pthread_mutex.c revision 1.61 1 1.61 skrll /* $NetBSD: pthread_mutex.c,v 1.61 2016/07/16 12:58:11 skrll Exp $ */
2 1.2 thorpej
3 1.2 thorpej /*-
4 1.44 ad * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 thorpej * All rights reserved.
6 1.2 thorpej *
7 1.2 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.27 ad * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 1.2 thorpej *
10 1.2 thorpej * Redistribution and use in source and binary forms, with or without
11 1.2 thorpej * modification, are permitted provided that the following conditions
12 1.2 thorpej * are met:
13 1.2 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.2 thorpej * notice, this list of conditions and the following disclaimer.
15 1.2 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.2 thorpej * documentation and/or other materials provided with the distribution.
18 1.2 thorpej *
19 1.2 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.2 thorpej */
31 1.2 thorpej
32 1.49 ad /*
33 1.49 ad * To track threads waiting for mutexes to be released, we use lockless
34 1.49 ad * lists built on atomic operations and memory barriers.
35 1.49 ad *
36 1.49 ad * A simple spinlock would be faster and make the code easier to
37 1.49 ad * follow, but spinlocks are problematic in userspace. If a thread is
38 1.49 ad * preempted by the kernel while holding a spinlock, any other thread
39 1.49 ad * attempting to acquire that spinlock will needlessly busy wait.
40 1.49 ad *
41 1.49 ad * There is no good way to know that the holding thread is no longer
42 1.49 ad * running, nor to request a wake-up once it has begun running again.
43 1.49 ad * Of more concern, threads in the SCHED_FIFO class do not have a
44 1.49 ad * limited time quantum and so could spin forever, preventing the
45 1.49 ad * thread holding the spinlock from getting CPU time: it would never
46 1.49 ad * be released.
47 1.49 ad */
48 1.49 ad
49 1.2 thorpej #include <sys/cdefs.h>
50 1.61 skrll __RCSID("$NetBSD: pthread_mutex.c,v 1.61 2016/07/16 12:58:11 skrll Exp $");
51 1.40 ad
52 1.40 ad #include <sys/types.h>
53 1.44 ad #include <sys/lwpctl.h>
54 1.60 christos #include <sys/sched.h>
55 1.51 matt #include <sys/lock.h>
56 1.10 lukem
57 1.2 thorpej #include <errno.h>
58 1.2 thorpej #include <limits.h>
59 1.2 thorpej #include <stdlib.h>
60 1.56 christos #include <time.h>
61 1.6 scw #include <string.h>
62 1.44 ad #include <stdio.h>
63 1.2 thorpej
64 1.2 thorpej #include "pthread.h"
65 1.2 thorpej #include "pthread_int.h"
66 1.56 christos #include "reentrant.h"
67 1.2 thorpej
68 1.44 ad #define MUTEX_WAITERS_BIT ((uintptr_t)0x01)
69 1.44 ad #define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02)
70 1.44 ad #define MUTEX_DEFERRED_BIT ((uintptr_t)0x04)
71 1.60 christos #define MUTEX_PROTECT_BIT ((uintptr_t)0x08)
72 1.60 christos #define MUTEX_THREAD ((uintptr_t)~0x0f)
73 1.44 ad
74 1.44 ad #define MUTEX_HAS_WAITERS(x) ((uintptr_t)(x) & MUTEX_WAITERS_BIT)
75 1.44 ad #define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
76 1.60 christos #define MUTEX_PROTECT(x) ((uintptr_t)(x) & MUTEX_PROTECT_BIT)
77 1.44 ad #define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD)
78 1.44 ad
79 1.60 christos #define MUTEX_GET_TYPE(x) \
80 1.60 christos ((int)(((uintptr_t)(x) & 0x000000ff) >> 0))
81 1.60 christos #define MUTEX_SET_TYPE(x, t) \
82 1.60 christos (x) = (void *)(((uintptr_t)(x) & ~0x000000ff) | ((t) << 0))
83 1.60 christos #define MUTEX_GET_PROTOCOL(x) \
84 1.60 christos ((int)(((uintptr_t)(x) & 0x0000ff00) >> 8))
85 1.60 christos #define MUTEX_SET_PROTOCOL(x, p) \
86 1.60 christos (x) = (void *)(((uintptr_t)(x) & ~0x0000ff00) | ((p) << 8))
87 1.60 christos #define MUTEX_GET_CEILING(x) \
88 1.60 christos ((int)(((uintptr_t)(x) & 0x00ff0000) >> 16))
89 1.60 christos #define MUTEX_SET_CEILING(x, c) \
90 1.60 christos (x) = (void *)(((uintptr_t)(x) & ~0x00ff0000) | ((c) << 16))
91 1.60 christos
92 1.44 ad #if __GNUC_PREREQ__(3, 0)
