pthread_mutex.c revision 1.64 1 1.64 kre /* $NetBSD: pthread_mutex.c,v 1.64 2017/12/08 09:24:31 kre Exp $ */
2 1.2 thorpej
3 1.2 thorpej /*-
4 1.44 ad * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 thorpej * All rights reserved.
6 1.2 thorpej *
7 1.2 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.27 ad * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 1.2 thorpej *
10 1.2 thorpej * Redistribution and use in source and binary forms, with or without
11 1.2 thorpej * modification, are permitted provided that the following conditions
12 1.2 thorpej * are met:
13 1.2 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.2 thorpej * notice, this list of conditions and the following disclaimer.
15 1.2 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.2 thorpej * documentation and/or other materials provided with the distribution.
18 1.2 thorpej *
19 1.2 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.2 thorpej */
31 1.2 thorpej
32 1.49 ad /*
33 1.49 ad * To track threads waiting for mutexes to be released, we use lockless
34 1.49 ad * lists built on atomic operations and memory barriers.
35 1.49 ad *
36 1.49 ad * A simple spinlock would be faster and make the code easier to
37 1.49 ad * follow, but spinlocks are problematic in userspace. If a thread is
38 1.49 ad * preempted by the kernel while holding a spinlock, any other thread
39 1.49 ad * attempting to acquire that spinlock will needlessly busy wait.
40 1.49 ad *
41 1.49 ad * There is no good way to know that the holding thread is no longer
42 1.49 ad * running, nor to request a wake-up once it has begun running again.
43 1.49 ad * Of more concern, threads in the SCHED_FIFO class do not have a
44 1.49 ad * limited time quantum and so could spin forever, preventing the
45 1.49 ad * thread holding the spinlock from getting CPU time: it would never
46 1.49 ad * be released.
47 1.49 ad */
48 1.49 ad
49 1.2 thorpej #include <sys/cdefs.h>
50 1.64 kre __RCSID("$NetBSD: pthread_mutex.c,v 1.64 2017/12/08 09:24:31 kre Exp $");
51 1.40 ad
52 1.40 ad #include <sys/types.h>
53 1.44 ad #include <sys/lwpctl.h>
54 1.60 christos #include <sys/sched.h>
55 1.51 matt #include <sys/lock.h>
56 1.10 lukem
57 1.2 thorpej #include <errno.h>
58 1.2 thorpej #include <limits.h>
59 1.2 thorpej #include <stdlib.h>
60 1.56 christos #include <time.h>
61 1.6 scw #include <string.h>
62 1.44 ad #include <stdio.h>
63 1.2 thorpej
64 1.2 thorpej #include "pthread.h"
65 1.2 thorpej #include "pthread_int.h"
66 1.56 christos #include "reentrant.h"
67 1.2 thorpej
68 1.44 ad #define MUTEX_WAITERS_BIT ((uintptr_t)0x01)
69 1.44 ad #define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02)
70 1.44 ad #define MUTEX_DEFERRED_BIT ((uintptr_t)0x04)
71 1.60 christos #define MUTEX_PROTECT_BIT ((uintptr_t)0x08)
72 1.60 christos #define MUTEX_THREAD ((uintptr_t)~0x0f)
73 1.44 ad
74 1.44 ad #define MUTEX_HAS_WAITERS(x) ((uintptr_t)(x) & MUTEX_WAITERS_BIT)
75 1.44 ad #define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
76 1.60 christos #define MUTEX_PROTECT(x) ((uintptr_t)(x) & MUTEX_PROTECT_BIT)
77 1.44 ad #define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD)
78 1.44 ad
79 1.60 christos #define MUTEX_GET_TYPE(x) \
80 1.60 christos ((int)(((uintptr_t)(x) & 0x000000ff) >> 0))
81 1.60 christos #define MUTEX_SET_TYPE(x, t) \
82 1.60 christos (x) = (void *)(((uintptr_t)(x) & ~0x000000ff) | ((t) << 0))
83 1.60 christos #define MUTEX_GET_PROTOCOL(x) \
84 1.60 christos ((int)(((uintptr_t)(x) & 0x0000ff00) >> 8))
85 1.60 christos #define MUTEX_SET_PROTOCOL(x, p) \
86 1.60 christos (x) = (void *)(((uintptr_t)(x) & ~0x0000ff00) | ((p) << 8))
87 1.60 christos #define MUTEX_GET_CEILING(x) \
88 1.60 christos ((int)(((uintptr_t)(x) & 0x00ff0000) >> 16))
89 1.60 christos #define MUTEX_SET_CEILING(x, c) \
90 1.60 christos (x) = (void *)(((uintptr_t)(x) & ~0x00ff0000) | ((c) << 16))
91 1.60 christos
92 1.44 ad #if __GNUC_PREREQ__(3, 0)
93 1.44 ad #define NOINLINE __attribute ((noinline))
