX_THREAD			((uintptr_t)-16L)
     69      1.44        ad 
     70      1.44        ad #define	MUTEX_HAS_WAITERS(x)		((uintptr_t)(x) & MUTEX_WAITERS_BIT)
     71      1.44        ad #define	MUTEX_RECURSIVE(x)		((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
     72      1.44        ad #define	MUTEX_OWNER(x)			((uintptr_t)(x) & MUTEX_THREAD)
     73      1.44        ad 
     74      1.44        ad #if __GNUC_PREREQ__(3, 0)
     75      1.44        ad #define	NOINLINE		__attribute ((noinline))
     76      1.44        ad #else
     77      1.44        ad #define	NOINLINE		/* nothing */
     78      1.44        ad #endif
     79      1.44        ad 
     80      1.44        ad static void	pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
     81      1.44        ad static int	pthread__mutex_lock_slow(pthread_mutex_t *);
     82      1.44        ad static int	pthread__mutex_unlock_slow(pthread_mutex_t *);
     83      1.44        ad static void	pthread__mutex_pause(void);
     84       1.2   thorpej 
     85      1.39        ad int		_pthread_mutex_held_np(pthread_mutex_t *);
     86      1.39        ad pthread_t	_pthread_mutex_owner_np(pthread_mutex_t *);
     87      1.39        ad 
     88      1.39        ad __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
     89      1.39        ad __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
     90      1.39        ad 
     91       1.2   thorpej __strong_alias(__libc_mutex_init,pthread_mutex_init)
     92       1.2   thorpej __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
     93       1.2   thorpej __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
     94       1.2   thorpej __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
     95       1.2   thorpej __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
     96       1.4   thorpej 
     97       1.4   thorpej __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
     98       1.4   thorpej __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
     99       1.5   thorpej __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
    100       1.2   thorpej 
    101       1.2   thorpej __strong_alias(__libc_thr_once,pthread_once)
    102       1.2   thorpej 
    103       1.2   thorpej int
    104      1.44        ad pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
    105       1.2   thorpej {
    106      1.44        ad 	intptr_t type;
    107       1.2   thorpej 
    108      1.44        ad 	if (attr == NULL)
    109      1.44        ad 		type = PTHREAD_MUTEX_NORMAL;
    110      1.44        ad 	else
    111      1.44        ad 		type = (intptr_t)attr->ptma_private;
    112       1.2   thorpej 
    113      1.44        ad 	switch (type) {
    114      1.44        ad 	case PTHREAD_MUTEX_ERRORCHECK:
    115      1.51      matt 		__cpu_simple_lock_set(&ptm->ptm_errorcheck);
    116      1.44        ad 		ptm->ptm_owner = NULL;
    117      1.44        ad 		break;
    118      1.44        ad 	case PTHREAD_MUTEX_RECURSIVE:
    119      1.51      matt 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
    120      1.44        ad 		ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
    121      1.44        ad 		break;
    122      1.44        ad 	default:
    123      1.51      matt 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
    124      1.44        ad 		ptm->ptm_owner = NULL;
    125      1.44        ad 		break;
    126       1.2   thorpej 	}
    127       1.2   thorpej 
    128      1.44        ad 	ptm->ptm_magic = _PT_MUTEX_MAGIC;
    129      1.44        ad 	ptm->ptm_waiters = NULL;
    130      1.45        ad 	ptm->ptm_recursed = 0;
    131       1.2   thorpej 
    132       1.2   thorpej 	return 0;
    133       1.2   thorpej }
    134       1.2   thorpej 
    135       1.2   thorpej 
    136       1.2   thorpej int
    137      1.44        ad pthread_mutex_destroy(pthread_mutex_t *ptm)
    138       1.2   thorpej {
    139       1.2   thorpej 
    140      1.14   nathanw 	pthread__error(EINVAL, "Invalid mutex",
    141      1.44        ad 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    142      1.14   nathanw 	pthread__error(EBUSY, "Destroying locked mutex",
