pthread_mutex.c revision 1.65 1 1.65 christos /* $NetBSD: pthread_mutex.c,v 1.65 2019/03/05 22:49:38 christos Exp $ */
2 1.2 thorpej
3 1.2 thorpej /*-
4 1.44 ad * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 thorpej * All rights reserved.
6 1.2 thorpej *
7 1.2 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.27 ad * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 1.2 thorpej *
10 1.2 thorpej * Redistribution and use in source and binary forms, with or without
11 1.2 thorpej * modification, are permitted provided that the following conditions
12 1.2 thorpej * are met:
13 1.2 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.2 thorpej * notice, this list of conditions and the following disclaimer.
15 1.2 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.2 thorpej * documentation and/or other materials provided with the distribution.
18 1.2 thorpej *
19 1.2 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.2 thorpej */
31 1.2 thorpej
32 1.49 ad /*
33 1.49 ad * To track threads waiting for mutexes to be released, we use lockless
34 1.49 ad * lists built on atomic operations and memory barriers.
35 1.49 ad *
36 1.49 ad * A simple spinlock would be faster and make the code easier to
37 1.49 ad * follow, but spinlocks are problematic in userspace. If a thread is
38 1.49 ad * preempted by the kernel while holding a spinlock, any other thread
39 1.49 ad * attempting to acquire that spinlock will needlessly busy wait.
40 1.49 ad *
41 1.49 ad * There is no good way to know that the holding thread is no longer
42 1.49 ad * running, nor to request a wake-up once it has begun running again.
43 1.49 ad * Of more concern, threads in the SCHED_FIFO class do not have a
44 1.49 ad * limited time quantum and so could spin forever, preventing the
45 1.49 ad * thread holding the spinlock from getting CPU time: it would never
46 1.49 ad * be released.
47 1.49 ad */
48 1.49 ad
49 1.2 thorpej #include <sys/cdefs.h>
50 1.65 christos __RCSID("$NetBSD: pthread_mutex.c,v 1.65 2019/03/05 22:49:38 christos Exp $");
51 1.40 ad
52 1.40 ad #include <sys/types.h>
53 1.44 ad #include <sys/lwpctl.h>
54 1.60 christos #include <sys/sched.h>
55 1.51 matt #include <sys/lock.h>
56 1.10 lukem
57 1.2 thorpej #include <errno.h>
58 1.2 thorpej #include <limits.h>
59 1.2 thorpej #include <stdlib.h>
60 1.56 christos #include <time.h>
61 1.6 scw #include <string.h>
62 1.44 ad #include <stdio.h>
63 1.2 thorpej
64 1.2 thorpej #include "pthread.h"
65 1.2 thorpej #include "pthread_int.h"
66 1.56 christos #include "reentrant.h"
67 1.2 thorpej
68 1.44 ad #define MUTEX_WAITERS_BIT ((uintptr_t)0x01)
69 1.44 ad #define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02)
70 1.44 ad #define MUTEX_DEFERRED_BIT ((uintptr_t)0x04)
71 1.60 christos #define MUTEX_PROTECT_BIT ((uintptr_t)0x08)
72 1.60 christos #define MUTEX_THREAD ((uintptr_t)~0x0f)
73 1.44 ad
74 1.44 ad #define MUTEX_HAS_WAITERS(x) ((uintptr_t)(x) & MUTEX_WAITERS_BIT)
75 1.44 ad #define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
76 1.60 christos #define MUTEX_PROTECT(x) ((uintptr_t)(x) & MUTEX_PROTECT_BIT)
77 1.44 ad #define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD)
78 1.44 ad
79 1.60 christos #define MUTEX_GET_TYPE(x) \
80 1.60 christos ((int)(((uintptr_t)(x) & 0x000000ff) >> 0))
