pthread_mutex.c revision 1.59 1 1.59 rmind /* $NetBSD: pthread_mutex.c,v 1.59 2014/02/03 15:51:01 rmind Exp $ */
2 1.2 thorpej
3 1.2 thorpej /*-
4 1.44 ad * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 thorpej * All rights reserved.
6 1.2 thorpej *
7 1.2 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.27 ad * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 1.2 thorpej *
10 1.2 thorpej * Redistribution and use in source and binary forms, with or without
11 1.2 thorpej * modification, are permitted provided that the following conditions
12 1.2 thorpej * are met:
13 1.2 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.2 thorpej * notice, this list of conditions and the following disclaimer.
15 1.2 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.2 thorpej * documentation and/or other materials provided with the distribution.
18 1.2 thorpej *
19 1.2 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.2 thorpej */
31 1.2 thorpej
32 1.49 ad /*
33 1.49 ad * To track threads waiting for mutexes to be released, we use lockless
34 1.49 ad * lists built on atomic operations and memory barriers.
35 1.49 ad *
36 1.49 ad * A simple spinlock would be faster and make the code easier to
37 1.49 ad * follow, but spinlocks are problematic in userspace. If a thread is
38 1.49 ad * preempted by the kernel while holding a spinlock, any other thread
39 1.49 ad * attempting to acquire that spinlock will needlessly busy wait.
40 1.49 ad *
41 1.49 ad * There is no good way to know that the holding thread is no longer
42 1.49 ad * running, nor to request a wake-up once it has begun running again.
43 1.49 ad * Of more concern, threads in the SCHED_FIFO class do not have a
44 1.49 ad * limited time quantum and so could spin forever, preventing the
45 1.49 ad * thread holding the spinlock from getting CPU time: it would never
46 1.49 ad * be released.
47 1.49 ad */
48 1.49 ad
49 1.2 thorpej #include <sys/cdefs.h>
50 1.59 rmind __RCSID("$NetBSD: pthread_mutex.c,v 1.59 2014/02/03 15:51:01 rmind Exp $");
51 1.40 ad
52 1.40 ad #include <sys/types.h>
53 1.44 ad #include <sys/lwpctl.h>
54 1.51 matt #include <sys/lock.h>
55 1.10 lukem
56 1.2 thorpej #include <errno.h>
57 1.2 thorpej #include <limits.h>
58 1.2 thorpej #include <stdlib.h>
59 1.56 christos #include <time.h>
60 1.6 scw #include <string.h>
61 1.44 ad #include <stdio.h>
62 1.2 thorpej
63 1.2 thorpej #include "pthread.h"
64 1.2 thorpej #include "pthread_int.h"
65 1.56 christos #include "reentrant.h"
66 1.2 thorpej
67 1.44 ad #define MUTEX_WAITERS_BIT ((uintptr_t)0x01)
68 1.44 ad #define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02)
69 1.44 ad #define MUTEX_DEFERRED_BIT ((uintptr_t)0x04)
70 1.44 ad #define MUTEX_THREAD ((uintptr_t)-16L)
71 1.44 ad
72 1.44 ad #define MUTEX_HAS_WAITERS(x) ((uintptr_t)(x) & MUTEX_WAITERS_BIT)
73 1.44 ad #define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
74 1.44 ad #define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD)
75 1.44 ad
76 1.44 ad #if __GNUC_PREREQ__(3, 0)
77 1.44 ad #define NOINLINE __attribute ((noinline))
78 1.44 ad #else
79 1.44 ad #define NOINLINE /* nothing */
80 1.44 ad #endif
81 1.44 ad
82 1.44 ad static void pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
83 1.44 ad static int pthread__mutex_lock_slow(pthread_mutex_t *);
84 1.44 ad static int pthread__mutex_unlock_slow(pthread_mutex_t *);
85 1.44 ad static void pthread__mutex_pause(void);
86 1.2 thorpej
87 1.39 ad int _pthread_mutex_held_np(pthread_mutex_t *);
88 1.39 ad pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
89 1.39 ad
90 1.39 ad __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
91 1.39 ad __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
