Home | History | Annotate | Line # | Download | only in libpthread
pthread_mutex.c revision 1.60.2.2
      1  1.60.2.2  pgoyette /*	$NetBSD: pthread_mutex.c,v 1.60.2.2 2016/11/04 14:48:54 pgoyette Exp $	*/
      2       1.2   thorpej 
      3       1.2   thorpej /*-
      4      1.44        ad  * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5       1.2   thorpej  * All rights reserved.
      6       1.2   thorpej  *
      7       1.2   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8      1.27        ad  * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
      9       1.2   thorpej  *
     10       1.2   thorpej  * Redistribution and use in source and binary forms, with or without
     11       1.2   thorpej  * modification, are permitted provided that the following conditions
     12       1.2   thorpej  * are met:
     13       1.2   thorpej  * 1. Redistributions of source code must retain the above copyright
     14       1.2   thorpej  *    notice, this list of conditions and the following disclaimer.
     15       1.2   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.2   thorpej  *    notice, this list of conditions and the following disclaimer in the
     17       1.2   thorpej  *    documentation and/or other materials provided with the distribution.
     18       1.2   thorpej  *
     19       1.2   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.2   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.2   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.2   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.2   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.2   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.2   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.2   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.2   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.2   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.2   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     30       1.2   thorpej  */
     31       1.2   thorpej 
     32      1.49        ad /*
     33      1.49        ad  * To track threads waiting for mutexes to be released, we use lockless
     34      1.49        ad  * lists built on atomic operations and memory barriers.
     35      1.49        ad  *
     36      1.49        ad  * A simple spinlock would be faster and make the code easier to
     37      1.49        ad  * follow, but spinlocks are problematic in userspace.  If a thread is
     38      1.49        ad  * preempted by the kernel while holding a spinlock, any other thread
     39      1.49        ad  * attempting to acquire that spinlock will needlessly busy wait.
     40      1.49        ad  *
     41      1.49        ad  * There is no good way to know that the holding thread is no longer
     42      1.49        ad  * running, nor to request a wake-up once it has begun running again.
     43      1.49        ad  * Of more concern, threads in the SCHED_FIFO class do not have a
     44      1.49        ad  * limited time quantum and so could spin forever, preventing the
     45      1.49        ad  * thread holding the spinlock from getting CPU time: it would never
     46      1.49        ad  * be released.
     47      1.49        ad  */
     48      1.49        ad 
     49       1.2   thorpej #include <sys/cdefs.h>
     50  1.60.2.2  pgoyette __RCSID("$NetBSD: pthread_mutex.c,v 1.60.2.2 2016/11/04 14:48:54 pgoyette Exp $");
     51      1.40        ad 
     52      1.40        ad #include <sys/types.h>
     53      1.44        ad #include <sys/lwpctl.h>
     54      1.60  christos #include <sys/sched.h>
     55      1.51      matt #include <sys/lock.h>
     56      1.10     lukem 
     57       1.2   thorpej #include <errno.h>
     58       1.2   thorpej #include <limits.h>
     59       1.2   thorpej #include <stdlib.h>
     60      1.56  christos #include <time.h>
     61       1.6       scw #include <string.h>
     62      1.44        ad #include <stdio.h>
     63       1.2   thorpej 
     64       1.2   thorpej #include "pthread.h"
     65       1.2   thorpej #include "pthread_int.h"
     66      1.56  christos #include "reentrant.h"
     67       1.2   thorpej 
     68      1.44        ad #define	MUTEX_WAITERS_BIT		((uintptr_t)0x01)
     69      1.44        ad #define	MUTEX_RECURSIVE_BIT		((uintptr_t)0x02)
     70      1.44        ad #define	MUTEX_DEFERRED_BIT		((uintptr_t)0x04)
     71      1.60  christos #define	MUTEX_PROTECT_BIT		((uintptr_t)0x08)
     72      1.60  christos #define	MUTEX_THREAD			((uintptr_t)~0x0f)
     73      1.44        ad 
     74      1.44        ad #define	MUTEX_HAS_WAITERS(x)		((uintptr_t)(x) & MUTEX_WAITERS_BIT)
     75      1.44        ad #define	MUTEX_RECURSIVE(x)		((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
     76      1.60  christos #define	MUTEX_PROTECT(x)		((uintptr_t)(x) & MUTEX_PROTECT_BIT)
     77      1.44        ad #define	MUTEX_OWNER(x)			((uintptr_t)(x) & MUTEX_THREAD)
     78      1.44        ad 
     79      1.60  christos #define	MUTEX_GET_TYPE(x)		\
     80      1.60  christos     ((int)(((uintptr_t)(x) & 0x000000ff) >> 0))
     81      1.60  christos #define	MUTEX_SET_TYPE(x, t) 		\
     82      1.60  christos     (x) = (void *)(((uintptr_t)(x) & ~0x000000ff) | ((t) << 0))
     83      1.60  christos #define	MUTEX_GET_PROTOCOL(x)		\
     84      1.60  christos     ((int)(((uintptr_t)(x) & 0x0000ff00) >> 8))
     85      1.60  christos #define	MUTEX_SET_PROTOCOL(x, p)	\
     86      1.60  christos     (x) = (void *)(((uintptr_t)(x) & ~0x0000ff00) | ((p) << 8))
     87      1.60  christos #define	MUTEX_GET_CEILING(x)		\
     88      1.60  christos     ((int)(((uintptr_t)(x) & 0x00ff0000) >> 16))
