pthread_mutex.c revision 1.57 1 1.57 christos /* $NetBSD: pthread_mutex.c,v 1.57 2014/01/31 19:22:00 christos Exp $ */
2 1.2 thorpej
3 1.2 thorpej /*-
4 1.44 ad * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 thorpej * All rights reserved.
6 1.2 thorpej *
7 1.2 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.27 ad * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 1.2 thorpej *
10 1.2 thorpej * Redistribution and use in source and binary forms, with or without
11 1.2 thorpej * modification, are permitted provided that the following conditions
12 1.2 thorpej * are met:
13 1.2 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.2 thorpej * notice, this list of conditions and the following disclaimer.
15 1.2 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.2 thorpej * documentation and/or other materials provided with the distribution.
18 1.2 thorpej *
19 1.2 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.2 thorpej */
31 1.2 thorpej
32 1.49 ad /*
33 1.49 ad * To track threads waiting for mutexes to be released, we use lockless
34 1.49 ad * lists built on atomic operations and memory barriers.
35 1.49 ad *
36 1.49 ad * A simple spinlock would be faster and make the code easier to
37 1.49 ad * follow, but spinlocks are problematic in userspace. If a thread is
38 1.49 ad * preempted by the kernel while holding a spinlock, any other thread
39 1.49 ad * attempting to acquire that spinlock will needlessly busy wait.
40 1.49 ad *
41 1.49 ad * There is no good way to know that the holding thread is no longer
42 1.49 ad * running, nor to request a wake-up once it has begun running again.
43 1.49 ad * Of more concern, threads in the SCHED_FIFO class do not have a
44 1.49 ad * limited time quantum and so could spin forever, preventing the
45 1.49 ad * thread holding the spinlock from getting CPU time: it would never
46 1.49 ad * be released.
47 1.49 ad */
48 1.49 ad
49 1.2 thorpej #include <sys/cdefs.h>
50 1.57 christos __RCSID("$NetBSD: pthread_mutex.c,v 1.57 2014/01/31 19:22:00 christos Exp $");
51 1.40 ad
52 1.40 ad #include <sys/types.h>
53 1.44 ad #include <sys/lwpctl.h>
54 1.51 matt #include <sys/lock.h>
55 1.10 lukem
56 1.2 thorpej #include <errno.h>
57 1.2 thorpej #include <limits.h>
58 1.2 thorpej #include <stdlib.h>
59 1.56 christos #include <time.h>
60 1.6 scw #include <string.h>
61 1.44 ad #include <stdio.h>
62 1.2 thorpej
63 1.2 thorpej #include "pthread.h"
64 1.2 thorpej #include "pthread_int.h"
65 1.56 christos #include "reentrant.h"
66 1.2 thorpej
67 1.44 ad #define MUTEX_WAITERS_BIT ((uintptr_t)0x01)
68 1.44 ad #define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02)
69 1.44 ad #define MUTEX_DEFERRED_BIT ((uintptr_t)0x04)
70 1.44 ad #define MUTEX_THREAD ((uintptr_t)-16L)
71 1.44 ad
72 1.44 ad #define MUTEX_HAS_WAITERS(x) ((uintptr_t)(x) & MUTEX_WAITERS_BIT)
73 1.44 ad #define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
74 1.44 ad #define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD)
75 1.44 ad
76 1.44 ad #if __GNUC_PREREQ__(3, 0)
77 1.44 ad #define NOINLINE __attribute ((noinline))
78 1.44 ad #else
79 1.44 ad #define NOINLINE /* nothing */
80 1.44 ad #endif
81 1.44 ad
82 1.44 ad static void pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
83 1.44 ad static int pthread__mutex_lock_slow(pthread_mutex_t *);
84 1.44 ad static int pthread__mutex_unlock_slow(pthread_mutex_t *);
85 1.44 ad static void pthread__mutex_pause(void);
86 1.2 thorpej
87 1.39 ad int _pthread_mutex_held_np(pthread_mutex_t *);
88 1.39 ad pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
89 1.39 ad
90 1.39 ad __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
91 1.39 ad __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