81 1.60 christos #define MUTEX_SET_TYPE(x, t) \
82 1.60 christos (x) = (void *)(((uintptr_t)(x) & ~0x000000ff) | ((t) << 0))
83 1.60 christos #define MUTEX_GET_PROTOCOL(x) \
84 1.60 christos ((int)(((uintptr_t)(x) & 0x0000ff00) >> 8))
85 1.60 christos #define MUTEX_SET_PROTOCOL(x, p) \
86 1.60 christos (x) = (void *)(((uintptr_t)(x) & ~0x0000ff00) | ((p) << 8))
87 1.60 christos #define MUTEX_GET_CEILING(x) \
88 1.60 christos ((int)(((uintptr_t)(x) & 0x00ff0000) >> 16))
89 1.60 christos #define MUTEX_SET_CEILING(x, c) \
90 1.60 christos (x) = (void *)(((uintptr_t)(x) & ~0x00ff0000) | ((c) << 16))
91 1.60 christos
92 1.44 ad #if __GNUC_PREREQ__(3, 0)
93 1.44 ad #define NOINLINE __attribute ((noinline))
94 1.44 ad #else
95 1.44 ad #define NOINLINE /* nothing */
96 1.44 ad #endif
97 1.44 ad
98 1.44 ad static void pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
99 1.60 christos static int pthread__mutex_lock_slow(pthread_mutex_t *,
100 1.60 christos const struct timespec *);
101 1.44 ad static int pthread__mutex_unlock_slow(pthread_mutex_t *);
102 1.44 ad static void pthread__mutex_pause(void);
103 1.2 thorpej
104 1.39 ad int _pthread_mutex_held_np(pthread_mutex_t *);
105 1.39 ad pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
106 1.39 ad
107 1.39 ad __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
108 1.39 ad __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
109 1.39 ad
110 1.2 thorpej __strong_alias(__libc_mutex_init,pthread_mutex_init)
111 1.2 thorpej __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
112 1.2 thorpej __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
113 1.2 thorpej __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
114 1.2 thorpej __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
115 1.4 thorpej
116 1.4 thorpej __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
117 1.4 thorpej __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
118 1.5 thorpej __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
119 1.2 thorpej
120 1.2 thorpej int
121 1.44 ad pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
122 1.2 thorpej {
123 1.60 christos uintptr_t type, proto, val, ceil;
124 1.2 thorpej
125 1.65 christos #if 0
126 1.65 christos /*
127 1.65 christos * Always initialize the mutex structure, maybe be used later
128 1.65 christos * and the cost should be minimal.
129 1.65 christos */
130 1.56 christos if (__predict_false(__uselibcstub))
131 1.56 christos return __libc_mutex_init_stub(ptm, attr);
132 1.65 christos #endif
133 1.56 christos
134 1.60 christos if (attr == NULL) {
135 1.44 ad type = PTHREAD_MUTEX_NORMAL;
136 1.60 christos proto = PTHREAD_PRIO_NONE;
137 1.60 christos ceil = 0;
138 1.60 christos } else {
139 1.60 christos val = (uintptr_t)attr->ptma_private;
140 1.2 thorpej
141 1.60 christos type = MUTEX_GET_TYPE(val);
142 1.60 christos proto = MUTEX_GET_PROTOCOL(val);
143 1.60 christos ceil = MUTEX_GET_CEILING(val);
144 1.60 christos }
145 1.44 ad switch (type) {
146 1.44 ad case PTHREAD_MUTEX_ERRORCHECK:
147 1.51 matt __cpu_simple_lock_set(&ptm->ptm_errorcheck);
148 1.44 ad ptm->ptm_owner = NULL;
149 1.44 ad break;
150 1.44 ad case PTHREAD_MUTEX_RECURSIVE:
151 1.51 matt __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