     89      1.60  christos #define	MUTEX_SET_CEILING(x, c)	\
     90      1.60  christos     (x) = (void *)(((uintptr_t)(x) & ~0x00ff0000) | ((c) << 16))
     91      1.60  christos 
     92      1.44        ad #if __GNUC_PREREQ__(3, 0)
     93      1.44        ad #define	NOINLINE		__attribute ((noinline))
     94      1.44        ad #else
     95      1.44        ad #define	NOINLINE		/* nothing */
     96      1.44        ad #endif
     97      1.44        ad 
     98      1.44        ad static void	pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
     99      1.60  christos static int	pthread__mutex_lock_slow(pthread_mutex_t *,
    100      1.60  christos     const struct timespec *);
    101      1.44        ad static int	pthread__mutex_unlock_slow(pthread_mutex_t *);
    102      1.44        ad static void	pthread__mutex_pause(void);
    103       1.2   thorpej 
    104      1.39        ad int		_pthread_mutex_held_np(pthread_mutex_t *);
    105      1.39        ad pthread_t	_pthread_mutex_owner_np(pthread_mutex_t *);
    106      1.39        ad 
    107      1.39        ad __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
    108      1.39        ad __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
    109      1.39        ad 
    110       1.2   thorpej __strong_alias(__libc_mutex_init,pthread_mutex_init)
    111       1.2   thorpej __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
    112       1.2   thorpej __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
    113       1.2   thorpej __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
    114       1.2   thorpej __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
    115       1.4   thorpej 
    116       1.4   thorpej __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
    117       1.4   thorpej __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
    118       1.5   thorpej __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
    119       1.2   thorpej 
    120       1.2   thorpej int
    121      1.44        ad pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
    122       1.2   thorpej {
    123      1.60  christos 	uintptr_t type, proto, val, ceil;
    124       1.2   thorpej 
    125      1.56  christos 	if (__predict_false(__uselibcstub))
    126      1.56  christos 		return __libc_mutex_init_stub(ptm, attr);
    127      1.56  christos 
    128      1.60  christos 	if (attr == NULL) {
    129      1.44        ad 		type = PTHREAD_MUTEX_NORMAL;
    130      1.60  christos 		proto = PTHREAD_PRIO_NONE;
    131      1.60  christos 		ceil = 0;
    132      1.60  christos 	} else {
    133      1.60  christos 		val = (uintptr_t)attr->ptma_private;
    134       1.2   thorpej 
    135      1.60  christos 		type = MUTEX_GET_TYPE(val);
    136      1.60  christos 		proto = MUTEX_GET_PROTOCOL(val);
    137      1.60  christos 		ceil = MUTEX_GET_CEILING(val);
    138      1.60  christos 	}
    139      1.44        ad 	switch (type) {
    140      1.44        ad 	case PTHREAD_MUTEX_ERRORCHECK:
    141      1.51      matt 		__cpu_simple_lock_set(&ptm->ptm_errorcheck);
    142      1.44        ad 		ptm->ptm_owner = NULL;
    143      1.44        ad 		break;
    144      1.44        ad 	case PTHREAD_MUTEX_RECURSIVE:
    145      1.51      matt 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
    146      1.44        ad 		ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
    147      1.44        ad 		break;
    148      1.44        ad 	default:
    149      1.51      matt 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
    150      1.44        ad 		ptm->ptm_owner = NULL;
    151      1.44        ad 		break;
    152       1.2   thorpej 	}
    153      1.60  christos 	switch (proto) {
    154      1.60  christos 	case PTHREAD_PRIO_PROTECT:
    155      1.60  christos 		val = (uintptr_t)ptm->ptm_owner;
    156      1.60  christos 		val |= MUTEX_PROTECT_BIT;
    157      1.60  christos 		ptm->ptm_owner = (void *)val;
    158      1.60  christos 		break;
    159       1.2   thorpej 
    160      1.60  christos 	}
    161      1.44        ad 	ptm->ptm_magic = _PT_MUTEX_MAGIC;
    162      1.44        ad 	ptm->ptm_waiters = NULL;
    163      1.45        ad 	ptm->ptm_recursed = 0;
    164      1.60  christos 	ptm->ptm_ceiling = (unsigned char)ceil;
    165       1.2   thorpej 
    166       1.2   thorpej 	return 0;
    167       1.2   thorpej }
    168       1.2   thorpej 
    169       1.2   thorpej int
    170      1.44        ad pthread_mutex_destroy(pthread_mutex_t *ptm)
    171       1.2   thorpej {
    172       1.2   thorpej 
    173      1.56  christos 	if (__predict_false(__uselibcstub))
    174      1.56  christos 		return __libc_mutex_destroy_stub(ptm);
    175      1.56  christos 
    176      1.14   nathanw 	pthread__error(EINVAL, "Invalid mutex",
    177      1.44        ad 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    178      1.14   nathanw 	pthread__error(EBUSY, "Destroying locked mutex",
    179      1.44        ad 	    MUTEX_OWNER(ptm->ptm_owner) == 0);
    180       1.2   thorpej 
    181      1.44        ad 	ptm->ptm_magic = _PT_MUTEX_DEAD;
    182       1.2   thorpej 	return 0;
    183       1.2   thorpej }
    184       1.2   thorpej 
    185       1.2   thorpej int
    186      1.44        ad pthread_mutex_lock(pthread_mutex_t *ptm)
    187       1.2   thorpej {
    188      1.27        ad 	pthread_t self;
    189      1.44        ad 	void *val;
    190       1.2   thorpej 
    191      1.56  christos 	if (__predict_false(__uselibcstub))
    192      1.56  christos 		return __libc_mutex_lock_stub(ptm);
    193      1.56  christos 
    194      1.27        ad 	self = pthread__self();