    143      1.44        ad 	    MUTEX_OWNER(ptm->ptm_owner) == 0);
    144       1.2   thorpej 
    145      1.44        ad 	ptm->ptm_magic = _PT_MUTEX_DEAD;
    146       1.2   thorpej 	return 0;
    147       1.2   thorpej }
    148       1.2   thorpej 
    149       1.2   thorpej int
    150      1.44        ad pthread_mutex_lock(pthread_mutex_t *ptm)
    151       1.2   thorpej {
    152      1.27        ad 	pthread_t self;
    153      1.44        ad 	void *val;
    154       1.2   thorpej 
    155      1.27        ad 	self = pthread__self();
    156      1.44        ad 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    157      1.44        ad 	if (__predict_true(val == NULL)) {
    158      1.44        ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    159      1.44        ad 		membar_enter();
    160      1.44        ad #endif
    161      1.44        ad 		return 0;
    162       1.2   thorpej 	}
    163      1.44        ad 	return pthread__mutex_lock_slow(ptm);
    164      1.44        ad }
    165       1.2   thorpej 
    166      1.44        ad /* We want function call overhead. */
    167      1.44        ad NOINLINE static void
    168      1.44        ad pthread__mutex_pause(void)
    169      1.44        ad {
    170       1.2   thorpej 
    171      1.44        ad 	pthread__smt_pause();
    172       1.2   thorpej }
    173       1.2   thorpej 
    174      1.44        ad /*
    175      1.44        ad  * Spin while the holder is running.  'lwpctl' gives us the true
    176      1.44        ad  * status of the thread.  pt_blocking is set by libpthread in order
    177      1.44        ad  * to cut out system call and kernel spinlock overhead on remote CPUs
    178      1.44        ad  * (could represent many thousands of clock cycles).  pt_blocking also
    179      1.44        ad  * makes this thread yield if the target is calling sched_yield().
    180      1.44        ad  */
    181      1.44        ad NOINLINE static void *
    182      1.44        ad pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
    183      1.44        ad {
    184      1.44        ad 	pthread_t thread;
    185      1.44        ad 	unsigned int count, i;
    186      1.44        ad 
    187      1.44        ad 	for (count = 2;; owner = ptm->ptm_owner) {
    188      1.44        ad 		thread = (pthread_t)MUTEX_OWNER(owner);
    189      1.44        ad 		if (thread == NULL)
    190      1.44        ad 			break;
    191      1.44        ad 		if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
    192      1.44        ad 		    thread->pt_blocking)
    193      1.44        ad 			break;
    194      1.44        ad 		if (count < 128)
    195      1.44        ad 			count += count;
    196      1.44        ad 		for (i = count; i != 0; i--)
    197      1.44        ad 			pthread__mutex_pause();
    198      1.44        ad 	}
    199       1.2   thorpej 
    200      1.44        ad 	return owner;
    201      1.44        ad }
    202      1.44        ad 
    203  1.51.4.1  sborrill NOINLINE static void
    204  1.51.4.1  sborrill pthread__mutex_setwaiters(pthread_t self, pthread_mutex_t *ptm)
    205  1.51.4.1  sborrill {
    206  1.51.4.1  sborrill 	void *new, *owner;
    207  1.51.4.1  sborrill 
    208  1.51.4.1  sborrill 	/*
    209  1.51.4.1  sborrill 	 * Note that the mutex can become unlocked before we set
    210  1.51.4.1  sborrill 	 * the waiters bit.  If that happens it's not safe to sleep
    211  1.51.4.1  sborrill 	 * as we may never be awoken: we must remove the current
    212  1.51.4.1  sborrill 	 * thread from the waiters list and try again.
    213  1.51.4.1  sborrill 	 *
    214  1.51.4.1  sborrill 	 * Because we are doing this atomically, we can't remove
    215  1.51.4.1  sborrill 	 * one waiter: we must remove all waiters and awken them,
    216  1.51.4.1  sborrill 	 * then sleep in _lwp_park() until we have been awoken.
    217  1.51.4.1  sborrill 	 *
    218  1.51.4.1  sborrill 	 * Issue a memory barrier to ensure that we are reading
    219  1.51.4.1  sborrill 	 * the value of ptm_owner/pt_mutexwait after we have entered
    220  1.51.4.1  sborrill 	 * the waiters list (the CAS itself must be atomic).