93 1.44 ad #define NOINLINE __attribute ((noinline))
94 1.44 ad #else
95 1.44 ad #define NOINLINE /* nothing */
96 1.44 ad #endif
97 1.44 ad
98 1.44 ad static void pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
99 1.60 christos static int pthread__mutex_lock_slow(pthread_mutex_t *,
100 1.60 christos const struct timespec *);
101 1.44 ad static int pthread__mutex_unlock_slow(pthread_mutex_t *);
102 1.44 ad static void pthread__mutex_pause(void);
103 1.2 thorpej
104 1.39 ad int _pthread_mutex_held_np(pthread_mutex_t *);
105 1.39 ad pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
106 1.39 ad
107 1.39 ad __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
108 1.39 ad __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
109 1.39 ad
110 1.2 thorpej __strong_alias(__libc_mutex_init,pthread_mutex_init)
111 1.2 thorpej __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
112 1.2 thorpej __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
113 1.2 thorpej __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
114 1.2 thorpej __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
115 1.4 thorpej
116 1.4 thorpej __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
117 1.4 thorpej __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
118 1.5 thorpej __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
119 1.2 thorpej
120 1.2 thorpej int
121 1.44 ad pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
122 1.2 thorpej {
123 1.60 christos uintptr_t type, proto, val, ceil;
124 1.2 thorpej
125 1.56 christos if (__predict_false(__uselibcstub))
126 1.56 christos return __libc_mutex_init_stub(ptm, attr);
127 1.56 christos
128 1.60 christos if (attr == NULL) {
129 1.44 ad type = PTHREAD_MUTEX_NORMAL;
130 1.60 christos proto = PTHREAD_PRIO_NONE;
131 1.60 christos ceil = 0;
132 1.60 christos } else {
133 1.60 christos val = (uintptr_t)attr->ptma_private;
134 1.2 thorpej
135 1.60 christos type = MUTEX_GET_TYPE(val);
136 1.60 christos proto = MUTEX_GET_PROTOCOL(val);
137 1.60 christos ceil = MUTEX_GET_CEILING(val);
138 1.60 christos }
139 1.44 ad switch (type) {
140 1.44 ad case PTHREAD_MUTEX_ERRORCHECK:
141 1.51 matt __cpu_simple_lock_set(&ptm->ptm_errorcheck);
142 1.44 ad ptm->ptm_owner = NULL;
143 1.44 ad break;
144 1.44 ad case PTHREAD_MUTEX_RECURSIVE:
145 1.51 matt __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
146 1.44 ad ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
147 1.44 ad break;
148 1.44 ad default:
149 1.51 matt __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
150 1.44 ad ptm->ptm_owner = NULL;
151 1.44 ad break;
152 1.2 thorpej }
153 1.60 christos switch (proto) {
154 1.60 christos case PTHREAD_PRIO_PROTECT:
155 1.60 christos val = (uintptr_t)ptm->ptm_owner;
156 1.60 christos val |= MUTEX_PROTECT_BIT;
157 1.60 christos ptm->ptm_owner = (void *)val;
158 1.60 christos break;
159 1.2 thorpej
160 1.60 christos }
161 1.44 ad ptm->ptm_magic = _PT_MUTEX_MAGIC;
162 1.44 ad ptm->ptm_waiters = NULL;
163 1.45 ad ptm->ptm_recursed = 0;
164 1.60 christos ptm->ptm_ceiling = (unsigned char)ceil;
165 1.2 thorpej
166 1.2 thorpej return 0;
167 1.2 thorpej }
168 1.2 thorpej
169 1.2 thorpej int
170 1.44 ad pthread_mutex_destroy(pthread_mutex_t *ptm)
171 1.2 thorpej {
172 1.2 thorpej
173 1.56 christos if (__predict_false(__uselibcstub))
174 1.56 christos return __libc_mutex_destroy_stub(ptm);
175 1.56 christos
176 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
177 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
178 1.14 nathanw pthread__error(EBUSY, "Destroying locked mutex",
179 1.44 ad MUTEX_OWNER(ptm->ptm_owner) == 0);
180 1.2 thorpej
181 1.44 ad ptm->ptm_magic = _PT_MUTEX_DEAD;
182 1.2 thorpej return 0;
183 1.2 thorpej }
184 1.2 thorpej
185 1.2 thorpej int
186 1.44 ad pthread_mutex_lock(pthread_mutex_t *ptm)
187 1.2 thorpej {
188 1.27 ad pthread_t self;
189 1.44 ad void *val;
190 1.2 thorpej
191 1.56 christos if (__predict_false(__uselibcstub))
192 1.56 christos return __libc_mutex_lock_stub(ptm);