92 1.39 ad
93 1.2 thorpej __strong_alias(__libc_mutex_init,pthread_mutex_init)
94 1.2 thorpej __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
95 1.2 thorpej __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
96 1.2 thorpej __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
97 1.2 thorpej __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
98 1.4 thorpej
99 1.4 thorpej __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
100 1.4 thorpej __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
101 1.5 thorpej __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
102 1.2 thorpej
103 1.2 thorpej int
104 1.44 ad pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
105 1.2 thorpej {
106 1.44 ad intptr_t type;
107 1.2 thorpej
108 1.56 christos if (__predict_false(__uselibcstub))
109 1.56 christos return __libc_mutex_init_stub(ptm, attr);
110 1.56 christos
111 1.44 ad if (attr == NULL)
112 1.44 ad type = PTHREAD_MUTEX_NORMAL;
113 1.44 ad else
114 1.44 ad type = (intptr_t)attr->ptma_private;
115 1.2 thorpej
116 1.44 ad switch (type) {
117 1.44 ad case PTHREAD_MUTEX_ERRORCHECK:
118 1.51 matt __cpu_simple_lock_set(&ptm->ptm_errorcheck);
119 1.44 ad ptm->ptm_owner = NULL;
120 1.44 ad break;
121 1.44 ad case PTHREAD_MUTEX_RECURSIVE:
122 1.51 matt __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
123 1.44 ad ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
124 1.44 ad break;
125 1.44 ad default:
126 1.51 matt __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
127 1.44 ad ptm->ptm_owner = NULL;
128 1.44 ad break;
129 1.2 thorpej }
130 1.2 thorpej
131 1.44 ad ptm->ptm_magic = _PT_MUTEX_MAGIC;
132 1.44 ad ptm->ptm_waiters = NULL;
133 1.45 ad ptm->ptm_recursed = 0;
134 1.2 thorpej
135 1.2 thorpej return 0;
136 1.2 thorpej }
137 1.2 thorpej
138 1.2 thorpej int
139 1.44 ad pthread_mutex_destroy(pthread_mutex_t *ptm)
140 1.2 thorpej {
141 1.2 thorpej
142 1.56 christos if (__predict_false(__uselibcstub))
143 1.56 christos return __libc_mutex_destroy_stub(ptm);
144 1.56 christos
145 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
146 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
147 1.14 nathanw pthread__error(EBUSY, "Destroying locked mutex",
148 1.44 ad MUTEX_OWNER(ptm->ptm_owner) == 0);
149 1.2 thorpej
150 1.44 ad ptm->ptm_magic = _PT_MUTEX_DEAD;
151 1.2 thorpej return 0;
152 1.2 thorpej }
153 1.2 thorpej
154 1.2 thorpej int
155 1.44 ad pthread_mutex_lock(pthread_mutex_t *ptm)
156 1.2 thorpej {
157 1.27 ad pthread_t self;
158 1.44 ad void *val;
159 1.2 thorpej
160 1.56 christos if (__predict_false(__uselibcstub))
161 1.56 christos return __libc_mutex_lock_stub(ptm);
162 1.56 christos
163 1.27 ad self = pthread__self();
164 1.44 ad val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
165 1.44 ad if (__predict_true(val == NULL)) {
166 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
167 1.44 ad membar_enter();
168 1.44 ad #endif
169 1.44 ad return 0;
170 1.2 thorpej }
171 1.44 ad return pthread__mutex_lock_slow(ptm);
172 1.44 ad }
173 1.2 thorpej
174 1.44 ad /* We want function call overhead. */
175 1.44 ad NOINLINE static void
176 1.44 ad pthread__mutex_pause(void)
177 1.44 ad {
178 1.2 thorpej
179 1.44 ad pthread__smt_pause();
180 1.2 thorpej }
181 1.2 thorpej
182 1.44 ad /*
183 1.44 ad * Spin while the holder is running. 'lwpctl' gives us the true
184 1.44 ad * status of the thread. pt_blocking is set by libpthread in order
185 1.44 ad * to cut out system call and kernel spinlock overhead on remote CPUs
186 1.44 ad * (could represent many thousands of clock cycles). pt_blocking also
187 1.44 ad * makes this thread yield if the target is calling sched_yield().
