pthread_mutex.c revision 1.55 1 1.55 yamt /* $NetBSD: pthread_mutex.c,v 1.55 2013/03/06 11:31:34 yamt Exp $ */
2 1.2 thorpej
3 1.2 thorpej /*-
4 1.44 ad * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 thorpej * All rights reserved.
6 1.2 thorpej *
7 1.2 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.27 ad * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 1.2 thorpej *
10 1.2 thorpej * Redistribution and use in source and binary forms, with or without
11 1.2 thorpej * modification, are permitted provided that the following conditions
12 1.2 thorpej * are met:
13 1.2 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.2 thorpej * notice, this list of conditions and the following disclaimer.
15 1.2 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.2 thorpej * documentation and/or other materials provided with the distribution.
18 1.2 thorpej *
19 1.2 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.2 thorpej */
31 1.2 thorpej
32 1.49 ad /*
33 1.49 ad * To track threads waiting for mutexes to be released, we use lockless
34 1.49 ad * lists built on atomic operations and memory barriers.
35 1.49 ad *
36 1.49 ad * A simple spinlock would be faster and make the code easier to
37 1.49 ad * follow, but spinlocks are problematic in userspace. If a thread is
38 1.49 ad * preempted by the kernel while holding a spinlock, any other thread
39 1.49 ad * attempting to acquire that spinlock will needlessly busy wait.
40 1.49 ad *
41 1.49 ad * There is no good way to know that the holding thread is no longer
42 1.49 ad * running, nor to request a wake-up once it has begun running again.
43 1.49 ad * Of more concern, threads in the SCHED_FIFO class do not have a
44 1.49 ad * limited time quantum and so could spin forever, preventing the
45 1.49 ad * thread holding the spinlock from getting CPU time: it would never
46 1.49 ad * be released.
47 1.49 ad */
48 1.49 ad
49 1.2 thorpej #include <sys/cdefs.h>
50 1.55 yamt __RCSID("$NetBSD: pthread_mutex.c,v 1.55 2013/03/06 11:31:34 yamt Exp $");
51 1.40 ad
52 1.40 ad #include <sys/types.h>
53 1.44 ad #include <sys/lwpctl.h>
54 1.51 matt #include <sys/lock.h>
55 1.10 lukem
56 1.2 thorpej #include <errno.h>
57 1.2 thorpej #include <limits.h>
58 1.2 thorpej #include <stdlib.h>
59 1.6 scw #include <string.h>
60 1.44 ad #include <stdio.h>
61 1.2 thorpej
62 1.2 thorpej #include "pthread.h"
63 1.2 thorpej #include "pthread_int.h"
64 1.2 thorpej
65 1.44 ad #define MUTEX_WAITERS_BIT ((uintptr_t)0x01)
66 1.44 ad #define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02)
67 1.44 ad #define MUTEX_DEFERRED_BIT ((uintptr_t)0x04)
68 1.44 ad #define MUTEX_THREAD ((uintptr_t)-16L)
69 1.44 ad
70 1.44 ad #define MUTEX_HAS_WAITERS(x) ((uintptr_t)(x) & MUTEX_WAITERS_BIT)
71 1.44 ad #define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
72 1.44 ad #define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD)
73 1.44 ad
74 1.44 ad #if __GNUC_PREREQ__(3, 0)
75 1.44 ad #define NOINLINE __attribute ((noinline))
76 1.44 ad #else
77 1.44 ad #define NOINLINE /* nothing */
78 1.44 ad #endif
79 1.44 ad
80 1.44 ad static void pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
81 1.44 ad static int pthread__mutex_lock_slow(pthread_mutex_t *);
82 1.44 ad static int pthread__mutex_unlock_slow(pthread_mutex_t *);
83 1.44 ad static void pthread__mutex_pause(void);
84 1.2 thorpej
85 1.39 ad int _pthread_mutex_held_np(pthread_mutex_t *);