    221  1.51.4.1  sborrill 	 */
    222  1.51.4.1  sborrill again:
    223  1.51.4.1  sborrill 	membar_consumer();
    224  1.51.4.1  sborrill 	owner = ptm->ptm_owner;
    225  1.51.4.1  sborrill 
    226  1.51.4.1  sborrill 	if (MUTEX_OWNER(owner) == 0) {
    227  1.51.4.1  sborrill 		pthread__mutex_wakeup(self, ptm);
    228  1.51.4.1  sborrill 		return;
    229  1.51.4.1  sborrill 	}
    230  1.51.4.1  sborrill 	if (!MUTEX_HAS_WAITERS(owner)) {
    231  1.51.4.1  sborrill 		new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
    232  1.51.4.1  sborrill 		if (atomic_cas_ptr(&ptm->ptm_owner, owner, new) != owner) {
    233  1.51.4.1  sborrill 			goto again;
    234  1.51.4.1  sborrill 		}
    235  1.51.4.1  sborrill 	}
    236  1.51.4.1  sborrill 
    237  1.51.4.1  sborrill 	/*
    238  1.51.4.1  sborrill 	 * Note that pthread_mutex_unlock() can do a non-interlocked CAS.
    239  1.51.4.1  sborrill 	 * We cannot know if the presence of the waiters bit is stable
    240  1.51.4.1  sborrill 	 * while the holding thread is running.  There are many assumptions;
    241  1.51.4.1  sborrill 	 * see sys/kern/kern_mutex.c for details.  In short, we must spin if
    242  1.51.4.1  sborrill 	 * we see that the holder is running again.
    243  1.51.4.1  sborrill 	 */
    244  1.51.4.1  sborrill 	membar_sync();
    245  1.51.4.1  sborrill 	pthread__mutex_spin(ptm, owner);
    246  1.51.4.1  sborrill 
    247  1.51.4.1  sborrill 	if (membar_consumer(), !MUTEX_HAS_WAITERS(ptm->ptm_owner)) {
    248  1.51.4.1  sborrill 		goto again;
    249  1.51.4.1  sborrill 	}
    250  1.51.4.1  sborrill }
    251  1.51.4.1  sborrill 
    252      1.44        ad NOINLINE static int
    253      1.44        ad pthread__mutex_lock_slow(pthread_mutex_t *ptm)
    254       1.2   thorpej {
    255      1.44        ad 	void *waiters, *new, *owner, *next;
    256      1.44        ad 	pthread_t self;
    257  1.51.4.1  sborrill 	int serrno;
    258       1.2   thorpej 
    259      1.14   nathanw 	pthread__error(EINVAL, "Invalid mutex",
    260      1.44        ad 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    261      1.44        ad 
    262      1.44        ad 	owner = ptm->ptm_owner;
    263      1.44        ad 	self = pthread__self();
    264      1.13   nathanw 
    265      1.44        ad 	/* Recursive or errorcheck? */
    266      1.44        ad 	if (MUTEX_OWNER(owner) == (uintptr_t)self) {
    267      1.44        ad 		if (MUTEX_RECURSIVE(owner)) {
    268      1.45        ad 			if (ptm->ptm_recursed == INT_MAX)
    269      1.44        ad 				return EAGAIN;
    270      1.45        ad 			ptm->ptm_recursed++;
    271      1.44        ad 			return 0;
    272      1.29        ad 		}
    273      1.51      matt 		if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
    274      1.44        ad 			return EDEADLK;
    275      1.44        ad 	}
    276      1.29        ad 
    277  1.51.4.1  sborrill 	serrno = errno;
    278      1.44        ad 	for (;; owner = ptm->ptm_owner) {
    279      1.44        ad 		/* Spin while the owner is running. */
    280      1.44        ad 		owner = pthread__mutex_spin(ptm, owner);
    281      1.44        ad 
    282      1.44        ad 		/* If it has become free, try to acquire it again. */
    283      1.44        ad 		if (MUTEX_OWNER(owner) == 0) {
    284      1.47        ad 			do {
    285      1.44        ad 				new = (void *)
    286      1.44        ad 				    ((uintptr_t)self | (uintptr_t)owner);
    287      1.44        ad 				next = atomic_cas_ptr(&ptm->ptm_owner, owner,
    288      1.44        ad 				    new);
    289      1.44        ad 				if (next == owner) {
    290  1.51.4.1  sborrill 					errno = serrno;
    291      1.44        ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    292      1.44        ad 					membar_enter();
    293      1.44        ad #endif
    294      1.44        ad 					return 0;
    295      1.44        ad 				}
    296      1.47        ad 				owner = next;
    297      1.47        ad 			} while (MUTEX_OWNER(owner) == 0);
    298      1.44        ad 			/*
    299      1.44        ad 			 * We have lost the race to acquire the mutex.
