Home | History | Annotate | Line # | Download | only in libpthread
pthread_mutex.c revision 1.57
      1  1.57  christos /*	$NetBSD: pthread_mutex.c,v 1.57 2014/01/31 19:22:00 christos Exp $	*/
      2   1.2   thorpej 
      3   1.2   thorpej /*-
      4  1.44        ad  * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5   1.2   thorpej  * All rights reserved.
      6   1.2   thorpej  *
      7   1.2   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8  1.27        ad  * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
      9   1.2   thorpej  *
     10   1.2   thorpej  * Redistribution and use in source and binary forms, with or without
     11   1.2   thorpej  * modification, are permitted provided that the following conditions
     12   1.2   thorpej  * are met:
     13   1.2   thorpej  * 1. Redistributions of source code must retain the above copyright
     14   1.2   thorpej  *    notice, this list of conditions and the following disclaimer.
     15   1.2   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.2   thorpej  *    notice, this list of conditions and the following disclaimer in the
     17   1.2   thorpej  *    documentation and/or other materials provided with the distribution.
     18   1.2   thorpej  *
     19   1.2   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.2   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.2   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.2   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.2   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.2   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.2   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.2   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.2   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.2   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.2   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     30   1.2   thorpej  */
     31   1.2   thorpej 
     32  1.49        ad /*
     33  1.49        ad  * To track threads waiting for mutexes to be released, we use lockless
     34  1.49        ad  * lists built on atomic operations and memory barriers.
     35  1.49        ad  *
     36  1.49        ad  * A simple spinlock would be faster and make the code easier to
     37  1.49        ad  * follow, but spinlocks are problematic in userspace.  If a thread is
     38  1.49        ad  * preempted by the kernel while holding a spinlock, any other thread
     39  1.49        ad  * attempting to acquire that spinlock will needlessly busy wait.
     40  1.49        ad  *
     41  1.49        ad  * There is no good way to know that the holding thread is no longer
     42  1.49        ad  * running, nor to request a wake-up once it has begun running again.
     43  1.49        ad  * Of more concern, threads in the SCHED_FIFO class do not have a
     44  1.49        ad  * limited time quantum and so could spin forever, preventing the
     45  1.49        ad  * thread holding the spinlock from getting CPU time: it would never
     46  1.49        ad  * be released.
     47  1.49        ad  */
     48  1.49        ad 
     49   1.2   thorpej #include <sys/cdefs.h>
     50  1.57  christos __RCSID("$NetBSD: pthread_mutex.c,v 1.57 2014/01/31 19:22:00 christos Exp $");
     51  1.40        ad 
     52  1.40        ad #include <sys/types.h>
     53  1.44        ad #include <sys/lwpctl.h>
     54  1.51      matt #include <sys/lock.h>
     55  1.10     lukem 
     56   1.2   thorpej #include <errno.h>
     57   1.2   thorpej #include <limits.h>
     58   1.2   thorpej #include <stdlib.h>
     59  1.56  christos #include <time.h>
     60   1.6       scw #include <string.h>
     61  1.44        ad #include <stdio.h>
     62   1.2   thorpej 
     63   1.2   thorpej #include "pthread.h"
     64   1.2   thorpej #include "pthread_int.h"
     65  1.56  christos #include "reentrant.h"
     66   1.2   thorpej 
     67  1.44        ad #define	MUTEX_WAITERS_BIT		((uintptr_t)0x01)
     68  1.44        ad #define	MUTEX_RECURSIVE_BIT		((uintptr_t)0x02)
     69  1.44        ad #define	MUTEX_DEFERRED_BIT		((uintptr_t)0x04)
     70  1.44        ad #define	MUTEX_THREAD			((uintptr_t)-16L)
     71  1.44        ad 
     72  1.44        ad #define	MUTEX_HAS_WAITERS(x)		((uintptr_t)(x) & MUTEX_WAITERS_BIT)
     73  1.44        ad #define	MUTEX_RECURSIVE(x)		((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
     74  1.44        ad #define	MUTEX_OWNER(x)			((uintptr_t)(x) & MUTEX_THREAD)