    195      1.44        ad 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    196      1.44        ad 	if (__predict_true(val == NULL)) {
    197      1.44        ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    198      1.44        ad 		membar_enter();
    199      1.44        ad #endif
    200      1.44        ad 		return 0;
    201       1.2   thorpej 	}
    202      1.60  christos 	return pthread__mutex_lock_slow(ptm, NULL);
    203      1.60  christos }
    204      1.60  christos 
    205      1.60  christos int
    206      1.60  christos pthread_mutex_timedlock(pthread_mutex_t* ptm, const struct timespec *ts)
    207      1.60  christos {
    208      1.60  christos 	pthread_t self;
    209      1.60  christos 	void *val;
    210      1.60  christos 
    211      1.60  christos 	self = pthread__self();
    212      1.60  christos 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    213      1.60  christos 	if (__predict_true(val == NULL)) {
    214      1.60  christos #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    215      1.60  christos 		membar_enter();
    216      1.60  christos #endif
    217      1.60  christos 		return 0;
    218      1.60  christos 	}
    219      1.60  christos 	return pthread__mutex_lock_slow(ptm, ts);
    220      1.44        ad }
    221       1.2   thorpej 
    222      1.44        ad /* We want function call overhead. */
    223      1.44        ad NOINLINE static void
    224      1.44        ad pthread__mutex_pause(void)
    225      1.44        ad {
    226       1.2   thorpej 
    227      1.44        ad 	pthread__smt_pause();
    228       1.2   thorpej }
    229       1.2   thorpej 
    230      1.44        ad /*
    231      1.44        ad  * Spin while the holder is running.  'lwpctl' gives us the true
    232      1.44        ad  * status of the thread.  pt_blocking is set by libpthread in order
    233      1.44        ad  * to cut out system call and kernel spinlock overhead on remote CPUs
    234      1.44        ad  * (could represent many thousands of clock cycles).  pt_blocking also
    235      1.44        ad  * makes this thread yield if the target is calling sched_yield().
    236      1.44        ad  */
    237      1.44        ad NOINLINE static void *
    238      1.44        ad pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
    239      1.44        ad {
    240      1.44        ad 	pthread_t thread;
    241      1.44        ad 	unsigned int count, i;
    242      1.44        ad 
    243      1.44        ad 	for (count = 2;; owner = ptm->ptm_owner) {
    244      1.44        ad 		thread = (pthread_t)MUTEX_OWNER(owner);
    245      1.44        ad 		if (thread == NULL)
    246      1.44        ad 			break;
    247      1.44        ad 		if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
    248      1.44        ad 		    thread->pt_blocking)
    249      1.44        ad 			break;
    250      1.44        ad 		if (count < 128)
    251      1.44        ad 			count += count;
    252      1.44        ad 		for (i = count; i != 0; i--)
    253      1.44        ad 			pthread__mutex_pause();
    254      1.44        ad 	}
    255       1.2   thorpej 
    256      1.44        ad 	return owner;
    257      1.44        ad }
    258      1.44        ad 
    259      1.59     rmind NOINLINE static void
    260      1.59     rmind pthread__mutex_setwaiters(pthread_t self, pthread_mutex_t *ptm)
    261      1.59     rmind {
    262      1.59     rmind 	void *new, *owner;
    263      1.59     rmind 
    264      1.59     rmind 	/*
    265      1.59     rmind 	 * Note that the mutex can become unlocked before we set
    266      1.59     rmind 	 * the waiters bit.  If that happens it's not safe to sleep
    267      1.59     rmind 	 * as we may never be awoken: we must remove the current
    268      1.59     rmind 	 * thread from the waiters list and try again.
    269      1.59     rmind 	 *
    270      1.59     rmind 	 * Because we are doing this atomically, we can't remove
    271      1.59     rmind 	 * one waiter: we must remove all waiters and awken them,
    272      1.59     rmind 	 * then sleep in _lwp_park() until we have been awoken.
    273      1.59     rmind 	 *
    274      1.59     rmind 	 * Issue a memory barrier to ensure that we are reading
    275      1.59     rmind 	 * the value of ptm_owner/pt_mutexwait after we have entered
    276      1.59     rmind 	 * the waiters list (the CAS itself must be atomic).
    277      1.59     rmind 	 */
    278      1.59     rmind again:
    279      1.59     rmind 	membar_consumer();
    280      1.59     rmind 	owner = ptm->ptm_owner;
    281      1.59     rmind 
    282      1.59     rmind 	if (MUTEX_OWNER(owner) == 0) {
    283      1.59     rmind 		pthread__mutex_wakeup(self, ptm);
    284      1.59     rmind 		return;
    285      1.59     rmind 	}
    286      1.59     rmind 	if (!MUTEX_HAS_WAITERS(owner)) {
    287      1.59     rmind 		new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
    288      1.59     rmind 		if (atomic_cas_ptr(&ptm->ptm_owner, owner, new) != owner) {
    289      1.59     rmind 			goto again;
    290      1.59     rmind 		}
    291      1.59     rmind 	}
    292      1.59     rmind 
    293      1.59     rmind 	/*
    294      1.59     rmind 	 * Note that pthread_mutex_unlock() can do a non-interlocked CAS.
    295      1.59     rmind 	 * We cannot know if the presence of the waiters bit is stable
    296      1.59     rmind 	 * while the holding thread is running.  There are many assumptions;
    297      1.59     rmind 	 * see sys/kern/kern_mutex.c for details.  In short, we must spin if
    298      1.59     rmind 	 * we see that the holder is running again.