94 1.44 ad #else
95 1.44 ad #define NOINLINE /* nothing */
96 1.44 ad #endif
97 1.44 ad
98 1.44 ad static void pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
99 1.60 christos static int pthread__mutex_lock_slow(pthread_mutex_t *,
100 1.60 christos const struct timespec *);
101 1.44 ad static int pthread__mutex_unlock_slow(pthread_mutex_t *);
102 1.44 ad static void pthread__mutex_pause(void);
103 1.2 thorpej
104 1.39 ad int _pthread_mutex_held_np(pthread_mutex_t *);
105 1.39 ad pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
106 1.39 ad
107 1.39 ad __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
108 1.39 ad __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
109 1.39 ad
110 1.2 thorpej __strong_alias(__libc_mutex_init,pthread_mutex_init)
111 1.2 thorpej __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
112 1.2 thorpej __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
113 1.2 thorpej __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
114 1.2 thorpej __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
115 1.4 thorpej
116 1.4 thorpej __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
117 1.4 thorpej __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
118 1.5 thorpej __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
119 1.2 thorpej
120 1.2 thorpej int
121 1.44 ad pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
122 1.2 thorpej {
123 1.60 christos uintptr_t type, proto, val, ceil;
124 1.2 thorpej
125 1.56 christos if (__predict_false(__uselibcstub))
126 1.56 christos return __libc_mutex_init_stub(ptm, attr);
127 1.56 christos
128 1.60 christos if (attr == NULL) {
129 1.44 ad type = PTHREAD_MUTEX_NORMAL;
130 1.60 christos proto = PTHREAD_PRIO_NONE;
131 1.60 christos ceil = 0;
132 1.60 christos } else {
133 1.60 christos val = (uintptr_t)attr->ptma_private;
134 1.2 thorpej
135 1.60 christos type = MUTEX_GET_TYPE(val);
136 1.60 christos proto = MUTEX_GET_PROTOCOL(val);
137 1.60 christos ceil = MUTEX_GET_CEILING(val);
138 1.60 christos }
139 1.44 ad switch (type) {
140 1.44 ad case PTHREAD_MUTEX_ERRORCHECK:
141 1.51 matt __cpu_simple_lock_set(&ptm->ptm_errorcheck);
142 1.44 ad ptm->ptm_owner = NULL;
143 1.44 ad break;
144 1.44 ad case PTHREAD_MUTEX_RECURSIVE:
145 1.51 matt __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
146 1.44 ad ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
147 1.44 ad break;
148 1.44 ad default:
149 1.51 matt __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
150 1.44 ad ptm->ptm_owner = NULL;
151 1.44 ad break;
152 1.2 thorpej }
153 1.60 christos switch (proto) {
154 1.60 christos case PTHREAD_PRIO_PROTECT:
155 1.60 christos val = (uintptr_t)ptm->ptm_owner;
156 1.60 christos val |= MUTEX_PROTECT_BIT;
157 1.60 christos ptm->ptm_owner = (void *)val;
158 1.60 christos break;
159 1.2 thorpej
160 1.60 christos }
161 1.44 ad ptm->ptm_magic = _PT_MUTEX_MAGIC;
162 1.44 ad ptm->ptm_waiters = NULL;
163 1.45 ad ptm->ptm_recursed = 0;
164 1.60 christos ptm->ptm_ceiling = (unsigned char)ceil;
165 1.2 thorpej
166 1.2 thorpej return 0;
167 1.2 thorpej }
168 1.2 thorpej
169 1.2 thorpej int
170 1.44 ad pthread_mutex_destroy(pthread_mutex_t *ptm)
171 1.2 thorpej {
172 1.2 thorpej
173 1.56 christos if (__predict_false(__uselibcstub))
174 1.56 christos return __libc_mutex_destroy_stub(ptm);
175 1.56 christos
176 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
177 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
178 1.14 nathanw pthread__error(EBUSY, "Destroying locked mutex",
179 1.44 ad MUTEX_OWNER(ptm->ptm_owner) == 0);
180 1.2 thorpej
181 1.44 ad ptm->ptm_magic = _PT_MUTEX_DEAD;
182 1.2 thorpej return 0;
183 1.2 thorpej }
184 1.2 thorpej
185 1.2 thorpej int
186 1.44 ad pthread_mutex_lock(pthread_mutex_t *ptm)
187 1.2 thorpej {
188 1.27 ad pthread_t self;
189 1.44 ad void *val;
190 1.2 thorpej
191 1.56 christos if (__predict_false(__uselibcstub))
192 1.56 christos return __libc_mutex_lock_stub(ptm);