     75  1.44        ad 
     76  1.44        ad #if __GNUC_PREREQ__(3, 0)
     77  1.44        ad #define	NOINLINE		__attribute ((noinline))
     78  1.44        ad #else
     79  1.44        ad #define	NOINLINE		/* nothing */
     80  1.44        ad #endif
     81  1.44        ad 
     82  1.44        ad static void	pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
     83  1.44        ad static int	pthread__mutex_lock_slow(pthread_mutex_t *);
     84  1.44        ad static int	pthread__mutex_unlock_slow(pthread_mutex_t *);
     85  1.44        ad static void	pthread__mutex_pause(void);
     86   1.2   thorpej 
     87  1.39        ad int		_pthread_mutex_held_np(pthread_mutex_t *);
     88  1.39        ad pthread_t	_pthread_mutex_owner_np(pthread_mutex_t *);
     89  1.39        ad 
     90  1.39        ad __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
     91  1.39        ad __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
     92  1.39        ad 
     93   1.2   thorpej __strong_alias(__libc_mutex_init,pthread_mutex_init)
     94   1.2   thorpej __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
     95   1.2   thorpej __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
     96   1.2   thorpej __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
     97   1.2   thorpej __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
     98   1.4   thorpej 
     99   1.4   thorpej __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
    100   1.4   thorpej __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
    101   1.5   thorpej __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
    102   1.2   thorpej 
    103   1.2   thorpej int
    104  1.44        ad pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
    105   1.2   thorpej {
    106  1.44        ad 	intptr_t type;
    107   1.2   thorpej 
    108  1.56  christos 	if (__predict_false(__uselibcstub))
    109  1.56  christos 		return __libc_mutex_init_stub(ptm, attr);
    110  1.56  christos 
    111  1.44        ad 	if (attr == NULL)
    112  1.44        ad 		type = PTHREAD_MUTEX_NORMAL;
    113  1.44        ad 	else
    114  1.44        ad 		type = (intptr_t)attr->ptma_private;
    115   1.2   thorpej 
    116  1.44        ad 	switch (type) {
    117  1.44        ad 	case PTHREAD_MUTEX_ERRORCHECK:
    118  1.51      matt 		__cpu_simple_lock_set(&ptm->ptm_errorcheck);
    119  1.44        ad 		ptm->ptm_owner = NULL;
    120  1.44        ad 		break;
    121  1.44        ad 	case PTHREAD_MUTEX_RECURSIVE:
    122  1.51      matt 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
    123  1.44        ad 		ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
    124  1.44        ad 		break;
    125  1.44        ad 	default:
    126  1.51      matt 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
    127  1.44        ad 		ptm->ptm_owner = NULL;
    128  1.44        ad 		break;
    129   1.2   thorpej 	}
    130   1.2   thorpej 
    131  1.44        ad 	ptm->ptm_magic = _PT_MUTEX_MAGIC;
    132  1.44        ad 	ptm->ptm_waiters = NULL;
    133  1.45        ad 	ptm->ptm_recursed = 0;
    134   1.2   thorpej 
    135   1.2   thorpej 	return 0;
    136   1.2   thorpej }
    137   1.2   thorpej 
    138   1.2   thorpej int
    139  1.44        ad pthread_mutex_destroy(pthread_mutex_t *ptm)
    140   1.2   thorpej {
    141   1.2   thorpej 
    142  1.56  christos 	if (__predict_false(__uselibcstub))
    143  1.56  christos 		return __libc_mutex_destroy_stub(ptm);
    144  1.56  christos 
    145  1.14   nathanw 	pthread__error(EINVAL, "Invalid mutex",
    146  1.44        ad 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    147  1.14   nathanw 	pthread__error(EBUSY, "Destroying locked mutex",
    148  1.44        ad 	    MUTEX_OWNER(ptm->ptm_owner) == 0);
    149   1.2   thorpej 
    150  1.44        ad 	ptm->ptm_magic = _PT_MUTEX_DEAD;
    151   1.2   thorpej 	return 0;
    152   1.2   thorpej }
    153   1.2   thorpej 
    154   1.2   thorpej int
    155  1.44        ad pthread_mutex_lock(pthread_mutex_t *ptm)
    156   1.2   thorpej {
    157  1.27        ad 	pthread_t self;
    158  1.44        ad 	void *val;
    159   1.2   thorpej 
    160  1.56  christos 	if (__predict_false(__uselibcstub))
    161  1.56  christos 		return __libc_mutex_lock_stub(ptm);
    162  1.56  christos 
    163  1.27        ad 	self = pthread__self();
    164  1.44        ad 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    165  1.44        ad 	if (__predict_true(val == NULL)) {
