pthread_mutex.c revision 1.54.2.1 1 1.54.2.1 tls /* $NetBSD: pthread_mutex.c,v 1.54.2.1 2013/06/23 06:21:08 tls Exp $ */
2 1.2 thorpej
3 1.2 thorpej /*-
4 1.44 ad * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 thorpej * All rights reserved.
6 1.2 thorpej *
7 1.2 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.27 ad * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 1.2 thorpej *
10 1.2 thorpej * Redistribution and use in source and binary forms, with or without
11 1.2 thorpej * modification, are permitted provided that the following conditions
12 1.2 thorpej * are met:
13 1.2 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.2 thorpej * notice, this list of conditions and the following disclaimer.
15 1.2 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.2 thorpej * documentation and/or other materials provided with the distribution.
18 1.2 thorpej *
19 1.2 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.2 thorpej */
31 1.2 thorpej
32 1.49 ad /*
33 1.49 ad * To track threads waiting for mutexes to be released, we use lockless
34 1.49 ad * lists built on atomic operations and memory barriers.
35 1.49 ad *
36 1.49 ad * A simple spinlock would be faster and make the code easier to
37 1.49 ad * follow, but spinlocks are problematic in userspace. If a thread is
38 1.49 ad * preempted by the kernel while holding a spinlock, any other thread
39 1.49 ad * attempting to acquire that spinlock will needlessly busy wait.
40 1.49 ad *
41 1.49 ad * There is no good way to know that the holding thread is no longer
42 1.49 ad * running, nor to request a wake-up once it has begun running again.
43 1.49 ad * Of more concern, threads in the SCHED_FIFO class do not have a
44 1.49 ad * limited time quantum and so could spin forever, preventing the
45 1.49 ad * thread holding the spinlock from getting CPU time: it would never
46 1.49 ad * be released.
47 1.49 ad */
48 1.49 ad
49 1.2 thorpej #include <sys/cdefs.h>
50 1.54.2.1 tls __RCSID("$NetBSD: pthread_mutex.c,v 1.54.2.1 2013/06/23 06:21:08 tls Exp $");
51 1.40 ad
52 1.40 ad #include <sys/types.h>
53 1.44 ad #include <sys/lwpctl.h>
54 1.51 matt #include <sys/lock.h>
55 1.10 lukem
56 1.2 thorpej #include <errno.h>
57 1.2 thorpej #include <limits.h>
58 1.2 thorpej #include <stdlib.h>
59 1.54.2.1 tls #include <time.h>
60 1.6 scw #include <string.h>
61 1.44 ad #include <stdio.h>
62 1.2 thorpej
63 1.2 thorpej #include "pthread.h"
64 1.2 thorpej #include "pthread_int.h"
65 1.54.2.1 tls #include "reentrant.h"
66 1.2 thorpej
67 1.44 ad #define MUTEX_WAITERS_BIT ((uintptr_t)0x01)
68 1.44 ad #define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02)
69 1.44 ad #define MUTEX_DEFERRED_BIT ((uintptr_t)0x04)
70 1.44 ad #define MUTEX_THREAD ((uintptr_t)-16L)
71 1.44 ad
72 1.44 ad #define MUTEX_HAS_WAITERS(x) ((uintptr_t)(x) & MUTEX_WAITERS_BIT)
73 1.44 ad #define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
74 1.44 ad #define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD)
75 1.44 ad
76 1.44 ad #if __GNUC_PREREQ__(3, 0)
77 1.44 ad #define NOINLINE __attribute ((noinline))
78 1.44 ad #else
79 1.44 ad #define NOINLINE /* nothing */
80 1.44 ad #endif
81 1.44 ad
82 1.44 ad static void pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
83 1.44 ad static int pthread__mutex_lock_slow(pthread_mutex_t *);
84 1.44 ad static int pthread__mutex_unlock_slow(pthread_mutex_t *);
85 1.44 ad static void pthread__mutex_pause(void);
86 1.2 thorpej
87 1.39 ad int _pthread_mutex_held_np(pthread_mutex_t *);
88 1.39 ad pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
89 1.39 ad
90 1.39 ad __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
91 1.39 ad __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