86 1.39 ad pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
87 1.39 ad
88 1.39 ad __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
89 1.39 ad __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
90 1.39 ad
91 1.2 thorpej __strong_alias(__libc_mutex_init,pthread_mutex_init)
92 1.2 thorpej __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
93 1.2 thorpej __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
94 1.2 thorpej __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
95 1.2 thorpej __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
96 1.4 thorpej
97 1.4 thorpej __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
98 1.4 thorpej __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
99 1.5 thorpej __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
100 1.2 thorpej
101 1.2 thorpej int
102 1.44 ad pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
103 1.2 thorpej {
104 1.44 ad intptr_t type;
105 1.2 thorpej
106 1.44 ad if (attr == NULL)
107 1.44 ad type = PTHREAD_MUTEX_NORMAL;
108 1.44 ad else
109 1.44 ad type = (intptr_t)attr->ptma_private;
110 1.2 thorpej
111 1.44 ad switch (type) {
112 1.44 ad case PTHREAD_MUTEX_ERRORCHECK:
113 1.51 matt __cpu_simple_lock_set(&ptm->ptm_errorcheck);
114 1.44 ad ptm->ptm_owner = NULL;
115 1.44 ad break;
116 1.44 ad case PTHREAD_MUTEX_RECURSIVE:
117 1.51 matt __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
118 1.44 ad ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
119 1.44 ad break;
120 1.44 ad default:
121 1.51 matt __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
122 1.44 ad ptm->ptm_owner = NULL;
123 1.44 ad break;
124 1.2 thorpej }
125 1.2 thorpej
126 1.44 ad ptm->ptm_magic = _PT_MUTEX_MAGIC;
127 1.44 ad ptm->ptm_waiters = NULL;
128 1.45 ad ptm->ptm_recursed = 0;
129 1.2 thorpej
130 1.2 thorpej return 0;
131 1.2 thorpej }
132 1.2 thorpej
133 1.2 thorpej int
134 1.44 ad pthread_mutex_destroy(pthread_mutex_t *ptm)
135 1.2 thorpej {
136 1.2 thorpej
137 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
138 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
139 1.14 nathanw pthread__error(EBUSY, "Destroying locked mutex",
140 1.44 ad MUTEX_OWNER(ptm->ptm_owner) == 0);
141 1.2 thorpej
142 1.44 ad ptm->ptm_magic = _PT_MUTEX_DEAD;
143 1.2 thorpej return 0;
144 1.2 thorpej }
145 1.2 thorpej
146 1.2 thorpej int
147 1.44 ad pthread_mutex_lock(pthread_mutex_t *ptm)
148 1.2 thorpej {
149 1.27 ad pthread_t self;
150 1.44 ad void *val;
151 1.2 thorpej
152 1.27 ad self = pthread__self();
153 1.44 ad val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
154 1.44 ad if (__predict_true(val == NULL)) {
155 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
156 1.44 ad membar_enter();
157 1.44 ad #endif
158 1.44 ad return 0;
159 1.2 thorpej }
160 1.44 ad return pthread__mutex_lock_slow(ptm);
161 1.44 ad }
162 1.2 thorpej
163 1.44 ad /* We want function call overhead. */
164 1.44 ad NOINLINE static void
165 1.44 ad pthread__mutex_pause(void)
166 1.44 ad {
167 1.2 thorpej
168 1.44 ad pthread__smt_pause();
169 1.2 thorpej }
170 1.2 thorpej
171 1.44 ad /*
172 1.44 ad * Spin while the holder is running. 'lwpctl' gives us the true
173 1.44 ad * status of the thread. pt_blocking is set by libpthread in order
174 1.44 ad * to cut out system call and kernel spinlock overhead on remote CPUs
175 1.44 ad * (could represent many thousands of clock cycles). pt_blocking also
176 1.44 ad * makes this thread yield if the target is calling sched_yield().
