pthread_mutex.c revision 1.51.4.1 1 1.51.4.1 sborrill /* $NetBSD: pthread_mutex.c,v 1.51.4.1 2014/02/20 13:53:26 sborrill Exp $ */
2 1.2 thorpej
3 1.2 thorpej /*-
4 1.44 ad * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 thorpej * All rights reserved.
6 1.2 thorpej *
7 1.2 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.27 ad * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 1.2 thorpej *
10 1.2 thorpej * Redistribution and use in source and binary forms, with or without
11 1.2 thorpej * modification, are permitted provided that the following conditions
12 1.2 thorpej * are met:
13 1.2 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.2 thorpej * notice, this list of conditions and the following disclaimer.
15 1.2 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.2 thorpej * documentation and/or other materials provided with the distribution.
18 1.2 thorpej *
19 1.2 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.2 thorpej */
31 1.2 thorpej
32 1.49 ad /*
33 1.49 ad * To track threads waiting for mutexes to be released, we use lockless
34 1.49 ad * lists built on atomic operations and memory barriers.
35 1.49 ad *
36 1.49 ad * A simple spinlock would be faster and make the code easier to
37 1.49 ad * follow, but spinlocks are problematic in userspace. If a thread is
38 1.49 ad * preempted by the kernel while holding a spinlock, any other thread
39 1.49 ad * attempting to acquire that spinlock will needlessly busy wait.
40 1.49 ad *
41 1.49 ad * There is no good way to know that the holding thread is no longer
42 1.49 ad * running, nor to request a wake-up once it has begun running again.
43 1.49 ad * Of more concern, threads in the SCHED_FIFO class do not have a
44 1.49 ad * limited time quantum and so could spin forever, preventing the
45 1.49 ad * thread holding the spinlock from getting CPU time: it would never
46 1.49 ad * be released.
47 1.49 ad */
48 1.49 ad
49 1.2 thorpej #include <sys/cdefs.h>
50 1.51.4.1 sborrill __RCSID("$NetBSD: pthread_mutex.c,v 1.51.4.1 2014/02/20 13:53:26 sborrill Exp $");
51 1.40 ad
52 1.40 ad #include <sys/types.h>
53 1.44 ad #include <sys/lwpctl.h>
54 1.51 matt #include <sys/lock.h>
55 1.10 lukem
56 1.2 thorpej #include <errno.h>
57 1.2 thorpej #include <limits.h>
58 1.2 thorpej #include <stdlib.h>
59 1.6 scw #include <string.h>
60 1.44 ad #include <stdio.h>
61 1.2 thorpej
62 1.2 thorpej #include "pthread.h"
63 1.2 thorpej #include "pthread_int.h"
64 1.2 thorpej
65 1.44 ad #define MUTEX_WAITERS_BIT ((uintptr_t)0x01)
66 1.44 ad #define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02)
67 1.44 ad #define MUTEX_DEFERRED_BIT ((uintptr_t)0x04)
68 1.44 ad #define MUTEX_THREAD ((uintptr_t)-16L)
69 1.44 ad
70 1.44 ad #define MUTEX_HAS_WAITERS(x) ((uintptr_t)(x) & MUTEX_WAITERS_BIT)
71 1.44 ad #define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
72 1.44 ad #define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD)
73 1.44 ad
74 1.44 ad #if __GNUC_PREREQ__(3, 0)
75 1.44 ad #define NOINLINE __attribute ((noinline))
76 1.44 ad #else
77 1.44 ad #define NOINLINE /* nothing */
78 1.44 ad #endif
79 1.44 ad
80 1.44 ad static void pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
81 1.44 ad static int pthread__mutex_lock_slow(pthread_mutex_t *);
82 1.44 ad static int pthread__mutex_unlock_slow(pthread_mutex_t *);
83 1.44 ad static void pthread__mutex_pause(void);
84 1.2 thorpej
85 1.39 ad int _pthread_mutex_held_np(pthread_mutex_t *);
86 1.39 ad pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