92 1.39 ad
93 1.2 thorpej __strong_alias(__libc_mutex_init,pthread_mutex_init)
94 1.2 thorpej __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
95 1.2 thorpej __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
96 1.2 thorpej __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
97 1.2 thorpej __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
98 1.4 thorpej
99 1.4 thorpej __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
100 1.4 thorpej __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
101 1.5 thorpej __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
102 1.2 thorpej
103 1.2 thorpej int
104 1.44 ad pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
105 1.2 thorpej {
106 1.44 ad intptr_t type;
107 1.2 thorpej
108 1.54.2.1 tls if (__predict_false(__uselibcstub))
109 1.54.2.1 tls return __libc_mutex_init_stub(ptm, attr);
110 1.54.2.1 tls
111 1.44 ad if (attr == NULL)
112 1.44 ad type = PTHREAD_MUTEX_NORMAL;
113 1.44 ad else
114 1.44 ad type = (intptr_t)attr->ptma_private;
115 1.2 thorpej
116 1.44 ad switch (type) {
117 1.44 ad case PTHREAD_MUTEX_ERRORCHECK:
118 1.51 matt __cpu_simple_lock_set(&ptm->ptm_errorcheck);
119 1.44 ad ptm->ptm_owner = NULL;
120 1.44 ad break;
121 1.44 ad case PTHREAD_MUTEX_RECURSIVE:
122 1.51 matt __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
123 1.44 ad ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
124 1.44 ad break;
125 1.44 ad default:
126 1.51 matt __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
127 1.44 ad ptm->ptm_owner = NULL;
128 1.44 ad break;
129 1.2 thorpej }
130 1.2 thorpej
131 1.44 ad ptm->ptm_magic = _PT_MUTEX_MAGIC;
132 1.44 ad ptm->ptm_waiters = NULL;
133 1.45 ad ptm->ptm_recursed = 0;
134 1.2 thorpej
135 1.2 thorpej return 0;
136 1.2 thorpej }
137 1.2 thorpej
138 1.2 thorpej int
139 1.44 ad pthread_mutex_destroy(pthread_mutex_t *ptm)
140 1.2 thorpej {
141 1.2 thorpej
142 1.54.2.1 tls if (__predict_false(__uselibcstub))
143 1.54.2.1 tls return __libc_mutex_destroy_stub(ptm);
144 1.54.2.1 tls
145 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
146 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
147 1.14 nathanw pthread__error(EBUSY, "Destroying locked mutex",
148 1.44 ad MUTEX_OWNER(ptm->ptm_owner) == 0);
149 1.2 thorpej
150 1.44 ad ptm->ptm_magic = _PT_MUTEX_DEAD;
151 1.2 thorpej return 0;
152 1.2 thorpej }
153 1.2 thorpej
154 1.2 thorpej int
155 1.44 ad pthread_mutex_lock(pthread_mutex_t *ptm)
156 1.2 thorpej {
157 1.27 ad pthread_t self;
158 1.44 ad void *val;
159 1.2 thorpej
160 1.54.2.1 tls if (__predict_false(__uselibcstub))
161 1.54.2.1 tls return __libc_mutex_lock_stub(ptm);
162 1.54.2.1 tls
163 1.27 ad self = pthread__self();
164 1.44 ad val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
165 1.44 ad if (__predict_true(val == NULL)) {
166 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
167 1.44 ad membar_enter();
168 1.44 ad #endif
169 1.44 ad return 0;
170 1.2 thorpej }
171 1.44 ad return pthread__mutex_lock_slow(ptm);
172 1.44 ad }
173 1.2 thorpej
174 1.44 ad /* We want function call overhead. */
175 1.44 ad NOINLINE static void
176 1.44 ad pthread__mutex_pause(void)
177 1.44 ad {
178 1.2 thorpej
179 1.44 ad pthread__smt_pause();
180 1.2 thorpej }
181 1.2 thorpej
182 1.44 ad /*
183 1.44 ad * Spin while the holder is running. 'lwpctl' gives us the true
184 1.44 ad * status of the thread. pt_blocking is set by libpthread in order
185 1.44 ad * to cut out system call and kernel spinlock overhead on remote CPUs
186 1.44 ad * (could represent many thousands of clock cycles). pt_blocking also
187 1.44 ad * makes this thread yield if the target is calling sched_yield().