152 1.44 ad ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
153 1.44 ad break;
154 1.44 ad default:
155 1.51 matt __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
156 1.44 ad ptm->ptm_owner = NULL;
157 1.44 ad break;
158 1.2 thorpej }
159 1.60 christos switch (proto) {
160 1.60 christos case PTHREAD_PRIO_PROTECT:
161 1.60 christos val = (uintptr_t)ptm->ptm_owner;
162 1.60 christos val |= MUTEX_PROTECT_BIT;
163 1.60 christos ptm->ptm_owner = (void *)val;
164 1.60 christos break;
165 1.2 thorpej
166 1.60 christos }
167 1.44 ad ptm->ptm_magic = _PT_MUTEX_MAGIC;
168 1.44 ad ptm->ptm_waiters = NULL;
169 1.45 ad ptm->ptm_recursed = 0;
170 1.60 christos ptm->ptm_ceiling = (unsigned char)ceil;
171 1.2 thorpej
172 1.2 thorpej return 0;
173 1.2 thorpej }
174 1.2 thorpej
175 1.2 thorpej int
176 1.44 ad pthread_mutex_destroy(pthread_mutex_t *ptm)
177 1.2 thorpej {
178 1.2 thorpej
179 1.56 christos if (__predict_false(__uselibcstub))
180 1.56 christos return __libc_mutex_destroy_stub(ptm);
181 1.56 christos
182 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
183 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
184 1.14 nathanw pthread__error(EBUSY, "Destroying locked mutex",
185 1.44 ad MUTEX_OWNER(ptm->ptm_owner) == 0);
186 1.2 thorpej
187 1.44 ad ptm->ptm_magic = _PT_MUTEX_DEAD;
188 1.2 thorpej return 0;
189 1.2 thorpej }
190 1.2 thorpej
191 1.2 thorpej int
192 1.44 ad pthread_mutex_lock(pthread_mutex_t *ptm)
193 1.2 thorpej {
194 1.27 ad pthread_t self;
195 1.44 ad void *val;
196 1.2 thorpej
197 1.56 christos if (__predict_false(__uselibcstub))
198 1.56 christos return __libc_mutex_lock_stub(ptm);
199 1.56 christos
200 1.27 ad self = pthread__self();
201 1.44 ad val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
202 1.44 ad if (__predict_true(val == NULL)) {
203 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
204 1.44 ad membar_enter();
205 1.44 ad #endif
206 1.44 ad return 0;
207 1.2 thorpej }
208 1.60 christos return pthread__mutex_lock_slow(ptm, NULL);
209 1.60 christos }
210 1.60 christos
211 1.60 christos int
212 1.60 christos pthread_mutex_timedlock(pthread_mutex_t* ptm, const struct timespec *ts)
213 1.60 christos {
214 1.60 christos pthread_t self;
215 1.60 christos void *val;
216 1.60 christos
217 1.60 christos self = pthread__self();
218 1.60 christos val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
219 1.60 christos if (__predict_true(val == NULL)) {
220 1.60 christos #ifndef PTHREAD__ATOMIC_IS_MEMBAR
221 1.60 christos membar_enter();
222 1.60 christos #endif
223 1.60 christos return 0;
224 1.60 christos }
225 1.60 christos return pthread__mutex_lock_slow(ptm, ts);
226 1.44 ad }
227 1.2 thorpej
228 1.44 ad /* We want function call overhead. */
229 1.44 ad NOINLINE static void
230 1.44 ad pthread__mutex_pause(void)
231 1.44 ad {
232 1.2 thorpej
233 1.44 ad pthread__smt_pause();
234 1.2 thorpej }
235 1.2 thorpej
236 1.44 ad /*
237 1.44 ad * Spin while the holder is running. 'lwpctl' gives us the true
238 1.44 ad * status of the thread. pt_blocking is set by libpthread in order
239 1.44 ad * to cut out system call and kernel spinlock overhead on remote CPUs
240 1.44 ad * (could represent many thousands of clock cycles). pt_blocking also
241 1.44 ad * makes this thread yield if the target is calling sched_yield().