87 1.39 ad
88 1.39 ad __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
89 1.39 ad __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
90 1.39 ad
91 1.2 thorpej __strong_alias(__libc_mutex_init,pthread_mutex_init)
92 1.2 thorpej __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
93 1.2 thorpej __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
94 1.2 thorpej __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
95 1.2 thorpej __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
96 1.4 thorpej
97 1.4 thorpej __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
98 1.4 thorpej __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
99 1.5 thorpej __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
100 1.2 thorpej
101 1.2 thorpej __strong_alias(__libc_thr_once,pthread_once)
102 1.2 thorpej
103 1.2 thorpej int
104 1.44 ad pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
105 1.2 thorpej {
106 1.44 ad intptr_t type;
107 1.2 thorpej
108 1.44 ad if (attr == NULL)
109 1.44 ad type = PTHREAD_MUTEX_NORMAL;
110 1.44 ad else
111 1.44 ad type = (intptr_t)attr->ptma_private;
112 1.2 thorpej
113 1.44 ad switch (type) {
114 1.44 ad case PTHREAD_MUTEX_ERRORCHECK:
115 1.51 matt __cpu_simple_lock_set(&ptm->ptm_errorcheck);
116 1.44 ad ptm->ptm_owner = NULL;
117 1.44 ad break;
118 1.44 ad case PTHREAD_MUTEX_RECURSIVE:
119 1.51 matt __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
120 1.44 ad ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
121 1.44 ad break;
122 1.44 ad default:
123 1.51 matt __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
124 1.44 ad ptm->ptm_owner = NULL;
125 1.44 ad break;
126 1.2 thorpej }
127 1.2 thorpej
128 1.44 ad ptm->ptm_magic = _PT_MUTEX_MAGIC;
129 1.44 ad ptm->ptm_waiters = NULL;
130 1.45 ad ptm->ptm_recursed = 0;
131 1.2 thorpej
132 1.2 thorpej return 0;
133 1.2 thorpej }
134 1.2 thorpej
135 1.2 thorpej
136 1.2 thorpej int
137 1.44 ad pthread_mutex_destroy(pthread_mutex_t *ptm)
138 1.2 thorpej {
139 1.2 thorpej
140 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
141 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
142 1.14 nathanw pthread__error(EBUSY, "Destroying locked mutex",
143 1.44 ad MUTEX_OWNER(ptm->ptm_owner) == 0);
144 1.2 thorpej
145 1.44 ad ptm->ptm_magic = _PT_MUTEX_DEAD;
146 1.2 thorpej return 0;
147 1.2 thorpej }
148 1.2 thorpej
149 1.2 thorpej int
150 1.44 ad pthread_mutex_lock(pthread_mutex_t *ptm)
151 1.2 thorpej {
152 1.27 ad pthread_t self;
153 1.44 ad void *val;
154 1.2 thorpej
155 1.27 ad self = pthread__self();
156 1.44 ad val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
157 1.44 ad if (__predict_true(val == NULL)) {
158 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
159 1.44 ad membar_enter();
160 1.44 ad #endif
161 1.44 ad return 0;
162 1.2 thorpej }
163 1.44 ad return pthread__mutex_lock_slow(ptm);
164 1.44 ad }
165 1.2 thorpej
166 1.44 ad /* We want function call overhead. */
167 1.44 ad NOINLINE static void
168 1.44 ad pthread__mutex_pause(void)
169 1.44 ad {
170 1.2 thorpej
171 1.44 ad pthread__smt_pause();
172 1.2 thorpej }
173 1.2 thorpej
174 1.44 ad /*
175 1.44 ad * Spin while the holder is running. 'lwpctl' gives us the true
176 1.44 ad * status of the thread. pt_blocking is set by libpthread in order
177 1.44 ad * to cut out system call and kernel spinlock overhead on remote CPUs
178 1.44 ad * (could represent many thousands of clock cycles). pt_blocking also
179 1.44 ad * makes this thread yield if the target is calling sched_yield().