177 1.44 ad */
178 1.44 ad NOINLINE static void *
179 1.44 ad pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
180 1.44 ad {
181 1.44 ad pthread_t thread;
182 1.44 ad unsigned int count, i;
183 1.44 ad
184 1.44 ad for (count = 2;; owner = ptm->ptm_owner) {
185 1.44 ad thread = (pthread_t)MUTEX_OWNER(owner);
186 1.44 ad if (thread == NULL)
187 1.44 ad break;
188 1.44 ad if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
189 1.44 ad thread->pt_blocking)
190 1.44 ad break;
191 1.44 ad if (count < 128)
192 1.44 ad count += count;
193 1.44 ad for (i = count; i != 0; i--)
194 1.44 ad pthread__mutex_pause();
195 1.44 ad }
196 1.2 thorpej
197 1.44 ad return owner;
198 1.44 ad }
199 1.44 ad
200 1.44 ad NOINLINE static int
201 1.44 ad pthread__mutex_lock_slow(pthread_mutex_t *ptm)
202 1.2 thorpej {
203 1.44 ad void *waiters, *new, *owner, *next;
204 1.44 ad pthread_t self;
205 1.2 thorpej
206 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
207 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
208 1.44 ad
209 1.44 ad owner = ptm->ptm_owner;
210 1.44 ad self = pthread__self();
211 1.13 nathanw
212 1.44 ad /* Recursive or errorcheck? */
213 1.44 ad if (MUTEX_OWNER(owner) == (uintptr_t)self) {
214 1.44 ad if (MUTEX_RECURSIVE(owner)) {
215 1.45 ad if (ptm->ptm_recursed == INT_MAX)
216 1.44 ad return EAGAIN;
217 1.45 ad ptm->ptm_recursed++;
218 1.44 ad return 0;
219 1.29 ad }
220 1.51 matt if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
221 1.44 ad return EDEADLK;
222 1.44 ad }
223 1.29 ad
224 1.44 ad for (;; owner = ptm->ptm_owner) {
225 1.44 ad /* Spin while the owner is running. */
226 1.44 ad owner = pthread__mutex_spin(ptm, owner);
227 1.44 ad
228 1.44 ad /* If it has become free, try to acquire it again. */
229 1.44 ad if (MUTEX_OWNER(owner) == 0) {
230 1.47 ad do {
231 1.44 ad new = (void *)
232 1.44 ad ((uintptr_t)self | (uintptr_t)owner);
233 1.44 ad next = atomic_cas_ptr(&ptm->ptm_owner, owner,
234 1.44 ad new);
235 1.44 ad if (next == owner) {
236 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
237 1.44 ad membar_enter();
238 1.44 ad #endif
239 1.44 ad return 0;
240 1.44 ad }
241 1.47 ad owner = next;
242 1.47 ad } while (MUTEX_OWNER(owner) == 0);
243 1.44 ad /*
244 1.44 ad * We have lost the race to acquire the mutex.
245 1.44 ad * The new owner could be running on another
246 1.44 ad * CPU, in which case we should spin and avoid
247 1.44 ad * the overhead of blocking.
248 1.44 ad */
249 1.47 ad continue;
250 1.44 ad }
251 1.21 chs
252 1.2 thorpej /*
253 1.44 ad * Nope, still held. Add thread to the list of waiters.
254 1.50 ad * Issue a memory barrier to ensure mutexwait/mutexnext
255 1.44 ad * are visible before we enter the waiters list.
256 1.2 thorpej */
257 1.50 ad self->pt_mutexwait = 1;
258 1.44 ad for (waiters = ptm->ptm_waiters;; waiters = next) {
259 1.50 ad self->pt_mutexnext = waiters;
260 1.44 ad membar_producer();
261 1.44 ad next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
262 1.44 ad if (next == waiters)
263 1.44 ad break;
264 1.44 ad }
265 1.21 chs
266 1.44 ad /*
267 1.44 ad * Set the waiters bit and block.