193 1.56 christos
194 1.27 ad self = pthread__self();
195 1.44 ad val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
196 1.44 ad if (__predict_true(val == NULL)) {
197 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
198 1.44 ad membar_enter();
199 1.44 ad #endif
200 1.44 ad return 0;
201 1.2 thorpej }
202 1.60 christos return pthread__mutex_lock_slow(ptm, NULL);
203 1.60 christos }
204 1.60 christos
205 1.60 christos int
206 1.60 christos pthread_mutex_timedlock(pthread_mutex_t* ptm, const struct timespec *ts)
207 1.60 christos {
208 1.60 christos pthread_t self;
209 1.60 christos void *val;
210 1.60 christos
211 1.60 christos self = pthread__self();
212 1.60 christos val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
213 1.60 christos if (__predict_true(val == NULL)) {
214 1.60 christos #ifndef PTHREAD__ATOMIC_IS_MEMBAR
215 1.60 christos membar_enter();
216 1.60 christos #endif
217 1.60 christos return 0;
218 1.60 christos }
219 1.60 christos return pthread__mutex_lock_slow(ptm, ts);
220 1.44 ad }
221 1.2 thorpej
222 1.44 ad /* We want function call overhead. */
223 1.44 ad NOINLINE static void
224 1.44 ad pthread__mutex_pause(void)
225 1.44 ad {
226 1.2 thorpej
227 1.44 ad pthread__smt_pause();
228 1.2 thorpej }
229 1.2 thorpej
230 1.44 ad /*
231 1.44 ad * Spin while the holder is running. 'lwpctl' gives us the true
232 1.44 ad * status of the thread. pt_blocking is set by libpthread in order
233 1.44 ad * to cut out system call and kernel spinlock overhead on remote CPUs
234 1.44 ad * (could represent many thousands of clock cycles). pt_blocking also
235 1.44 ad * makes this thread yield if the target is calling sched_yield().
236 1.44 ad */
237 1.44 ad NOINLINE static void *
238 1.44 ad pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
239 1.44 ad {
240 1.44 ad pthread_t thread;
241 1.44 ad unsigned int count, i;
242 1.44 ad
243 1.44 ad for (count = 2;; owner = ptm->ptm_owner) {
244 1.44 ad thread = (pthread_t)MUTEX_OWNER(owner);
245 1.44 ad if (thread == NULL)
246 1.44 ad break;
247 1.44 ad if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
248 1.44 ad thread->pt_blocking)
249 1.44 ad break;
250 1.44 ad if (count < 128)
251 1.44 ad count += count;
252 1.44 ad for (i = count; i != 0; i--)
253 1.44 ad pthread__mutex_pause();
254 1.44 ad }
255 1.2 thorpej
256 1.44 ad return owner;
257 1.44 ad }
258 1.44 ad
259 1.59 rmind NOINLINE static void
260 1.59 rmind pthread__mutex_setwaiters(pthread_t self, pthread_mutex_t *ptm)
261 1.59 rmind {
262 1.59 rmind void *new, *owner;
263 1.59 rmind
264 1.59 rmind /*
265 1.59 rmind * Note that the mutex can become unlocked before we set
266 1.59 rmind * the waiters bit. If that happens it's not safe to sleep
267 1.59 rmind * as we may never be awoken: we must remove the current
268 1.59 rmind * thread from the waiters list and try again.
269 1.59 rmind *
270 1.59 rmind * Because we are doing this atomically, we can't remove
271 1.59 rmind * one waiter: we must remove all waiters and awken them,
272 1.59 rmind * then sleep in _lwp_park() until we have been awoken.
273 1.59 rmind *
274 1.59 rmind * Issue a memory barrier to ensure that we are reading
275 1.59 rmind * the value of ptm_owner/pt_mutexwait after we have entered
276 1.59 rmind * the waiters list (the CAS itself must be atomic).
277 1.59 rmind */
278 1.59 rmind again:
279 1.59 rmind membar_consumer();
280 1.59 rmind owner = ptm->ptm_owner;
281 1.59 rmind
282 1.59 rmind if (MUTEX_OWNER(owner) == 0) {
283 1.59 rmind pthread__mutex_wakeup(self, ptm);
284 1.59 rmind return;
285 1.59 rmind }
286 1.59 rmind if (!MUTEX_HAS_WAITERS(owner)) {
287 1.59 rmind new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
288 1.59 rmind if (atomic_cas_ptr(&ptm->ptm_owner, owner, new) != owner) {
289 1.59 rmind goto again;
290 1.59 rmind }
291 1.59 rmind }
292 1.59 rmind
293 1.59 rmind /*
294 1.59 rmind * Note that pthread_mutex_unlock() can do a non-interlocked CAS.