180 1.44 ad */
181 1.44 ad NOINLINE static void *
182 1.44 ad pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
183 1.44 ad {
184 1.44 ad pthread_t thread;
185 1.44 ad unsigned int count, i;
186 1.44 ad
187 1.44 ad for (count = 2;; owner = ptm->ptm_owner) {
188 1.44 ad thread = (pthread_t)MUTEX_OWNER(owner);
189 1.44 ad if (thread == NULL)
190 1.44 ad break;
191 1.44 ad if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
192 1.44 ad thread->pt_blocking)
193 1.44 ad break;
194 1.44 ad if (count < 128)
195 1.44 ad count += count;
196 1.44 ad for (i = count; i != 0; i--)
197 1.44 ad pthread__mutex_pause();
198 1.44 ad }
199 1.2 thorpej
200 1.44 ad return owner;
201 1.44 ad }
202 1.44 ad
203 1.51.4.1 sborrill NOINLINE static void
204 1.51.4.1 sborrill pthread__mutex_setwaiters(pthread_t self, pthread_mutex_t *ptm)
205 1.51.4.1 sborrill {
206 1.51.4.1 sborrill void *new, *owner;
207 1.51.4.1 sborrill
208 1.51.4.1 sborrill /*
209 1.51.4.1 sborrill * Note that the mutex can become unlocked before we set
210 1.51.4.1 sborrill * the waiters bit. If that happens it's not safe to sleep
211 1.51.4.1 sborrill * as we may never be awoken: we must remove the current
212 1.51.4.1 sborrill * thread from the waiters list and try again.
213 1.51.4.1 sborrill *
214 1.51.4.1 sborrill * Because we are doing this atomically, we can't remove
215 1.51.4.1 sborrill * one waiter: we must remove all waiters and awken them,
216 1.51.4.1 sborrill * then sleep in _lwp_park() until we have been awoken.
217 1.51.4.1 sborrill *
218 1.51.4.1 sborrill * Issue a memory barrier to ensure that we are reading
219 1.51.4.1 sborrill * the value of ptm_owner/pt_mutexwait after we have entered
220 1.51.4.1 sborrill * the waiters list (the CAS itself must be atomic).
221 1.51.4.1 sborrill */
222 1.51.4.1 sborrill again:
223 1.51.4.1 sborrill membar_consumer();
224 1.51.4.1 sborrill owner = ptm->ptm_owner;
225 1.51.4.1 sborrill
226 1.51.4.1 sborrill if (MUTEX_OWNER(owner) == 0) {
227 1.51.4.1 sborrill pthread__mutex_wakeup(self, ptm);
228 1.51.4.1 sborrill return;
229 1.51.4.1 sborrill }
230 1.51.4.1 sborrill if (!MUTEX_HAS_WAITERS(owner)) {
231 1.51.4.1 sborrill new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
232 1.51.4.1 sborrill if (atomic_cas_ptr(&ptm->ptm_owner, owner, new) != owner) {
233 1.51.4.1 sborrill goto again;
234 1.51.4.1 sborrill }
235 1.51.4.1 sborrill }
236 1.51.4.1 sborrill
237 1.51.4.1 sborrill /*
238 1.51.4.1 sborrill * Note that pthread_mutex_unlock() can do a non-interlocked CAS.
239 1.51.4.1 sborrill * We cannot know if the presence of the waiters bit is stable
240 1.51.4.1 sborrill * while the holding thread is running. There are many assumptions;
241 1.51.4.1 sborrill * see sys/kern/kern_mutex.c for details. In short, we must spin if
242 1.51.4.1 sborrill * we see that the holder is running again.