92 1.39 ad
93 1.2 thorpej __strong_alias(__libc_mutex_init,pthread_mutex_init)
94 1.2 thorpej __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
95 1.2 thorpej __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
96 1.2 thorpej __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
97 1.2 thorpej __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
98 1.4 thorpej
99 1.4 thorpej __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
100 1.4 thorpej __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
101 1.5 thorpej __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
102 1.2 thorpej
103 1.2 thorpej int
104 1.44 ad pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
105 1.2 thorpej {
106 1.44 ad intptr_t type;
107 1.2 thorpej
108 1.56 christos if (__predict_false(__uselibcstub))
109 1.56 christos return __libc_mutex_init_stub(ptm, attr);
110 1.56 christos
111 1.44 ad if (attr == NULL)
112 1.44 ad type = PTHREAD_MUTEX_NORMAL;
113 1.44 ad else
114 1.44 ad type = (intptr_t)attr->ptma_private;
115 1.2 thorpej
116 1.44 ad switch (type) {
117 1.44 ad case PTHREAD_MUTEX_ERRORCHECK:
118 1.51 matt __cpu_simple_lock_set(&ptm->ptm_errorcheck);
119 1.44 ad ptm->ptm_owner = NULL;
120 1.44 ad break;
121 1.44 ad case PTHREAD_MUTEX_RECURSIVE:
122 1.51 matt __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
123 1.44 ad ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
124 1.44 ad break;
125 1.44 ad default:
126 1.51 matt __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
127 1.44 ad ptm->ptm_owner = NULL;
128 1.44 ad break;
129 1.2 thorpej }
130 1.2 thorpej
131 1.44 ad ptm->ptm_magic = _PT_MUTEX_MAGIC;
132 1.44 ad ptm->ptm_waiters = NULL;
133 1.45 ad ptm->ptm_recursed = 0;
134 1.2 thorpej
135 1.2 thorpej return 0;
136 1.2 thorpej }
137 1.2 thorpej
138 1.2 thorpej int
139 1.44 ad pthread_mutex_destroy(pthread_mutex_t *ptm)
140 1.2 thorpej {
141 1.2 thorpej
142 1.56 christos if (__predict_false(__uselibcstub))
143 1.56 christos return __libc_mutex_destroy_stub(ptm);
144 1.56 christos
145 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
146 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
147 1.14 nathanw pthread__error(EBUSY, "Destroying locked mutex",
148 1.44 ad MUTEX_OWNER(ptm->ptm_owner) == 0);
149 1.2 thorpej
150 1.44 ad ptm->ptm_magic = _PT_MUTEX_DEAD;
151 1.2 thorpej return 0;
152 1.2 thorpej }
153 1.2 thorpej
154 1.2 thorpej int
155 1.44 ad pthread_mutex_lock(pthread_mutex_t *ptm)
156 1.2 thorpej {
157 1.27 ad pthread_t self;
158 1.44 ad void *val;
159 1.2 thorpej
160 1.56 christos if (__predict_false(__uselibcstub))
161 1.56 christos return __libc_mutex_lock_stub(ptm);
162 1.56 christos
163 1.27 ad self = pthread__self();
164 1.44 ad val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
165 1.44 ad if (__predict_true(val == NULL)) {
166 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
167 1.44 ad membar_enter();
168 1.44 ad #endif
169 1.44 ad return 0;
170 1.2 thorpej }
171 1.44 ad return pthread__mutex_lock_slow(ptm);
172 1.44 ad }
173 1.2 thorpej
174 1.44 ad /* We want function call overhead. */
175 1.44 ad NOINLINE static void
176 1.44 ad pthread__mutex_pause(void)
177 1.44 ad {
178 1.2 thorpej
179 1.44 ad pthread__smt_pause();
180 1.2 thorpej }
181 1.2 thorpej
182 1.44 ad /*
183 1.44 ad * Spin while the holder is running. 'lwpctl' gives us the true
184 1.44 ad * status of the thread. pt_blocking is set by libpthread in order
185 1.44 ad * to cut out system call and kernel spinlock overhead on remote CPUs
186 1.44 ad * (could represent many thousands of clock cycles). pt_blocking also
187 1.44 ad * makes this thread yield if the target is calling sched_yield().