295 1.59 rmind * We cannot know if the presence of the waiters bit is stable
296 1.59 rmind * while the holding thread is running. There are many assumptions;
297 1.59 rmind * see sys/kern/kern_mutex.c for details. In short, we must spin if
298 1.59 rmind * we see that the holder is running again.
299 1.59 rmind */
300 1.59 rmind membar_sync();
301 1.63 christos if (MUTEX_OWNER(owner) != (uintptr_t)self)
302 1.63 christos pthread__mutex_spin(ptm, owner);
303 1.59 rmind
304 1.59 rmind if (membar_consumer(), !MUTEX_HAS_WAITERS(ptm->ptm_owner)) {
305 1.59 rmind goto again;
306 1.59 rmind }
307 1.59 rmind }
308 1.59 rmind
309 1.44 ad NOINLINE static int
310 1.60 christos pthread__mutex_lock_slow(pthread_mutex_t *ptm, const struct timespec *ts)
311 1.2 thorpej {
312 1.44 ad void *waiters, *new, *owner, *next;
313 1.44 ad pthread_t self;
314 1.57 christos int serrno;
315 1.60 christos int error;
316 1.2 thorpej
317 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
318 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
319 1.44 ad
320 1.44 ad owner = ptm->ptm_owner;
321 1.44 ad self = pthread__self();
322 1.13 nathanw
323 1.44 ad /* Recursive or errorcheck? */
324 1.44 ad if (MUTEX_OWNER(owner) == (uintptr_t)self) {
325 1.44 ad if (MUTEX_RECURSIVE(owner)) {
326 1.45 ad if (ptm->ptm_recursed == INT_MAX)
327 1.44 ad return EAGAIN;
328 1.45 ad ptm->ptm_recursed++;
329 1.44 ad return 0;
330 1.29 ad }
331 1.51 matt if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
332 1.44 ad return EDEADLK;
333 1.44 ad }
334 1.29 ad
335 1.60 christos /* priority protect */
336 1.60 christos if (MUTEX_PROTECT(owner) && _sched_protect(ptm->ptm_ceiling) == -1) {
337 1.60 christos return errno;
338 1.60 christos }
339 1.57 christos serrno = errno;
340 1.44 ad for (;; owner = ptm->ptm_owner) {
341 1.44 ad /* Spin while the owner is running. */
342 1.63 christos if (MUTEX_OWNER(owner) != (uintptr_t)self)
343 1.63 christos owner = pthread__mutex_spin(ptm, owner);
344 1.44 ad
345 1.44 ad /* If it has become free, try to acquire it again. */
346 1.44 ad if (MUTEX_OWNER(owner) == 0) {
347 1.47 ad do {
348 1.44 ad new = (void *)
349 1.44 ad ((uintptr_t)self | (uintptr_t)owner);
350 1.44 ad next = atomic_cas_ptr(&ptm->ptm_owner, owner,
351 1.44 ad new);
352 1.44 ad if (next == owner) {
353 1.57 christos errno = serrno;
354 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
355 1.44 ad membar_enter();
356 1.44 ad #endif
357 1.44 ad return 0;
358 1.44 ad }
359 1.47 ad owner = next;
360 1.47 ad } while (MUTEX_OWNER(owner) == 0);
361 1.44 ad /*
362 1.44 ad * We have lost the race to acquire the mutex.
363 1.44 ad * The new owner could be running on another
364 1.44 ad * CPU, in which case we should spin and avoid
365 1.44 ad * the overhead of blocking.
366 1.44 ad */
367 1.47 ad continue;
368 1.44 ad }
369 1.21 chs
370 1.2 thorpej /*
371 1.44 ad * Nope, still held. Add thread to the list of waiters.
372 1.50 ad * Issue a memory barrier to ensure mutexwait/mutexnext
373 1.44 ad * are visible before we enter the waiters list.
374 1.2 thorpej */
375 1.50 ad self->pt_mutexwait = 1;
376 1.44 ad for (waiters = ptm->ptm_waiters;; waiters = next) {
377 1.50 ad self->pt_mutexnext = waiters;
378 1.44 ad membar_producer();
379 1.44 ad next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
380 1.44 ad if (next == waiters)
381 1.44 ad break;
382 1.44 ad }
383 1.21 chs
384 1.59 rmind /* Set the waiters bit and block. */
385 1.59 rmind pthread__mutex_setwaiters(self, ptm);
386 1.21 chs
387 1.29 ad /*
388 1.44 ad * We may have been awoken by the current thread above,
389 1.44 ad * or will be awoken by the current holder of the mutex.
390 1.44 ad * The key requirement is that we must not proceed until
391 1.50 ad * told that we are no longer waiting (via pt_mutexwait
392 1.44 ad * being set to zero). Otherwise it is unsafe to re-enter
393 1.44 ad * the thread onto the waiters list.