268 1.44 ad *
269 1.44 ad * Note that the mutex can become unlocked before we set
270 1.44 ad * the waiters bit. If that happens it's not safe to sleep
271 1.44 ad * as we may never be awoken: we must remove the current
272 1.44 ad * thread from the waiters list and try again.
273 1.44 ad *
274 1.44 ad * Because we are doing this atomically, we can't remove
275 1.44 ad * one waiter: we must remove all waiters and awken them,
276 1.44 ad * then sleep in _lwp_park() until we have been awoken.
277 1.44 ad *
278 1.44 ad * Issue a memory barrier to ensure that we are reading
279 1.50 ad * the value of ptm_owner/pt_mutexwait after we have entered
280 1.44 ad * the waiters list (the CAS itself must be atomic).
281 1.44 ad */
282 1.44 ad membar_consumer();
283 1.44 ad for (owner = ptm->ptm_owner;; owner = next) {
284 1.44 ad if (MUTEX_HAS_WAITERS(owner))
285 1.44 ad break;
286 1.44 ad if (MUTEX_OWNER(owner) == 0) {
287 1.44 ad pthread__mutex_wakeup(self, ptm);
288 1.44 ad break;
289 1.44 ad }
290 1.44 ad new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
291 1.44 ad next = atomic_cas_ptr(&ptm->ptm_owner, owner, new);
292 1.44 ad if (next == owner) {
293 1.21 chs /*
294 1.44 ad * pthread_mutex_unlock() can do a
295 1.44 ad * non-interlocked CAS. We cannot
296 1.44 ad * know if our attempt to set the
297 1.44 ad * waiters bit has succeeded while
298 1.44 ad * the holding thread is running.
299 1.44 ad * There are many assumptions; see
300 1.44 ad * sys/kern/kern_mutex.c for details.
301 1.44 ad * In short, we must spin if we see
302 1.44 ad * that the holder is running again.
303 1.21 chs */
304 1.44 ad membar_sync();
305 1.44 ad next = pthread__mutex_spin(ptm, owner);
306 1.21 chs }
307 1.29 ad }
308 1.21 chs
309 1.29 ad /*
310 1.44 ad * We may have been awoken by the current thread above,
311 1.44 ad * or will be awoken by the current holder of the mutex.
312 1.44 ad * The key requirement is that we must not proceed until
313 1.50 ad * told that we are no longer waiting (via pt_mutexwait
314 1.44 ad * being set to zero). Otherwise it is unsafe to re-enter
315 1.44 ad * the thread onto the waiters list.
316 1.29 ad */
317 1.50 ad while (self->pt_mutexwait) {
318 1.44 ad self->pt_blocking++;
319 1.50 ad (void)_lwp_park(NULL, self->pt_unpark,
320 1.50 ad __UNVOLATILE(&ptm->ptm_waiters),
321 1.50 ad __UNVOLATILE(&ptm->ptm_waiters));
322 1.50 ad self->pt_unpark = 0;
323 1.44 ad self->pt_blocking--;
324 1.44 ad membar_sync();
325 1.44 ad }
326 1.2 thorpej }
327 1.2 thorpej }
328 1.2 thorpej
329 1.2 thorpej int
330 1.44 ad pthread_mutex_trylock(pthread_mutex_t *ptm)
331 1.2 thorpej {
332 1.27 ad pthread_t self;
333 1.46 ad void *val, *new, *next;
334 1.2 thorpej
335 1.27 ad self = pthread__self();
336 1.44 ad val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
337 1.44 ad if (__predict_true(val == NULL)) {
338 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
339 1.44 ad membar_enter();
340 1.44 ad #endif
341 1.44 ad return 0;
342 1.44 ad }
343 1.27 ad
344 1.46 ad if (MUTEX_RECURSIVE(val)) {
345 1.46 ad if (MUTEX_OWNER(val) == 0) {
346 1.46 ad new = (void *)((uintptr_t)self | (uintptr_t)val);