242 1.44 ad */
243 1.44 ad NOINLINE static void *
244 1.44 ad pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
245 1.44 ad {
246 1.44 ad pthread_t thread;
247 1.44 ad unsigned int count, i;
248 1.44 ad
249 1.44 ad for (count = 2;; owner = ptm->ptm_owner) {
250 1.44 ad thread = (pthread_t)MUTEX_OWNER(owner);
251 1.44 ad if (thread == NULL)
252 1.44 ad break;
253 1.44 ad if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE ||
254 1.44 ad thread->pt_blocking)
255 1.44 ad break;
256 1.44 ad if (count < 128)
257 1.44 ad count += count;
258 1.44 ad for (i = count; i != 0; i--)
259 1.44 ad pthread__mutex_pause();
260 1.44 ad }
261 1.2 thorpej
262 1.44 ad return owner;
263 1.44 ad }
264 1.44 ad
265 1.59 rmind NOINLINE static void
266 1.59 rmind pthread__mutex_setwaiters(pthread_t self, pthread_mutex_t *ptm)
267 1.59 rmind {
268 1.59 rmind void *new, *owner;
269 1.59 rmind
270 1.59 rmind /*
271 1.59 rmind * Note that the mutex can become unlocked before we set
272 1.59 rmind * the waiters bit. If that happens it's not safe to sleep
273 1.59 rmind * as we may never be awoken: we must remove the current
274 1.59 rmind * thread from the waiters list and try again.
275 1.59 rmind *
276 1.59 rmind * Because we are doing this atomically, we can't remove
277 1.59 rmind * one waiter: we must remove all waiters and awken them,
278 1.59 rmind * then sleep in _lwp_park() until we have been awoken.
279 1.59 rmind *
280 1.59 rmind * Issue a memory barrier to ensure that we are reading
281 1.59 rmind * the value of ptm_owner/pt_mutexwait after we have entered
282 1.59 rmind * the waiters list (the CAS itself must be atomic).
283 1.59 rmind */
284 1.59 rmind again:
285 1.59 rmind membar_consumer();
286 1.59 rmind owner = ptm->ptm_owner;
287 1.59 rmind
288 1.59 rmind if (MUTEX_OWNER(owner) == 0) {
289 1.59 rmind pthread__mutex_wakeup(self, ptm);
290 1.59 rmind return;
291 1.59 rmind }
292 1.59 rmind if (!MUTEX_HAS_WAITERS(owner)) {
293 1.59 rmind new = (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT);
294 1.59 rmind if (atomic_cas_ptr(&ptm->ptm_owner, owner, new) != owner) {
295 1.59 rmind goto again;
296 1.59 rmind }
297 1.59 rmind }
298 1.59 rmind
299 1.59 rmind /*
300 1.59 rmind * Note that pthread_mutex_unlock() can do a non-interlocked CAS.
301 1.59 rmind * We cannot know if the presence of the waiters bit is stable
302 1.59 rmind * while the holding thread is running. There are many assumptions;
303 1.59 rmind * see sys/kern/kern_mutex.c for details. In short, we must spin if
304 1.59 rmind * we see that the holder is running again.
305 1.59 rmind */
306 1.59 rmind membar_sync();
307 1.63 christos if (MUTEX_OWNER(owner) != (uintptr_t)self)
308 1.63 christos pthread__mutex_spin(ptm, owner);
309 1.59 rmind
310 1.59 rmind if (membar_consumer(), !MUTEX_HAS_WAITERS(ptm->ptm_owner)) {
311 1.59 rmind goto again;
312 1.59 rmind }
313 1.59 rmind }
314 1.59 rmind
315 1.44 ad NOINLINE static int
316 1.60 christos pthread__mutex_lock_slow(pthread_mutex_t *ptm, const struct timespec *ts)
317 1.2 thorpej {
318 1.44 ad void *waiters, *new, *owner, *next;