188 1.44 ad */
189 1.44 ad NOINLINE static void *
190 1.44 ad pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
191 1.44 ad {
192 1.44 ad pthread_t thread;
193 1.44 ad unsigned int count, i;
194 1.44 ad
195 1.44 ad for (count = 2;; owner = ptm->ptm_owner) {
196 1.44 ad thread = (pthread_t)MUTEX_OWNER(owner);
197 1.44 ad if (thread == NULL)
198 1.44 ad break;
199 1.44 ad if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
200 1.44 ad thread->pt_blocking)
201 1.44 ad break;
202 1.44 ad if (count < 128)
203 1.44 ad count += count;
204 1.44 ad for (i = count; i != 0; i--)
205 1.44 ad pthread__mutex_pause();
206 1.44 ad }
207 1.2 thorpej
208 1.44 ad return owner;
209 1.44 ad }
210 1.44 ad
211 1.44 ad NOINLINE static int
212 1.44 ad pthread__mutex_lock_slow(pthread_mutex_t *ptm)
213 1.2 thorpej {
214 1.44 ad void *waiters, *new, *owner, *next;
215 1.44 ad pthread_t self;
216 1.57 christos int serrno;
217 1.2 thorpej
218 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
219 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
220 1.44 ad
221 1.44 ad owner = ptm->ptm_owner;
222 1.44 ad self = pthread__self();
223 1.13 nathanw
224 1.44 ad /* Recursive or errorcheck? */
225 1.44 ad if (MUTEX_OWNER(owner) == (uintptr_t)self) {
226 1.44 ad if (MUTEX_RECURSIVE(owner)) {
227 1.45 ad if (ptm->ptm_recursed == INT_MAX)
228 1.44 ad return EAGAIN;
229 1.45 ad ptm->ptm_recursed++;
230 1.44 ad return 0;
231 1.29 ad }
232 1.51 matt if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
233 1.44 ad return EDEADLK;
234 1.44 ad }
235 1.29 ad
236 1.57 christos serrno = errno;
237 1.44 ad for (;; owner = ptm->ptm_owner) {
238 1.44 ad /* Spin while the owner is running. */
239 1.44 ad owner = pthread__mutex_spin(ptm, owner);
240 1.44 ad
241 1.44 ad /* If it has become free, try to acquire it again. */
242 1.44 ad if (MUTEX_OWNER(owner) == 0) {
243 1.47 ad do {
244 1.44 ad new = (void *)
245 1.44 ad ((uintptr_t)self | (uintptr_t)owner);
246 1.44 ad next = atomic_cas_ptr(&ptm->ptm_owner, owner,
247 1.44 ad new);
248 1.44 ad if (next == owner) {
249 1.57 christos errno = serrno;
250 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
251 1.44 ad membar_enter();
252 1.44 ad #endif
253 1.44 ad return 0;
254 1.44 ad }
255 1.47 ad owner = next;
256 1.47 ad } while (MUTEX_OWNER(owner) == 0);
257 1.44 ad /*
258 1.44 ad * We have lost the race to acquire the mutex.
259 1.44 ad * The new owner could be running on another
260 1.44 ad * CPU, in which case we should spin and avoid
261 1.44 ad * the overhead of blocking.
262 1.44 ad */
263 1.47 ad continue;
264 1.44 ad }
265 1.21 chs
266 1.2 thorpej /*
267 1.44 ad * Nope, still held. Add thread to the list of waiters.
268 1.50 ad * Issue a memory barrier to ensure mutexwait/mutexnext
269 1.44 ad * are visible before we enter the waiters list.
270 1.2 thorpej */
271 1.50 ad self->pt_mutexwait = 1;
272 1.44 ad for (waiters = ptm->ptm_waiters;; waiters = next) {
273 1.50 ad self->pt_mutexnext = waiters;
274 1.44 ad membar_producer();
275 1.44 ad next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
276 1.44 ad if (next == waiters)
277 1.44 ad break;
278 1.44 ad }
279 1.21 chs
280 1.44 ad /*
281 1.44 ad * Set the waiters bit and block.