188 1.44 ad */
189 1.44 ad NOINLINE static void *
190 1.44 ad pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
191 1.44 ad {
192 1.44 ad pthread_t thread;
193 1.44 ad unsigned int count, i;
194 1.44 ad
195 1.44 ad for (count = 2;; owner = ptm->ptm_owner) {
196 1.44 ad thread = (pthread_t)MUTEX_OWNER(owner);
197 1.44 ad if (thread == NULL)
198 1.44 ad break;
199 1.44 ad if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
200 1.44 ad thread->pt_blocking)
201 1.44 ad break;
202 1.44 ad if (count < 128)
203 1.44 ad count += count;
204 1.44 ad for (i = count; i != 0; i--)
205 1.44 ad pthread__mutex_pause();
206 1.44 ad }
207 1.2 thorpej
208 1.44 ad return owner;
209 1.44 ad }
210 1.44 ad
211 1.59 rmind NOINLINE static void
212 1.59 rmind pthread__mutex_setwaiters(pthread_t self, pthread_mutex_t *ptm)
213 1.59 rmind {
214 1.59 rmind void *new, *owner;
215 1.59 rmind
216 1.59 rmind /*
217 1.59 rmind * Note that the mutex can become unlocked before we set
218 1.59 rmind * the waiters bit. If that happens it's not safe to sleep
219 1.59 rmind * as we may never be awoken: we must remove the current
220 1.59 rmind * thread from the waiters list and try again.
221 1.59 rmind *
222 1.59 rmind * Because we are doing this atomically, we can't remove
223 1.59 rmind * one waiter: we must remove all waiters and awken them,
224 1.59 rmind * then sleep in _lwp_park() until we have been awoken.
225 1.59 rmind *
226 1.59 rmind * Issue a memory barrier to ensure that we are reading
227 1.59 rmind * the value of ptm_owner/pt_mutexwait after we have entered
228 1.59 rmind * the waiters list (the CAS itself must be atomic).
229 1.59 rmind */
230 1.59 rmind again:
231 1.59 rmind membar_consumer();
232 1.59 rmind owner = ptm->ptm_owner;
233 1.59 rmind
234 1.59 rmind if (MUTEX_OWNER(owner) == 0) {
235 1.59 rmind pthread__mutex_wakeup(self, ptm);
236 1.59 rmind return;
237 1.59 rmind }
238 1.59 rmind if (!MUTEX_HAS_WAITERS(owner)) {
239 1.59 rmind new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
240 1.59 rmind if (atomic_cas_ptr(&ptm->ptm_owner, owner, new) != owner) {
241 1.59 rmind goto again;
242 1.59 rmind }
243 1.59 rmind }
244 1.59 rmind
245 1.59 rmind /*
246 1.59 rmind * Note that pthread_mutex_unlock() can do a non-interlocked CAS.
247 1.59 rmind * We cannot know if the presence of the waiters bit is stable
248 1.59 rmind * while the holding thread is running. There are many assumptions;
249 1.59 rmind * see sys/kern/kern_mutex.c for details. In short, we must spin if
250 1.59 rmind * we see that the holder is running again.