319 1.44 ad pthread_t self;
320 1.57 christos int serrno;
321 1.60 christos int error;
322 1.2 thorpej
323 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
324 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
325 1.44 ad
326 1.44 ad owner = ptm->ptm_owner;
327 1.44 ad self = pthread__self();
328 1.13 nathanw
329 1.44 ad /* Recursive or errorcheck? */
330 1.44 ad if (MUTEX_OWNER(owner) == (uintptr_t)self) {
331 1.44 ad if (MUTEX_RECURSIVE(owner)) {
332 1.45 ad if (ptm->ptm_recursed == INT_MAX)
333 1.44 ad return EAGAIN;
334 1.45 ad ptm->ptm_recursed++;
335 1.44 ad return 0;
336 1.29 ad }
337 1.51 matt if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
338 1.44 ad return EDEADLK;
339 1.44 ad }
340 1.29 ad
341 1.60 christos /* priority protect */
342 1.60 christos if (MUTEX_PROTECT(owner) && _sched_protect(ptm->ptm_ceiling) == -1) {
343 1.60 christos return errno;
344 1.60 christos }
345 1.57 christos serrno = errno;
346 1.44 ad for (;; owner = ptm->ptm_owner) {
347 1.44 ad /* Spin while the owner is running. */
348 1.63 christos if (MUTEX_OWNER(owner) != (uintptr_t)self)
349 1.63 christos owner = pthread__mutex_spin(ptm, owner);
350 1.44 ad
351 1.44 ad /* If it has become free, try to acquire it again. */
352 1.44 ad if (MUTEX_OWNER(owner) == 0) {
353 1.47 ad do {
354 1.44 ad new = (void *)
355 1.44 ad ((uintptr_t)self | (uintptr_t)owner);
356 1.44 ad next = atomic_cas_ptr(&ptm->ptm_owner, owner,
357 1.44 ad new);
358 1.44 ad if (next == owner) {
359 1.57 christos errno = serrno;
360 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
361 1.44 ad membar_enter();
362 1.44 ad #endif
363 1.44 ad return 0;
364 1.44 ad }
365 1.47 ad owner = next;
366 1.47 ad } while (MUTEX_OWNER(owner) == 0);
367 1.44 ad /*
368 1.44 ad * We have lost the race to acquire the mutex.
369 1.44 ad * The new owner could be running on another
370 1.44 ad * CPU, in which case we should spin and avoid
371 1.44 ad * the overhead of blocking.
372 1.44 ad */
373 1.47 ad continue;
374 1.44 ad }
375 1.21 chs
376 1.2 thorpej /*
377 1.44 ad * Nope, still held. Add thread to the list of waiters.
378 1.50 ad * Issue a memory barrier to ensure mutexwait/mutexnext
379 1.44 ad * are visible before we enter the waiters list.
380 1.2 thorpej */
381 1.50 ad self->pt_mutexwait = 1;
382 1.44 ad for (waiters = ptm->ptm_waiters;; waiters = next) {
383 1.50 ad self->pt_mutexnext = waiters;
384 1.44 ad membar_producer();
385 1.44 ad next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
386 1.44 ad if (next == waiters)
387 1.44 ad break;
388 1.44 ad }
389 1.21 chs
390 1.59 rmind /* Set the waiters bit and block. */
391 1.59 rmind pthread__mutex_setwaiters(self, ptm);
392 1.21 chs
393 1.29 ad /*
394 1.44 ad * We may have been awoken by the current thread above,
395 1.44 ad * or will be awoken by the current holder of the mutex.
396 1.44 ad * The key requirement is that we must not proceed until
397 1.50 ad * told that we are no longer waiting (via pt_mutexwait
398 1.44 ad * being set to zero). Otherwise it is unsafe to re-enter
399 1.44 ad * the thread onto the waiters list.