188 1.44 ad */
189 1.44 ad NOINLINE static void *
190 1.44 ad pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
191 1.44 ad {
192 1.44 ad pthread_t thread;
193 1.44 ad unsigned int count, i;
194 1.44 ad
195 1.44 ad for (count = 2;; owner = ptm->ptm_owner) {
196 1.44 ad thread = (pthread_t)MUTEX_OWNER(owner);
197 1.44 ad if (thread == NULL)
198 1.44 ad break;
199 1.44 ad if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
200 1.44 ad thread->pt_blocking)
201 1.44 ad break;
202 1.44 ad if (count < 128)
203 1.44 ad count += count;
204 1.44 ad for (i = count; i != 0; i--)
205 1.44 ad pthread__mutex_pause();
206 1.44 ad }
207 1.2 thorpej
208 1.44 ad return owner;
209 1.44 ad }
210 1.44 ad
211 1.44 ad NOINLINE static int
212 1.44 ad pthread__mutex_lock_slow(pthread_mutex_t *ptm)
213 1.2 thorpej {
214 1.44 ad void *waiters, *new, *owner, *next;
215 1.44 ad pthread_t self;
216 1.2 thorpej
217 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
218 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
219 1.44 ad
220 1.44 ad owner = ptm->ptm_owner;
221 1.44 ad self = pthread__self();
222 1.13 nathanw
223 1.44 ad /* Recursive or errorcheck? */
224 1.44 ad if (MUTEX_OWNER(owner) == (uintptr_t)self) {
225 1.44 ad if (MUTEX_RECURSIVE(owner)) {
226 1.45 ad if (ptm->ptm_recursed == INT_MAX)
227 1.44 ad return EAGAIN;
228 1.45 ad ptm->ptm_recursed++;
229 1.44 ad return 0;
230 1.29 ad }
231 1.51 matt if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
232 1.44 ad return EDEADLK;
233 1.44 ad }
234 1.29 ad
235 1.44 ad for (;; owner = ptm->ptm_owner) {
236 1.44 ad /* Spin while the owner is running. */
237 1.44 ad owner = pthread__mutex_spin(ptm, owner);
238 1.44 ad
239 1.44 ad /* If it has become free, try to acquire it again. */
240 1.44 ad if (MUTEX_OWNER(owner) == 0) {
241 1.47 ad do {
242 1.44 ad new = (void *)
243 1.44 ad ((uintptr_t)self | (uintptr_t)owner);
244 1.44 ad next = atomic_cas_ptr(&ptm->ptm_owner, owner,
245 1.44 ad new);
246 1.44 ad if (next == owner) {
247 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
248 1.44 ad membar_enter();
249 1.44 ad #endif
250 1.44 ad return 0;
251 1.44 ad }
252 1.47 ad owner = next;
253 1.47 ad } while (MUTEX_OWNER(owner) == 0);
254 1.44 ad /*
255 1.44 ad * We have lost the race to acquire the mutex.
256 1.44 ad * The new owner could be running on another
257 1.44 ad * CPU, in which case we should spin and avoid
258 1.44 ad * the overhead of blocking.
259 1.44 ad */
260 1.47 ad continue;
261 1.44 ad }
262 1.21 chs
263 1.2 thorpej /*
264 1.44 ad * Nope, still held. Add thread to the list of waiters.
265 1.50 ad * Issue a memory barrier to ensure mutexwait/mutexnext
266 1.44 ad * are visible before we enter the waiters list.
267 1.2 thorpej */
268 1.50 ad self->pt_mutexwait = 1;
269 1.44 ad for (waiters = ptm->ptm_waiters;; waiters = next) {
270 1.50 ad self->pt_mutexnext = waiters;
271 1.44 ad membar_producer();
272 1.44 ad next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
273 1.44 ad if (next == waiters)
274 1.44 ad break;
275 1.44 ad }
276 1.21 chs
277 1.44 ad /*
278 1.44 ad * Set the waiters bit and block.