193 1.56 christos
194 1.27 ad self = pthread__self();
195 1.44 ad val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
196 1.44 ad if (__predict_true(val == NULL)) {
197 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
198 1.44 ad membar_enter();
199 1.44 ad #endif
200 1.44 ad return 0;
201 1.2 thorpej }
202 1.60 christos return pthread__mutex_lock_slow(ptm, NULL);
203 1.60 christos }
204 1.60 christos
205 1.60 christos int
206 1.60 christos pthread_mutex_timedlock(pthread_mutex_t* ptm, const struct timespec *ts)
207 1.60 christos {
208 1.60 christos pthread_t self;
209 1.60 christos void *val;
210 1.60 christos
211 1.60 christos self = pthread__self();
212 1.60 christos val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
213 1.60 christos if (__predict_true(val == NULL)) {
214 1.60 christos #ifndef PTHREAD__ATOMIC_IS_MEMBAR
215 1.60 christos membar_enter();
216 1.60 christos #endif
217 1.60 christos return 0;
218 1.60 christos }
219 1.60 christos return pthread__mutex_lock_slow(ptm, ts);
220 1.44 ad }
221 1.2 thorpej
222 1.44 ad /* We want function call overhead. */
223 1.44 ad NOINLINE static void
224 1.44 ad pthread__mutex_pause(void)
225 1.44 ad {
226 1.2 thorpej
227 1.44 ad pthread__smt_pause();
228 1.2 thorpej }
229 1.2 thorpej
230 1.44 ad /*
231 1.44 ad * Spin while the holder is running. 'lwpctl' gives us the true
232 1.44 ad * status of the thread. pt_blocking is set by libpthread in order
233 1.44 ad * to cut out system call and kernel spinlock overhead on remote CPUs
234 1.44 ad * (could represent many thousands of clock cycles). pt_blocking also
235 1.44 ad * makes this thread yield if the target is calling sched_yield().
236 1.44 ad */
237 1.44 ad NOINLINE static void *
238 1.44 ad pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
239 1.44 ad {
240 1.44 ad pthread_t thread;
241 1.44 ad unsigned int count, i;
242 1.44 ad
243 1.44 ad for (count = 2;; owner = ptm->ptm_owner) {
244 1.44 ad thread = (pthread_t)MUTEX_OWNER(owner);
245 1.44 ad if (thread == NULL)
246 1.44 ad break;
247 1.44 ad if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
248 1.44 ad thread->pt_blocking)
249 1.44 ad break;
250 1.44 ad if (count < 128)
251 1.44 ad count += count;
252 1.44 ad for (i = count; i != 0; i--)
253 1.44 ad pthread__mutex_pause();
254 1.44 ad }
255 1.2 thorpej
256 1.44 ad return owner;
257 1.44 ad }
258 1.44 ad
259 1.59 rmind NOINLINE static void
260 1.59 rmind pthread__mutex_setwaiters(pthread_t self, pthread_mutex_t *ptm)
261 1.59 rmind {
262 1.59 rmind void *new, *owner;
263 1.59 rmind
264 1.59 rmind /*
265 1.59 rmind * Note that the mutex can become unlocked before we set
266 1.59 rmind * the waiters bit. If that happens it's not safe to sleep
267 1.59 rmind * as we may never be awoken: we must remove the current
268 1.59 rmind * thread from the waiters list and try again.
269 1.59 rmind *
270 1.59 rmind * Because we are doing this atomically, we can't remove
271 1.59 rmind * one waiter: we must remove all waiters and awken them,
272 1.59 rmind * then sleep in _lwp_park() until we have been awoken.
273 1.59 rmind *
274 1.59 rmind * Issue a memory barrier to ensure that we are reading
275 1.59 rmind * the value of ptm_owner/pt_mutexwait after we have entered
276 1.59 rmind * the waiters list (the CAS itself must be atomic).
277 1.59 rmind */
278 1.59 rmind again:
279 1.59 rmind membar_consumer();
280 1.59 rmind owner = ptm->ptm_owner;
281 1.59 rmind
282 1.59 rmind if (MUTEX_OWNER(owner) == 0) {
283 1.59 rmind pthread__mutex_wakeup(self, ptm);
284 1.59 rmind return;
285 1.59 rmind }
286 1.59 rmind if (!MUTEX_HAS_WAITERS(owner)) {
287 1.59 rmind new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
288 1.59 rmind if (atomic_cas_ptr(&ptm->ptm_owner, owner, new) != owner) {
289 1.59 rmind goto again;
290 1.59 rmind }
291 1.59 rmind }
292 1.59 rmind
293 1.59 rmind /*
294 1.59 rmind * Note that pthread_mutex_unlock() can do a non-interlocked CAS.