    300      1.44        ad 			 * The new owner could be running on another
    301      1.44        ad 			 * CPU, in which case we should spin and avoid
    302      1.44        ad 			 * the overhead of blocking.
    303      1.44        ad 			 */
    304      1.47        ad 			continue;
    305      1.44        ad 		}
    306      1.21       chs 
    307       1.2   thorpej 		/*
    308      1.44        ad 		 * Nope, still held.  Add thread to the list of waiters.
    309      1.50        ad 		 * Issue a memory barrier to ensure mutexwait/mutexnext
    310      1.44        ad 		 * are visible before we enter the waiters list.
    311       1.2   thorpej 		 */
    312      1.50        ad 		self->pt_mutexwait = 1;
    313      1.44        ad 		for (waiters = ptm->ptm_waiters;; waiters = next) {
    314      1.50        ad 			self->pt_mutexnext = waiters;
    315      1.44        ad 			membar_producer();
    316      1.44        ad 			next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
    317      1.44        ad 			if (next == waiters)
    318      1.44        ad 			    	break;
    319      1.44        ad 		}
    320      1.21       chs 
    321  1.51.4.1  sborrill 		/* Set the waiters bit and block. */
    322  1.51.4.1  sborrill 		pthread__mutex_setwaiters(self, ptm);
    323      1.21       chs 
    324      1.29        ad 		/*
    325      1.44        ad 		 * We may have been awoken by the current thread above,
    326      1.44        ad 		 * or will be awoken by the current holder of the mutex.
    327      1.44        ad 		 * The key requirement is that we must not proceed until
    328      1.50        ad 		 * told that we are no longer waiting (via pt_mutexwait
    329      1.44        ad 		 * being set to zero).  Otherwise it is unsafe to re-enter
    330      1.44        ad 		 * the thread onto the waiters list.
    331      1.29        ad 		 */
    332      1.50        ad 		while (self->pt_mutexwait) {
    333      1.44        ad 			self->pt_blocking++;
    334      1.50        ad 			(void)_lwp_park(NULL, self->pt_unpark,
    335      1.50        ad 			    __UNVOLATILE(&ptm->ptm_waiters),
    336      1.50        ad 			    __UNVOLATILE(&ptm->ptm_waiters));
    337      1.50        ad 			self->pt_unpark = 0;
    338      1.44        ad 			self->pt_blocking--;
    339      1.44        ad 			membar_sync();
    340      1.44        ad 		}
    341       1.2   thorpej 	}
    342       1.2   thorpej }
    343       1.2   thorpej 
    344       1.2   thorpej int
    345      1.44        ad pthread_mutex_trylock(pthread_mutex_t *ptm)
    346       1.2   thorpej {
    347      1.27        ad 	pthread_t self;
    348      1.46        ad 	void *val, *new, *next;
    349       1.2   thorpej 
    350      1.27        ad 	self = pthread__self();
    351      1.44        ad 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    352      1.44        ad 	if (__predict_true(val == NULL)) {
    353      1.44        ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    354      1.44        ad 		membar_enter();
    355      1.44        ad #endif
    356      1.44        ad 		return 0;
    357      1.44        ad 	}
    358      1.27        ad 
    359      1.46        ad 	if (MUTEX_RECURSIVE(val)) {
    360      1.46        ad 		if (MUTEX_OWNER(val) == 0) {
    361      1.46        ad 			new = (void *)((uintptr_t)self | (uintptr_t)val);
    362      1.46        ad 			next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
    363      1.46        ad 			if (__predict_true(next == val)) {
    364      1.46        ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    365      1.46        ad 				membar_enter();
    366      1.46        ad #endif
    367      1.46        ad 				return 0;
    368      1.46        ad 			}
    369      1.46        ad 		}
    370      1.46        ad 		if (MUTEX_OWNER(val) == (uintptr_t)self) {
    371      1.46        ad 			if (ptm->ptm_recursed == INT_MAX)
    372      1.46        ad 				return EAGAIN;
    373      1.46        ad 			ptm->ptm_recursed++;
    374      1.46        ad 			return 0;
    375      1.46        ad 		}
    376       1.2   thorpej 	}
    377       1.2   thorpej 
    378      1.44        ad 	return EBUSY;
    379       1.2   thorpej }
    380       1.2   thorpej 
    381       1.2   thorpej int
    382      1.44        ad pthread_mutex_unlock(pthread_mutex_t *ptm)
    383       1.2   thorpej {
    384      1.27        ad 	pthread_t self;
    385      1.44        ad 	void *value;
    386      1.44        ad 
    387      1.44        ad 	/*
    388      1.44        ad 	 * Note this may be a non-interlocked CAS.  See lock_slow()
    389      1.44        ad 	 * above and sys/kern/kern_mutex.c for details.