282 1.44 ad *
283 1.44 ad * Note that the mutex can become unlocked before we set
284 1.44 ad * the waiters bit. If that happens it's not safe to sleep
285 1.44 ad * as we may never be awoken: we must remove the current
286 1.44 ad * thread from the waiters list and try again.
287 1.44 ad *
288 1.44 ad * Because we are doing this atomically, we can't remove
289 1.44 ad * one waiter: we must remove all waiters and awken them,
290 1.44 ad * then sleep in _lwp_park() until we have been awoken.
291 1.44 ad *
292 1.44 ad * Issue a memory barrier to ensure that we are reading
293 1.50 ad * the value of ptm_owner/pt_mutexwait after we have entered
294 1.44 ad * the waiters list (the CAS itself must be atomic).
295 1.44 ad */
296 1.44 ad membar_consumer();
297 1.44 ad for (owner = ptm->ptm_owner;; owner = next) {
298 1.44 ad if (MUTEX_HAS_WAITERS(owner))
299 1.44 ad break;
300 1.44 ad if (MUTEX_OWNER(owner) == 0) {
301 1.44 ad pthread__mutex_wakeup(self, ptm);
302 1.44 ad break;
303 1.44 ad }
304 1.44 ad new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
305 1.44 ad next = atomic_cas_ptr(&ptm->ptm_owner, owner, new);
306 1.44 ad if (next == owner) {
307 1.21 chs /*
308 1.44 ad * pthread_mutex_unlock() can do a
309 1.44 ad * non-interlocked CAS. We cannot
310 1.44 ad * know if our attempt to set the
311 1.44 ad * waiters bit has succeeded while
312 1.44 ad * the holding thread is running.
313 1.44 ad * There are many assumptions; see
314 1.44 ad * sys/kern/kern_mutex.c for details.
315 1.44 ad * In short, we must spin if we see
316 1.44 ad * that the holder is running again.
317 1.21 chs */
318 1.44 ad membar_sync();
319 1.44 ad next = pthread__mutex_spin(ptm, owner);
320 1.21 chs }
321 1.29 ad }
322 1.21 chs
323 1.29 ad /*
324 1.44 ad * We may have been awoken by the current thread above,
325 1.44 ad * or will be awoken by the current holder of the mutex.
326 1.44 ad * The key requirement is that we must not proceed until
327 1.50 ad * told that we are no longer waiting (via pt_mutexwait
328 1.44 ad * being set to zero). Otherwise it is unsafe to re-enter
329 1.44 ad * the thread onto the waiters list.
330 1.29 ad */
331 1.50 ad while (self->pt_mutexwait) {
332 1.44 ad self->pt_blocking++;
333 1.50 ad (void)_lwp_park(NULL, self->pt_unpark,
334 1.50 ad __UNVOLATILE(&ptm->ptm_waiters),
335 1.50 ad __UNVOLATILE(&ptm->ptm_waiters));
336 1.50 ad self->pt_unpark = 0;
337 1.44 ad self->pt_blocking--;
338 1.44 ad membar_sync();
339 1.44 ad }
340 1.2 thorpej }
341 1.2 thorpej }
342 1.2 thorpej
343 1.2 thorpej int
344 1.44 ad pthread_mutex_trylock(pthread_mutex_t *ptm)
345 1.2 thorpej {
346 1.27 ad pthread_t self;
347 1.46 ad void *val, *new, *next;
348 1.2 thorpej
349 1.56 christos if (__predict_false(__uselibcstub))
350 1.56 christos return __libc_mutex_trylock_stub(ptm);
351 1.56 christos
352 1.27 ad self = pthread__self();
353 1.44 ad val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
354 1.44 ad if (__predict_true(val == NULL)) {
355 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
356 1.44 ad membar_enter();
357 1.44 ad #endif
358 1.44 ad return 0;
359 1.44 ad }
360 1.27 ad
361 1.46 ad if (MUTEX_RECURSIVE(val)) {
362 1.46 ad if (MUTEX_OWNER(val) == 0) {
363 1.46 ad new = (void *)((uintptr_t)self | (uintptr_t)val);