394 1.29 ad */
395 1.50 ad while (self->pt_mutexwait) {
396 1.44 ad self->pt_blocking++;
397 1.64 kre error = _lwp_park(CLOCK_REALTIME, TIMER_ABSTIME,
398 1.64 kre __UNCONST(ts), self->pt_unpark,
399 1.64 kre __UNVOLATILE(&ptm->ptm_waiters),
400 1.50 ad __UNVOLATILE(&ptm->ptm_waiters));
401 1.50 ad self->pt_unpark = 0;
402 1.44 ad self->pt_blocking--;
403 1.44 ad membar_sync();
404 1.60 christos if (__predict_true(error != -1)) {
405 1.60 christos continue;
406 1.60 christos }
407 1.60 christos if (errno == ETIMEDOUT && self->pt_mutexwait) {
408 1.60 christos /*Remove self from waiters list*/
409 1.60 christos pthread__mutex_wakeup(self, ptm);
410 1.60 christos /*priority protect*/
411 1.60 christos if (MUTEX_PROTECT(owner))
412 1.60 christos (void)_sched_protect(-1);
413 1.60 christos return ETIMEDOUT;
414 1.60 christos }
415 1.44 ad }
416 1.2 thorpej }
417 1.2 thorpej }
418 1.2 thorpej
419 1.2 thorpej int
420 1.44 ad pthread_mutex_trylock(pthread_mutex_t *ptm)
421 1.2 thorpej {
422 1.27 ad pthread_t self;
423 1.46 ad void *val, *new, *next;
424 1.2 thorpej
425 1.56 christos if (__predict_false(__uselibcstub))
426 1.56 christos return __libc_mutex_trylock_stub(ptm);
427 1.56 christos
428 1.27 ad self = pthread__self();
429 1.44 ad val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
430 1.44 ad if (__predict_true(val == NULL)) {
431 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
432 1.44 ad membar_enter();
433 1.44 ad #endif
434 1.44 ad return 0;
435 1.44 ad }
436 1.27 ad
437 1.46 ad if (MUTEX_RECURSIVE(val)) {
438 1.46 ad if (MUTEX_OWNER(val) == 0) {
439 1.46 ad new = (void *)((uintptr_t)self | (uintptr_t)val);
440 1.46 ad next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
441 1.46 ad if (__predict_true(next == val)) {
442 1.46 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
443 1.46 ad membar_enter();
444 1.46 ad #endif
445 1.46 ad return 0;
446 1.46 ad }
447 1.46 ad }
448 1.46 ad if (MUTEX_OWNER(val) == (uintptr_t)self) {
449 1.46 ad if (ptm->ptm_recursed == INT_MAX)
450 1.46 ad return EAGAIN;
451 1.46 ad ptm->ptm_recursed++;
452 1.46 ad return 0;
453 1.46 ad }
454 1.2 thorpej }
455 1.2 thorpej
456 1.44 ad return EBUSY;
457 1.2 thorpej }
458 1.2 thorpej
459 1.2 thorpej int
460 1.44 ad pthread_mutex_unlock(pthread_mutex_t *ptm)
461 1.2 thorpej {
462 1.27 ad pthread_t self;
463 1.44 ad void *value;
464 1.44 ad
465 1.56 christos if (__predict_false(__uselibcstub))
466 1.56 christos return __libc_mutex_unlock_stub(ptm);
467 1.56 christos
468 1.44 ad /*
469 1.44 ad * Note this may be a non-interlocked CAS. See lock_slow()
470 1.44 ad * above and sys/kern/kern_mutex.c for details.
