Home | History | Annotate | Line # | Download | only in libpthread
pthread_mutex.c revision 1.54.2.1
      1  1.54.2.1      tls /*	$NetBSD: pthread_mutex.c,v 1.54.2.1 2013/06/23 06:21:08 tls Exp $	*/
      2       1.2  thorpej 
      3       1.2  thorpej /*-
      4      1.44       ad  * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5       1.2  thorpej  * All rights reserved.
      6       1.2  thorpej  *
      7       1.2  thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8      1.27       ad  * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
      9       1.2  thorpej  *
     10       1.2  thorpej  * Redistribution and use in source and binary forms, with or without
     11       1.2  thorpej  * modification, are permitted provided that the following conditions
     12       1.2  thorpej  * are met:
     13       1.2  thorpej  * 1. Redistributions of source code must retain the above copyright
     14       1.2  thorpej  *    notice, this list of conditions and the following disclaimer.
     15       1.2  thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.2  thorpej  *    notice, this list of conditions and the following disclaimer in the
     17       1.2  thorpej  *    documentation and/or other materials provided with the distribution.
     18       1.2  thorpej  *
     19       1.2  thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.2  thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.2  thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.2  thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.2  thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.2  thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.2  thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.2  thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.2  thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.2  thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.2  thorpej  * POSSIBILITY OF SUCH DAMAGE.
     30       1.2  thorpej  */
     31       1.2  thorpej 
     32      1.49       ad /*
     33      1.49       ad  * To track threads waiting for mutexes to be released, we use lockless
     34      1.49       ad  * lists built on atomic operations and memory barriers.
     35      1.49       ad  *
     36      1.49       ad  * A simple spinlock would be faster and make the code easier to
     37      1.49       ad  * follow, but spinlocks are problematic in userspace.  If a thread is
     38      1.49       ad  * preempted by the kernel while holding a spinlock, any other thread
     39      1.49       ad  * attempting to acquire that spinlock will needlessly busy wait.
     40      1.49       ad  *
     41      1.49       ad  * There is no good way to know that the holding thread is no longer
     42      1.49       ad  * running, nor to request a wake-up once it has begun running again.
     43      1.49       ad  * Of more concern, threads in the SCHED_FIFO class do not have a
     44      1.49       ad  * limited time quantum and so could spin forever, preventing the
     45      1.49       ad  * thread holding the spinlock from getting CPU time: it would never
     46      1.49       ad  * be released.
     47      1.49       ad  */
     48      1.49       ad 
     49       1.2  thorpej #include <sys/cdefs.h>
     50  1.54.2.1      tls __RCSID("$NetBSD: pthread_mutex.c,v 1.54.2.1 2013/06/23 06:21:08 tls Exp $");
     51      1.40       ad 
     52      1.40       ad #include <sys/types.h>
     53      1.44       ad #include <sys/lwpctl.h>
     54      1.51     matt #include <sys/lock.h>
     55      1.10    lukem 
     56       1.2  thorpej #include <errno.h>
     57       1.2  thorpej #include <limits.h>
     58       1.2  thorpej #include <stdlib.h>
     59  1.54.2.1      tls #include <time.h>
     60       1.6      scw #include <string.h>
     61      1.44       ad #include <stdio.h>
     62       1.2  thorpej 
     63       1.2  thorpej #include "pthread.h"
     64       1.2  thorpej #include "pthread_int.h"
     65  1.54.2.1      tls #include "reentrant.h"
     66       1.2  thorpej 
     67      1.44       ad #define	MUTEX_WAITERS_BIT		((uintptr_t)0x01)
     68      1.44       ad #define	MUTEX_RECURSIVE_BIT		((uintptr_t)0x02)
     69      1.44       ad #define	MUTEX_DEFERRED_BIT		((uintptr_t)0x04)
     70      1.44       ad #define	MUTEX_THREAD			((uintptr_t)-16L)
     71      1.44       ad 
     72      1.44       ad #define	MUTEX_HAS_WAITERS(x)		((uintptr_t)(x) & MUTEX_WAITERS_BIT)
     73      1.44       ad #define	MUTEX_RECURSIVE(x)		((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
     74      1.44       ad #define	MUTEX_OWNER(x)			((uintptr_t)(x) & MUTEX_THREAD)
     75      1.44       ad 