    166  1.44        ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    167  1.44        ad 		membar_enter();
    168  1.44        ad #endif
    169  1.44        ad 		return 0;
    170   1.2   thorpej 	}
    171  1.44        ad 	return pthread__mutex_lock_slow(ptm);
    172  1.44        ad }
    173   1.2   thorpej 
    174  1.44        ad /* We want function call overhead. */
    175  1.44        ad NOINLINE static void
    176  1.44        ad pthread__mutex_pause(void)
    177  1.44        ad {
    178   1.2   thorpej 
    179  1.44        ad 	pthread__smt_pause();
    180   1.2   thorpej }
    181   1.2   thorpej 
    182  1.44        ad /*
    183  1.44        ad  * Spin while the holder is running.  'lwpctl' gives us the true
    184  1.44        ad  * status of the thread.  pt_blocking is set by libpthread in order
    185  1.44        ad  * to cut out system call and kernel spinlock overhead on remote CPUs
    186  1.44        ad  * (could represent many thousands of clock cycles).  pt_blocking also
    187  1.44        ad  * makes this thread yield if the target is calling sched_yield().
    188  1.44        ad  */
    189  1.44        ad NOINLINE static void *
    190  1.44        ad pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
    191  1.44        ad {
    192  1.44        ad 	pthread_t thread;
    193  1.44        ad 	unsigned int count, i;
    194  1.44        ad 
    195  1.44        ad 	for (count = 2;; owner = ptm->ptm_owner) {
    196  1.44        ad 		thread = (pthread_t)MUTEX_OWNER(owner);
    197  1.44        ad 		if (thread == NULL)
    198  1.44        ad 			break;
    199  1.44        ad 		if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
    200  1.44        ad 		    thread->pt_blocking)
    201  1.44        ad 			break;
    202  1.44        ad 		if (count < 128)
    203  1.44        ad 			count += count;
    204  1.44        ad 		for (i = count; i != 0; i--)
    205  1.44        ad 			pthread__mutex_pause();
    206  1.44        ad 	}
    207   1.2   thorpej 
    208  1.44        ad 	return owner;
    209  1.44        ad }
    210  1.44        ad 
    211  1.44        ad NOINLINE static int
    212  1.44        ad pthread__mutex_lock_slow(pthread_mutex_t *ptm)
    213   1.2   thorpej {
    214  1.44        ad 	void *waiters, *new, *owner, *next;
    215  1.44        ad 	pthread_t self;
    216  1.57  christos 	int serrno;
    217   1.2   thorpej 
    218  1.14   nathanw 	pthread__error(EINVAL, "Invalid mutex",
    219  1.44        ad 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    220  1.44        ad 
    221  1.44        ad 	owner = ptm->ptm_owner;
    222  1.44        ad 	self = pthread__self();
    223  1.13   nathanw 
    224  1.44        ad 	/* Recursive or errorcheck? */
    225  1.44        ad 	if (MUTEX_OWNER(owner) == (uintptr_t)self) {
    226  1.44        ad 		if (MUTEX_RECURSIVE(owner)) {
    227  1.45        ad 			if (ptm->ptm_recursed == INT_MAX)
    228  1.44        ad 				return EAGAIN;
    229  1.45        ad 			ptm->ptm_recursed++;
    230  1.44        ad 			return 0;
    231  1.29        ad 		}
    232  1.51      matt 		if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
    233  1.44        ad 			return EDEADLK;
    234  1.44        ad 	}
    235  1.29        ad 
    236  1.57  christos 	serrno = errno;
    237  1.44        ad 	for (;; owner = ptm->ptm_owner) {
    238  1.44        ad 		/* Spin while the owner is running. */
    239  1.44        ad 		owner = pthread__mutex_spin(ptm, owner);
    240  1.44        ad 
    241  1.44        ad 		/* If it has become free, try to acquire it again. */
    242  1.44        ad 		if (MUTEX_OWNER(owner) == 0) {
    243  1.47        ad 			do {
    244  1.44        ad 				new = (void *)
    245  1.44        ad 				    ((uintptr_t)self | (uintptr_t)owner);
    246  1.44        ad 				next = atomic_cas_ptr(&ptm->ptm_owner, owner,
    247  1.44        ad 				    new);
    248  1.44        ad 				if (next == owner) {
    249  1.57  christos 					errno = serrno;
    250  1.44        ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    251  1.44        ad 					membar_enter();
    252  1.44        ad #endif
    253  1.44        ad 					return 0;
    254  1.44        ad 				}
    255  1.47        ad 				owner = next;
    256  1.47        ad 			} while (MUTEX_OWNER(owner) == 0);
    257  1.44        ad 			/*
    258  1.44        ad 			 * We have lost the race to acquire the mutex.