471 1.44 ad */
472 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
473 1.44 ad membar_exit();
474 1.44 ad #endif
475 1.44 ad self = pthread__self();
476 1.44 ad value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
477 1.54 matt if (__predict_true(value == self)) {
478 1.54 matt pthread__smt_wake();
479 1.44 ad return 0;
480 1.54 matt }
481 1.44 ad return pthread__mutex_unlock_slow(ptm);
482 1.44 ad }
483 1.44 ad
484 1.44 ad NOINLINE static int
485 1.44 ad pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
486 1.44 ad {
487 1.44 ad pthread_t self, owner, new;
488 1.44 ad int weown, error, deferred;
489 1.13 nathanw
490 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
491 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
492 1.44 ad
493 1.44 ad self = pthread__self();
494 1.44 ad owner = ptm->ptm_owner;
495 1.44 ad weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
496 1.44 ad deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
497 1.44 ad error = 0;
498 1.44 ad
499 1.51 matt if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
500 1.44 ad if (!weown) {
501 1.44 ad error = EPERM;
502 1.44 ad new = owner;
503 1.44 ad } else {
504 1.44 ad new = NULL;
505 1.44 ad }
506 1.44 ad } else if (MUTEX_RECURSIVE(owner)) {
507 1.44 ad if (!weown) {
508 1.44 ad error = EPERM;
509 1.44 ad new = owner;
510 1.45 ad } else if (ptm->ptm_recursed) {
511 1.45 ad ptm->ptm_recursed--;
512 1.44 ad new = owner;
513 1.44 ad } else {
514 1.44 ad new = (pthread_t)MUTEX_RECURSIVE_BIT;
515 1.44 ad }
516 1.44 ad } else {
517 1.44 ad pthread__error(EPERM,
518 1.44 ad "Unlocking unlocked mutex", (owner != NULL));
519 1.44 ad pthread__error(EPERM,
520 1.44 ad "Unlocking mutex owned by another thread", weown);
521 1.44 ad new = NULL;
522 1.44 ad }
523 1.2 thorpej
524 1.2 thorpej /*
525 1.44 ad * Release the mutex. If there appear to be waiters, then
526 1.44 ad * wake them up.
527 1.2 thorpej */
528 1.44 ad if (new != owner) {
529 1.44 ad owner = atomic_swap_ptr(&ptm->ptm_owner, new);
530 1.60 christos if (__predict_false(MUTEX_PROTECT(owner))) {
531 1.60 christos /* restore elevated priority */
532 1.60 christos (void)_sched_protect(-1);
533 1.60 christos }
534 1.44 ad if (MUTEX_HAS_WAITERS(owner) != 0) {
535 1.44 ad pthread__mutex_wakeup(self, ptm);
536 1.2 thorpej return 0;
537 1.2 thorpej }
538 1.44 ad }
539 1.44 ad
540 1.44 ad /*
541 1.44 ad * There were no waiters, but we may have deferred waking
542 1.44 ad * other threads until mutex unlock - we must wake them now.
543 1.44 ad */
544 1.44 ad if (!deferred)
545 1.44 ad return error;
546 1.44 ad
547 1.44 ad if (self->pt_nwaiters == 1) {
548 1.44 ad /*
549 1.44 ad * If the calling thread is about to block, defer
550 1.44 ad * unparking the target until _lwp_park() is called.
551 1.44 ad */
552 1.44 ad if (self->pt_willpark && self->pt_unpark == 0) {
553 1.44 ad self->pt_unpark = self->pt_waiters[0];
554 1.44 ad } else {
555 1.44 ad (void)_lwp_unpark(self->pt_waiters[0],
556 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
557 1.15 nathanw }
558 1.44 ad } else {
559 1.44 ad (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
560 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
561 1.2 thorpej }
562 1.44 ad self->pt_nwaiters = 0;
563 1.2 thorpej
564 1.44 ad return error;
565 1.44 ad }
566 1.44 ad
567 1.55 yamt /*
568 1.55 yamt * pthread__mutex_wakeup: unpark threads waiting for us
569 1.55 yamt *
570 1.55 yamt * unpark threads on the ptm->ptm_waiters list and self->pt_waiters.
571 1.55 yamt */
572 1.55 yamt
573 1.44 ad static void
574 1.44 ad pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
575 1.44 ad {
576 1.44 ad pthread_t thread, next;
577 1.44 ad ssize_t n, rv;
578 1.27 ad
579 1.8 nathanw /*
580 1.44 ad * Take ownership of the current set of waiters. No
581 1.44 ad * need for a memory barrier following this, all loads
582 1.44 ad * are dependent upon 'thread'.
583 1.8 nathanw */
584 1.44 ad thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
585 1.54 matt pthread__smt_wake();
586 1.44 ad
587 1.44 ad for (;;) {
588 1.44 ad /*
589 1.44 ad * Pull waiters from the queue and add to our list.
590 1.44 ad * Use a memory barrier to ensure that we safely
591 1.50 ad * read the value of pt_mutexnext before 'thread'
592 1.50 ad * sees pt_mutexwait being cleared.
593 1.44 ad */
594 1.44 ad for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
595 1.44 ad n < pthread__unpark_max && thread != NULL;
596 1.44 ad thread = next) {
597 1.50 ad next = thread->pt_mutexnext;
598 1.44 ad if (thread != self) {
599 1.44 ad self->pt_waiters[n++] = thread->pt_lid;
600 1.44 ad membar_sync();
601 1.44 ad }
602 1.50 ad thread->pt_mutexwait = 0;
603 1.44 ad /* No longer safe to touch 'thread' */
604 1.44 ad }
605 1.44 ad
606 1.44 ad switch (n) {
607 1.44 ad case 0:
608 1.44 ad return;
609 1.44 ad case 1:
610 1.44 ad /*
611 1.44 ad * If the calling thread is about to block,
612 1.44 ad * defer unparking the target until _lwp_park()
613 1.44 ad * is called.