295 1.59 rmind * We cannot know if the presence of the waiters bit is stable
296 1.59 rmind * while the holding thread is running. There are many assumptions;
297 1.59 rmind * see sys/kern/kern_mutex.c for details. In short, we must spin if
298 1.59 rmind * we see that the holder is running again.
299 1.59 rmind */
300 1.59 rmind membar_sync();
301 1.59 rmind pthread__mutex_spin(ptm, owner);
302 1.59 rmind
303 1.59 rmind if (membar_consumer(), !MUTEX_HAS_WAITERS(ptm->ptm_owner)) {
304 1.59 rmind goto again;
305 1.59 rmind }
306 1.59 rmind }
307 1.59 rmind
308 1.44 ad NOINLINE static int
309 1.60 christos pthread__mutex_lock_slow(pthread_mutex_t *ptm, const struct timespec *ts)
310 1.2 thorpej {
311 1.44 ad void *waiters, *new, *owner, *next;
312 1.44 ad pthread_t self;
313 1.57 christos int serrno;
314 1.60 christos int error;
315 1.2 thorpej
316 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
317 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
318 1.44 ad
319 1.44 ad owner = ptm->ptm_owner;
320 1.44 ad self = pthread__self();
321 1.13 nathanw
322 1.44 ad /* Recursive or errorcheck? */
323 1.44 ad if (MUTEX_OWNER(owner) == (uintptr_t)self) {
324 1.44 ad if (MUTEX_RECURSIVE(owner)) {
325 1.45 ad if (ptm->ptm_recursed == INT_MAX)
326 1.44 ad return EAGAIN;
327 1.45 ad ptm->ptm_recursed++;
328 1.44 ad return 0;
329 1.29 ad }
330 1.51 matt if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
331 1.44 ad return EDEADLK;
332 1.44 ad }
333 1.29 ad
334 1.60 christos /* priority protect */
335 1.60 christos if (MUTEX_PROTECT(owner) && _sched_protect(ptm->ptm_ceiling) == -1) {
336 1.60 christos return errno;
337 1.60 christos }
338 1.57 christos serrno = errno;
339 1.44 ad for (;; owner = ptm->ptm_owner) {
340 1.44 ad /* Spin while the owner is running. */
341 1.44 ad owner = pthread__mutex_spin(ptm, owner);
342 1.44 ad
343 1.44 ad /* If it has become free, try to acquire it again. */
344 1.44 ad if (MUTEX_OWNER(owner) == 0) {
345 1.47 ad do {
346 1.44 ad new = (void *)
347 1.44 ad ((uintptr_t)self | (uintptr_t)owner);
348 1.44 ad next = atomic_cas_ptr(&ptm->ptm_owner, owner,
349 1.44 ad new);
350 1.44 ad if (next == owner) {
351 1.57 christos errno = serrno;
352 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
353 1.44 ad membar_enter();
354 1.44 ad #endif
355 1.44 ad return 0;
356 1.44 ad }
357 1.47 ad owner = next;
358 1.47 ad } while (MUTEX_OWNER(owner) == 0);
359 1.44 ad /*
360 1.44 ad * We have lost the race to acquire the mutex.
361 1.44 ad * The new owner could be running on another
362 1.44 ad * CPU, in which case we should spin and avoid
363 1.44 ad * the overhead of blocking.
364 1.44 ad */
365 1.47 ad continue;
366 1.44 ad }
367 1.21 chs
368 1.2 thorpej /*
369 1.44 ad * Nope, still held. Add thread to the list of waiters.
370 1.50 ad * Issue a memory barrier to ensure mutexwait/mutexnext
371 1.44 ad * are visible before we enter the waiters list.
372 1.2 thorpej */
373 1.50 ad self->pt_mutexwait = 1;
374 1.44 ad for (waiters = ptm->ptm_waiters;; waiters = next) {
375 1.50 ad self->pt_mutexnext = waiters;
376 1.44 ad membar_producer();
377 1.44 ad next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
378 1.44 ad if (next == waiters)
379 1.44 ad break;
380 1.44 ad }
381 1.21 chs
382 1.59 rmind /* Set the waiters bit and block. */
383 1.59 rmind pthread__mutex_setwaiters(self, ptm);
384 1.21 chs
385 1.29 ad /*
386 1.44 ad * We may have been awoken by the current thread above,
387 1.44 ad * or will be awoken by the current holder of the mutex.
388 1.44 ad * The key requirement is that we must not proceed until
389 1.50 ad * told that we are no longer waiting (via pt_mutexwait
390 1.44 ad * being set to zero). Otherwise it is unsafe to re-enter
391 1.44 ad * the thread onto the waiters list.