279 1.44 ad *
280 1.44 ad * Note that the mutex can become unlocked before we set
281 1.44 ad * the waiters bit. If that happens it's not safe to sleep
282 1.44 ad * as we may never be awoken: we must remove the current
283 1.44 ad * thread from the waiters list and try again.
284 1.44 ad *
285 1.44 ad * Because we are doing this atomically, we can't remove
286 1.44 ad * one waiter: we must remove all waiters and awken them,
287 1.44 ad * then sleep in _lwp_park() until we have been awoken.
288 1.44 ad *
289 1.44 ad * Issue a memory barrier to ensure that we are reading
290 1.50 ad * the value of ptm_owner/pt_mutexwait after we have entered
291 1.44 ad * the waiters list (the CAS itself must be atomic).
292 1.44 ad */
293 1.44 ad membar_consumer();
294 1.44 ad for (owner = ptm->ptm_owner;; owner = next) {
295 1.44 ad if (MUTEX_HAS_WAITERS(owner))
296 1.44 ad break;
297 1.44 ad if (MUTEX_OWNER(owner) == 0) {
298 1.44 ad pthread__mutex_wakeup(self, ptm);
299 1.44 ad break;
300 1.44 ad }
301 1.44 ad new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
302 1.44 ad next = atomic_cas_ptr(&ptm->ptm_owner, owner, new);
303 1.44 ad if (next == owner) {
304 1.21 chs /*
305 1.44 ad * pthread_mutex_unlock() can do a
306 1.44 ad * non-interlocked CAS. We cannot
307 1.44 ad * know if our attempt to set the
308 1.44 ad * waiters bit has succeeded while
309 1.44 ad * the holding thread is running.
310 1.44 ad * There are many assumptions; see
311 1.44 ad * sys/kern/kern_mutex.c for details.
312 1.44 ad * In short, we must spin if we see
313 1.44 ad * that the holder is running again.
314 1.21 chs */
315 1.44 ad membar_sync();
316 1.44 ad next = pthread__mutex_spin(ptm, owner);
317 1.21 chs }
318 1.29 ad }
319 1.21 chs
320 1.29 ad /*
321 1.44 ad * We may have been awoken by the current thread above,
322 1.44 ad * or will be awoken by the current holder of the mutex.
323 1.44 ad * The key requirement is that we must not proceed until
324 1.50 ad * told that we are no longer waiting (via pt_mutexwait
325 1.44 ad * being set to zero). Otherwise it is unsafe to re-enter
326 1.44 ad * the thread onto the waiters list.
327 1.29 ad */
328 1.50 ad while (self->pt_mutexwait) {
329 1.44 ad self->pt_blocking++;
330 1.50 ad (void)_lwp_park(NULL, self->pt_unpark,
331 1.50 ad __UNVOLATILE(&ptm->ptm_waiters),
332 1.50 ad __UNVOLATILE(&ptm->ptm_waiters));
333 1.50 ad self->pt_unpark = 0;
334 1.44 ad self->pt_blocking--;
335 1.44 ad membar_sync();
336 1.44 ad }
337 1.2 thorpej }
338 1.2 thorpej }
339 1.2 thorpej
340 1.2 thorpej int
341 1.44 ad pthread_mutex_trylock(pthread_mutex_t *ptm)
342 1.2 thorpej {
343 1.27 ad pthread_t self;
344 1.46 ad void *val, *new, *next;
345 1.2 thorpej
346 1.54.2.1 tls if (__predict_false(__uselibcstub))
347 1.54.2.1 tls return __libc_mutex_trylock_stub(ptm);
348 1.54.2.1 tls
349 1.27 ad self = pthread__self();
350 1.44 ad val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
351 1.44 ad if (__predict_true(val == NULL)) {
352 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
353 1.44 ad membar_enter();
354 1.44 ad #endif
355 1.44 ad return 0;
356 1.44 ad }
357 1.27 ad
358 1.46 ad if (MUTEX_RECURSIVE(val)) {
359 1.46 ad if (MUTEX_OWNER(val) == 0) {
360 1.46 ad new = (void *)((uintptr_t)self | (uintptr_t)val);