614 1.44 ad */
615 1.44 ad if (self->pt_willpark && self->pt_unpark == 0) {
616 1.44 ad self->pt_unpark = self->pt_waiters[0];
617 1.44 ad return;
618 1.44 ad }
619 1.44 ad rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
620 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
621 1.44 ad if (rv != 0 && errno != EALREADY && errno != EINTR &&
622 1.44 ad errno != ESRCH) {
623 1.44 ad pthread__errorfunc(__FILE__, __LINE__,
624 1.44 ad __func__, "_lwp_unpark failed");
625 1.44 ad }
626 1.44 ad return;
627 1.44 ad default:
628 1.44 ad rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
629 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
630 1.44 ad if (rv != 0 && errno != EINTR) {
631 1.44 ad pthread__errorfunc(__FILE__, __LINE__,
632 1.44 ad __func__, "_lwp_unpark_all failed");
633 1.44 ad }
634 1.44 ad break;
635 1.44 ad }
636 1.44 ad }
637 1.2 thorpej }
638 1.55 yamt
639 1.2 thorpej int
640 1.2 thorpej pthread_mutexattr_init(pthread_mutexattr_t *attr)
641 1.2 thorpej {
642 1.56 christos if (__predict_false(__uselibcstub))
643 1.56 christos return __libc_mutexattr_init_stub(attr);
644 1.2 thorpej
645 1.2 thorpej attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
646 1.44 ad attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
647 1.2 thorpej return 0;
648 1.2 thorpej }
649 1.2 thorpej
650 1.2 thorpej int
651 1.2 thorpej pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
652 1.2 thorpej {
653 1.56 christos if (__predict_false(__uselibcstub))
654 1.56 christos return __libc_mutexattr_destroy_stub(attr);
655 1.2 thorpej
656 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
657 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
658 1.2 thorpej
659 1.2 thorpej return 0;
660 1.2 thorpej }
661 1.2 thorpej
662 1.2 thorpej int
663 1.2 thorpej pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
664 1.2 thorpej {
665 1.60 christos
666 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
667 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
668 1.2 thorpej
669 1.60 christos *typep = MUTEX_GET_TYPE(attr->ptma_private);
670 1.2 thorpej return 0;
671 1.2 thorpej }
672 1.2 thorpej
673 1.2 thorpej int
674 1.2 thorpej pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
675 1.2 thorpej {
676 1.60 christos
677 1.56 christos if (__predict_false(__uselibcstub))
678 1.56 christos return __libc_mutexattr_settype_stub(attr, type);
679 1.2 thorpej
680 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
681 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
682 1.13 nathanw
683 1.2 thorpej switch (type) {
684 1.2 thorpej case PTHREAD_MUTEX_NORMAL:
685 1.2 thorpej case PTHREAD_MUTEX_ERRORCHECK:
686 1.2 thorpej case PTHREAD_MUTEX_RECURSIVE:
687 1.60 christos MUTEX_SET_TYPE(attr->ptma_private, type);
688 1.60 christos return 0;
689 1.60 christos default:
690 1.60 christos return EINVAL;
691 1.60 christos }
692 1.60 christos }
693 1.60 christos
694 1.60 christos int
695 1.60 christos pthread_mutexattr_getprotocol(const pthread_mutexattr_t *attr, int*proto)
696 1.60 christos {
697 1.60 christos
698 1.60 christos pthread__error(EINVAL, "Invalid mutex attribute",
699 1.60 christos attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
700 1.60 christos
701 1.60 christos *proto = MUTEX_GET_PROTOCOL(attr->ptma_private);
702 1.60 christos return 0;
703 1.60 christos }
704 1.60 christos
705 1.60 christos int
706 1.60 christos pthread_mutexattr_setprotocol(pthread_mutexattr_t* attr, int proto)
707 1.60 christos {
708 1.60 christos
709 1.60 christos pthread__error(EINVAL, "Invalid mutex attribute",
710 1.60 christos attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
711 1.60 christos
712 1.60 christos switch (proto) {
713 1.60 christos case PTHREAD_PRIO_NONE:
714 1.60 christos case PTHREAD_PRIO_PROTECT:
715 1.60 christos MUTEX_SET_PROTOCOL(attr->ptma_private, proto);
716 1.44 ad return 0;
717 1.60 christos case PTHREAD_PRIO_INHERIT:
718 1.60 christos return ENOTSUP;
719 1.2 thorpej default:
720 1.2 thorpej return EINVAL;
721 1.2 thorpej }
722 1.2 thorpej }