392 1.29 ad */
393 1.50 ad while (self->pt_mutexwait) {
394 1.44 ad self->pt_blocking++;
395 1.60 christos error = _lwp_park(CLOCK_REALTIME, TIMER_ABSTIME, ts,
396 1.58 christos self->pt_unpark, __UNVOLATILE(&ptm->ptm_waiters),
397 1.50 ad __UNVOLATILE(&ptm->ptm_waiters));
398 1.50 ad self->pt_unpark = 0;
399 1.44 ad self->pt_blocking--;
400 1.44 ad membar_sync();
401 1.60 christos if (__predict_true(error != -1)) {
402 1.60 christos continue;
403 1.60 christos }
404 1.60 christos if (errno == ETIMEDOUT && self->pt_mutexwait) {
405 1.60 christos /*Remove self from waiters list*/
406 1.60 christos pthread__mutex_wakeup(self, ptm);
407 1.60 christos /*priority protect*/
408 1.60 christos if (MUTEX_PROTECT(owner))
409 1.60 christos (void)_sched_protect(-1);
410 1.60 christos return ETIMEDOUT;
411 1.60 christos }
412 1.44 ad }
413 1.2 thorpej }
414 1.2 thorpej }
415 1.2 thorpej
416 1.2 thorpej int
417 1.44 ad pthread_mutex_trylock(pthread_mutex_t *ptm)
418 1.2 thorpej {
419 1.27 ad pthread_t self;
420 1.46 ad void *val, *new, *next;
421 1.2 thorpej
422 1.56 christos if (__predict_false(__uselibcstub))
423 1.56 christos return __libc_mutex_trylock_stub(ptm);
424 1.56 christos
425 1.27 ad self = pthread__self();
426 1.44 ad val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
427 1.44 ad if (__predict_true(val == NULL)) {
428 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
429 1.44 ad membar_enter();
430 1.44 ad #endif
431 1.44 ad return 0;
432 1.44 ad }
433 1.27 ad
434 1.46 ad if (MUTEX_RECURSIVE(val)) {
435 1.46 ad if (MUTEX_OWNER(val) == 0) {
436 1.46 ad new = (void *)((uintptr_t)self | (uintptr_t)val);
437 1.46 ad next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
438 1.46 ad if (__predict_true(next == val)) {
439 1.46 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
440 1.46 ad membar_enter();
441 1.46 ad #endif
442 1.46 ad return 0;
443 1.46 ad }
444 1.46 ad }
445 1.46 ad if (MUTEX_OWNER(val) == (uintptr_t)self) {
446 1.46 ad if (ptm->ptm_recursed == INT_MAX)
447 1.46 ad return EAGAIN;
448 1.46 ad ptm->ptm_recursed++;
449 1.46 ad return 0;
450 1.46 ad }
451 1.2 thorpej }
452 1.2 thorpej
453 1.44 ad return EBUSY;
454 1.2 thorpej }
455 1.2 thorpej
456 1.2 thorpej int
457 1.44 ad pthread_mutex_unlock(pthread_mutex_t *ptm)
458 1.2 thorpej {
459 1.27 ad pthread_t self;
460 1.44 ad void *value;
461 1.44 ad
462 1.56 christos if (__predict_false(__uselibcstub))
463 1.56 christos return __libc_mutex_unlock_stub(ptm);
464 1.56 christos
465 1.44 ad /*
466 1.44 ad * Note this may be a non-interlocked CAS. See lock_slow()
467 1.44 ad * above and sys/kern/kern_mutex.c for details.
468 1.44 ad */
469 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
470 1.44 ad membar_exit();
471 1.44 ad #endif
472 1.44 ad self = pthread__self();
473 1.44 ad value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
474 1.54 matt if (__predict_true(value == self)) {
475 1.54 matt pthread__smt_wake();
476 1.44 ad return 0;
477 1.54 matt }
478 1.44 ad return pthread__mutex_unlock_slow(ptm);
479 1.44 ad }
480 1.44 ad
481 1.44 ad NOINLINE static int
482 1.44 ad pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
483 1.44 ad {
484 1.44 ad pthread_t self, owner, new;
485 1.44 ad int weown, error, deferred;
486 1.13 nathanw
487 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
488 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
489 1.44 ad
490 1.44 ad self = pthread__self();
491 1.44 ad owner = ptm->ptm_owner;
492 1.44 ad weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
493 1.44 ad deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
494 1.44 ad error = 0;
495 1.44 ad
496 1.51 matt if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
497 1.44 ad if (!weown) {
498 1.44 ad error = EPERM;
499 1.44 ad new = owner;
500 1.44 ad } else {
501 1.44 ad new = NULL;
502 1.44 ad }
503 1.44 ad } else if (MUTEX_RECURSIVE(owner)) {
504 1.44 ad if (!weown) {
505 1.44 ad error = EPERM;
506 1.44 ad new = owner;
507 1.45 ad } else if (ptm->ptm_recursed) {
508 1.45 ad ptm->ptm_recursed--;
509 1.44 ad new = owner;
510 1.44 ad } else {
511 1.44 ad new = (pthread_t)MUTEX_RECURSIVE_BIT;
512 1.44 ad }
513 1.44 ad } else {
514 1.44 ad pthread__error(EPERM,
515 1.44 ad "Unlocking unlocked mutex", (owner != NULL));
516 1.44 ad pthread__error(EPERM,
517 1.44 ad "Unlocking mutex owned by another thread", weown);
518 1.44 ad new = NULL;
519 1.44 ad }
520 1.2 thorpej
521 1.2 thorpej /*
522 1.44 ad * Release the mutex. If there appear to be waiters, then
523 1.44 ad * wake them up.