    259  1.44        ad 			 * The new owner could be running on another
    260  1.44        ad 			 * CPU, in which case we should spin and avoid
    261  1.44        ad 			 * the overhead of blocking.
    262  1.44        ad 			 */
    263  1.47        ad 			continue;
    264  1.44        ad 		}
    265  1.21       chs 
    266   1.2   thorpej 		/*
    267  1.44        ad 		 * Nope, still held.  Add thread to the list of waiters.
    268  1.50        ad 		 * Issue a memory barrier to ensure mutexwait/mutexnext
    269  1.44        ad 		 * are visible before we enter the waiters list.
    270   1.2   thorpej 		 */
    271  1.50        ad 		self->pt_mutexwait = 1;
    272  1.44        ad 		for (waiters = ptm->ptm_waiters;; waiters = next) {
    273  1.50        ad 			self->pt_mutexnext = waiters;
    274  1.44        ad 			membar_producer();
    275  1.44        ad 			next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
    276  1.44        ad 			if (next == waiters)
    277  1.44        ad 			    	break;
    278  1.44        ad 		}
    279  1.21       chs 
    280  1.44        ad 		/*
    281  1.44        ad 		 * Set the waiters bit and block.
    282  1.44        ad 		 *
    283  1.44        ad 		 * Note that the mutex can become unlocked before we set
    284  1.44        ad 		 * the waiters bit.  If that happens it's not safe to sleep
    285  1.44        ad 		 * as we may never be awoken: we must remove the current
    286  1.44        ad 		 * thread from the waiters list and try again.
    287  1.44        ad 		 *
    288  1.44        ad 		 * Because we are doing this atomically, we can't remove
    289  1.44        ad 		 * one waiter: we must remove all waiters and awken them,
    290  1.44        ad 		 * then sleep in _lwp_park() until we have been awoken.
    291  1.44        ad 		 *
    292  1.44        ad 		 * Issue a memory barrier to ensure that we are reading
    293  1.50        ad 		 * the value of ptm_owner/pt_mutexwait after we have entered
    294  1.44        ad 		 * the waiters list (the CAS itself must be atomic).
    295  1.44        ad 		 */
    296  1.44        ad 		membar_consumer();
    297  1.44        ad 		for (owner = ptm->ptm_owner;; owner = next) {
    298  1.44        ad 			if (MUTEX_HAS_WAITERS(owner))
    299  1.44        ad 				break;
    300  1.44        ad 			if (MUTEX_OWNER(owner) == 0) {
    301  1.44        ad 				pthread__mutex_wakeup(self, ptm);
    302  1.44        ad 				break;
    303  1.44        ad 			}
    304  1.44        ad 			new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
    305  1.44        ad 			next = atomic_cas_ptr(&ptm->ptm_owner, owner, new);
    306  1.44        ad 			if (next == owner) {
    307  1.21       chs 				/*
    308  1.44        ad 				 * pthread_mutex_unlock() can do a
    309  1.44        ad 				 * non-interlocked CAS.  We cannot
    310  1.44        ad 				 * know if our attempt to set the
    311  1.44        ad 				 * waiters bit has succeeded while
    312  1.44        ad 				 * the holding thread is running.
    313  1.44        ad 				 * There are many assumptions; see
    314  1.44        ad 				 * sys/kern/kern_mutex.c for details.
    315  1.44        ad 				 * In short, we must spin if we see
    316  1.44        ad 				 * that the holder is running again.