361 1.46 ad next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
362 1.46 ad if (__predict_true(next == val)) {
363 1.46 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
364 1.46 ad membar_enter();
365 1.46 ad #endif
366 1.46 ad return 0;
367 1.46 ad }
368 1.46 ad }
369 1.46 ad if (MUTEX_OWNER(val) == (uintptr_t)self) {
370 1.46 ad if (ptm->ptm_recursed == INT_MAX)
371 1.46 ad return EAGAIN;
372 1.46 ad ptm->ptm_recursed++;
373 1.46 ad return 0;
374 1.46 ad }
375 1.2 thorpej }
376 1.2 thorpej
377 1.44 ad return EBUSY;
378 1.2 thorpej }
379 1.2 thorpej
380 1.2 thorpej int
381 1.44 ad pthread_mutex_unlock(pthread_mutex_t *ptm)
382 1.2 thorpej {
383 1.27 ad pthread_t self;
384 1.44 ad void *value;
385 1.44 ad
386 1.54.2.1 tls if (__predict_false(__uselibcstub))
387 1.54.2.1 tls return __libc_mutex_unlock_stub(ptm);
388 1.54.2.1 tls
389 1.44 ad /*
390 1.44 ad * Note this may be a non-interlocked CAS. See lock_slow()
391 1.44 ad * above and sys/kern/kern_mutex.c for details.
392 1.44 ad */
393 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
394 1.44 ad membar_exit();
395 1.44 ad #endif
396 1.44 ad self = pthread__self();
397 1.44 ad value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
398 1.54 matt if (__predict_true(value == self)) {
399 1.54 matt pthread__smt_wake();
400 1.44 ad return 0;
401 1.54 matt }
402 1.44 ad return pthread__mutex_unlock_slow(ptm);
403 1.44 ad }
404 1.44 ad
405 1.44 ad NOINLINE static int
406 1.44 ad pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
407 1.44 ad {
408 1.44 ad pthread_t self, owner, new;
409 1.44 ad int weown, error, deferred;
410 1.13 nathanw
411 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
412 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
413 1.44 ad
414 1.44 ad self = pthread__self();
415 1.44 ad owner = ptm->ptm_owner;
416 1.44 ad weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
417 1.44 ad deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
418 1.44 ad error = 0;
419 1.44 ad
420 1.51 matt if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
421 1.44 ad if (!weown) {
422 1.44 ad error = EPERM;
423 1.44 ad new = owner;
424 1.44 ad } else {
425 1.44 ad new = NULL;
426 1.44 ad }
427 1.44 ad } else if (MUTEX_RECURSIVE(owner)) {
428 1.44 ad if (!weown) {
429 1.44 ad error = EPERM;
430 1.44 ad new = owner;
431 1.45 ad } else if (ptm->ptm_recursed) {
432 1.45 ad ptm->ptm_recursed--;
433 1.44 ad new = owner;
434 1.44 ad } else {
435 1.44 ad new = (pthread_t)MUTEX_RECURSIVE_BIT;
436 1.44 ad }
437 1.44 ad } else {
438 1.44 ad pthread__error(EPERM,
439 1.44 ad "Unlocking unlocked mutex", (owner != NULL));
440 1.44 ad pthread__error(EPERM,
441 1.44 ad "Unlocking mutex owned by another thread", weown);
442 1.44 ad new = NULL;
443 1.44 ad }
444 1.2 thorpej
445 1.2 thorpej /*
446 1.44 ad * Release the mutex. If there appear to be waiters, then
447 1.44 ad * wake them up.
448 1.2 thorpej */
449 1.44 ad if (new != owner) {
450 1.44 ad owner = atomic_swap_ptr(&ptm->ptm_owner, new);
451 1.44 ad if (MUTEX_HAS_WAITERS(owner) != 0) {
452 1.44 ad pthread__mutex_wakeup(self, ptm);
453 1.2 thorpej return 0;
454 1.2 thorpej }
455 1.44 ad }
456 1.44 ad
457 1.44 ad /*
458 1.44 ad * There were no waiters, but we may have deferred waking
459 1.44 ad * other threads until mutex unlock - we must wake them now.