347 1.46 ad next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
348 1.46 ad if (__predict_true(next == val)) {
349 1.46 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
350 1.46 ad membar_enter();
351 1.46 ad #endif
352 1.46 ad return 0;
353 1.46 ad }
354 1.46 ad }
355 1.46 ad if (MUTEX_OWNER(val) == (uintptr_t)self) {
356 1.46 ad if (ptm->ptm_recursed == INT_MAX)
357 1.46 ad return EAGAIN;
358 1.46 ad ptm->ptm_recursed++;
359 1.46 ad return 0;
360 1.46 ad }
361 1.2 thorpej }
362 1.2 thorpej
363 1.44 ad return EBUSY;
364 1.2 thorpej }
365 1.2 thorpej
366 1.2 thorpej int
367 1.44 ad pthread_mutex_unlock(pthread_mutex_t *ptm)
368 1.2 thorpej {
369 1.27 ad pthread_t self;
370 1.44 ad void *value;
371 1.44 ad
372 1.44 ad /*
373 1.44 ad * Note this may be a non-interlocked CAS. See lock_slow()
374 1.44 ad * above and sys/kern/kern_mutex.c for details.
375 1.44 ad */
376 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
377 1.44 ad membar_exit();
378 1.44 ad #endif
379 1.44 ad self = pthread__self();
380 1.44 ad value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
381 1.54 matt if (__predict_true(value == self)) {
382 1.54 matt pthread__smt_wake();
383 1.44 ad return 0;
384 1.54 matt }
385 1.44 ad return pthread__mutex_unlock_slow(ptm);
386 1.44 ad }
387 1.44 ad
388 1.44 ad NOINLINE static int
389 1.44 ad pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
390 1.44 ad {
391 1.44 ad pthread_t self, owner, new;
392 1.44 ad int weown, error, deferred;
393 1.13 nathanw
394 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
395 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
396 1.44 ad
397 1.44 ad self = pthread__self();
398 1.44 ad owner = ptm->ptm_owner;
399 1.44 ad weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
400 1.44 ad deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
401 1.44 ad error = 0;
402 1.44 ad
403 1.51 matt if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
404 1.44 ad if (!weown) {
405 1.44 ad error = EPERM;
406 1.44 ad new = owner;
407 1.44 ad } else {
408 1.44 ad new = NULL;
409 1.44 ad }
410 1.44 ad } else if (MUTEX_RECURSIVE(owner)) {
411 1.44 ad if (!weown) {
412 1.44 ad error = EPERM;
413 1.44 ad new = owner;
414 1.45 ad } else if (ptm->ptm_recursed) {
415 1.45 ad ptm->ptm_recursed--;
416 1.44 ad new = owner;
417 1.44 ad } else {
418 1.44 ad new = (pthread_t)MUTEX_RECURSIVE_BIT;
419 1.44 ad }
420 1.44 ad } else {
421 1.44 ad pthread__error(EPERM,
422 1.44 ad "Unlocking unlocked mutex", (owner != NULL));
423 1.44 ad pthread__error(EPERM,
424 1.44 ad "Unlocking mutex owned by another thread", weown);
425 1.44 ad new = NULL;
426 1.44 ad }
427 1.2 thorpej
428 1.2 thorpej /*
429 1.44 ad * Release the mutex. If there appear to be waiters, then
430 1.44 ad * wake them up.
431 1.2 thorpej */
432 1.44 ad if (new != owner) {
433 1.44 ad owner = atomic_swap_ptr(&ptm->ptm_owner, new);
434 1.44 ad if (MUTEX_HAS_WAITERS(owner) != 0) {
435 1.44 ad pthread__mutex_wakeup(self, ptm);
436 1.2 thorpej return 0;
437 1.2 thorpej }
438 1.44 ad }
439 1.44 ad
440 1.44 ad /*
441 1.44 ad * There were no waiters, but we may have deferred waking
442 1.44 ad * other threads until mutex unlock - we must wake them now.