251 1.59 rmind */
252 1.59 rmind membar_sync();
253 1.59 rmind pthread__mutex_spin(ptm, owner);
254 1.59 rmind
255 1.59 rmind if (membar_consumer(), !MUTEX_HAS_WAITERS(ptm->ptm_owner)) {
256 1.59 rmind goto again;
257 1.59 rmind }
258 1.59 rmind }
259 1.59 rmind
260 1.44 ad NOINLINE static int
261 1.44 ad pthread__mutex_lock_slow(pthread_mutex_t *ptm)
262 1.2 thorpej {
263 1.44 ad void *waiters, *new, *owner, *next;
264 1.44 ad pthread_t self;
265 1.57 christos int serrno;
266 1.2 thorpej
267 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
268 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
269 1.44 ad
270 1.44 ad owner = ptm->ptm_owner;
271 1.44 ad self = pthread__self();
272 1.13 nathanw
273 1.44 ad /* Recursive or errorcheck? */
274 1.44 ad if (MUTEX_OWNER(owner) == (uintptr_t)self) {
275 1.44 ad if (MUTEX_RECURSIVE(owner)) {
276 1.45 ad if (ptm->ptm_recursed == INT_MAX)
277 1.44 ad return EAGAIN;
278 1.45 ad ptm->ptm_recursed++;
279 1.44 ad return 0;
280 1.29 ad }
281 1.51 matt if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
282 1.44 ad return EDEADLK;
283 1.44 ad }
284 1.29 ad
285 1.57 christos serrno = errno;
286 1.44 ad for (;; owner = ptm->ptm_owner) {
287 1.44 ad /* Spin while the owner is running. */
288 1.44 ad owner = pthread__mutex_spin(ptm, owner);
289 1.44 ad
290 1.44 ad /* If it has become free, try to acquire it again. */
291 1.44 ad if (MUTEX_OWNER(owner) == 0) {
292 1.47 ad do {
293 1.44 ad new = (void *)
294 1.44 ad ((uintptr_t)self | (uintptr_t)owner);
295 1.44 ad next = atomic_cas_ptr(&ptm->ptm_owner, owner,
296 1.44 ad new);
297 1.44 ad if (next == owner) {
298 1.57 christos errno = serrno;
299 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
300 1.44 ad membar_enter();
301 1.44 ad #endif
302 1.44 ad return 0;
303 1.44 ad }
304 1.47 ad owner = next;
305 1.47 ad } while (MUTEX_OWNER(owner) == 0);
306 1.44 ad /*
307 1.44 ad * We have lost the race to acquire the mutex.
308 1.44 ad * The new owner could be running on another
309 1.44 ad * CPU, in which case we should spin and avoid
310 1.44 ad * the overhead of blocking.
311 1.44 ad */
312 1.47 ad continue;
313 1.44 ad }
314 1.21 chs
315 1.2 thorpej /*
316 1.44 ad * Nope, still held. Add thread to the list of waiters.
317 1.50 ad * Issue a memory barrier to ensure mutexwait/mutexnext
318 1.44 ad * are visible before we enter the waiters list.
319 1.2 thorpej */
320 1.50 ad self->pt_mutexwait = 1;
321 1.44 ad for (waiters = ptm->ptm_waiters;; waiters = next) {
322 1.50 ad self->pt_mutexnext = waiters;
323 1.44 ad membar_producer();
324 1.44 ad next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
325 1.44 ad if (next == waiters)
326 1.44 ad break;
327 1.44 ad }
328 1.21 chs
329 1.59 rmind /* Set the waiters bit and block. */
330 1.59 rmind pthread__mutex_setwaiters(self, ptm);
331 1.21 chs
332 1.29 ad /*
333 1.44 ad * We may have been awoken by the current thread above,
334 1.44 ad * or will be awoken by the current holder of the mutex.
335 1.44 ad * The key requirement is that we must not proceed until
336 1.50 ad * told that we are no longer waiting (via pt_mutexwait
337 1.44 ad * being set to zero). Otherwise it is unsafe to re-enter
338 1.44 ad * the thread onto the waiters list.