524 1.2 thorpej */
525 1.44 ad if (new != owner) {
526 1.44 ad owner = atomic_swap_ptr(&ptm->ptm_owner, new);
527 1.60 christos if (__predict_false(MUTEX_PROTECT(owner))) {
528 1.60 christos /* restore elevated priority */
529 1.60 christos (void)_sched_protect(-1);
530 1.60 christos }
531 1.44 ad if (MUTEX_HAS_WAITERS(owner) != 0) {
532 1.44 ad pthread__mutex_wakeup(self, ptm);
533 1.2 thorpej return 0;
534 1.2 thorpej }
535 1.44 ad }
536 1.44 ad
537 1.44 ad /*
538 1.44 ad * There were no waiters, but we may have deferred waking
539 1.44 ad * other threads until mutex unlock - we must wake them now.
540 1.44 ad */
541 1.44 ad if (!deferred)
542 1.44 ad return error;
543 1.44 ad
544 1.44 ad if (self->pt_nwaiters == 1) {
545 1.44 ad /*
546 1.44 ad * If the calling thread is about to block, defer
547 1.44 ad * unparking the target until _lwp_park() is called.
548 1.44 ad */
549 1.44 ad if (self->pt_willpark && self->pt_unpark == 0) {
550 1.44 ad self->pt_unpark = self->pt_waiters[0];
551 1.44 ad } else {
552 1.44 ad (void)_lwp_unpark(self->pt_waiters[0],
553 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
554 1.15 nathanw }
555 1.44 ad } else {
556 1.44 ad (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
557 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
558 1.2 thorpej }
559 1.44 ad self->pt_nwaiters = 0;
560 1.2 thorpej
561 1.44 ad return error;
562 1.44 ad }
563 1.44 ad
564 1.55 yamt /*
565 1.55 yamt * pthread__mutex_wakeup: unpark threads waiting for us
566 1.55 yamt *
567 1.55 yamt * unpark threads on the ptm->ptm_waiters list and self->pt_waiters.
568 1.55 yamt */
569 1.55 yamt
570 1.44 ad static void
571 1.44 ad pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
572 1.44 ad {
573 1.44 ad pthread_t thread, next;
574 1.44 ad ssize_t n, rv;
575 1.27 ad
576 1.8 nathanw /*
577 1.44 ad * Take ownership of the current set of waiters. No
578 1.44 ad * need for a memory barrier following this, all loads
579 1.44 ad * are dependent upon 'thread'.
580 1.8 nathanw */
581 1.44 ad thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
582 1.54 matt pthread__smt_wake();
583 1.44 ad
584 1.44 ad for (;;) {
585 1.44 ad /*
586 1.44 ad * Pull waiters from the queue and add to our list.
587 1.44 ad * Use a memory barrier to ensure that we safely
588 1.50 ad * read the value of pt_mutexnext before 'thread'
589 1.50 ad * sees pt_mutexwait being cleared.
590 1.44 ad */
591 1.44 ad for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
592 1.44 ad n < pthread__unpark_max && thread != NULL;
593 1.44 ad thread = next) {
594 1.50 ad next = thread->pt_mutexnext;
595 1.44 ad if (thread != self) {
596 1.44 ad self->pt_waiters[n++] = thread->pt_lid;
597 1.44 ad membar_sync();
598 1.44 ad }
599 1.50 ad thread->pt_mutexwait = 0;
600 1.44 ad /* No longer safe to touch 'thread' */
601 1.44 ad }
602 1.44 ad
603 1.44 ad switch (n) {
604 1.44 ad case 0:
605 1.44 ad return;
606 1.44 ad case 1:
607 1.44 ad /*
608 1.44 ad * If the calling thread is about to block,
609 1.44 ad * defer unparking the target until _lwp_park()
610 1.44 ad * is called.