243 1.51.4.1 sborrill */
244 1.51.4.1 sborrill membar_sync();
245 1.51.4.1 sborrill pthread__mutex_spin(ptm, owner);
246 1.51.4.1 sborrill
247 1.51.4.1 sborrill if (membar_consumer(), !MUTEX_HAS_WAITERS(ptm->ptm_owner)) {
248 1.51.4.1 sborrill goto again;
249 1.51.4.1 sborrill }
250 1.51.4.1 sborrill }
251 1.51.4.1 sborrill
252 1.44 ad NOINLINE static int
253 1.44 ad pthread__mutex_lock_slow(pthread_mutex_t *ptm)
254 1.2 thorpej {
255 1.44 ad void *waiters, *new, *owner, *next;
256 1.44 ad pthread_t self;
257 1.51.4.1 sborrill int serrno;
258 1.2 thorpej
259 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
260 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
261 1.44 ad
262 1.44 ad owner = ptm->ptm_owner;
263 1.44 ad self = pthread__self();
264 1.13 nathanw
265 1.44 ad /* Recursive or errorcheck? */
266 1.44 ad if (MUTEX_OWNER(owner) == (uintptr_t)self) {
267 1.44 ad if (MUTEX_RECURSIVE(owner)) {
268 1.45 ad if (ptm->ptm_recursed == INT_MAX)
269 1.44 ad return EAGAIN;
270 1.45 ad ptm->ptm_recursed++;
271 1.44 ad return 0;
272 1.29 ad }
273 1.51 matt if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
274 1.44 ad return EDEADLK;
275 1.44 ad }
276 1.29 ad
277 1.51.4.1 sborrill serrno = errno;
278 1.44 ad for (;; owner = ptm->ptm_owner) {
279 1.44 ad /* Spin while the owner is running. */
280 1.44 ad owner = pthread__mutex_spin(ptm, owner);
281 1.44 ad
282 1.44 ad /* If it has become free, try to acquire it again. */
283 1.44 ad if (MUTEX_OWNER(owner) == 0) {
284 1.47 ad do {
285 1.44 ad new = (void *)
286 1.44 ad ((uintptr_t)self | (uintptr_t)owner);
287 1.44 ad next = atomic_cas_ptr(&ptm->ptm_owner, owner,
288 1.44 ad new);
289 1.44 ad if (next == owner) {
290 1.51.4.1 sborrill errno = serrno;
291 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
292 1.44 ad membar_enter();
293 1.44 ad #endif
294 1.44 ad return 0;
295 1.44 ad }
296 1.47 ad owner = next;
297 1.47 ad } while (MUTEX_OWNER(owner) == 0);
298 1.44 ad /*
299 1.44 ad * We have lost the race to acquire the mutex.
300 1.44 ad * The new owner could be running on another
301 1.44 ad * CPU, in which case we should spin and avoid
302 1.44 ad * the overhead of blocking.
303 1.44 ad */
304 1.47 ad continue;
305 1.44 ad }
306 1.21 chs
307 1.2 thorpej /*
308 1.44 ad * Nope, still held. Add thread to the list of waiters.
309 1.50 ad * Issue a memory barrier to ensure mutexwait/mutexnext
310 1.44 ad * are visible before we enter the waiters list.
311 1.2 thorpej */
312 1.50 ad self->pt_mutexwait = 1;
313 1.44 ad for (waiters = ptm->ptm_waiters;; waiters = next) {
314 1.50 ad self->pt_mutexnext = waiters;
315 1.44 ad membar_producer();
316 1.44 ad next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
317 1.44 ad if (next == waiters)
318 1.44 ad break;
319 1.44 ad }
320 1.21 chs
321 1.51.4.1 sborrill /* Set the waiters bit and block. */
322 1.51.4.1 sborrill pthread__mutex_setwaiters(self, ptm);
323 1.21 chs
324 1.29 ad /*
325 1.44 ad * We may have been awoken by the current thread above,
326 1.44 ad * or will be awoken by the current holder of the mutex.
327 1.44 ad * The key requirement is that we must not proceed until
328 1.50 ad * told that we are no longer waiting (via pt_mutexwait
329 1.44 ad * being set to zero). Otherwise it is unsafe to re-enter
330 1.44 ad * the thread onto the waiters list.