460 1.44 ad */
461 1.44 ad if (!deferred)
462 1.44 ad return error;
463 1.44 ad
464 1.44 ad if (self->pt_nwaiters == 1) {
465 1.44 ad /*
466 1.44 ad * If the calling thread is about to block, defer
467 1.44 ad * unparking the target until _lwp_park() is called.
468 1.44 ad */
469 1.44 ad if (self->pt_willpark && self->pt_unpark == 0) {
470 1.44 ad self->pt_unpark = self->pt_waiters[0];
471 1.44 ad } else {
472 1.44 ad (void)_lwp_unpark(self->pt_waiters[0],
473 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
474 1.15 nathanw }
475 1.44 ad } else {
476 1.44 ad (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
477 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
478 1.2 thorpej }
479 1.44 ad self->pt_nwaiters = 0;
480 1.2 thorpej
481 1.44 ad return error;
482 1.44 ad }
483 1.44 ad
484 1.54.2.1 tls /*
485 1.54.2.1 tls * pthread__mutex_wakeup: unpark threads waiting for us
486 1.54.2.1 tls *
487 1.54.2.1 tls * unpark threads on the ptm->ptm_waiters list and self->pt_waiters.
488 1.54.2.1 tls */
489 1.54.2.1 tls
490 1.44 ad static void
491 1.44 ad pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
492 1.44 ad {
493 1.44 ad pthread_t thread, next;
494 1.44 ad ssize_t n, rv;
495 1.27 ad
496 1.8 nathanw /*
497 1.44 ad * Take ownership of the current set of waiters. No
498 1.44 ad * need for a memory barrier following this, all loads
499 1.44 ad * are dependent upon 'thread'.
500 1.8 nathanw */
501 1.44 ad thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
502 1.54 matt pthread__smt_wake();
503 1.44 ad
504 1.44 ad for (;;) {
505 1.44 ad /*
506 1.44 ad * Pull waiters from the queue and add to our list.
507 1.44 ad * Use a memory barrier to ensure that we safely
508 1.50 ad * read the value of pt_mutexnext before 'thread'
509 1.50 ad * sees pt_mutexwait being cleared.
510 1.44 ad */
511 1.44 ad for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
512 1.44 ad n < pthread__unpark_max && thread != NULL;
513 1.44 ad thread = next) {
514 1.50 ad next = thread->pt_mutexnext;
515 1.44 ad if (thread != self) {
516 1.44 ad self->pt_waiters[n++] = thread->pt_lid;
517 1.44 ad membar_sync();
518 1.44 ad }
519 1.50 ad thread->pt_mutexwait = 0;
520 1.44 ad /* No longer safe to touch 'thread' */
521 1.44 ad }
522 1.44 ad
523 1.44 ad switch (n) {
524 1.44 ad case 0:
525 1.44 ad return;
526 1.44 ad case 1:
527 1.44 ad /*
528 1.44 ad * If the calling thread is about to block,
529 1.44 ad * defer unparking the target until _lwp_park()
530 1.44 ad * is called.