    299      1.59     rmind 	 */
    300      1.59     rmind 	membar_sync();
    301  1.60.2.2  pgoyette 	if (MUTEX_OWNER(owner) != (uintptr_t)self)
    302  1.60.2.2  pgoyette 		pthread__mutex_spin(ptm, owner);
    303      1.59     rmind 
    304      1.59     rmind 	if (membar_consumer(), !MUTEX_HAS_WAITERS(ptm->ptm_owner)) {
    305      1.59     rmind 		goto again;
    306      1.59     rmind 	}
    307      1.59     rmind }
    308      1.59     rmind 
    309      1.44        ad NOINLINE static int
    310      1.60  christos pthread__mutex_lock_slow(pthread_mutex_t *ptm, const struct timespec *ts)
    311       1.2   thorpej {
    312      1.44        ad 	void *waiters, *new, *owner, *next;
    313      1.44        ad 	pthread_t self;
    314      1.57  christos 	int serrno;
    315      1.60  christos 	int error;
    316       1.2   thorpej 
    317      1.14   nathanw 	pthread__error(EINVAL, "Invalid mutex",
    318      1.44        ad 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    319      1.44        ad 
    320      1.44        ad 	owner = ptm->ptm_owner;
    321      1.44        ad 	self = pthread__self();
    322      1.13   nathanw 
    323      1.44        ad 	/* Recursive or errorcheck? */
    324      1.44        ad 	if (MUTEX_OWNER(owner) == (uintptr_t)self) {
    325      1.44        ad 		if (MUTEX_RECURSIVE(owner)) {
    326      1.45        ad 			if (ptm->ptm_recursed == INT_MAX)
    327      1.44        ad 				return EAGAIN;
    328      1.45        ad 			ptm->ptm_recursed++;
    329      1.44        ad 			return 0;
    330      1.29        ad 		}
    331      1.51      matt 		if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
    332      1.44        ad 			return EDEADLK;
    333      1.44        ad 	}
    334      1.29        ad 
    335      1.60  christos 	/* priority protect */
    336      1.60  christos 	if (MUTEX_PROTECT(owner) && _sched_protect(ptm->ptm_ceiling) == -1) {
    337      1.60  christos 		return errno;
    338      1.60  christos 	}
    339      1.57  christos 	serrno = errno;
    340      1.44        ad 	for (;; owner = ptm->ptm_owner) {
    341      1.44        ad 		/* Spin while the owner is running. */
    342  1.60.2.2  pgoyette 		if (MUTEX_OWNER(owner) != (uintptr_t)self)
    343  1.60.2.2  pgoyette 			owner = pthread__mutex_spin(ptm, owner);
    344      1.44        ad 
    345      1.44        ad 		/* If it has become free, try to acquire it again. */
    346      1.44        ad 		if (MUTEX_OWNER(owner) == 0) {
    347      1.47        ad 			do {
    348      1.44        ad 				new = (void *)
    349      1.44        ad 				    ((uintptr_t)self | (uintptr_t)owner);
    350      1.44        ad 				next = atomic_cas_ptr(&ptm->ptm_owner, owner,
    351      1.44        ad 				    new);
    352      1.44        ad 				if (next == owner) {
    353      1.57  christos 					errno = serrno;
    354      1.44        ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    355      1.44        ad 					membar_enter();
    356      1.44        ad #endif
    357      1.44        ad 					return 0;
    358      1.44        ad 				}
    359      1.47        ad 				owner = next;
    360      1.47        ad 			} while (MUTEX_OWNER(owner) == 0);
    361      1.44        ad 			/*
    362      1.44        ad 			 * We have lost the race to acquire the mutex.
    363      1.44        ad 			 * The new owner could be running on another
    364      1.44        ad 			 * CPU, in which case we should spin and avoid
    365      1.44        ad 			 * the overhead of blocking.
    366      1.44        ad 			 */
    367      1.47        ad 			continue;
    368      1.44        ad 		}
    369      1.21       chs 
    370       1.2   thorpej 		/*
    371      1.44        ad 		 * Nope, still held.  Add thread to the list of waiters.
    372      1.50        ad 		 * Issue a memory barrier to ensure mutexwait/mutexnext
    373      1.44        ad 		 * are visible before we enter the waiters list.
    374       1.2   thorpej 		 */
    375      1.50        ad 		self->pt_mutexwait = 1;
    376      1.44        ad 		for (waiters = ptm->ptm_waiters;; waiters = next) {
    377      1.50        ad 			self->pt_mutexnext = waiters;
    378      1.44        ad 			membar_producer();
    379      1.44        ad 			next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
    380      1.44        ad 			if (next == waiters)
    381      1.44        ad 			    	break;
    382      1.44        ad 		}
    383      1.21       chs 
    384      1.59     rmind 		/* Set the waiters bit and block. */
    385      1.59     rmind 		pthread__mutex_setwaiters(self, ptm);
    386      1.21       chs 
    387      1.29        ad 		/*
    388      1.44        ad 		 * We may have been awoken by the current thread above,
    389      1.44        ad 		 * or will be awoken by the current holder of the mutex.
    390      1.44        ad 		 * The key requirement is that we must not proceed until
    391      1.50        ad 		 * told that we are no longer waiting (via pt_mutexwait
    392      1.44        ad 		 * being set to zero).  Otherwise it is unsafe to re-enter
    393      1.44        ad 		 * the thread onto the waiters list.