331 1.29 ad */
332 1.50 ad while (self->pt_mutexwait) {
333 1.44 ad self->pt_blocking++;
334 1.50 ad (void)_lwp_park(NULL, self->pt_unpark,
335 1.50 ad __UNVOLATILE(&ptm->ptm_waiters),
336 1.50 ad __UNVOLATILE(&ptm->ptm_waiters));
337 1.50 ad self->pt_unpark = 0;
338 1.44 ad self->pt_blocking--;
339 1.44 ad membar_sync();
340 1.44 ad }
341 1.2 thorpej }
342 1.2 thorpej }
343 1.2 thorpej
344 1.2 thorpej int
345 1.44 ad pthread_mutex_trylock(pthread_mutex_t *ptm)
346 1.2 thorpej {
347 1.27 ad pthread_t self;
348 1.46 ad void *val, *new, *next;
349 1.2 thorpej
350 1.27 ad self = pthread__self();
351 1.44 ad val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
352 1.44 ad if (__predict_true(val == NULL)) {
353 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
354 1.44 ad membar_enter();
355 1.44 ad #endif
356 1.44 ad return 0;
357 1.44 ad }
358 1.27 ad
359 1.46 ad if (MUTEX_RECURSIVE(val)) {
360 1.46 ad if (MUTEX_OWNER(val) == 0) {
361 1.46 ad new = (void *)((uintptr_t)self | (uintptr_t)val);
362 1.46 ad next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
363 1.46 ad if (__predict_true(next == val)) {
364 1.46 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
365 1.46 ad membar_enter();
366 1.46 ad #endif
367 1.46 ad return 0;
368 1.46 ad }
369 1.46 ad }
370 1.46 ad if (MUTEX_OWNER(val) == (uintptr_t)self) {
371 1.46 ad if (ptm->ptm_recursed == INT_MAX)
372 1.46 ad return EAGAIN;
373 1.46 ad ptm->ptm_recursed++;
374 1.46 ad return 0;
375 1.46 ad }
376 1.2 thorpej }
377 1.2 thorpej
378 1.44 ad return EBUSY;
379 1.2 thorpej }
380 1.2 thorpej
381 1.2 thorpej int
382 1.44 ad pthread_mutex_unlock(pthread_mutex_t *ptm)
383 1.2 thorpej {
384 1.27 ad pthread_t self;
385 1.44 ad void *value;
386 1.44 ad
387 1.44 ad /*
388 1.44 ad * Note this may be a non-interlocked CAS. See lock_slow()
389 1.44 ad * above and sys/kern/kern_mutex.c for details.
390 1.44 ad */
391 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
392 1.44 ad membar_exit();
393 1.44 ad #endif
394 1.44 ad self = pthread__self();
395 1.44 ad value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
396 1.44 ad if (__predict_true(value == self))
397 1.44 ad return 0;
398 1.44 ad return pthread__mutex_unlock_slow(ptm);
399 1.44 ad }
400 1.44 ad
401 1.44 ad NOINLINE static int
402 1.44 ad pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
403 1.44 ad {
404 1.44 ad pthread_t self, owner, new;
405 1.44 ad int weown, error, deferred;
406 1.13 nathanw
407 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
408 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
409 1.44 ad
410 1.44 ad self = pthread__self();
411 1.44 ad owner = ptm->ptm_owner;
412 1.44 ad weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
413 1.44 ad deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
414 1.44 ad error = 0;
415 1.44 ad
416 1.51 matt if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
417 1.44 ad if (!weown) {
418 1.44 ad error = EPERM;
419 1.44 ad new = owner;
420 1.44 ad } else {
421 1.44 ad new = NULL;
422 1.44 ad }
423 1.44 ad } else if (MUTEX_RECURSIVE(owner)) {
424 1.44 ad if (!weown) {
425 1.44 ad error = EPERM;
426 1.44 ad new = owner;
427 1.45 ad } else if (ptm->ptm_recursed) {
428 1.45 ad ptm->ptm_recursed--;
429 1.44 ad new = owner;
430 1.44 ad } else {
431 1.44 ad new = (pthread_t)MUTEX_RECURSIVE_BIT;
432 1.44 ad }
433 1.44 ad } else {
434 1.44 ad pthread__error(EPERM,
435 1.44 ad "Unlocking unlocked mutex", (owner != NULL));
436 1.44 ad pthread__error(EPERM,
437 1.44 ad "Unlocking mutex owned by another thread", weown);
438 1.44 ad new = NULL;
439 1.44 ad }
440 1.2 thorpej
441 1.2 thorpej /*
442 1.44 ad * Release the mutex. If there appear to be waiters, then
443 1.44 ad * wake them up.