723 1.2 thorpej
724 1.60 christos int
725 1.60 christos pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *attr, int *ceil)
726 1.60 christos {
727 1.60 christos
728 1.60 christos pthread__error(EINVAL, "Invalid mutex attribute",
729 1.60 christos attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
730 1.60 christos
731 1.60 christos *ceil = MUTEX_GET_CEILING(attr->ptma_private);
732 1.60 christos return 0;
733 1.60 christos }
734 1.60 christos
735 1.60 christos int
736 1.60 christos pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr, int ceil)
737 1.60 christos {
738 1.60 christos
739 1.60 christos pthread__error(EINVAL, "Invalid mutex attribute",
740 1.60 christos attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
741 1.60 christos
742 1.60 christos if (ceil & ~0xff)
743 1.60 christos return EINVAL;
744 1.60 christos
745 1.60 christos MUTEX_SET_CEILING(attr->ptma_private, ceil);
746 1.60 christos return 0;
747 1.60 christos }
748 1.60 christos
749 1.60 christos #ifdef _PTHREAD_PSHARED
750 1.60 christos int
751 1.60 christos pthread_mutexattr_getpshared(const pthread_mutexattr_t * __restrict attr,
752 1.60 christos int * __restrict pshared)
753 1.60 christos {
754 1.60 christos
755 1.60 christos *pshared = PTHREAD_PROCESS_PRIVATE;
756 1.60 christos return 0;
757 1.60 christos }
758 1.60 christos
759 1.60 christos int
760 1.60 christos pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
761 1.60 christos {
762 1.60 christos
763 1.60 christos switch(pshared) {
764 1.60 christos case PTHREAD_PROCESS_PRIVATE:
765 1.60 christos return 0;
766 1.60 christos case PTHREAD_PROCESS_SHARED:
767 1.60 christos return ENOSYS;
768 1.60 christos }
769 1.60 christos return EINVAL;
770 1.60 christos }
771 1.60 christos #endif
772 1.60 christos
773 1.55 yamt /*
774 1.55 yamt * pthread__mutex_deferwake: try to defer unparking threads in self->pt_waiters
775 1.55 yamt *
776 1.55 yamt * In order to avoid unnecessary contention on the interlocking mutex,
777 1.55 yamt * we defer waking up threads until we unlock the mutex. The threads will
778 1.55 yamt * be woken up when the calling thread (self) releases the first mutex with
779 1.55 yamt * MUTEX_DEFERRED_BIT set. It likely be the mutex 'ptm', but no problem
780 1.55 yamt * even if it isn't.
781 1.55 yamt */
782 1.55 yamt
783 1.50 ad void
784 1.50 ad pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
785 1.33 ad {
786 1.33 ad
787 1.50 ad if (__predict_false(ptm == NULL ||
788 1.50 ad MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
789 1.50 ad (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
790 1.50 ad __UNVOLATILE(&ptm->ptm_waiters));
791 1.50 ad self->pt_nwaiters = 0;
792 1.50 ad } else {
793 1.50 ad atomic_or_ulong((volatile unsigned long *)
794 1.50 ad (uintptr_t)&ptm->ptm_owner,
795 1.50 ad (unsigned long)MUTEX_DEFERRED_BIT);
796 1.50 ad }
797 1.33 ad }
798 1.33 ad
799 1.39 ad int
800 1.61 skrll pthread_mutex_getprioceiling(const pthread_mutex_t *ptm, int *ceil)
801 1.60 christos {
802 1.62 skrll *ceil = ptm->ptm_ceiling;
803 1.60 christos return 0;
804 1.60 christos }
805 1.60 christos
806 1.60 christos int
807 1.60 christos pthread_mutex_setprioceiling(pthread_mutex_t *ptm, int ceil, int *old_ceil)
808 1.60 christos {
809 1.60 christos int error;
810 1.60 christos
811 1.60 christos error = pthread_mutex_lock(ptm);
812 1.60 christos if (error == 0) {
813 1.62 skrll *old_ceil = ptm->ptm_ceiling;
814 1.60 christos /*check range*/
815 1.62 skrll ptm->ptm_ceiling = ceil;
816 1.60 christos pthread_mutex_unlock(ptm);
817 1.60 christos }
818 1.60 christos return error;
819 1.60 christos }
820 1.60 christos
821 1.60 christos int
822 1.44 ad _pthread_mutex_held_np(pthread_mutex_t *ptm)
823 1.39 ad {
824 1.39 ad
825 1.44 ad return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
826 1.39 ad }
827 1.39 ad
828 1.39 ad pthread_t
829 1.44 ad _pthread_mutex_owner_np(pthread_mutex_t *ptm)
830 1.39 ad {
831 1.39 ad
832 1.44 ad return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
833 1.39 ad }
834