    317  1.21       chs 				 */
    318  1.44        ad 				membar_sync();
    319  1.44        ad 				next = pthread__mutex_spin(ptm, owner);
    320  1.21       chs 			}
    321  1.29        ad 		}
    322  1.21       chs 
    323  1.29        ad 		/*
    324  1.44        ad 		 * We may have been awoken by the current thread above,
    325  1.44        ad 		 * or will be awoken by the current holder of the mutex.
    326  1.44        ad 		 * The key requirement is that we must not proceed until
    327  1.50        ad 		 * told that we are no longer waiting (via pt_mutexwait
    328  1.44        ad 		 * being set to zero).  Otherwise it is unsafe to re-enter
    329  1.44        ad 		 * the thread onto the waiters list.
    330  1.29        ad 		 */
    331  1.50        ad 		while (self->pt_mutexwait) {
    332  1.44        ad 			self->pt_blocking++;
    333  1.50        ad 			(void)_lwp_park(NULL, self->pt_unpark,
    334  1.50        ad 			    __UNVOLATILE(&ptm->ptm_waiters),
    335  1.50        ad 			    __UNVOLATILE(&ptm->ptm_waiters));
    336  1.50        ad 			self->pt_unpark = 0;
    337  1.44        ad 			self->pt_blocking--;
    338  1.44        ad 			membar_sync();
    339  1.44        ad 		}
    340   1.2   thorpej 	}
    341   1.2   thorpej }
    342   1.2   thorpej 
    343   1.2   thorpej int
    344  1.44        ad pthread_mutex_trylock(pthread_mutex_t *ptm)
    345   1.2   thorpej {
    346  1.27        ad 	pthread_t self;
    347  1.46        ad 	void *val, *new, *next;
    348   1.2   thorpej 
    349  1.56  christos 	if (__predict_false(__uselibcstub))
    350  1.56  christos 		return __libc_mutex_trylock_stub(ptm);
    351  1.56  christos 
    352  1.27        ad 	self = pthread__self();
    353  1.44        ad 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    354  1.44        ad 	if (__predict_true(val == NULL)) {
    355  1.44        ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    356  1.44        ad 		membar_enter();
    357  1.44        ad #endif
    358  1.44        ad 		return 0;
    359  1.44        ad 	}
    360  1.27        ad 
    361  1.46        ad 	if (MUTEX_RECURSIVE(val)) {
    362  1.46        ad 		if (MUTEX_OWNER(val) == 0) {
    363  1.46        ad 			new = (void *)((uintptr_t)self | (uintptr_t)val);
    364  1.46        ad 			next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
    365  1.46        ad 			if (__predict_true(next == val)) {
    366  1.46        ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    367  1.46        ad 				membar_enter();
    368  1.46        ad #endif
    369  1.46        ad 				return 0;
    370  1.46        ad 			}
    371  1.46        ad 		}
    372  1.46        ad 		if (MUTEX_OWNER(val) == (uintptr_t)self) {
    373  1.46        ad 			if (ptm->ptm_recursed == INT_MAX)
    374  1.46        ad 				return EAGAIN;
    375  1.46        ad 			ptm->ptm_recursed++;
    376  1.46        ad 			return 0;
    377  1.46        ad 		}
    378   1.2   thorpej 	}
    379   1.2   thorpej 
    380  1.44        ad 	return EBUSY;
    381   1.2   thorpej }
    382   1.2   thorpej 
    383   1.2   thorpej int
    384  1.44        ad pthread_mutex_unlock(pthread_mutex_t *ptm)
    385   1.2   thorpej {
    386  1.27        ad 	pthread_t self;
    387  1.44        ad 	void *value;
    388  1.44        ad 
    389  1.56  christos 	if (__predict_false(__uselibcstub))
    390  1.56  christos 		return __libc_mutex_unlock_stub(ptm);
    391  1.56  christos 
    392  1.44        ad 	/*
    393  1.44        ad 	 * Note this may be a non-interlocked CAS.  See lock_slow()
    394  1.44        ad 	 * above and sys/kern/kern_mutex.c for details.