444 1.2 thorpej */
445 1.44 ad if (new != owner) {
446 1.44 ad owner = atomic_swap_ptr(&ptm->ptm_owner, new);
447 1.44 ad if (MUTEX_HAS_WAITERS(owner) != 0) {
448 1.44 ad pthread__mutex_wakeup(self, ptm);
449 1.2 thorpej return 0;
450 1.2 thorpej }
451 1.44 ad }
452 1.44 ad
453 1.44 ad /*
454 1.44 ad * There were no waiters, but we may have deferred waking
455 1.44 ad * other threads until mutex unlock - we must wake them now.
456 1.44 ad */
457 1.44 ad if (!deferred)
458 1.44 ad return error;
459 1.44 ad
460 1.44 ad if (self->pt_nwaiters == 1) {
461 1.44 ad /*
462 1.44 ad * If the calling thread is about to block, defer
463 1.44 ad * unparking the target until _lwp_park() is called.
464 1.44 ad */
465 1.44 ad if (self->pt_willpark && self->pt_unpark == 0) {
466 1.44 ad self->pt_unpark = self->pt_waiters[0];
467 1.44 ad } else {
468 1.44 ad (void)_lwp_unpark(self->pt_waiters[0],
469 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
470 1.15 nathanw }
471 1.44 ad } else {
472 1.44 ad (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
473 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
474 1.2 thorpej }
475 1.44 ad self->pt_nwaiters = 0;
476 1.2 thorpej
477 1.44 ad return error;
478 1.44 ad }
479 1.44 ad
480 1.44 ad static void
481 1.44 ad pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
482 1.44 ad {
483 1.44 ad pthread_t thread, next;
484 1.44 ad ssize_t n, rv;
485 1.27 ad
486 1.8 nathanw /*
487 1.44 ad * Take ownership of the current set of waiters. No
488 1.44 ad * need for a memory barrier following this, all loads
489 1.44 ad * are dependent upon 'thread'.
490 1.8 nathanw */
491 1.44 ad thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
492 1.44 ad
493 1.44 ad for (;;) {
494 1.44 ad /*
495 1.44 ad * Pull waiters from the queue and add to our list.
496 1.44 ad * Use a memory barrier to ensure that we safely
497 1.50 ad * read the value of pt_mutexnext before 'thread'
498 1.50 ad * sees pt_mutexwait being cleared.
499 1.44 ad */
500 1.44 ad for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
501 1.44 ad n < pthread__unpark_max && thread != NULL;
502 1.44 ad thread = next) {
503 1.50 ad next = thread->pt_mutexnext;
504 1.44 ad if (thread != self) {
505 1.44 ad self->pt_waiters[n++] = thread->pt_lid;
506 1.44 ad membar_sync();
507 1.44 ad }
508 1.50 ad thread->pt_mutexwait = 0;
509 1.44 ad /* No longer safe to touch 'thread' */
510 1.44 ad }
511 1.44 ad
512 1.44 ad switch (n) {
513 1.44 ad case 0:
514 1.44 ad return;
515 1.44 ad case 1:
516 1.44 ad /*
517 1.44 ad * If the calling thread is about to block,
518 1.44 ad * defer unparking the target until _lwp_park()
519 1.44 ad * is called.