    394      1.29        ad 		 */
    395      1.50        ad 		while (self->pt_mutexwait) {
    396      1.44        ad 			self->pt_blocking++;
    397      1.60  christos 			error = _lwp_park(CLOCK_REALTIME, TIMER_ABSTIME, ts,
    398      1.58  christos 			    self->pt_unpark, __UNVOLATILE(&ptm->ptm_waiters),
    399      1.50        ad 			    __UNVOLATILE(&ptm->ptm_waiters));
    400      1.50        ad 			self->pt_unpark = 0;
    401      1.44        ad 			self->pt_blocking--;
    402      1.44        ad 			membar_sync();
    403      1.60  christos 			if (__predict_true(error != -1)) {
    404      1.60  christos 				continue;
    405      1.60  christos 			}
    406      1.60  christos 			if (errno == ETIMEDOUT && self->pt_mutexwait) {
    407      1.60  christos 				/*Remove self from waiters list*/
    408      1.60  christos 				pthread__mutex_wakeup(self, ptm);
    409      1.60  christos 				/*priority protect*/
    410      1.60  christos 				if (MUTEX_PROTECT(owner))
    411      1.60  christos 					(void)_sched_protect(-1);
    412      1.60  christos 				return ETIMEDOUT;
    413      1.60  christos 			}
    414      1.44        ad 		}
    415       1.2   thorpej 	}
    416       1.2   thorpej }
    417       1.2   thorpej 
    418       1.2   thorpej int
    419      1.44        ad pthread_mutex_trylock(pthread_mutex_t *ptm)
    420       1.2   thorpej {
    421      1.27        ad 	pthread_t self;
    422      1.46        ad 	void *val, *new, *next;
    423       1.2   thorpej 
    424      1.56  christos 	if (__predict_false(__uselibcstub))
    425      1.56  christos 		return __libc_mutex_trylock_stub(ptm);
    426      1.56  christos 
    427      1.27        ad 	self = pthread__self();
    428      1.44        ad 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    429      1.44        ad 	if (__predict_true(val == NULL)) {
    430      1.44        ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    431      1.44        ad 		membar_enter();
    432      1.44        ad #endif
    433      1.44        ad 		return 0;
    434      1.44        ad 	}
    435      1.27        ad 
    436      1.46        ad 	if (MUTEX_RECURSIVE(val)) {
    437      1.46        ad 		if (MUTEX_OWNER(val) == 0) {
    438      1.46        ad 			new = (void *)((uintptr_t)self | (uintptr_t)val);
    439      1.46        ad 			next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
    440      1.46        ad 			if (__predict_true(next == val)) {
    441      1.46        ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    442      1.46        ad 				membar_enter();
    443      1.46        ad #endif
    444      1.46        ad 				return 0;
    445      1.46        ad 			}
    446      1.46        ad 		}
    447      1.46        ad 		if (MUTEX_OWNER(val) == (uintptr_t)self) {
    448      1.46        ad 			if (ptm->ptm_recursed == INT_MAX)
    449      1.46        ad 				return EAGAIN;
    450      1.46        ad 			ptm->ptm_recursed++;
    451      1.46        ad 			return 0;
    452      1.46        ad 		}
    453       1.2   thorpej 	}
    454       1.2   thorpej 
    455      1.44        ad 	return EBUSY;
    456       1.2   thorpej }
    457       1.2   thorpej 
    458       1.2   thorpej int
    459      1.44        ad pthread_mutex_unlock(pthread_mutex_t *ptm)
    460       1.2   thorpej {
    461      1.27        ad 	pthread_t self;
    462      1.44        ad 	void *value;
    463      1.44        ad 
    464      1.56  christos 	if (__predict_false(__uselibcstub))
    465      1.56  christos 		return __libc_mutex_unlock_stub(ptm);
    466      1.56  christos 
    467      1.44        ad 	/*
    468      1.44        ad 	 * Note this may be a non-interlocked CAS.  See lock_slow()
    469      1.44        ad 	 * above and sys/kern/kern_mutex.c for details.
    470      1.44        ad 	 */
    471      1.44        ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    472      1.44        ad 	membar_exit();
    473      1.44        ad #endif
    474      1.44        ad 	self = pthread__self();
    475      1.44        ad 	value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
    476      1.54      matt 	if (__predict_true(value == self)) {
    477      1.54      matt 		pthread__smt_wake();
    478      1.44        ad 		return 0;
    479      1.54      matt 	}
    480      1.44        ad 	return pthread__mutex_unlock_slow(ptm);
    481      1.44        ad }
    482      1.44        ad 
    483      1.44        ad NOINLINE static int
    484      1.44        ad pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
    485      1.44        ad {
    486      1.44        ad 	pthread_t self, owner, new;
    487      1.44        ad 	int weown, error, deferred;
    488      1.13   nathanw 
    489      1.14   nathanw 	pthread__error(EINVAL, "Invalid mutex",
    490      1.44        ad 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    491      1.44        ad 
    492      1.44        ad 	self = pthread__self();
    493      1.44        ad 	owner = ptm->ptm_owner;
    494      1.44        ad 	weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
    495      1.44        ad 	deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
    496      1.44        ad 	error = 0;
    497      1.44        ad 
    498      1.51      matt 	if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
    499      1.44        ad 		if (!weown) {
    500      1.44        ad 			error = EPERM;
    501      1.44        ad 			new = owner;
    502      1.44        ad 		} else {
    503      1.44        ad 			new = NULL;
    504      1.44        ad 		}
    505      1.44        ad 	} else if (MUTEX_RECURSIVE(owner)) {
    506      1.44        ad 		if (!weown) {
    507      1.44        ad 			error = EPERM;
    508      1.44        ad 			new = owner;
    509      1.45        ad 		} else if (ptm->ptm_recursed) {
    510      1.45        ad 			ptm->ptm_recursed--;
    511      1.44        ad 			new = owner;
    512      1.44        ad 		} else {
    513      1.44        ad 			new = (pthread_t)MUTEX_RECURSIVE_BIT;
    514      1.44        ad 		}
    515      1.44        ad 	} else {
    516      1.44        ad 		pthread__error(EPERM,
    517      1.44        ad 		    "Unlocking unlocked mutex", (owner != NULL));
    518      1.44        ad 		pthread__error(EPERM,
    519      1.44        ad 		    "Unlocking mutex owned by another thread", weown);
    520      1.44        ad 		new = NULL;
    521      1.44        ad 	}
    522       1.2   thorpej 
    523       1.2   thorpej 	/*
    524      1.44        ad 	 * Release the mutex.  If there appear to be waiters, then
    525      1.44        ad 	 * wake them up.