    390      1.44        ad 	 */
    391      1.44        ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    392      1.44        ad 	membar_exit();
    393      1.44        ad #endif
    394      1.44        ad 	self = pthread__self();
    395      1.44        ad 	value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
    396      1.44        ad 	if (__predict_true(value == self))
    397      1.44        ad 		return 0;
    398      1.44        ad 	return pthread__mutex_unlock_slow(ptm);
    399      1.44        ad }
    400      1.44        ad 
    401      1.44        ad NOINLINE static int
    402      1.44        ad pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
    403      1.44        ad {
    404      1.44        ad 	pthread_t self, owner, new;
    405      1.44        ad 	int weown, error, deferred;
    406      1.13   nathanw 
    407      1.14   nathanw 	pthread__error(EINVAL, "Invalid mutex",
    408      1.44        ad 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    409      1.44        ad 
    410      1.44        ad 	self = pthread__self();
    411      1.44        ad 	owner = ptm->ptm_owner;
    412      1.44        ad 	weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
    413      1.44        ad 	deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
    414      1.44        ad 	error = 0;
    415      1.44        ad 
    416      1.51      matt 	if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
    417      1.44        ad 		if (!weown) {
    418      1.44        ad 			error = EPERM;
    419      1.44        ad 			new = owner;
    420      1.44        ad 		} else {
    421      1.44        ad 			new = NULL;
    422      1.44        ad 		}
    423      1.44        ad 	} else if (MUTEX_RECURSIVE(owner)) {
    424      1.44        ad 		if (!weown) {
    425      1.44        ad 			error = EPERM;
    426      1.44        ad 			new = owner;
    427      1.45        ad 		} else if (ptm->ptm_recursed) {
    428      1.45        ad 			ptm->ptm_recursed--;
    429      1.44        ad 			new = owner;
    430      1.44        ad 		} else {
    431      1.44        ad 			new = (pthread_t)MUTEX_RECURSIVE_BIT;
    432      1.44        ad 		}
    433      1.44        ad 	} else {
    434      1.44        ad 		pthread__error(EPERM,
    435      1.44        ad 		    "Unlocking unlocked mutex", (owner != NULL));
    436      1.44        ad 		pthread__error(EPERM,
    437      1.44        ad 		    "Unlocking mutex owned by another thread", weown);
    438      1.44        ad 		new = NULL;
    439      1.44        ad 	}
    440       1.2   thorpej 
    441       1.2   thorpej 	/*
    442      1.44        ad 	 * Release the mutex.  If there appear to be waiters, then
    443      1.44        ad 	 * wake them up.
    444       1.2   thorpej 	 */
    445      1.44        ad 	if (new != owner) {
    446      1.44        ad 		owner = atomic_swap_ptr(&ptm->ptm_owner, new);
    447      1.44        ad 		if (MUTEX_HAS_WAITERS(owner) != 0) {
    448      1.44        ad 			pthread__mutex_wakeup(self, ptm);
    449       1.2   thorpej 			return 0;
    450       1.2   thorpej 		}
    451      1.44        ad 	}
    452      1.44        ad 
    453      1.44        ad 	/*
    454      1.44        ad 	 * There were no waiters, but we may have deferred waking
    455      1.44        ad 	 * other threads until mutex unlock - we must wake them now.
    456      1.44        ad 	 */
    457      1.44        ad 	if (!deferred)
    458      1.44        ad 		return error;
    459      1.44        ad 
    460      1.44        ad 	if (self->pt_nwaiters == 1) {
    461      1.44        ad 		/*
    462      1.44        ad 		 * If the calling thread is about to block, defer
    463      1.44        ad 		 * unparking the target until _lwp_park() is called.