611 1.44 ad */
612 1.44 ad if (self->pt_willpark && self->pt_unpark == 0) {
613 1.44 ad self->pt_unpark = self->pt_waiters[0];
614 1.44 ad return;
615 1.44 ad }
616 1.44 ad rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
617 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
618 1.44 ad if (rv != 0 && errno != EALREADY && errno != EINTR &&
619 1.44 ad errno != ESRCH) {
620 1.44 ad pthread__errorfunc(__FILE__, __LINE__,
621 1.44 ad __func__, "_lwp_unpark failed");
622 1.44 ad }
623 1.44 ad return;
624 1.44 ad default:
625 1.44 ad rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
626 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
627 1.44 ad if (rv != 0 && errno != EINTR) {
628 1.44 ad pthread__errorfunc(__FILE__, __LINE__,
629 1.44 ad __func__, "_lwp_unpark_all failed");
630 1.44 ad }
631 1.44 ad break;
632 1.44 ad }
633 1.44 ad }
634 1.2 thorpej }
635 1.55 yamt
636 1.2 thorpej int
637 1.2 thorpej pthread_mutexattr_init(pthread_mutexattr_t *attr)
638 1.2 thorpej {
639 1.56 christos if (__predict_false(__uselibcstub))
640 1.56 christos return __libc_mutexattr_init_stub(attr);
641 1.2 thorpej
642 1.2 thorpej attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
643 1.44 ad attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
644 1.2 thorpej return 0;
645 1.2 thorpej }
646 1.2 thorpej
647 1.2 thorpej int
648 1.2 thorpej pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
649 1.2 thorpej {
650 1.56 christos if (__predict_false(__uselibcstub))
651 1.56 christos return __libc_mutexattr_destroy_stub(attr);
652 1.2 thorpej
653 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
654 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
655 1.2 thorpej
656 1.2 thorpej return 0;
657 1.2 thorpej }
658 1.2 thorpej
659 1.2 thorpej int
660 1.2 thorpej pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
661 1.2 thorpej {
662 1.60 christos
663 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
664 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
665 1.2 thorpej
666 1.60 christos *typep = MUTEX_GET_TYPE(attr->ptma_private);
667 1.2 thorpej return 0;
668 1.2 thorpej }
669 1.2 thorpej
670 1.2 thorpej int
671 1.2 thorpej pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
672 1.2 thorpej {
673 1.60 christos
674 1.56 christos if (__predict_false(__uselibcstub))
675 1.56 christos return __libc_mutexattr_settype_stub(attr, type);
676 1.2 thorpej
677 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
678 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
679 1.13 nathanw
680 1.2 thorpej switch (type) {
681 1.2 thorpej case PTHREAD_MUTEX_NORMAL:
682 1.2 thorpej case PTHREAD_MUTEX_ERRORCHECK:
683 1.2 thorpej case PTHREAD_MUTEX_RECURSIVE:
684 1.60 christos MUTEX_SET_TYPE(attr->ptma_private, type);
685 1.60 christos return 0;
686 1.60 christos default:
687 1.60 christos return EINVAL;
688 1.60 christos }
689 1.60 christos }
690 1.60 christos
691 1.60 christos int
692 1.60 christos pthread_mutexattr_getprotocol(const pthread_mutexattr_t *attr, int*proto)
693 1.60 christos {
694 1.60 christos
695 1.60 christos pthread__error(EINVAL, "Invalid mutex attribute",
696 1.60 christos attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
697 1.60 christos
698 1.60 christos *proto = MUTEX_GET_PROTOCOL(attr->ptma_private);
699 1.60 christos return 0;
700 1.60 christos }
701 1.60 christos
702 1.60 christos int
703 1.60 christos pthread_mutexattr_setprotocol(pthread_mutexattr_t* attr, int proto)
704 1.60 christos {
705 1.60 christos
706 1.60 christos pthread__error(EINVAL, "Invalid mutex attribute",
707 1.60 christos attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
708 1.60 christos
709 1.60 christos switch (proto) {
710 1.60 christos case PTHREAD_PRIO_NONE:
711 1.60 christos case PTHREAD_PRIO_PROTECT:
712 1.60 christos MUTEX_SET_PROTOCOL(attr->ptma_private, proto);
713 1.44 ad return 0;
714 1.60 christos case PTHREAD_PRIO_INHERIT:
715 1.60 christos return ENOTSUP;
716 1.2 thorpej default:
717 1.2 thorpej return EINVAL;
718 1.2 thorpej }
719 1.2 thorpej }
720 1.2 thorpej