     76      1.44       ad #if __GNUC_PREREQ__(3, 0)
     77      1.44       ad #define	NOINLINE		__attribute ((noinline))
     78      1.44       ad #else
     79      1.44       ad #define	NOINLINE		/* nothing */
     80      1.44       ad #endif
     81      1.44       ad 
     82      1.44       ad static void	pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
     83      1.44       ad static int	pthread__mutex_lock_slow(pthread_mutex_t *);
     84      1.44       ad static int	pthread__mutex_unlock_slow(pthread_mutex_t *);
     85      1.44       ad static void	pthread__mutex_pause(void);
     86       1.2  thorpej 
     87      1.39       ad int		_pthread_mutex_held_np(pthread_mutex_t *);
     88      1.39       ad pthread_t	_pthread_mutex_owner_np(pthread_mutex_t *);
     89      1.39       ad 
     90      1.39       ad __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
     91      1.39       ad __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
     92      1.39       ad 
     93       1.2  thorpej __strong_alias(__libc_mutex_init,pthread_mutex_init)
     94       1.2  thorpej __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
     95       1.2  thorpej __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
     96       1.2  thorpej __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
     97       1.2  thorpej __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
     98       1.4  thorpej 
     99       1.4  thorpej __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
    100       1.4  thorpej __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
    101       1.5  thorpej __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
    102       1.2  thorpej 
    103       1.2  thorpej int
    104      1.44       ad pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
    105       1.2  thorpej {
    106      1.44       ad 	intptr_t type;
    107       1.2  thorpej 
    108  1.54.2.1      tls 	if (__predict_false(__uselibcstub))
    109  1.54.2.1      tls 		return __libc_mutex_init_stub(ptm, attr);
    110  1.54.2.1      tls 
    111      1.44       ad 	if (attr == NULL)
    112      1.44       ad 		type = PTHREAD_MUTEX_NORMAL;
    113      1.44       ad 	else
    114      1.44       ad 		type = (intptr_t)attr->ptma_private;
    115       1.2  thorpej 
    116      1.44       ad 	switch (type) {
    117      1.44       ad 	case PTHREAD_MUTEX_ERRORCHECK:
    118      1.51     matt 		__cpu_simple_lock_set(&ptm->ptm_errorcheck);
    119      1.44       ad 		ptm->ptm_owner = NULL;
    120      1.44       ad 		break;
    121      1.44       ad 	case PTHREAD_MUTEX_RECURSIVE:
    122      1.51     matt 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
    123      1.44       ad 		ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
    124      1.44       ad 		break;
    125      1.44       ad 	default:
    126      1.51     matt 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
    127      1.44       ad 		ptm->ptm_owner = NULL;
    128      1.44       ad 		break;
    129       1.2  thorpej 	}
    130       1.2  thorpej 
    131      1.44       ad 	ptm->ptm_magic = _PT_MUTEX_MAGIC;
    132      1.44       ad 	ptm->ptm_waiters = NULL;
    133      1.45       ad 	ptm->ptm_recursed = 0;
    134       1.2  thorpej 
    135       1.2  thorpej 	return 0;
    136       1.2  thorpej }
    137       1.2  thorpej 
    138       1.2  thorpej int
    139      1.44       ad pthread_mutex_destroy(pthread_mutex_t *ptm)
    140       1.2  thorpej {
    141       1.2  thorpej 
    142  1.54.2.1      tls 	if (__predict_false(__uselibcstub))
    143  1.54.2.1      tls 		return __libc_mutex_destroy_stub(ptm);
    144  1.54.2.1      tls 
    145      1.14  nathanw 	pthread__error(EINVAL, "Invalid mutex",
    146      1.44       ad 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    147      1.14  nathanw 	pthread__error(EBUSY, "Destroying locked mutex",
    148      1.44       ad 	    MUTEX_OWNER(ptm->ptm_owner) == 0);
    149       1.2  thorpej 
    150      1.44       ad 	ptm->ptm_magic = _PT_MUTEX_DEAD;
    151       1.2  thorpej 	return 0;
    152       1.2  thorpej }
    153       1.2  thorpej 
    154       1.2  thorpej int
    155      1.44       ad pthread_mutex_lock(pthread_mutex_t *ptm)
    156       1.2  thorpej {
    157      1.27       ad 	pthread_t self;
    158      1.44       ad 	void *val;
    159       1.2  thorpej 
    160  1.54.2.1      tls 	if (__predict_false(__uselibcstub))
    161  1.54.2.1      tls 		return __libc_mutex_lock_stub(ptm);
    162  1.54.2.1      tls 
    163      1.27       ad 	self = pthread__self();