443 1.44 ad */
444 1.44 ad if (!deferred)
445 1.44 ad return error;
446 1.44 ad
447 1.44 ad if (self->pt_nwaiters == 1) {
448 1.44 ad /*
449 1.44 ad * If the calling thread is about to block, defer
450 1.44 ad * unparking the target until _lwp_park() is called.
451 1.44 ad */
452 1.44 ad if (self->pt_willpark && self->pt_unpark == 0) {
453 1.44 ad self->pt_unpark = self->pt_waiters[0];
454 1.44 ad } else {
455 1.44 ad (void)_lwp_unpark(self->pt_waiters[0],
456 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
457 1.15 nathanw }
458 1.44 ad } else {
459 1.44 ad (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
460 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
461 1.2 thorpej }
462 1.44 ad self->pt_nwaiters = 0;
463 1.2 thorpej
464 1.44 ad return error;
465 1.44 ad }
466 1.44 ad
467 1.55 yamt /*
468 1.55 yamt * pthread__mutex_wakeup: unpark threads waiting for us
469 1.55 yamt *
470 1.55 yamt * unpark threads on the ptm->ptm_waiters list and self->pt_waiters.
471 1.55 yamt */
472 1.55 yamt
473 1.44 ad static void
474 1.44 ad pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
475 1.44 ad {
476 1.44 ad pthread_t thread, next;
477 1.44 ad ssize_t n, rv;
478 1.27 ad
479 1.8 nathanw /*
480 1.44 ad * Take ownership of the current set of waiters. No
481 1.44 ad * need for a memory barrier following this, all loads
482 1.44 ad * are dependent upon 'thread'.
483 1.8 nathanw */
484 1.44 ad thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
485 1.54 matt pthread__smt_wake();
486 1.44 ad
487 1.44 ad for (;;) {
488 1.44 ad /*
489 1.44 ad * Pull waiters from the queue and add to our list.
490 1.44 ad * Use a memory barrier to ensure that we safely
491 1.50 ad * read the value of pt_mutexnext before 'thread'
492 1.50 ad * sees pt_mutexwait being cleared.
493 1.44 ad */
494 1.44 ad for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
495 1.44 ad n < pthread__unpark_max && thread != NULL;
496 1.44 ad thread = next) {
497 1.50 ad next = thread->pt_mutexnext;
498 1.44 ad if (thread != self) {
499 1.44 ad self->pt_waiters[n++] = thread->pt_lid;
500 1.44 ad membar_sync();
501 1.44 ad }
502 1.50 ad thread->pt_mutexwait = 0;
503 1.44 ad /* No longer safe to touch 'thread' */
504 1.44 ad }
505 1.44 ad
506 1.44 ad switch (n) {
507 1.44 ad case 0:
508 1.44 ad return;
509 1.44 ad case 1:
510 1.44 ad /*
511 1.44 ad * If the calling thread is about to block,
512 1.44 ad * defer unparking the target until _lwp_park()
513 1.44 ad * is called.