    395  1.44        ad 	 */
    396  1.44        ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    397  1.44        ad 	membar_exit();
    398  1.44        ad #endif
    399  1.44        ad 	self = pthread__self();
    400  1.44        ad 	value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
    401  1.54      matt 	if (__predict_true(value == self)) {
    402  1.54      matt 		pthread__smt_wake();
    403  1.44        ad 		return 0;
    404  1.54      matt 	}
    405  1.44        ad 	return pthread__mutex_unlock_slow(ptm);
    406  1.44        ad }
    407  1.44        ad 
    408  1.44        ad NOINLINE static int
    409  1.44        ad pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
    410  1.44        ad {
    411  1.44        ad 	pthread_t self, owner, new;
    412  1.44        ad 	int weown, error, deferred;
    413  1.13   nathanw 
    414  1.14   nathanw 	pthread__error(EINVAL, "Invalid mutex",
    415  1.44        ad 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    416  1.44        ad 
    417  1.44        ad 	self = pthread__self();
    418  1.44        ad 	owner = ptm->ptm_owner;
    419  1.44        ad 	weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
    420  1.44        ad 	deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
    421  1.44        ad 	error = 0;
    422  1.44        ad 
    423  1.51      matt 	if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
    424  1.44        ad 		if (!weown) {
    425  1.44        ad 			error = EPERM;
    426  1.44        ad 			new = owner;
    427  1.44        ad 		} else {
    428  1.44        ad 			new = NULL;
    429  1.44        ad 		}
    430  1.44        ad 	} else if (MUTEX_RECURSIVE(owner)) {
    431  1.44        ad 		if (!weown) {
    432  1.44        ad 			error = EPERM;
    433  1.44        ad 			new = owner;
    434  1.45        ad 		} else if (ptm->ptm_recursed) {
    435  1.45        ad 			ptm->ptm_recursed--;
    436  1.44        ad 			new = owner;
    437  1.44        ad 		} else {
    438  1.44        ad 			new = (pthread_t)MUTEX_RECURSIVE_BIT;
    439  1.44        ad 		}
    440  1.44        ad 	} else {
    441  1.44        ad 		pthread__error(EPERM,
    442  1.44        ad 		    "Unlocking unlocked mutex", (owner != NULL));
    443  1.44        ad 		pthread__error(EPERM,
    444  1.44        ad 		    "Unlocking mutex owned by another thread", weown);
    445  1.44        ad 		new = NULL;
    446  1.44        ad 	}
    447   1.2   thorpej 
    448   1.2   thorpej 	/*
    449  1.44        ad 	 * Release the mutex.  If there appear to be waiters, then
    450  1.44        ad 	 * wake them up.
    451   1.2   thorpej 	 */
    452  1.44        ad 	if (new != owner) {
    453  1.44        ad 		owner = atomic_swap_ptr(&ptm->ptm_owner, new);
    454  1.44        ad 		if (MUTEX_HAS_WAITERS(owner) != 0) {
    455  1.44        ad 			pthread__mutex_wakeup(self, ptm);
    456   1.2   thorpej 			return 0;
    457   1.2   thorpej 		}
    458  1.44        ad 	}
    459  1.44        ad 
    460  1.44        ad 	/*
    461  1.44        ad 	 * There were no waiters, but we may have deferred waking
    462  1.44        ad 	 * other threads until mutex unlock - we must wake them now.
    463  1.44        ad 	 */
    464  1.44        ad 	if (!deferred)
    465  1.44        ad 		return error;
    466  1.44        ad 
    467  1.44        ad 	if (self->pt_nwaiters == 1) {
    468  1.44        ad 		/*
    469  1.44        ad 		 * If the calling thread is about to block, defer
    470  1.44        ad 		 * unparking the target until _lwp_park() is called.
    471  1.44        ad 		 */
    472  1.44        ad 		if (self->pt_willpark && self->pt_unpark == 0) {
    473  1.44        ad 			self->pt_unpark = self->pt_waiters[0];
    474  1.44        ad 		} else {
    475  1.44        ad 			(void)_lwp_unpark(self->pt_waiters[0],
    476  1.45        ad 			    __UNVOLATILE(&ptm->ptm_waiters));
    477  1.15   nathanw 		}
    478  1.44        ad 	} else {
    479  1.44        ad 		(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    480  1.45        ad 		    __UNVOLATILE(&ptm->ptm_waiters));
    481   1.2   thorpej 	}
    482  1.44        ad 	self->pt_nwaiters = 0;
    483   1.2   thorpej 
    484  1.44        ad 	return error;
    485  1.44        ad }
    486  1.44        ad 
    487  1.55      yamt /*
    488  1.55      yamt  * pthread__mutex_wakeup: unpark threads waiting for us
    489  1.55      yamt  *
    490  1.55      yamt  * unpark threads on the ptm->ptm_waiters list and self->pt_waiters.