    164      1.44       ad 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    165      1.44       ad 	if (__predict_true(val == NULL)) {
    166      1.44       ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    167      1.44       ad 		membar_enter();
    168      1.44       ad #endif
    169      1.44       ad 		return 0;
    170       1.2  thorpej 	}
    171      1.44       ad 	return pthread__mutex_lock_slow(ptm);
    172      1.44       ad }
    173       1.2  thorpej 
    174      1.44       ad /* We want function call overhead. */
    175      1.44       ad NOINLINE static void
    176      1.44       ad pthread__mutex_pause(void)
    177      1.44       ad {
    178       1.2  thorpej 
    179      1.44       ad 	pthread__smt_pause();
    180       1.2  thorpej }
    181       1.2  thorpej 
    182      1.44       ad /*
    183      1.44       ad  * Spin while the holder is running.  'lwpctl' gives us the true
    184      1.44       ad  * status of the thread.  pt_blocking is set by libpthread in order
    185      1.44       ad  * to cut out system call and kernel spinlock overhead on remote CPUs
    186      1.44       ad  * (could represent many thousands of clock cycles).  pt_blocking also
    187      1.44       ad  * makes this thread yield if the target is calling sched_yield().
    188      1.44       ad  */
    189      1.44       ad NOINLINE static void *
    190      1.44       ad pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
    191      1.44       ad {
    192      1.44       ad 	pthread_t thread;
    193      1.44       ad 	unsigned int count, i;
    194      1.44       ad 
    195      1.44       ad 	for (count = 2;; owner = ptm->ptm_owner) {
    196      1.44       ad 		thread = (pthread_t)MUTEX_OWNER(owner);
    197      1.44       ad 		if (thread == NULL)
    198      1.44       ad 			break;
    199      1.44       ad 		if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
    200      1.44       ad 		    thread->pt_blocking)
    201      1.44       ad 			break;
    202      1.44       ad 		if (count < 128)
    203      1.44       ad 			count += count;
    204      1.44       ad 		for (i = count; i != 0; i--)
    205      1.44       ad 			pthread__mutex_pause();
    206      1.44       ad 	}
    207       1.2  thorpej 
    208      1.44       ad 	return owner;
    209      1.44       ad }
    210      1.44       ad 
    211      1.44       ad NOINLINE static int
    212      1.44       ad pthread__mutex_lock_slow(pthread_mutex_t *ptm)
    213       1.2  thorpej {
    214      1.44       ad 	void *waiters, *new, *owner, *next;
    215      1.44       ad 	pthread_t self;
    216       1.2  thorpej 
    217      1.14  nathanw 	pthread__error(EINVAL, "Invalid mutex",
    218      1.44       ad 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    219      1.44       ad 
    220      1.44       ad 	owner = ptm->ptm_owner;
    221      1.44       ad 	self = pthread__self();
    222      1.13  nathanw 
    223      1.44       ad 	/* Recursive or errorcheck? */
    224      1.44       ad 	if (MUTEX_OWNER(owner) == (uintptr_t)self) {
    225      1.44       ad 		if (MUTEX_RECURSIVE(owner)) {
    226      1.45       ad 			if (ptm->ptm_recursed == INT_MAX)
    227      1.44       ad 				return EAGAIN;
    228      1.45       ad 			ptm->ptm_recursed++;
    229      1.44       ad 			return 0;
    230      1.29       ad 		}
    231      1.51     matt 		if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
    232      1.44       ad 			return EDEADLK;
    233      1.44       ad 	}
    234      1.29       ad 
    235      1.44       ad 	for (;; owner = ptm->ptm_owner) {
    236      1.44       ad 		/* Spin while the owner is running. */
    237      1.44       ad 		owner = pthread__mutex_spin(ptm, owner);
    238      1.44       ad 
    239      1.44       ad 		/* If it has become free, try to acquire it again. */
    240      1.44       ad 		if (MUTEX_OWNER(owner) == 0) {
    241      1.47       ad 			do {
    242      1.44       ad 				new = (void *)
    243      1.44       ad 				    ((uintptr_t)self | (uintptr_t)owner);
    244      1.44       ad 				next = atomic_cas_ptr(&ptm->ptm_owner, owner,
    245      1.44       ad 				    new);
    246      1.44       ad 				if (next == owner) {
    247      1.44       ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    248      1.44       ad 					membar_enter();
    249      1.44       ad #endif
    250      1.44       ad 					return 0;
    251      1.44       ad 				}
    252      1.47       ad 				owner = next;
    253      1.47       ad 			} while (MUTEX_OWNER(owner) == 0);
    254      1.44       ad 			/*
    255      1.44       ad 			 * We have lost the race to acquire the mutex.