364 1.46 ad next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
365 1.46 ad if (__predict_true(next == val)) {
366 1.46 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
367 1.46 ad membar_enter();
368 1.46 ad #endif
369 1.46 ad return 0;
370 1.46 ad }
371 1.46 ad }
372 1.46 ad if (MUTEX_OWNER(val) == (uintptr_t)self) {
373 1.46 ad if (ptm->ptm_recursed == INT_MAX)
374 1.46 ad return EAGAIN;
375 1.46 ad ptm->ptm_recursed++;
376 1.46 ad return 0;
377 1.46 ad }
378 1.2 thorpej }
379 1.2 thorpej
380 1.44 ad return EBUSY;
381 1.2 thorpej }
382 1.2 thorpej
383 1.2 thorpej int
384 1.44 ad pthread_mutex_unlock(pthread_mutex_t *ptm)
385 1.2 thorpej {
386 1.27 ad pthread_t self;
387 1.44 ad void *value;
388 1.44 ad
389 1.56 christos if (__predict_false(__uselibcstub))
390 1.56 christos return __libc_mutex_unlock_stub(ptm);
391 1.56 christos
392 1.44 ad /*
393 1.44 ad * Note this may be a non-interlocked CAS. See lock_slow()
394 1.44 ad * above and sys/kern/kern_mutex.c for details.
395 1.44 ad */
396 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
397 1.44 ad membar_exit();
398 1.44 ad #endif
399 1.44 ad self = pthread__self();
400 1.44 ad value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
401 1.54 matt if (__predict_true(value == self)) {
402 1.54 matt pthread__smt_wake();
403 1.44 ad return 0;
404 1.54 matt }
405 1.44 ad return pthread__mutex_unlock_slow(ptm);
406 1.44 ad }
407 1.44 ad
408 1.44 ad NOINLINE static int
409 1.44 ad pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
410 1.44 ad {
411 1.44 ad pthread_t self, owner, new;
412 1.44 ad int weown, error, deferred;
413 1.13 nathanw
414 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
415 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
416 1.44 ad
417 1.44 ad self = pthread__self();
418 1.44 ad owner = ptm->ptm_owner;
419 1.44 ad weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
420 1.44 ad deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
421 1.44 ad error = 0;
422 1.44 ad
423 1.51 matt if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
424 1.44 ad if (!weown) {
425 1.44 ad error = EPERM;
426 1.44 ad new = owner;
427 1.44 ad } else {
428 1.44 ad new = NULL;
429 1.44 ad }
430 1.44 ad } else if (MUTEX_RECURSIVE(owner)) {
431 1.44 ad if (!weown) {
432 1.44 ad error = EPERM;
433 1.44 ad new = owner;
434 1.45 ad } else if (ptm->ptm_recursed) {
435 1.45 ad ptm->ptm_recursed--;
436 1.44 ad new = owner;
437 1.44 ad } else {
438 1.44 ad new = (pthread_t)MUTEX_RECURSIVE_BIT;
439 1.44 ad }
440 1.44 ad } else {
441 1.44 ad pthread__error(EPERM,
442 1.44 ad "Unlocking unlocked mutex", (owner != NULL));
443 1.44 ad pthread__error(EPERM,
444 1.44 ad "Unlocking mutex owned by another thread", weown);
445 1.44 ad new = NULL;
446 1.44 ad }
447 1.2 thorpej
448 1.2 thorpej /*
449 1.44 ad * Release the mutex. If there appear to be waiters, then
450 1.44 ad * wake them up.
451 1.2 thorpej */
452 1.44 ad if (new != owner) {
453 1.44 ad owner = atomic_swap_ptr(&ptm->ptm_owner, new);
454 1.44 ad if (MUTEX_HAS_WAITERS(owner) != 0) {
455 1.44 ad pthread__mutex_wakeup(self, ptm);
456 1.2 thorpej return 0;
457 1.2 thorpej }
458 1.44 ad }
459 1.44 ad
460 1.44 ad /*
461 1.44 ad * There were no waiters, but we may have deferred waking
462 1.44 ad * other threads until mutex unlock - we must wake them now.