721 1.60 christos int
722 1.60 christos pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *attr, int *ceil)
723 1.60 christos {
724 1.60 christos
725 1.60 christos pthread__error(EINVAL, "Invalid mutex attribute",
726 1.60 christos attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
727 1.60 christos
728 1.60 christos *ceil = MUTEX_GET_CEILING(attr->ptma_private);
729 1.60 christos return 0;
730 1.60 christos }
731 1.60 christos
732 1.60 christos int
733 1.60 christos pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr, int ceil)
734 1.60 christos {
735 1.60 christos
736 1.60 christos pthread__error(EINVAL, "Invalid mutex attribute",
737 1.60 christos attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
738 1.60 christos
739 1.60 christos if (ceil & ~0xff)
740 1.60 christos return EINVAL;
741 1.60 christos
742 1.60 christos MUTEX_SET_CEILING(attr->ptma_private, ceil);
743 1.60 christos return 0;
744 1.60 christos }
745 1.60 christos
746 1.60 christos #ifdef _PTHREAD_PSHARED
747 1.60 christos int
748 1.60 christos pthread_mutexattr_getpshared(const pthread_mutexattr_t * __restrict attr,
749 1.60 christos int * __restrict pshared)
750 1.60 christos {
751 1.60 christos
752 1.60 christos *pshared = PTHREAD_PROCESS_PRIVATE;
753 1.60 christos return 0;
754 1.60 christos }
755 1.60 christos
756 1.60 christos int
757 1.60 christos pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
758 1.60 christos {
759 1.60 christos
760 1.60 christos switch(pshared) {
761 1.60 christos case PTHREAD_PROCESS_PRIVATE:
762 1.60 christos return 0;
763 1.60 christos case PTHREAD_PROCESS_SHARED:
764 1.60 christos return ENOSYS;
765 1.60 christos }
766 1.60 christos return EINVAL;
767 1.60 christos }
768 1.60 christos #endif
769 1.60 christos
770 1.55 yamt /*
771 1.55 yamt * pthread__mutex_deferwake: try to defer unparking threads in self->pt_waiters
772 1.55 yamt *
773 1.55 yamt * In order to avoid unnecessary contention on the interlocking mutex,
774 1.55 yamt * we defer waking up threads until we unlock the mutex. The threads will
775 1.55 yamt * be woken up when the calling thread (self) releases the first mutex with
776 1.55 yamt * MUTEX_DEFERRED_BIT set. It likely be the mutex 'ptm', but no problem
777 1.55 yamt * even if it isn't.
778 1.55 yamt */
779 1.55 yamt
780 1.50 ad void
781 1.50 ad pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
782 1.33 ad {
783 1.33 ad
784 1.50 ad if (__predict_false(ptm == NULL ||
785 1.50 ad MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
786 1.50 ad (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
787 1.50 ad __UNVOLATILE(&ptm->ptm_waiters));
788 1.50 ad self->pt_nwaiters = 0;
789 1.50 ad } else {
790 1.50 ad atomic_or_ulong((volatile unsigned long *)
791 1.50 ad (uintptr_t)&ptm->ptm_owner,
792 1.50 ad (unsigned long)MUTEX_DEFERRED_BIT);
793 1.50 ad }
794 1.33 ad }
795 1.33 ad
796 1.39 ad int
797 1.61 skrll pthread_mutex_getprioceiling(const pthread_mutex_t *ptm, int *ceil)
798 1.60 christos {
799 1.60 christos *ceil = (unsigned int)ptm->ptm_ceiling;
800 1.60 christos return 0;
801 1.60 christos }
802 1.60 christos
803 1.60 christos int
804 1.60 christos pthread_mutex_setprioceiling(pthread_mutex_t *ptm, int ceil, int *old_ceil)
805 1.60 christos {
806 1.60 christos int error;
807 1.60 christos
808 1.60 christos error = pthread_mutex_lock(ptm);
809 1.60 christos if (error == 0) {
810 1.60 christos *old_ceil = (unsigned int)ptm->ptm_ceiling;
811 1.60 christos /*check range*/
812 1.60 christos ptm->ptm_ceiling = (unsigned char)ceil;
813 1.60 christos pthread_mutex_unlock(ptm);
814 1.60 christos }
815 1.60 christos return error;
816 1.60 christos }
817 1.60 christos
818 1.60 christos int
819 1.44 ad _pthread_mutex_held_np(pthread_mutex_t *ptm)
820 1.39 ad {
821 1.39 ad
822 1.44 ad return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
823 1.39 ad }
824 1.39 ad
825 1.39 ad pthread_t
826 1.44 ad _pthread_mutex_owner_np(pthread_mutex_t *ptm)
827 1.39 ad {
828 1.39 ad
829 1.44 ad return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
830 1.39 ad }
831