    256      1.44       ad 			 * The new owner could be running on another
    257      1.44       ad 			 * CPU, in which case we should spin and avoid
    258      1.44       ad 			 * the overhead of blocking.
    259      1.44       ad 			 */
    260      1.47       ad 			continue;
    261      1.44       ad 		}
    262      1.21      chs 
    263       1.2  thorpej 		/*
    264      1.44       ad 		 * Nope, still held.  Add thread to the list of waiters.
    265      1.50       ad 		 * Issue a memory barrier to ensure mutexwait/mutexnext
    266      1.44       ad 		 * are visible before we enter the waiters list.
    267       1.2  thorpej 		 */
    268      1.50       ad 		self->pt_mutexwait = 1;
    269      1.44       ad 		for (waiters = ptm->ptm_waiters;; waiters = next) {
    270      1.50       ad 			self->pt_mutexnext = waiters;
    271      1.44       ad 			membar_producer();
    272      1.44       ad 			next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
    273      1.44       ad 			if (next == waiters)
    274      1.44       ad 			    	break;
    275      1.44       ad 		}
    276      1.21      chs 
    277      1.44       ad 		/*
    278      1.44       ad 		 * Set the waiters bit and block.
    279      1.44       ad 		 *
    280      1.44       ad 		 * Note that the mutex can become unlocked before we set
    281      1.44       ad 		 * the waiters bit.  If that happens it's not safe to sleep
    282      1.44       ad 		 * as we may never be awoken: we must remove the current
    283      1.44       ad 		 * thread from the waiters list and try again.
    284      1.44       ad 		 *
    285      1.44       ad 		 * Because we are doing this atomically, we can't remove
    286      1.44       ad 		 * one waiter: we must remove all waiters and awken them,
    287      1.44       ad 		 * then sleep in _lwp_park() until we have been awoken.
    288      1.44       ad 		 *
    289      1.44       ad 		 * Issue a memory barrier to ensure that we are reading
    290      1.50       ad 		 * the value of ptm_owner/pt_mutexwait after we have entered
    291      1.44       ad 		 * the waiters list (the CAS itself must be atomic).
    292      1.44       ad 		 */
    293      1.44       ad 		membar_consumer();
    294      1.44       ad 		for (owner = ptm->ptm_owner;; owner = next) {
    295      1.44       ad 			if (MUTEX_HAS_WAITERS(owner))
    296      1.44       ad 				break;
    297      1.44       ad 			if (MUTEX_OWNER(owner) == 0) {
    298      1.44       ad 				pthread__mutex_wakeup(self, ptm);
    299      1.44       ad 				break;
    300      1.44       ad 			}
    301      1.44       ad 			new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
    302      1.44       ad 			next = atomic_cas_ptr(&ptm->ptm_owner, owner, new);
    303      1.44       ad 			if (next == owner) {
    304      1.21      chs 				/*
    305      1.44       ad 				 * pthread_mutex_unlock() can do a
    306      1.44       ad 				 * non-interlocked CAS.  We cannot
    307      1.44       ad 				 * know if our attempt to set the
    308      1.44       ad 				 * waiters bit has succeeded while
    309      1.44       ad 				 * the holding thread is running.
    310      1.44       ad 				 * There are many assumptions; see
    311      1.44       ad 				 * sys/kern/kern_mutex.c for details.
    312      1.44       ad 				 * In short, we must spin if we see
    313      1.44       ad 				 * that the holder is running again.