463 1.44 ad */
464 1.44 ad if (!deferred)
465 1.44 ad return error;
466 1.44 ad
467 1.44 ad if (self->pt_nwaiters == 1) {
468 1.44 ad /*
469 1.44 ad * If the calling thread is about to block, defer
470 1.44 ad * unparking the target until _lwp_park() is called.
471 1.44 ad */
472 1.44 ad if (self->pt_willpark && self->pt_unpark == 0) {
473 1.44 ad self->pt_unpark = self->pt_waiters[0];
474 1.44 ad } else {
475 1.44 ad (void)_lwp_unpark(self->pt_waiters[0],
476 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
477 1.15 nathanw }
478 1.44 ad } else {
479 1.44 ad (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
480 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
481 1.2 thorpej }
482 1.44 ad self->pt_nwaiters = 0;
483 1.2 thorpej
484 1.44 ad return error;
485 1.44 ad }
486 1.44 ad
487 1.55 yamt /*
488 1.55 yamt * pthread__mutex_wakeup: unpark threads waiting for us
489 1.55 yamt *
490 1.55 yamt * unpark threads on the ptm->ptm_waiters list and self->pt_waiters.
491 1.55 yamt */
492 1.55 yamt
493 1.44 ad static void
494 1.44 ad pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
495 1.44 ad {
496 1.44 ad pthread_t thread, next;
497 1.44 ad ssize_t n, rv;
498 1.27 ad
499 1.8 nathanw /*
500 1.44 ad * Take ownership of the current set of waiters. No
501 1.44 ad * need for a memory barrier following this, all loads
502 1.44 ad * are dependent upon 'thread'.
503 1.8 nathanw */
504 1.44 ad thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
505 1.54 matt pthread__smt_wake();
506 1.44 ad
507 1.44 ad for (;;) {
508 1.44 ad /*
509 1.44 ad * Pull waiters from the queue and add to our list.
510 1.44 ad * Use a memory barrier to ensure that we safely
511 1.50 ad * read the value of pt_mutexnext before 'thread'
512 1.50 ad * sees pt_mutexwait being cleared.
513 1.44 ad */
514 1.44 ad for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
515 1.44 ad n < pthread__unpark_max && thread != NULL;
516 1.44 ad thread = next) {
517 1.50 ad next = thread->pt_mutexnext;
518 1.44 ad if (thread != self) {
519 1.44 ad self->pt_waiters[n++] = thread->pt_lid;
520 1.44 ad membar_sync();
521 1.44 ad }
522 1.50 ad thread->pt_mutexwait = 0;
523 1.44 ad /* No longer safe to touch 'thread' */
524 1.44 ad }
525 1.44 ad
526 1.44 ad switch (n) {
527 1.44 ad case 0:
528 1.44 ad return;
529 1.44 ad case 1:
530 1.44 ad /*
531 1.44 ad * If the calling thread is about to block,
532 1.44 ad * defer unparking the target until _lwp_park()
533 1.44 ad * is called.