    526       1.2   thorpej 	 */
    527      1.44        ad 	if (new != owner) {
    528      1.44        ad 		owner = atomic_swap_ptr(&ptm->ptm_owner, new);
    529      1.60  christos 		if (__predict_false(MUTEX_PROTECT(owner))) {
    530      1.60  christos 			/* restore elevated priority */
    531      1.60  christos 			(void)_sched_protect(-1);
    532      1.60  christos 		}
    533      1.44        ad 		if (MUTEX_HAS_WAITERS(owner) != 0) {
    534      1.44        ad 			pthread__mutex_wakeup(self, ptm);
    535       1.2   thorpej 			return 0;
    536       1.2   thorpej 		}
    537      1.44        ad 	}
    538      1.44        ad 
    539      1.44        ad 	/*
    540      1.44        ad 	 * There were no waiters, but we may have deferred waking
    541      1.44        ad 	 * other threads until mutex unlock - we must wake them now.
    542      1.44        ad 	 */
    543      1.44        ad 	if (!deferred)
    544      1.44        ad 		return error;
    545      1.44        ad 
    546      1.44        ad 	if (self->pt_nwaiters == 1) {
    547      1.44        ad 		/*
    548      1.44        ad 		 * If the calling thread is about to block, defer
    549      1.44        ad 		 * unparking the target until _lwp_park() is called.
    550      1.44        ad 		 */
    551      1.44        ad 		if (self->pt_willpark && self->pt_unpark == 0) {
    552      1.44        ad 			self->pt_unpark = self->pt_waiters[0];
    553      1.44        ad 		} else {
    554      1.44        ad 			(void)_lwp_unpark(self->pt_waiters[0],
    555      1.45        ad 			    __UNVOLATILE(&ptm->ptm_waiters));
    556      1.15   nathanw 		}
    557      1.44        ad 	} else {
    558      1.44        ad 		(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    559      1.45        ad 		    __UNVOLATILE(&ptm->ptm_waiters));
    560       1.2   thorpej 	}
    561      1.44        ad 	self->pt_nwaiters = 0;
    562       1.2   thorpej 
    563      1.44        ad 	return error;
    564      1.44        ad }
    565      1.44        ad 
    566      1.55      yamt /*
    567      1.55      yamt  * pthread__mutex_wakeup: unpark threads waiting for us
    568      1.55      yamt  *
    569      1.55      yamt  * unpark threads on the ptm->ptm_waiters list and self->pt_waiters.
    570      1.55      yamt  */
    571      1.55      yamt 
    572      1.44        ad static void
    573      1.44        ad pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
    574      1.44        ad {
    575      1.44        ad 	pthread_t thread, next;
    576      1.44        ad 	ssize_t n, rv;
    577      1.27        ad 
    578       1.8   nathanw 	/*
    579      1.44        ad 	 * Take ownership of the current set of waiters.  No
    580      1.44        ad 	 * need for a memory barrier following this, all loads
    581      1.44        ad 	 * are dependent upon 'thread'.
    582       1.8   nathanw 	 */
    583      1.44        ad 	thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
    584      1.54      matt 	pthread__smt_wake();
    585      1.44        ad 
    586      1.44        ad 	for (;;) {
    587      1.44        ad 		/*
    588      1.44        ad 		 * Pull waiters from the queue and add to our list.
    589      1.44        ad 		 * Use a memory barrier to ensure that we safely
    590      1.50        ad 		 * read the value of pt_mutexnext before 'thread'
    591      1.50        ad 		 * sees pt_mutexwait being cleared.
    592      1.44        ad 		 */
    593      1.44        ad 		for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
    594      1.44        ad 		    n < pthread__unpark_max && thread != NULL;
    595      1.44        ad 		    thread = next) {
    596      1.50        ad 		    	next = thread->pt_mutexnext;
    597      1.44        ad 		    	if (thread != self) {
    598      1.44        ad 				self->pt_waiters[n++] = thread->pt_lid;
    599      1.44        ad 				membar_sync();
    600      1.44        ad 			}
    601      1.50        ad 			thread->pt_mutexwait = 0;
    602      1.44        ad 			/* No longer safe to touch 'thread' */
    603      1.44        ad 		}
    604      1.44        ad 
    605      1.44        ad 		switch (n) {
    606      1.44        ad 		case 0:
    607      1.44        ad 			return;
    608      1.44        ad 		case 1:
    609      1.44        ad 			/*
    610      1.44        ad 			 * If the calling thread is about to block,
    611      1.44        ad 			 * defer unparking the target until _lwp_park()
    612      1.44        ad 			 * is called.