    491  1.55      yamt  */
    492  1.55      yamt 
    493  1.44        ad static void
    494  1.44        ad pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
    495  1.44        ad {
    496  1.44        ad 	pthread_t thread, next;
    497  1.44        ad 	ssize_t n, rv;
    498  1.27        ad 
    499   1.8   nathanw 	/*
    500  1.44        ad 	 * Take ownership of the current set of waiters.  No
    501  1.44        ad 	 * need for a memory barrier following this, all loads
    502  1.44        ad 	 * are dependent upon 'thread'.
    503   1.8   nathanw 	 */
    504  1.44        ad 	thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
    505  1.54      matt 	pthread__smt_wake();
    506  1.44        ad 
    507  1.44        ad 	for (;;) {
    508  1.44        ad 		/*
    509  1.44        ad 		 * Pull waiters from the queue and add to our list.
    510  1.44        ad 		 * Use a memory barrier to ensure that we safely
    511  1.50        ad 		 * read the value of pt_mutexnext before 'thread'
    512  1.50        ad 		 * sees pt_mutexwait being cleared.
    513  1.44        ad 		 */
    514  1.44        ad 		for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
    515  1.44        ad 		    n < pthread__unpark_max && thread != NULL;
    516  1.44        ad 		    thread = next) {
    517  1.50        ad 		    	next = thread->pt_mutexnext;
    518  1.44        ad 		    	if (thread != self) {
    519  1.44        ad 				self->pt_waiters[n++] = thread->pt_lid;
    520  1.44        ad 				membar_sync();
    521  1.44        ad 			}
    522  1.50        ad 			thread->pt_mutexwait = 0;
    523  1.44        ad 			/* No longer safe to touch 'thread' */
    524  1.44        ad 		}
    525  1.44        ad 
    526  1.44        ad 		switch (n) {
    527  1.44        ad 		case 0:
    528  1.44        ad 			return;
    529  1.44        ad 		case 1:
    530  1.44        ad 			/*
    531  1.44        ad 			 * If the calling thread is about to block,
    532  1.44        ad 			 * defer unparking the target until _lwp_park()
    533  1.44        ad 			 * is called.
    534  1.44        ad 			 */
    535  1.44        ad 			if (self->pt_willpark && self->pt_unpark == 0) {
    536  1.44        ad 				self->pt_unpark = self->pt_waiters[0];
    537  1.44        ad 				return;
    538  1.44        ad 			}
    539  1.44        ad 			rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
    540  1.45        ad 			    __UNVOLATILE(&ptm->ptm_waiters));
    541  1.44        ad 			if (rv != 0 && errno != EALREADY && errno != EINTR &&
    542  1.44        ad 			    errno != ESRCH) {
    543  1.44        ad 				pthread__errorfunc(__FILE__, __LINE__,
    544  1.44        ad 				    __func__, "_lwp_unpark failed");
    545  1.44        ad 			}
    546  1.44        ad 			return;
    547  1.44        ad 		default:
    548  1.44        ad 			rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
    549  1.45        ad 			    __UNVOLATILE(&ptm->ptm_waiters));
    550  1.44        ad 			if (rv != 0 && errno != EINTR) {
    551  1.44        ad 				pthread__errorfunc(__FILE__, __LINE__,
    552  1.44        ad 				    __func__, "_lwp_unpark_all failed");
    553  1.44        ad 			}
    554  1.44        ad 			break;
    555  1.44        ad 		}
    556  1.44        ad 	}
    557   1.2   thorpej }
    558  1.55      yamt 
    559   1.2   thorpej int
    560   1.2   thorpej pthread_mutexattr_init(pthread_mutexattr_t *attr)
    561   1.2   thorpej {
    562  1.56  christos 	if (__predict_false(__uselibcstub))
    563  1.56  christos 		return __libc_mutexattr_init_stub(attr);
    564   1.2   thorpej 
    565   1.2   thorpej 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
    566  1.44        ad 	attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
    567   1.2   thorpej 	return 0;
    568   1.2   thorpej }
    569   1.2   thorpej 
    570   1.2   thorpej int