520 1.44 ad */
521 1.44 ad if (self->pt_willpark && self->pt_unpark == 0) {
522 1.44 ad self->pt_unpark = self->pt_waiters[0];
523 1.44 ad return;
524 1.44 ad }
525 1.44 ad rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
526 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
527 1.44 ad if (rv != 0 && errno != EALREADY && errno != EINTR &&
528 1.44 ad errno != ESRCH) {
529 1.44 ad pthread__errorfunc(__FILE__, __LINE__,
530 1.44 ad __func__, "_lwp_unpark failed");
531 1.44 ad }
532 1.44 ad return;
533 1.44 ad default:
534 1.44 ad rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
535 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
536 1.44 ad if (rv != 0 && errno != EINTR) {
537 1.44 ad pthread__errorfunc(__FILE__, __LINE__,
538 1.44 ad __func__, "_lwp_unpark_all failed");
539 1.44 ad }
540 1.44 ad break;
541 1.44 ad }
542 1.44 ad }
543 1.2 thorpej }
544 1.2 thorpej int
545 1.2 thorpej pthread_mutexattr_init(pthread_mutexattr_t *attr)
546 1.2 thorpej {
547 1.2 thorpej
548 1.2 thorpej attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
549 1.44 ad attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
550 1.2 thorpej return 0;
551 1.2 thorpej }
552 1.2 thorpej
553 1.2 thorpej int
554 1.2 thorpej pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
555 1.2 thorpej {
556 1.2 thorpej
557 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
558 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
559 1.2 thorpej
560 1.2 thorpej return 0;
561 1.2 thorpej }
562 1.2 thorpej
563 1.2 thorpej
564 1.2 thorpej int
565 1.2 thorpej pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
566 1.2 thorpej {
567 1.2 thorpej
568 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
569 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
570 1.2 thorpej
571 1.44 ad *typep = (int)(intptr_t)attr->ptma_private;
572 1.2 thorpej return 0;
573 1.2 thorpej }
574 1.2 thorpej
575 1.2 thorpej
576 1.2 thorpej int
577 1.2 thorpej pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
578 1.2 thorpej {
579 1.2 thorpej
580 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
581 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
582 1.13 nathanw
583 1.2 thorpej switch (type) {
584 1.2 thorpej case PTHREAD_MUTEX_NORMAL:
585 1.2 thorpej case PTHREAD_MUTEX_ERRORCHECK:
586 1.2 thorpej case PTHREAD_MUTEX_RECURSIVE:
587 1.44 ad attr->ptma_private = (void *)(intptr_t)type;
588 1.44 ad return 0;
589 1.2 thorpej default:
590 1.2 thorpej return EINVAL;
591 1.2 thorpej }
592 1.2 thorpej }
593 1.2 thorpej
594 1.2 thorpej
595 1.19 nathanw static void
596 1.19 nathanw once_cleanup(void *closure)
597 1.19 nathanw {
598 1.19 nathanw
599 1.19 nathanw pthread_mutex_unlock((pthread_mutex_t *)closure);
600 1.19 nathanw }
601 1.19 nathanw
602 1.19 nathanw
603 1.2 thorpej int
604 1.2 thorpej pthread_once(pthread_once_t *once_control, void (*routine)(void))
605 1.2 thorpej {
606 1.2 thorpej
607 1.2 thorpej if (once_control->pto_done == 0) {
608 1.2 thorpej pthread_mutex_lock(&once_control->pto_mutex);
609 1.19 nathanw pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
610 1.2 thorpej if (once_control->pto_done == 0) {
611 1.2 thorpej routine();
612 1.2 thorpej once_control->pto_done = 1;
613 1.2 thorpej }
614 1.19 nathanw pthread_cleanup_pop(1);
615 1.2 thorpej }
616 1.2 thorpej
617 1.2 thorpej return 0;
618 1.2 thorpej }
619 1.32 ad
620 1.50 ad void
621 1.50 ad pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
622 1.33 ad {
623 1.33 ad
624 1.50 ad if (__predict_false(ptm == NULL ||
625 1.50 ad MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
626 1.50 ad (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
627 1.50 ad __UNVOLATILE(&ptm->ptm_waiters));
628 1.50 ad self->pt_nwaiters = 0;
629 1.50 ad } else {
630 1.50 ad atomic_or_ulong((volatile unsigned long *)
631 1.50 ad (uintptr_t)&ptm->ptm_owner,
632 1.50 ad (unsigned long)MUTEX_DEFERRED_BIT);
633 1.50 ad }
634 1.33 ad }
635 1.33 ad
636 1.39 ad int
637 1.44 ad _pthread_mutex_held_np(pthread_mutex_t *ptm)
638 1.39 ad {
639 1.39 ad
640 1.44 ad return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
641 1.39 ad }
642 1.39 ad
643 1.39 ad pthread_t
644 1.44 ad _pthread_mutex_owner_np(pthread_mutex_t *ptm)
645 1.39 ad {
646 1.39 ad
647 1.44 ad return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
648 1.39 ad }
649