    613      1.44        ad 			 */
    614      1.44        ad 			if (self->pt_willpark && self->pt_unpark == 0) {
    615      1.44        ad 				self->pt_unpark = self->pt_waiters[0];
    616      1.44        ad 				return;
    617      1.44        ad 			}
    618      1.44        ad 			rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
    619      1.45        ad 			    __UNVOLATILE(&ptm->ptm_waiters));
    620      1.44        ad 			if (rv != 0 && errno != EALREADY && errno != EINTR &&
    621      1.44        ad 			    errno != ESRCH) {
    622      1.44        ad 				pthread__errorfunc(__FILE__, __LINE__,
    623      1.44        ad 				    __func__, "_lwp_unpark failed");
    624      1.44        ad 			}
    625      1.44        ad 			return;
    626      1.44        ad 		default:
    627      1.44        ad 			rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
    628      1.45        ad 			    __UNVOLATILE(&ptm->ptm_waiters));
    629      1.44        ad 			if (rv != 0 && errno != EINTR) {
    630      1.44        ad 				pthread__errorfunc(__FILE__, __LINE__,
    631      1.44        ad 				    __func__, "_lwp_unpark_all failed");
    632      1.44        ad 			}
    633      1.44        ad 			break;
    634      1.44        ad 		}
    635      1.44        ad 	}
    636       1.2   thorpej }
    637      1.55      yamt 
    638       1.2   thorpej int
    639       1.2   thorpej pthread_mutexattr_init(pthread_mutexattr_t *attr)
    640       1.2   thorpej {
    641      1.56  christos 	if (__predict_false(__uselibcstub))
    642      1.56  christos 		return __libc_mutexattr_init_stub(attr);
    643       1.2   thorpej 
    644       1.2   thorpej 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
    645      1.44        ad 	attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
    646       1.2   thorpej 	return 0;
    647       1.2   thorpej }
    648       1.2   thorpej 
    649       1.2   thorpej int
    650       1.2   thorpej pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
    651       1.2   thorpej {
    652      1.56  christos 	if (__predict_false(__uselibcstub))
    653      1.56  christos 		return __libc_mutexattr_destroy_stub(attr);
    654       1.2   thorpej 
    655      1.14   nathanw 	pthread__error(EINVAL, "Invalid mutex attribute",
    656      1.14   nathanw 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    657       1.2   thorpej 
    658       1.2   thorpej 	return 0;
    659       1.2   thorpej }
    660       1.2   thorpej 
    661       1.2   thorpej int
    662       1.2   thorpej pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
    663       1.2   thorpej {
    664      1.60  christos 
    665      1.14   nathanw 	pthread__error(EINVAL, "Invalid mutex attribute",
    666      1.14   nathanw 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    667       1.2   thorpej 
    668      1.60  christos 	*typep = MUTEX_GET_TYPE(attr->ptma_private);
    669       1.2   thorpej 	return 0;
    670       1.2   thorpej }
    671       1.2   thorpej 
    672       1.2   thorpej int
    673       1.2   thorpej pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
    674       1.2   thorpej {
    675      1.60  christos 
    676      1.56  christos 	if (__predict_false(__uselibcstub))
    677      1.56  christos 		return __libc_mutexattr_settype_stub(attr, type);
    678       1.2   thorpej 
    679      1.14   nathanw 	pthread__error(EINVAL, "Invalid mutex attribute",
    680      1.14   nathanw 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    681      1.13   nathanw 
    682       1.2   thorpej 	switch (type) {
    683       1.2   thorpej 	case PTHREAD_MUTEX_NORMAL:
    684       1.2   thorpej 	case PTHREAD_MUTEX_ERRORCHECK:
    685       1.2   thorpej 	case PTHREAD_MUTEX_RECURSIVE:
    686      1.60  christos 		MUTEX_SET_TYPE(attr->ptma_private, type);
    687      1.60  christos 		return 0;
    688      1.60  christos 	default:
    689      1.60  christos 		return EINVAL;
    690      1.60  christos 	}
    691      1.60  christos }
    692      1.60  christos 
    693      1.60  christos int
    694      1.60  christos pthread_mutexattr_getprotocol(const pthread_mutexattr_t *attr, int*proto)
    695      1.60  christos {
    696      1.60  christos 
    697      1.60  christos 	pthread__error(EINVAL, "Invalid mutex attribute",
    698      1.60  christos 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    699      1.60  christos 
    700      1.60  christos 	*proto = MUTEX_GET_PROTOCOL(attr->ptma_private);
    701      1.60  christos 	return 0;
    702      1.60  christos }
    703      1.60  christos 
    704      1.60  christos int
    705      1.60  christos pthread_mutexattr_setprotocol(pthread_mutexattr_t* attr, int proto)
    706      1.60  christos {
    707      1.60  christos 
    708      1.60  christos 	pthread__error(EINVAL, "Invalid mutex attribute",
    709      1.60  christos 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    710      1.60  christos 
    711      1.60  christos 	switch (proto) {
    712      1.60  christos 	case PTHREAD_PRIO_NONE:
    713      1.60  christos 	case PTHREAD_PRIO_PROTECT:
    714      1.60  christos 		MUTEX_SET_PROTOCOL(attr->ptma_private, proto);
    715      1.44        ad 		return 0;
    716      1.60  christos 	case PTHREAD_PRIO_INHERIT:
    717      1.60  christos 		return ENOTSUP;
    718       1.2   thorpej 	default:
    719       1.2   thorpej 		return EINVAL;
    720       1.2   thorpej 	}