534 1.44 ad */
535 1.44 ad if (self->pt_willpark && self->pt_unpark == 0) {
536 1.44 ad self->pt_unpark = self->pt_waiters[0];
537 1.44 ad return;
538 1.44 ad }
539 1.44 ad rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
540 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
541 1.44 ad if (rv != 0 && errno != EALREADY && errno != EINTR &&
542 1.44 ad errno != ESRCH) {
543 1.44 ad pthread__errorfunc(__FILE__, __LINE__,
544 1.44 ad __func__, "_lwp_unpark failed");
545 1.44 ad }
546 1.44 ad return;
547 1.44 ad default:
548 1.44 ad rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
549 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
550 1.44 ad if (rv != 0 && errno != EINTR) {
551 1.44 ad pthread__errorfunc(__FILE__, __LINE__,
552 1.44 ad __func__, "_lwp_unpark_all failed");
553 1.44 ad }
554 1.44 ad break;
555 1.44 ad }
556 1.44 ad }
557 1.2 thorpej }
558 1.55 yamt
559 1.2 thorpej int
560 1.2 thorpej pthread_mutexattr_init(pthread_mutexattr_t *attr)
561 1.2 thorpej {
562 1.56 christos if (__predict_false(__uselibcstub))
563 1.56 christos return __libc_mutexattr_init_stub(attr);
564 1.2 thorpej
565 1.2 thorpej attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
566 1.44 ad attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
567 1.2 thorpej return 0;
568 1.2 thorpej }
569 1.2 thorpej
570 1.2 thorpej int
571 1.2 thorpej pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
572 1.2 thorpej {
573 1.56 christos if (__predict_false(__uselibcstub))
574 1.56 christos return __libc_mutexattr_destroy_stub(attr);
575 1.2 thorpej
576 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
577 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
578 1.2 thorpej
579 1.2 thorpej return 0;
580 1.2 thorpej }
581 1.2 thorpej
582 1.2 thorpej int
583 1.2 thorpej pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
584 1.2 thorpej {
585 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
586 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
587 1.2 thorpej
588 1.44 ad *typep = (int)(intptr_t)attr->ptma_private;
589 1.2 thorpej return 0;
590 1.2 thorpej }
591 1.2 thorpej
592 1.2 thorpej int
593 1.2 thorpej pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
594 1.2 thorpej {
595 1.56 christos if (__predict_false(__uselibcstub))
596 1.56 christos return __libc_mutexattr_settype_stub(attr, type);
597 1.2 thorpej
598 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
599 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
600 1.13 nathanw
601 1.2 thorpej switch (type) {
602 1.2 thorpej case PTHREAD_MUTEX_NORMAL:
603 1.2 thorpej case PTHREAD_MUTEX_ERRORCHECK:
604 1.2 thorpej case PTHREAD_MUTEX_RECURSIVE:
605 1.44 ad attr->ptma_private = (void *)(intptr_t)type;
606 1.44 ad return 0;
607 1.2 thorpej default:
608 1.2 thorpej return EINVAL;
609 1.2 thorpej }
610 1.2 thorpej }
611 1.2 thorpej
612 1.55 yamt /*
613 1.55 yamt * pthread__mutex_deferwake: try to defer unparking threads in self->pt_waiters
614 1.55 yamt *
615 1.55 yamt * In order to avoid unnecessary contention on the interlocking mutex,
616 1.55 yamt * we defer waking up threads until we unlock the mutex. The threads will
617 1.55 yamt * be woken up when the calling thread (self) releases the first mutex with
618 1.55 yamt * MUTEX_DEFERRED_BIT set. It likely be the mutex 'ptm', but no problem
619 1.55 yamt * even if it isn't.
620 1.55 yamt */
621 1.55 yamt
622 1.50 ad void
623 1.50 ad pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
624 1.33 ad {
625 1.33 ad
626 1.50 ad if (__predict_false(ptm == NULL ||
627 1.50 ad MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
628 1.50 ad (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
629 1.50 ad __UNVOLATILE(&ptm->ptm_waiters));
630 1.50 ad self->pt_nwaiters = 0;
631 1.50 ad } else {
632 1.50 ad atomic_or_ulong((volatile unsigned long *)
633 1.50 ad (uintptr_t)&ptm->ptm_owner,
634 1.50 ad (unsigned long)MUTEX_DEFERRED_BIT);
635 1.50 ad }
636 1.33 ad }
637 1.33 ad
638 1.39 ad int
639 1.44 ad _pthread_mutex_held_np(pthread_mutex_t *ptm)
640 1.39 ad {
641 1.39 ad
642 1.44 ad return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
643 1.39 ad }
644 1.39 ad
645 1.39 ad pthread_t
646 1.44 ad _pthread_mutex_owner_np(pthread_mutex_t *ptm)
647 1.39 ad {
648 1.39 ad
649 1.44 ad return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
650 1.39 ad }
651