339 1.29 ad */
340 1.50 ad while (self->pt_mutexwait) {
341 1.44 ad self->pt_blocking++;
342 1.58 christos (void)_lwp_park(CLOCK_REALTIME, TIMER_ABSTIME, NULL,
343 1.58 christos self->pt_unpark, __UNVOLATILE(&ptm->ptm_waiters),
344 1.50 ad __UNVOLATILE(&ptm->ptm_waiters));
345 1.50 ad self->pt_unpark = 0;
346 1.44 ad self->pt_blocking--;
347 1.44 ad membar_sync();
348 1.44 ad }
349 1.2 thorpej }
350 1.2 thorpej }
351 1.2 thorpej
352 1.2 thorpej int
353 1.44 ad pthread_mutex_trylock(pthread_mutex_t *ptm)
354 1.2 thorpej {
355 1.27 ad pthread_t self;
356 1.46 ad void *val, *new, *next;
357 1.2 thorpej
358 1.56 christos if (__predict_false(__uselibcstub))
359 1.56 christos return __libc_mutex_trylock_stub(ptm);
360 1.56 christos
361 1.27 ad self = pthread__self();
362 1.44 ad val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
363 1.44 ad if (__predict_true(val == NULL)) {
364 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
365 1.44 ad membar_enter();
366 1.44 ad #endif
367 1.44 ad return 0;
368 1.44 ad }
369 1.27 ad
370 1.46 ad if (MUTEX_RECURSIVE(val)) {
371 1.46 ad if (MUTEX_OWNER(val) == 0) {
372 1.46 ad new = (void *)((uintptr_t)self | (uintptr_t)val);
373 1.46 ad next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
374 1.46 ad if (__predict_true(next == val)) {
375 1.46 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
376 1.46 ad membar_enter();
377 1.46 ad #endif
378 1.46 ad return 0;
379 1.46 ad }
380 1.46 ad }
381 1.46 ad if (MUTEX_OWNER(val) == (uintptr_t)self) {
382 1.46 ad if (ptm->ptm_recursed == INT_MAX)
383 1.46 ad return EAGAIN;
384 1.46 ad ptm->ptm_recursed++;
385 1.46 ad return 0;
386 1.46 ad }
387 1.2 thorpej }
388 1.2 thorpej
389 1.44 ad return EBUSY;
390 1.2 thorpej }
391 1.2 thorpej
392 1.2 thorpej int
393 1.44 ad pthread_mutex_unlock(pthread_mutex_t *ptm)
394 1.2 thorpej {
395 1.27 ad pthread_t self;
396 1.44 ad void *value;
397 1.44 ad
398 1.56 christos if (__predict_false(__uselibcstub))
399 1.56 christos return __libc_mutex_unlock_stub(ptm);
400 1.56 christos
401 1.44 ad /*
402 1.44 ad * Note this may be a non-interlocked CAS. See lock_slow()
403 1.44 ad * above and sys/kern/kern_mutex.c for details.
404 1.44 ad */
405 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
406 1.44 ad membar_exit();
407 1.44 ad #endif
408 1.44 ad self = pthread__self();
409 1.44 ad value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
410 1.54 matt if (__predict_true(value == self)) {
411 1.54 matt pthread__smt_wake();
412 1.44 ad return 0;
413 1.54 matt }
414 1.44 ad return pthread__mutex_unlock_slow(ptm);
415 1.44 ad }
416 1.44 ad
417 1.44 ad NOINLINE static int
418 1.44 ad pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
419 1.44 ad {
420 1.44 ad pthread_t self, owner, new;
421 1.44 ad int weown, error, deferred;
422 1.13 nathanw
423 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
424 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
425 1.44 ad
426 1.44 ad self = pthread__self();
427 1.44 ad owner = ptm->ptm_owner;
428 1.44 ad weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
429 1.44 ad deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
430 1.44 ad error = 0;
431 1.44 ad
432 1.51 matt if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
433 1.44 ad if (!weown) {
434 1.44 ad error = EPERM;
435 1.44 ad new = owner;
436 1.44 ad } else {
437 1.44 ad new = NULL;
438 1.44 ad }
439 1.44 ad } else if (MUTEX_RECURSIVE(owner)) {
440 1.44 ad if (!weown) {
441 1.44 ad error = EPERM;
442 1.44 ad new = owner;
443 1.45 ad } else if (ptm->ptm_recursed) {
444 1.45 ad ptm->ptm_recursed--;
445 1.44 ad new = owner;
446 1.44 ad } else {
447 1.44 ad new = (pthread_t)MUTEX_RECURSIVE_BIT;
448 1.44 ad }
449 1.44 ad } else {
450 1.44 ad pthread__error(EPERM,
451 1.44 ad "Unlocking unlocked mutex", (owner != NULL));
452 1.44 ad pthread__error(EPERM,
453 1.44 ad "Unlocking mutex owned by another thread", weown);
454 1.44 ad new = NULL;
455 1.44 ad }
456 1.2 thorpej
457 1.2 thorpej /*
458 1.44 ad * Release the mutex. If there appear to be waiters, then
459 1.44 ad * wake them up.