    314      1.21      chs 				 */
    315      1.44       ad 				membar_sync();
    316      1.44       ad 				next = pthread__mutex_spin(ptm, owner);
    317      1.21      chs 			}
    318      1.29       ad 		}
    319      1.21      chs 
    320      1.29       ad 		/*
    321      1.44       ad 		 * We may have been awoken by the current thread above,
    322      1.44       ad 		 * or will be awoken by the current holder of the mutex.
    323      1.44       ad 		 * The key requirement is that we must not proceed until
    324      1.50       ad 		 * told that we are no longer waiting (via pt_mutexwait
    325      1.44       ad 		 * being set to zero).  Otherwise it is unsafe to re-enter
    326      1.44       ad 		 * the thread onto the waiters list.
    327      1.29       ad 		 */
    328      1.50       ad 		while (self->pt_mutexwait) {
    329      1.44       ad 			self->pt_blocking++;
    330      1.50       ad 			(void)_lwp_park(NULL, self->pt_unpark,
    331      1.50       ad 			    __UNVOLATILE(&ptm->ptm_waiters),
    332      1.50       ad 			    __UNVOLATILE(&ptm->ptm_waiters));
    333      1.50       ad 			self->pt_unpark = 0;
    334      1.44       ad 			self->pt_blocking--;
    335      1.44       ad 			membar_sync();
    336      1.44       ad 		}
    337       1.2  thorpej 	}
    338       1.2  thorpej }
    339       1.2  thorpej 
    340       1.2  thorpej int
    341      1.44       ad pthread_mutex_trylock(pthread_mutex_t *ptm)
    342       1.2  thorpej {
    343      1.27       ad 	pthread_t self;
    344      1.46       ad 	void *val, *new, *next;
    345       1.2  thorpej 
    346  1.54.2.1      tls 	if (__predict_false(__uselibcstub))
    347  1.54.2.1      tls 		return __libc_mutex_trylock_stub(ptm);
    348  1.54.2.1      tls 
    349      1.27       ad 	self = pthread__self();
    350      1.44       ad 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    351      1.44       ad 	if (__predict_true(val == NULL)) {
    352      1.44       ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    353      1.44       ad 		membar_enter();
    354      1.44       ad #endif
    355      1.44       ad 		return 0;
    356      1.44       ad 	}
    357      1.27       ad 
    358      1.46       ad 	if (MUTEX_RECURSIVE(val)) {
    359      1.46       ad 		if (MUTEX_OWNER(val) == 0) {
    360      1.46       ad 			new = (void *)((uintptr_t)self | (uintptr_t)val);
    361      1.46       ad 			next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
    362      1.46       ad 			if (__predict_true(next == val)) {
    363      1.46       ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    364      1.46       ad 				membar_enter();
    365      1.46       ad #endif
    366      1.46       ad 				return 0;
    367      1.46       ad 			}
    368      1.46       ad 		}
    369      1.46       ad 		if (MUTEX_OWNER(val) == (uintptr_t)self) {
    370      1.46       ad 			if (ptm->ptm_recursed == INT_MAX)
    371      1.46       ad 				return EAGAIN;
    372      1.46       ad 			ptm->ptm_recursed++;
    373      1.46       ad 			return 0;
    374      1.46       ad 		}
    375       1.2  thorpej 	}
    376       1.2  thorpej 
    377      1.44       ad 	return EBUSY;
    378       1.2  thorpej }
    379       1.2  thorpej 
    380       1.2  thorpej int
    381      1.44       ad pthread_mutex_unlock(pthread_mutex_t *ptm)
    382       1.2  thorpej {
    383      1.27       ad 	pthread_t self;
    384      1.44       ad 	void *value;
    385      1.44       ad 
    386  1.54.2.1      tls 	if (__predict_false(__uselibcstub))
    387  1.54.2.1      tls 		return __libc_mutex_unlock_stub(ptm);
    388  1.54.2.1      tls 
    389      1.44       ad 	/*
    390      1.44       ad 	 * Note this may be a non-interlocked CAS.  See lock_slow()
    391      1.44       ad 	 * above and sys/kern/kern_mutex.c for details.