    571   1.2   thorpej pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
    572   1.2   thorpej {
    573  1.56  christos 	if (__predict_false(__uselibcstub))
    574  1.56  christos 		return __libc_mutexattr_destroy_stub(attr);
    575   1.2   thorpej 
    576  1.14   nathanw 	pthread__error(EINVAL, "Invalid mutex attribute",
    577  1.14   nathanw 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    578   1.2   thorpej 
    579   1.2   thorpej 	return 0;
    580   1.2   thorpej }
    581   1.2   thorpej 
    582   1.2   thorpej int
    583   1.2   thorpej pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
    584   1.2   thorpej {
    585  1.14   nathanw 	pthread__error(EINVAL, "Invalid mutex attribute",
    586  1.14   nathanw 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    587   1.2   thorpej 
    588  1.44        ad 	*typep = (int)(intptr_t)attr->ptma_private;
    589   1.2   thorpej 	return 0;
    590   1.2   thorpej }
    591   1.2   thorpej 
    592   1.2   thorpej int
    593   1.2   thorpej pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
    594   1.2   thorpej {
    595  1.56  christos 	if (__predict_false(__uselibcstub))
    596  1.56  christos 		return __libc_mutexattr_settype_stub(attr, type);
    597   1.2   thorpej 
    598  1.14   nathanw 	pthread__error(EINVAL, "Invalid mutex attribute",
    599  1.14   nathanw 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    600  1.13   nathanw 
    601   1.2   thorpej 	switch (type) {
    602   1.2   thorpej 	case PTHREAD_MUTEX_NORMAL:
    603   1.2   thorpej 	case PTHREAD_MUTEX_ERRORCHECK:
    604   1.2   thorpej 	case PTHREAD_MUTEX_RECURSIVE:
    605  1.44        ad 		attr->ptma_private = (void *)(intptr_t)type;
    606  1.44        ad 		return 0;
    607   1.2   thorpej 	default:
    608   1.2   thorpej 		return EINVAL;
    609   1.2   thorpej 	}
    610   1.2   thorpej }
    611   1.2   thorpej 
    612  1.55      yamt /*
    613  1.55      yamt  * pthread__mutex_deferwake: try to defer unparking threads in self->pt_waiters
    614  1.55      yamt  *
    615  1.55      yamt  * In order to avoid unnecessary contention on the interlocking mutex,
    616  1.55      yamt  * we defer waking up threads until we unlock the mutex.  The threads will
    617  1.55      yamt  * be woken up when the calling thread (self) releases the first mutex with
    618  1.55      yamt  * MUTEX_DEFERRED_BIT set.  It likely be the mutex 'ptm', but no problem
    619  1.55      yamt  * even if it isn't.
    620  1.55      yamt  */
    621  1.55      yamt 
    622  1.50        ad void
    623  1.50        ad pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
    624  1.33        ad {
    625  1.33        ad 
    626  1.50        ad 	if (__predict_false(ptm == NULL ||
    627  1.50        ad 	    MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
    628  1.50        ad 	    	(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    629  1.50        ad 	    	    __UNVOLATILE(&ptm->ptm_waiters));
    630  1.50        ad 	    	self->pt_nwaiters = 0;
    631  1.50        ad 	} else {
    632  1.50        ad 		atomic_or_ulong((volatile unsigned long *)
    633  1.50        ad 		    (uintptr_t)&ptm->ptm_owner,
    634  1.50        ad 		    (unsigned long)MUTEX_DEFERRED_BIT);
    635  1.50        ad 	}
    636  1.33        ad }
    637  1.33        ad 
    638  1.39        ad int
    639  1.44        ad _pthread_mutex_held_np(pthread_mutex_t *ptm)
    640  1.39        ad {
    641  1.39        ad 
    642  1.44        ad 	return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
    643  1.39        ad }
    644  1.39        ad 
    645  1.39        ad pthread_t
    646  1.44        ad _pthread_mutex_owner_np(pthread_mutex_t *ptm)
    647  1.39        ad {
    648  1.39        ad 
    649  1.44        ad 	return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
    650  1.39        ad }
    651