460 1.2 thorpej */
461 1.44 ad if (new != owner) {
462 1.44 ad owner = atomic_swap_ptr(&ptm->ptm_owner, new);
463 1.44 ad if (MUTEX_HAS_WAITERS(owner) != 0) {
464 1.44 ad pthread__mutex_wakeup(self, ptm);
465 1.2 thorpej return 0;
466 1.2 thorpej }
467 1.44 ad }
468 1.44 ad
469 1.44 ad /*
470 1.44 ad * There were no waiters, but we may have deferred waking
471 1.44 ad * other threads until mutex unlock - we must wake them now.
472 1.44 ad */
473 1.44 ad if (!deferred)
474 1.44 ad return error;
475 1.44 ad
476 1.44 ad if (self->pt_nwaiters == 1) {
477 1.44 ad /*
478 1.44 ad * If the calling thread is about to block, defer
479 1.44 ad * unparking the target until _lwp_park() is called.
480 1.44 ad */
481 1.44 ad if (self->pt_willpark && self->pt_unpark == 0) {
482 1.44 ad self->pt_unpark = self->pt_waiters[0];
483 1.44 ad } else {
484 1.44 ad (void)_lwp_unpark(self->pt_waiters[0],
485 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
486 1.15 nathanw }
487 1.44 ad } else {
488 1.44 ad (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
489 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
490 1.2 thorpej }
491 1.44 ad self->pt_nwaiters = 0;
492 1.2 thorpej
493 1.44 ad return error;
494 1.44 ad }
495 1.44 ad
496 1.55 yamt /*
497 1.55 yamt * pthread__mutex_wakeup: unpark threads waiting for us
498 1.55 yamt *
499 1.55 yamt * unpark threads on the ptm->ptm_waiters list and self->pt_waiters.
500 1.55 yamt */
501 1.55 yamt
502 1.44 ad static void
503 1.44 ad pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
504 1.44 ad {
505 1.44 ad pthread_t thread, next;
506 1.44 ad ssize_t n, rv;
507 1.27 ad
508 1.8 nathanw /*
509 1.44 ad * Take ownership of the current set of waiters. No
510 1.44 ad * need for a memory barrier following this, all loads
511 1.44 ad * are dependent upon 'thread'.
512 1.8 nathanw */
513 1.44 ad thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
514 1.54 matt pthread__smt_wake();
515 1.44 ad
516 1.44 ad for (;;) {
517 1.44 ad /*
518 1.44 ad * Pull waiters from the queue and add to our list.
519 1.44 ad * Use a memory barrier to ensure that we safely
520 1.50 ad * read the value of pt_mutexnext before 'thread'
521 1.50 ad * sees pt_mutexwait being cleared.
522 1.44 ad */
523 1.44 ad for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
524 1.44 ad n < pthread__unpark_max && thread != NULL;
525 1.44 ad thread = next) {
526 1.50 ad next = thread->pt_mutexnext;
527 1.44 ad if (thread != self) {
528 1.44 ad self->pt_waiters[n++] = thread->pt_lid;
529 1.44 ad membar_sync();
530 1.44 ad }
531 1.50 ad thread->pt_mutexwait = 0;
532 1.44 ad /* No longer safe to touch 'thread' */
533 1.44 ad }
534 1.44 ad
535 1.44 ad switch (n) {
536 1.44 ad case 0:
537 1.44 ad return;
538 1.44 ad case 1:
539 1.44 ad /*
540 1.44 ad * If the calling thread is about to block,
541 1.44 ad * defer unparking the target until _lwp_park()
542 1.44 ad * is called.