    392      1.44       ad 	 */
    393      1.44       ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    394      1.44       ad 	membar_exit();
    395      1.44       ad #endif
    396      1.44       ad 	self = pthread__self();
    397      1.44       ad 	value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
    398      1.54     matt 	if (__predict_true(value == self)) {
    399      1.54     matt 		pthread__smt_wake();
    400      1.44       ad 		return 0;
    401      1.54     matt 	}
    402      1.44       ad 	return pthread__mutex_unlock_slow(ptm);
    403      1.44       ad }
    404      1.44       ad 
    405      1.44       ad NOINLINE static int
    406      1.44       ad pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
    407      1.44       ad {
    408      1.44       ad 	pthread_t self, owner, new;
    409      1.44       ad 	int weown, error, deferred;
    410      1.13  nathanw 
    411      1.14  nathanw 	pthread__error(EINVAL, "Invalid mutex",
    412      1.44       ad 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    413      1.44       ad 
    414      1.44       ad 	self = pthread__self();
    415      1.44       ad 	owner = ptm->ptm_owner;
    416      1.44       ad 	weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
    417      1.44       ad 	deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
    418      1.44       ad 	error = 0;
    419      1.44       ad 
    420      1.51     matt 	if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
    421      1.44       ad 		if (!weown) {
    422      1.44       ad 			error = EPERM;
    423      1.44       ad 			new = owner;
    424      1.44       ad 		} else {
    425      1.44       ad 			new = NULL;
    426      1.44       ad 		}
    427      1.44       ad 	} else if (MUTEX_RECURSIVE(owner)) {
    428      1.44       ad 		if (!weown) {
    429      1.44       ad 			error = EPERM;
    430      1.44       ad 			new = owner;
    431      1.45       ad 		} else if (ptm->ptm_recursed) {
    432      1.45       ad 			ptm->ptm_recursed--;
    433      1.44       ad 			new = owner;
    434      1.44       ad 		} else {
    435      1.44       ad 			new = (pthread_t)MUTEX_RECURSIVE_BIT;
    436      1.44       ad 		}
    437      1.44       ad 	} else {
    438      1.44       ad 		pthread__error(EPERM,
    439      1.44       ad 		    "Unlocking unlocked mutex", (owner != NULL));
    440      1.44       ad 		pthread__error(EPERM,
    441      1.44       ad 		    "Unlocking mutex owned by another thread", weown);
    442      1.44       ad 		new = NULL;
    443      1.44       ad 	}
    444       1.2  thorpej 
    445       1.2  thorpej 	/*
    446      1.44       ad 	 * Release the mutex.  If there appear to be waiters, then
    447      1.44       ad 	 * wake them up.
    448       1.2  thorpej 	 */
    449      1.44       ad 	if (new != owner) {
    450      1.44       ad 		owner = atomic_swap_ptr(&ptm->ptm_owner, new);
    451      1.44       ad 		if (MUTEX_HAS_WAITERS(owner) != 0) {
    452      1.44       ad 			pthread__mutex_wakeup(self, ptm);
    453       1.2  thorpej 			return 0;
    454       1.2  thorpej 		}
    455      1.44       ad 	}
    456      1.44       ad 
    457      1.44       ad 	/*
    458      1.44       ad 	 * There were no waiters, but we may have deferred waking
    459      1.44       ad 	 * other threads until mutex unlock - we must wake them now.
    460      1.44       ad 	 */
    461      1.44       ad 	if (!deferred)
    462      1.44       ad 		return error;
    463      1.44       ad 
    464      1.44       ad 	if (self->pt_nwaiters == 1) {
    465      1.44       ad 		/*
    466      1.44       ad 		 * If the calling thread is about to block, defer
    467      1.44       ad 		 * unparking the target until _lwp_park() is called.
    468      1.44       ad 		 */
    469      1.44       ad 		if (self->pt_willpark && self->pt_unpark == 0) {
    470      1.44       ad 			self->pt_unpark = self->pt_waiters[0];
    471      1.44       ad 		} else {
    472      1.44       ad 			(void)_lwp_unpark(self->pt_waiters[0],
    473      1.45       ad 			    __UNVOLATILE(&ptm->ptm_waiters));
    474      1.15  nathanw 		}
    475      1.44       ad 	} else {
    476      1.44       ad 		(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    477      1.45       ad 		    __UNVOLATILE(&ptm->ptm_waiters));
    478       1.2  thorpej 	}
    479      1.44       ad 	self->pt_nwaiters = 0;
    480       1.2  thorpej 
    481      1.44       ad 	return error;
    482      1.44       ad }
    483      1.44       ad 
    484  1.54.2.1      tls /*
    485  1.54.2.1      tls  * pthread__mutex_wakeup: unpark threads waiting for us
    486  1.54.2.1      tls  *
    487  1.54.2.1      tls  * unpark threads on the ptm->ptm_waiters list and self->pt_waiters.