531 1.44 ad */
532 1.44 ad if (self->pt_willpark && self->pt_unpark == 0) {
533 1.44 ad self->pt_unpark = self->pt_waiters[0];
534 1.44 ad return;
535 1.44 ad }
536 1.44 ad rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
537 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
538 1.44 ad if (rv != 0 && errno != EALREADY && errno != EINTR &&
539 1.44 ad errno != ESRCH) {
540 1.44 ad pthread__errorfunc(__FILE__, __LINE__,
541 1.44 ad __func__, "_lwp_unpark failed");
542 1.44 ad }
543 1.44 ad return;
544 1.44 ad default:
545 1.44 ad rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
546 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
547 1.44 ad if (rv != 0 && errno != EINTR) {
548 1.44 ad pthread__errorfunc(__FILE__, __LINE__,
549 1.44 ad __func__, "_lwp_unpark_all failed");
550 1.44 ad }
551 1.44 ad break;
552 1.44 ad }
553 1.44 ad }
554 1.2 thorpej }
555 1.54.2.1 tls
556 1.2 thorpej int
557 1.2 thorpej pthread_mutexattr_init(pthread_mutexattr_t *attr)
558 1.2 thorpej {
559 1.54.2.1 tls if (__predict_false(__uselibcstub))
560 1.54.2.1 tls return __libc_mutexattr_init_stub(attr);
561 1.2 thorpej
562 1.2 thorpej attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
563 1.44 ad attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
564 1.2 thorpej return 0;
565 1.2 thorpej }
566 1.2 thorpej
567 1.2 thorpej int
568 1.2 thorpej pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
569 1.2 thorpej {
570 1.54.2.1 tls if (__predict_false(__uselibcstub))
571 1.54.2.1 tls return __libc_mutexattr_destroy_stub(attr);
572 1.2 thorpej
573 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
574 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
575 1.2 thorpej
576 1.2 thorpej return 0;
577 1.2 thorpej }
578 1.2 thorpej
579 1.2 thorpej int
580 1.2 thorpej pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
581 1.2 thorpej {
582 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
583 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
584 1.2 thorpej
585 1.44 ad *typep = (int)(intptr_t)attr->ptma_private;
586 1.2 thorpej return 0;
587 1.2 thorpej }
588 1.2 thorpej
589 1.2 thorpej int
590 1.2 thorpej pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
591 1.2 thorpej {
592 1.54.2.1 tls if (__predict_false(__uselibcstub))
593 1.54.2.1 tls return __libc_mutexattr_settype_stub(attr, type);
594 1.2 thorpej
595 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
596 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
597 1.13 nathanw
598 1.2 thorpej switch (type) {
599 1.2 thorpej case PTHREAD_MUTEX_NORMAL:
600 1.2 thorpej case PTHREAD_MUTEX_ERRORCHECK:
601 1.2 thorpej case PTHREAD_MUTEX_RECURSIVE:
602 1.44 ad attr->ptma_private = (void *)(intptr_t)type;
603 1.44 ad return 0;
604 1.2 thorpej default:
605 1.2 thorpej return EINVAL;
606 1.2 thorpej }
607 1.2 thorpej }
608 1.2 thorpej
609 1.54.2.1 tls /*
610 1.54.2.1 tls * pthread__mutex_deferwake: try to defer unparking threads in self->pt_waiters
611 1.54.2.1 tls *
612 1.54.2.1 tls * In order to avoid unnecessary contention on the interlocking mutex,
613 1.54.2.1 tls * we defer waking up threads until we unlock the mutex. The threads will
614 1.54.2.1 tls * be woken up when the calling thread (self) releases the first mutex with
615 1.54.2.1 tls * MUTEX_DEFERRED_BIT set. It likely be the mutex 'ptm', but no problem
616 1.54.2.1 tls * even if it isn't.
617 1.54.2.1 tls */
618 1.54.2.1 tls
619 1.50 ad void
620 1.50 ad pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
621 1.33 ad {
622 1.33 ad
623 1.50 ad if (__predict_false(ptm == NULL ||
624 1.50 ad MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
625 1.50 ad (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
626 1.50 ad __UNVOLATILE(&ptm->ptm_waiters));
627 1.50 ad self->pt_nwaiters = 0;
628 1.50 ad } else {
629 1.50 ad atomic_or_ulong((volatile unsigned long *)
630 1.50 ad (uintptr_t)&ptm->ptm_owner,
631 1.50 ad (unsigned long)MUTEX_DEFERRED_BIT);
632 1.50 ad }
633 1.33 ad }
634 1.33 ad
635 1.39 ad int
636 1.44 ad _pthread_mutex_held_np(pthread_mutex_t *ptm)
637 1.39 ad {
638 1.39 ad
639 1.44 ad return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
640 1.39 ad }
641 1.39 ad
642 1.39 ad pthread_t
643 1.44 ad _pthread_mutex_owner_np(pthread_mutex_t *ptm)
644 1.39 ad {
645 1.39 ad
646 1.44 ad return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
647 1.39 ad }
648