    464      1.44        ad 		 */
    465      1.44        ad 		if (self->pt_willpark && self->pt_unpark == 0) {
    466      1.44        ad 			self->pt_unpark = self->pt_waiters[0];
    467      1.44        ad 		} else {
    468      1.44        ad 			(void)_lwp_unpark(self->pt_waiters[0],
    469      1.45        ad 			    __UNVOLATILE(&ptm->ptm_waiters));
    470      1.15   nathanw 		}
    471      1.44        ad 	} else {
    472      1.44        ad 		(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    473      1.45        ad 		    __UNVOLATILE(&ptm->ptm_waiters));
    474       1.2   thorpej 	}
    475      1.44        ad 	self->pt_nwaiters = 0;
    476       1.2   thorpej 
    477      1.44        ad 	return error;
    478      1.44        ad }
    479      1.44        ad 
    480      1.44        ad static void
    481      1.44        ad pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
    482      1.44        ad {
    483      1.44        ad 	pthread_t thread, next;
    484      1.44        ad 	ssize_t n, rv;
    485      1.27        ad 
    486       1.8   nathanw 	/*
    487      1.44        ad 	 * Take ownership of the current set of waiters.  No
    488      1.44        ad 	 * need for a memory barrier following this, all loads
    489      1.44        ad 	 * are dependent upon 'thread'.
    490       1.8   nathanw 	 */
    491      1.44        ad 	thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
    492      1.44        ad 
    493      1.44        ad 	for (;;) {
    494      1.44        ad 		/*
    495      1.44        ad 		 * Pull waiters from the queue and add to our list.
    496      1.44        ad 		 * Use a memory barrier to ensure that we safely
    497      1.50        ad 		 * read the value of pt_mutexnext before 'thread'
    498      1.50        ad 		 * sees pt_mutexwait being cleared.
    499      1.44        ad 		 */
    500      1.44        ad 		for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
    501      1.44        ad 		    n < pthread__unpark_max && thread != NULL;
    502      1.44        ad 		    thread = next) {
    503      1.50        ad 		    	next = thread->pt_mutexnext;
    504      1.44        ad 		    	if (thread != self) {
    505      1.44        ad 				self->pt_waiters[n++] = thread->pt_lid;
    506      1.44        ad 				membar_sync();
    507      1.44        ad 			}
    508      1.50        ad 			thread->pt_mutexwait = 0;
    509      1.44        ad 			/* No longer safe to touch 'thread' */
    510      1.44        ad 		}
    511      1.44        ad 
    512      1.44        ad 		switch (n) {
    513      1.44        ad 		case 0:
    514      1.44        ad 			return;
    515      1.44        ad 		case 1:
    516      1.44        ad 			/*
    517      1.44        ad 			 * If the calling thread is about to block,
    518      1.44        ad 			 * defer unparking the target until _lwp_park()
    519      1.44        ad 			 * is called.
    520      1.44        ad 			 */
    521      1.44        ad 			if (self->pt_willpark && self->pt_unpark == 0) {
    522      1.44        ad 				self->pt_unpark = self->pt_waiters[0];
    523      1.44        ad 				return;
    524      1.44        ad 			}
    525      1.44        ad 			rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
    526      1.45        ad 			    __UNVOLATILE(&ptm->ptm_waiters));
    527      1.44        ad 			if (rv != 0 && errno != EALREADY && errno != EINTR &&
    528      1.44        ad 			    errno != ESRCH) {
    529      1.44        ad 				pthread__errorfunc(__FILE__, __LINE__,
    530      1.44        ad 				    __func__, "_lwp_unpark failed");
    531      1.44        ad 			}
    532      1.44        ad 			return;
    533      1.44        ad 		default:
    534      1.44        ad 			rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
    535      1.45        ad 			    __UNVOLATILE(&ptm->ptm_waiters));
    536      1.44        ad 			if (rv != 0 && errno != EINTR) {
    537      1.44        ad 				pthread__errorfunc(__FILE__, __LINE__,
    538      1.44        ad 				    __func__, "_lwp_unpark_all failed");
    539      1.44        ad 			}
    540      1.44        ad 			break;
    541      1.44        ad 		}
    542      1.44        ad 	}
    543       1.2   thorpej }
    544       1.2   thorpej int
    545       1.2   thorpej pthread_mutexattr_init(pthread_mutexattr_t *attr)
    546       1.2   thorpej {
    547       1.2   thorpej 
    548       1.2   thorpej 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
    549      1.44        ad 	attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
    550       1.2   thorpej 	return 0;