    488  1.54.2.1      tls  */
    489  1.54.2.1      tls 
    490      1.44       ad static void
    491      1.44       ad pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
    492      1.44       ad {
    493      1.44       ad 	pthread_t thread, next;
    494      1.44       ad 	ssize_t n, rv;
    495      1.27       ad 
    496       1.8  nathanw 	/*
    497      1.44       ad 	 * Take ownership of the current set of waiters.  No
    498      1.44       ad 	 * need for a memory barrier following this, all loads
    499      1.44       ad 	 * are dependent upon 'thread'.
    500       1.8  nathanw 	 */
    501      1.44       ad 	thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
    502      1.54     matt 	pthread__smt_wake();
    503      1.44       ad 
    504      1.44       ad 	for (;;) {
    505      1.44       ad 		/*
    506      1.44       ad 		 * Pull waiters from the queue and add to our list.
    507      1.44       ad 		 * Use a memory barrier to ensure that we safely
    508      1.50       ad 		 * read the value of pt_mutexnext before 'thread'
    509      1.50       ad 		 * sees pt_mutexwait being cleared.
    510      1.44       ad 		 */
    511      1.44       ad 		for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
    512      1.44       ad 		    n < pthread__unpark_max && thread != NULL;
    513      1.44       ad 		    thread = next) {
    514      1.50       ad 		    	next = thread->pt_mutexnext;
    515      1.44       ad 		    	if (thread != self) {
    516      1.44       ad 				self->pt_waiters[n++] = thread->pt_lid;
    517      1.44       ad 				membar_sync();
    518      1.44       ad 			}
    519      1.50       ad 			thread->pt_mutexwait = 0;
    520      1.44       ad 			/* No longer safe to touch 'thread' */
    521      1.44       ad 		}
    522      1.44       ad 
    523      1.44       ad 		switch (n) {
    524      1.44       ad 		case 0:
    525      1.44       ad 			return;
    526      1.44       ad 		case 1:
    527      1.44       ad 			/*
    528      1.44       ad 			 * If the calling thread is about to block,
    529      1.44       ad 			 * defer unparking the target until _lwp_park()
    530      1.44       ad 			 * is called.
    531      1.44       ad 			 */
    532      1.44       ad 			if (self->pt_willpark && self->pt_unpark == 0) {
    533      1.44       ad 				self->pt_unpark = self->pt_waiters[0];
    534      1.44       ad 				return;
    535      1.44       ad 			}
    536      1.44       ad 			rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
    537      1.45       ad 			    __UNVOLATILE(&ptm->ptm_waiters));
    538      1.44       ad 			if (rv != 0 && errno != EALREADY && errno != EINTR &&
    539      1.44       ad 			    errno != ESRCH) {
    540      1.44       ad 				pthread__errorfunc(__FILE__, __LINE__,
    541      1.44       ad 				    __func__, "_lwp_unpark failed");
    542      1.44       ad 			}
    543      1.44       ad 			return;
    544      1.44       ad 		default:
    545      1.44       ad 			rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
    546      1.45       ad 			    __UNVOLATILE(&ptm->ptm_waiters));
    547      1.44       ad 			if (rv != 0 && errno != EINTR) {
    548      1.44       ad 				pthread__errorfunc(__FILE__, __LINE__,
    549      1.44       ad 				    __func__, "_lwp_unpark_all failed");
    550      1.44       ad 			}
    551      1.44       ad 			break;
    552      1.44       ad 		}
    553      1.44       ad 	}
    554       1.2  thorpej }
    555  1.54.2.1      tls 
    556       1.2  thorpej int
    557       1.2  thorpej pthread_mutexattr_init(pthread_mutexattr_t *attr)
    558       1.2  thorpej {
    559  1.54.2.1      tls 	if (__predict_false(__uselibcstub))
    560  1.54.2.1      tls 		return __libc_mutexattr_init_stub(attr);
    561       1.2  thorpej 
    562       1.2  thorpej 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
    563      1.44       ad 	attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
    564       1.2  thorpej 	return 0;
    565       1.2  thorpej }
    566       1.2  thorpej 
    567       1.2  thorpej int