514 1.44 ad */
515 1.44 ad if (self->pt_willpark && self->pt_unpark == 0) {
516 1.44 ad self->pt_unpark = self->pt_waiters[0];
517 1.44 ad return;
518 1.44 ad }
519 1.44 ad rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
520 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
521 1.44 ad if (rv != 0 && errno != EALREADY && errno != EINTR &&
522 1.44 ad errno != ESRCH) {
523 1.44 ad pthread__errorfunc(__FILE__, __LINE__,
524 1.44 ad __func__, "_lwp_unpark failed");
525 1.44 ad }
526 1.44 ad return;
527 1.44 ad default:
528 1.44 ad rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
529 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
530 1.44 ad if (rv != 0 && errno != EINTR) {
531 1.44 ad pthread__errorfunc(__FILE__, __LINE__,
532 1.44 ad __func__, "_lwp_unpark_all failed");
533 1.44 ad }
534 1.44 ad break;
535 1.44 ad }
536 1.44 ad }
537 1.2 thorpej }
538 1.55 yamt
539 1.2 thorpej int
540 1.2 thorpej pthread_mutexattr_init(pthread_mutexattr_t *attr)
541 1.2 thorpej {
542 1.2 thorpej
543 1.2 thorpej attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
544 1.44 ad attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
545 1.2 thorpej return 0;
546 1.2 thorpej }
547 1.2 thorpej
548 1.2 thorpej int
549 1.2 thorpej pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
550 1.2 thorpej {
551 1.2 thorpej
552 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
553 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
554 1.2 thorpej
555 1.2 thorpej return 0;
556 1.2 thorpej }
557 1.2 thorpej
558 1.2 thorpej int
559 1.2 thorpej pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
560 1.2 thorpej {
561 1.2 thorpej
562 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
563 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
564 1.2 thorpej
565 1.44 ad *typep = (int)(intptr_t)attr->ptma_private;
566 1.2 thorpej return 0;
567 1.2 thorpej }
568 1.2 thorpej
569 1.2 thorpej int
570 1.2 thorpej pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
571 1.2 thorpej {
572 1.2 thorpej
573 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
574 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
575 1.13 nathanw
576 1.2 thorpej switch (type) {
577 1.2 thorpej case PTHREAD_MUTEX_NORMAL:
578 1.2 thorpej case PTHREAD_MUTEX_ERRORCHECK:
579 1.2 thorpej case PTHREAD_MUTEX_RECURSIVE:
580 1.44 ad attr->ptma_private = (void *)(intptr_t)type;
581 1.44 ad return 0;
582 1.2 thorpej default:
583 1.2 thorpej return EINVAL;
584 1.2 thorpej }
585 1.2 thorpej }
586 1.2 thorpej
587 1.55 yamt /*
588 1.55 yamt * pthread__mutex_deferwake: try to defer unparking threads in self->pt_waiters
589 1.55 yamt *
590 1.55 yamt * In order to avoid unnecessary contention on the interlocking mutex,
591 1.55 yamt * we defer waking up threads until we unlock the mutex. The threads will
592 1.55 yamt * be woken up when the calling thread (self) releases the first mutex with
593 1.55 yamt * MUTEX_DEFERRED_BIT set. It likely be the mutex 'ptm', but no problem
594 1.55 yamt * even if it isn't.
595 1.55 yamt */
596 1.55 yamt
597 1.50 ad void
598 1.50 ad pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
599 1.33 ad {
600 1.33 ad
601 1.50 ad if (__predict_false(ptm == NULL ||
602 1.50 ad MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
603 1.50 ad (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
604 1.50 ad __UNVOLATILE(&ptm->ptm_waiters));
605 1.50 ad self->pt_nwaiters = 0;
606 1.50 ad } else {
607 1.50 ad atomic_or_ulong((volatile unsigned long *)
608 1.50 ad (uintptr_t)&ptm->ptm_owner,
609 1.50 ad (unsigned long)MUTEX_DEFERRED_BIT);
610 1.50 ad }
611 1.33 ad }
612 1.33 ad
613 1.39 ad int
614 1.44 ad _pthread_mutex_held_np(pthread_mutex_t *ptm)
615 1.39 ad {
616 1.39 ad
617 1.44 ad return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
618 1.39 ad }
619 1.39 ad
620 1.39 ad pthread_t
621 1.44 ad _pthread_mutex_owner_np(pthread_mutex_t *ptm)
622 1.39 ad {
623 1.39 ad
624 1.44 ad return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
625 1.39 ad }
626