    551       1.2   thorpej }
    552       1.2   thorpej 
    553       1.2   thorpej int
    554       1.2   thorpej pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
    555       1.2   thorpej {
    556       1.2   thorpej 
    557      1.14   nathanw 	pthread__error(EINVAL, "Invalid mutex attribute",
    558      1.14   nathanw 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    559       1.2   thorpej 
    560       1.2   thorpej 	return 0;
    561       1.2   thorpej }
    562       1.2   thorpej 
    563       1.2   thorpej 
    564       1.2   thorpej int
    565       1.2   thorpej pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
    566       1.2   thorpej {
    567       1.2   thorpej 
    568      1.14   nathanw 	pthread__error(EINVAL, "Invalid mutex attribute",
    569      1.14   nathanw 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    570       1.2   thorpej 
    571      1.44        ad 	*typep = (int)(intptr_t)attr->ptma_private;
    572       1.2   thorpej 	return 0;
    573       1.2   thorpej }
    574       1.2   thorpej 
    575       1.2   thorpej 
    576       1.2   thorpej int
    577       1.2   thorpej pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
    578       1.2   thorpej {
    579       1.2   thorpej 
    580      1.14   nathanw 	pthread__error(EINVAL, "Invalid mutex attribute",
    581      1.14   nathanw 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    582      1.13   nathanw 
    583       1.2   thorpej 	switch (type) {
    584       1.2   thorpej 	case PTHREAD_MUTEX_NORMAL:
    585       1.2   thorpej 	case PTHREAD_MUTEX_ERRORCHECK:
    586       1.2   thorpej 	case PTHREAD_MUTEX_RECURSIVE:
    587      1.44        ad 		attr->ptma_private = (void *)(intptr_t)type;
    588      1.44        ad 		return 0;
    589       1.2   thorpej 	default:
    590       1.2   thorpej 		return EINVAL;
    591       1.2   thorpej 	}
    592       1.2   thorpej }
    593       1.2   thorpej 
    594       1.2   thorpej 
    595      1.19   nathanw static void
    596      1.19   nathanw once_cleanup(void *closure)
    597      1.19   nathanw {
    598      1.19   nathanw 
    599      1.19   nathanw        pthread_mutex_unlock((pthread_mutex_t *)closure);
    600      1.19   nathanw }
    601      1.19   nathanw 
    602      1.19   nathanw 
    603       1.2   thorpej int
    604       1.2   thorpej pthread_once(pthread_once_t *once_control, void (*routine)(void))
    605       1.2   thorpej {
    606       1.2   thorpej 
    607       1.2   thorpej 	if (once_control->pto_done == 0) {
    608       1.2   thorpej 		pthread_mutex_lock(&once_control->pto_mutex);
    609      1.19   nathanw 		pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
    610       1.2   thorpej 		if (once_control->pto_done == 0) {
    611       1.2   thorpej 			routine();
    612       1.2   thorpej 			once_control->pto_done = 1;
    613       1.2   thorpej 		}
    614      1.19   nathanw 		pthread_cleanup_pop(1);
    615       1.2   thorpej 	}
    616       1.2   thorpej 
    617       1.2   thorpej 	return 0;
    618       1.2   thorpej }
    619      1.32        ad 
    620      1.50        ad void
    621      1.50        ad pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
    622      1.33        ad {
    623      1.33        ad 
    624      1.50        ad 	if (__predict_false(ptm == NULL ||
    625      1.50        ad 	    MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
    626      1.50        ad 	    	(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    627      1.50        ad 	    	    __UNVOLATILE(&ptm->ptm_waiters));
    628      1.50        ad 	    	self->pt_nwaiters = 0;
    629      1.50        ad 	} else {
    630      1.50        ad 		atomic_or_ulong((volatile unsigned long *)
    631      1.50        ad 		    (uintptr_t)&ptm->ptm_owner,
    632      1.50        ad 		    (unsigned long)MUTEX_DEFERRED_BIT);
    633      1.50        ad 	}
    634      1.33        ad }
    635      1.33        ad 
    636      1.39        ad int
    637      1.44        ad _pthread_mutex_held_np(pthread_mutex_t *ptm)
    638      1.39        ad {
    639      1.39        ad 
    640      1.44        ad 	return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
    641      1.39        ad }
    642      1.39        ad 
    643      1.39        ad pthread_t
    644      1.44        ad _pthread_mutex_owner_np(pthread_mutex_t *ptm)
    645      1.39        ad {
    646      1.39        ad 
    647      1.44        ad 	return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
    648      1.39        ad }
    649