543 1.44 ad */
544 1.44 ad if (self->pt_willpark && self->pt_unpark == 0) {
545 1.44 ad self->pt_unpark = self->pt_waiters[0];
546 1.44 ad return;
547 1.44 ad }
548 1.44 ad rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
549 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
550 1.44 ad if (rv != 0 && errno != EALREADY && errno != EINTR &&
551 1.44 ad errno != ESRCH) {
552 1.44 ad pthread__errorfunc(__FILE__, __LINE__,
553 1.44 ad __func__, "_lwp_unpark failed");
554 1.44 ad }
555 1.44 ad return;
556 1.44 ad default:
557 1.44 ad rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
558 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
559 1.44 ad if (rv != 0 && errno != EINTR) {
560 1.44 ad pthread__errorfunc(__FILE__, __LINE__,
561 1.44 ad __func__, "_lwp_unpark_all failed");
562 1.44 ad }
563 1.44 ad break;
564 1.44 ad }
565 1.44 ad }
566 1.2 thorpej }
567 1.55 yamt
568 1.2 thorpej int
569 1.2 thorpej pthread_mutexattr_init(pthread_mutexattr_t *attr)
570 1.2 thorpej {
571 1.56 christos if (__predict_false(__uselibcstub))
572 1.56 christos return __libc_mutexattr_init_stub(attr);
573 1.2 thorpej
574 1.2 thorpej attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
575 1.44 ad attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
576 1.2 thorpej return 0;
577 1.2 thorpej }
578 1.2 thorpej
579 1.2 thorpej int
580 1.2 thorpej pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
581 1.2 thorpej {
582 1.56 christos if (__predict_false(__uselibcstub))
583 1.56 christos return __libc_mutexattr_destroy_stub(attr);
584 1.2 thorpej
585 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
586 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
587 1.2 thorpej
588 1.2 thorpej return 0;
589 1.2 thorpej }
590 1.2 thorpej
591 1.2 thorpej int
592 1.2 thorpej pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
593 1.2 thorpej {
594 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
595 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
596 1.2 thorpej
597 1.44 ad *typep = (int)(intptr_t)attr->ptma_private;
598 1.2 thorpej return 0;
599 1.2 thorpej }
600 1.2 thorpej
601 1.2 thorpej int
602 1.2 thorpej pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
603 1.2 thorpej {
604 1.56 christos if (__predict_false(__uselibcstub))
605 1.56 christos return __libc_mutexattr_settype_stub(attr, type);
606 1.2 thorpej
607 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
608 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
609 1.13 nathanw
610 1.2 thorpej switch (type) {
611 1.2 thorpej case PTHREAD_MUTEX_NORMAL:
612 1.2 thorpej case PTHREAD_MUTEX_ERRORCHECK:
613 1.2 thorpej case PTHREAD_MUTEX_RECURSIVE:
614 1.44 ad attr->ptma_private = (void *)(intptr_t)type;
615 1.44 ad return 0;
616 1.2 thorpej default:
617 1.2 thorpej return EINVAL;
618 1.2 thorpej }
619 1.2 thorpej }
620 1.2 thorpej
621 1.55 yamt /*
622 1.55 yamt * pthread__mutex_deferwake: try to defer unparking threads in self->pt_waiters
623 1.55 yamt *
624 1.55 yamt * In order to avoid unnecessary contention on the interlocking mutex,
625 1.55 yamt * we defer waking up threads until we unlock the mutex. The threads will
626 1.55 yamt * be woken up when the calling thread (self) releases the first mutex with
627 1.55 yamt * MUTEX_DEFERRED_BIT set. It likely be the mutex 'ptm', but no problem
628 1.55 yamt * even if it isn't.
629 1.55 yamt */
630 1.55 yamt
631 1.50 ad void
632 1.50 ad pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
633 1.33 ad {
634 1.33 ad
635 1.50 ad if (__predict_false(ptm == NULL ||
636 1.50 ad MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
637 1.50 ad (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
638 1.50 ad __UNVOLATILE(&ptm->ptm_waiters));
639 1.50 ad self->pt_nwaiters = 0;
640 1.50 ad } else {
641 1.50 ad atomic_or_ulong((volatile unsigned long *)
642 1.50 ad (uintptr_t)&ptm->ptm_owner,
643 1.50 ad (unsigned long)MUTEX_DEFERRED_BIT);
644 1.50 ad }
645 1.33 ad }
646 1.33 ad
647 1.39 ad int
648 1.44 ad _pthread_mutex_held_np(pthread_mutex_t *ptm)
649 1.39 ad {
650 1.39 ad
651 1.44 ad return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
652 1.39 ad }
653 1.39 ad
654 1.39 ad pthread_t
655 1.44 ad _pthread_mutex_owner_np(pthread_mutex_t *ptm)
656 1.39 ad {
657 1.39 ad
658 1.44 ad return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
659 1.39 ad }
660