    568       1.2  thorpej pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
    569       1.2  thorpej {
    570  1.54.2.1      tls 	if (__predict_false(__uselibcstub))
    571  1.54.2.1      tls 		return __libc_mutexattr_destroy_stub(attr);
    572       1.2  thorpej 
    573      1.14  nathanw 	pthread__error(EINVAL, "Invalid mutex attribute",
    574      1.14  nathanw 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    575       1.2  thorpej 
    576       1.2  thorpej 	return 0;
    577       1.2  thorpej }
    578       1.2  thorpej 
    579       1.2  thorpej int
    580       1.2  thorpej pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
    581       1.2  thorpej {
    582      1.14  nathanw 	pthread__error(EINVAL, "Invalid mutex attribute",
    583      1.14  nathanw 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    584       1.2  thorpej 
    585      1.44       ad 	*typep = (int)(intptr_t)attr->ptma_private;
    586       1.2  thorpej 	return 0;
    587       1.2  thorpej }
    588       1.2  thorpej 
    589       1.2  thorpej int
    590       1.2  thorpej pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
    591       1.2  thorpej {
    592  1.54.2.1      tls 	if (__predict_false(__uselibcstub))
    593  1.54.2.1      tls 		return __libc_mutexattr_settype_stub(attr, type);
    594       1.2  thorpej 
    595      1.14  nathanw 	pthread__error(EINVAL, "Invalid mutex attribute",
    596      1.14  nathanw 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    597      1.13  nathanw 
    598       1.2  thorpej 	switch (type) {
    599       1.2  thorpej 	case PTHREAD_MUTEX_NORMAL:
    600       1.2  thorpej 	case PTHREAD_MUTEX_ERRORCHECK:
    601       1.2  thorpej 	case PTHREAD_MUTEX_RECURSIVE:
    602      1.44       ad 		attr->ptma_private = (void *)(intptr_t)type;
    603      1.44       ad 		return 0;
    604       1.2  thorpej 	default:
    605       1.2  thorpej 		return EINVAL;
    606       1.2  thorpej 	}
    607       1.2  thorpej }
    608       1.2  thorpej 
    609  1.54.2.1      tls /*
    610  1.54.2.1      tls  * pthread__mutex_deferwake: try to defer unparking threads in self->pt_waiters
    611  1.54.2.1      tls  *
    612  1.54.2.1      tls  * In order to avoid unnecessary contention on the interlocking mutex,
    613  1.54.2.1      tls  * we defer waking up threads until we unlock the mutex.  The threads will
    614  1.54.2.1      tls  * be woken up when the calling thread (self) releases the first mutex with
    615  1.54.2.1      tls  * MUTEX_DEFERRED_BIT set.  It likely be the mutex 'ptm', but no problem
    616  1.54.2.1      tls  * even if it isn't.
    617  1.54.2.1      tls  */
    618  1.54.2.1      tls 
    619      1.50       ad void
    620      1.50       ad pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
    621      1.33       ad {
    622      1.33       ad 
    623      1.50       ad 	if (__predict_false(ptm == NULL ||
    624      1.50       ad 	    MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
    625      1.50       ad 	    	(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    626      1.50       ad 	    	    __UNVOLATILE(&ptm->ptm_waiters));
    627      1.50       ad 	    	self->pt_nwaiters = 0;
    628      1.50       ad 	} else {
    629      1.50       ad 		atomic_or_ulong((volatile unsigned long *)
    630      1.50       ad 		    (uintptr_t)&ptm->ptm_owner,
    631      1.50       ad 		    (unsigned long)MUTEX_DEFERRED_BIT);
    632      1.50       ad 	}
    633      1.33       ad }
    634      1.33       ad 
    635      1.39       ad int
    636      1.44       ad _pthread_mutex_held_np(pthread_mutex_t *ptm)
    637      1.39       ad {
    638      1.39       ad 
    639      1.44       ad 	return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
    640      1.39       ad }
    641      1.39       ad 
    642      1.39       ad pthread_t
    643      1.44       ad _pthread_mutex_owner_np(pthread_mutex_t *ptm)
    644      1.39       ad {
    645      1.39       ad 
    646      1.44       ad 	return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
    647      1.39       ad }
    648