    721       1.2   thorpej }
    722       1.2   thorpej 
    723      1.60  christos int
    724      1.60  christos pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *attr, int *ceil)
    725      1.60  christos {
    726      1.60  christos 
    727      1.60  christos 	pthread__error(EINVAL, "Invalid mutex attribute",
    728      1.60  christos 		attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    729      1.60  christos 
    730      1.60  christos 	*ceil = MUTEX_GET_CEILING(attr->ptma_private);
    731      1.60  christos 	return 0;
    732      1.60  christos }
    733      1.60  christos 
    734      1.60  christos int
    735      1.60  christos pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr, int ceil)
    736      1.60  christos {
    737      1.60  christos 
    738      1.60  christos 	pthread__error(EINVAL, "Invalid mutex attribute",
    739      1.60  christos 		attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    740      1.60  christos 
    741      1.60  christos 	if (ceil & ~0xff)
    742      1.60  christos 		return EINVAL;
    743      1.60  christos 
    744      1.60  christos 	MUTEX_SET_CEILING(attr->ptma_private, ceil);
    745      1.60  christos 	return 0;
    746      1.60  christos }
    747      1.60  christos 
    748      1.60  christos #ifdef _PTHREAD_PSHARED
    749      1.60  christos int
    750      1.60  christos pthread_mutexattr_getpshared(const pthread_mutexattr_t * __restrict attr,
    751      1.60  christos     int * __restrict pshared)
    752      1.60  christos {
    753      1.60  christos 
    754      1.60  christos 	*pshared = PTHREAD_PROCESS_PRIVATE;
    755      1.60  christos 	return 0;
    756      1.60  christos }
    757      1.60  christos 
    758      1.60  christos int
    759      1.60  christos pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
    760      1.60  christos {
    761      1.60  christos 
    762      1.60  christos 	switch(pshared) {
    763      1.60  christos 	case PTHREAD_PROCESS_PRIVATE:
    764      1.60  christos 		return 0;
    765      1.60  christos 	case PTHREAD_PROCESS_SHARED:
    766      1.60  christos 		return ENOSYS;
    767      1.60  christos 	}
    768      1.60  christos 	return EINVAL;
    769      1.60  christos }
    770      1.60  christos #endif
    771      1.60  christos 
    772      1.55      yamt /*
    773      1.55      yamt  * pthread__mutex_deferwake: try to defer unparking threads in self->pt_waiters
    774      1.55      yamt  *
    775      1.55      yamt  * In order to avoid unnecessary contention on the interlocking mutex,
    776      1.55      yamt  * we defer waking up threads until we unlock the mutex.  The threads will
    777      1.55      yamt  * be woken up when the calling thread (self) releases the first mutex with
    778      1.55      yamt  * MUTEX_DEFERRED_BIT set.  It likely be the mutex 'ptm', but no problem
    779      1.55      yamt  * even if it isn't.
    780      1.55      yamt  */
    781      1.55      yamt 
    782      1.50        ad void
    783      1.50        ad pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
    784      1.33        ad {
    785      1.33        ad 
    786      1.50        ad 	if (__predict_false(ptm == NULL ||
    787      1.50        ad 	    MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
    788      1.50        ad 	    	(void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
    789      1.50        ad 	    	    __UNVOLATILE(&ptm->ptm_waiters));
    790      1.50        ad 	    	self->pt_nwaiters = 0;
    791      1.50        ad 	} else {
    792      1.50        ad 		atomic_or_ulong((volatile unsigned long *)
    793      1.50        ad 		    (uintptr_t)&ptm->ptm_owner,
    794      1.50        ad 		    (unsigned long)MUTEX_DEFERRED_BIT);
    795      1.50        ad 	}
    796      1.33        ad }
    797      1.33        ad 
    798      1.39        ad int
    799  1.60.2.1  pgoyette pthread_mutex_getprioceiling(const pthread_mutex_t *ptm, int *ceil)
    800      1.60  christos {
    801  1.60.2.1  pgoyette 	*ceil = ptm->ptm_ceiling;
    802      1.60  christos 	return 0;
    803      1.60  christos }
    804      1.60  christos 
    805      1.60  christos int
    806      1.60  christos pthread_mutex_setprioceiling(pthread_mutex_t *ptm, int ceil, int *old_ceil)
    807      1.60  christos {
    808      1.60  christos 	int error;
    809      1.60  christos 
    810      1.60  christos 	error = pthread_mutex_lock(ptm);
    811      1.60  christos 	if (error == 0) {
    812  1.60.2.1  pgoyette 		*old_ceil = ptm->ptm_ceiling;
    813      1.60  christos 		/*check range*/
    814  1.60.2.1  pgoyette 		ptm->ptm_ceiling = ceil;
    815      1.60  christos 		pthread_mutex_unlock(ptm);
    816      1.60  christos 	}
    817      1.60  christos 	return error;
    818      1.60  christos }
    819      1.60  christos 
    820      1.60  christos int
    821      1.44        ad _pthread_mutex_held_np(pthread_mutex_t *ptm)
    822      1.39        ad {
    823      1.39        ad 
    824      1.44        ad 	return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
    825      1.39        ad }
    826      1.39        ad 
    827      1.39        ad pthread_t
    828      1.44        ad _pthread_mutex_owner_np(pthread_mutex_t *ptm)
    829      1.39        ad {
    830      1.39        ad 
    831      1.44        ad 	return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
    832      1.39        ad }
    833