400 1.29 ad */
401 1.50 ad while (self->pt_mutexwait) {
402 1.44 ad self->pt_blocking++;
403 1.64 kre error = _lwp_park(CLOCK_REALTIME, TIMER_ABSTIME,
404 1.64 kre __UNCONST(ts), self->pt_unpark,
405 1.64 kre __UNVOLATILE(&ptm->ptm_waiters),
406 1.50 ad __UNVOLATILE(&ptm->ptm_waiters));
407 1.50 ad self->pt_unpark = 0;
408 1.44 ad self->pt_blocking--;
409 1.44 ad membar_sync();
410 1.60 christos if (__predict_true(error != -1)) {
411 1.60 christos continue;
412 1.60 christos }
413 1.60 christos if (errno == ETIMEDOUT && self->pt_mutexwait) {
414 1.60 christos /*Remove self from waiters list*/
415 1.60 christos pthread__mutex_wakeup(self, ptm);
416 1.60 christos /*priority protect*/
417 1.60 christos if (MUTEX_PROTECT(owner))
418 1.60 christos (void)_sched_protect(-1);
419 1.60 christos return ETIMEDOUT;
420 1.60 christos }
421 1.44 ad }
422 1.2 thorpej }
423 1.2 thorpej }
424 1.2 thorpej
425 1.2 thorpej int
426 1.44 ad pthread_mutex_trylock(pthread_mutex_t *ptm)
427 1.2 thorpej {
428 1.27 ad pthread_t self;
429 1.46 ad void *val, *new, *next;
430 1.2 thorpej
431 1.56 christos if (__predict_false(__uselibcstub))
432 1.56 christos return __libc_mutex_trylock_stub(ptm);
433 1.56 christos
434 1.27 ad self = pthread__self();
435 1.44 ad val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
436 1.44 ad if (__predict_true(val == NULL)) {
437 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
438 1.44 ad membar_enter();
439 1.44 ad #endif
440 1.44 ad return 0;
441 1.44 ad }
442 1.27 ad
443 1.46 ad if (MUTEX_RECURSIVE(val)) {
444 1.46 ad if (MUTEX_OWNER(val) == 0) {
445 1.46 ad new = (void *)((uintptr_t)self | (uintptr_t)val);
446 1.46 ad next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
447 1.46 ad if (__predict_true(next == val)) {
448 1.46 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
449 1.46 ad membar_enter();
450 1.46 ad #endif
451 1.46 ad return 0;
452 1.46 ad }
453 1.46 ad }
454 1.46 ad if (MUTEX_OWNER(val) == (uintptr_t)self) {
455 1.46 ad if (ptm->ptm_recursed == INT_MAX)
456 1.46 ad return EAGAIN;
457 1.46 ad ptm->ptm_recursed++;
458 1.46 ad return 0;
459 1.46 ad }
460 1.2 thorpej }
461 1.2 thorpej
462 1.44 ad return EBUSY;
463 1.2 thorpej }
464 1.2 thorpej
465 1.2 thorpej int
466 1.44 ad pthread_mutex_unlock(pthread_mutex_t *ptm)
467 1.2 thorpej {
468 1.27 ad pthread_t self;
469 1.44 ad void *value;
470 1.44 ad
471 1.56 christos if (__predict_false(__uselibcstub))
472 1.56 christos return __libc_mutex_unlock_stub(ptm);
473 1.56 christos
474 1.44 ad /*
475 1.44 ad * Note this may be a non-interlocked CAS. See lock_slow()
476 1.44 ad * above and sys/kern/kern_mutex.c for details.
477 1.44 ad */
478 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
479 1.44 ad membar_exit();
480 1.44 ad #endif
481 1.44 ad self = pthread__self();
482 1.44 ad value = atomic_cas_ptr_ni(&ptm->ptm_owner, self, NULL);
483 1.54 matt if (__predict_true(value == self)) {
484 1.54 matt pthread__smt_wake();
485 1.44 ad return 0;
486 1.54 matt }
487 1.44 ad return pthread__mutex_unlock_slow(ptm);
488 1.44 ad }
489 1.44 ad
490 1.44 ad NOINLINE static int
491 1.44 ad pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
492 1.44 ad {
493 1.44 ad pthread_t self, owner, new;
494 1.44 ad int weown, error, deferred;
495 1.13 nathanw
496 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
497 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
498 1.44 ad
499 1.44 ad self = pthread__self();
500 1.44 ad owner = ptm->ptm_owner;
501 1.44 ad weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
502 1.44 ad deferred = (int)((uintptr_t)owner & MUTEX_DEFERRED_BIT);
503 1.44 ad error = 0;
504 1.44 ad
505 1.51 matt if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
506 1.44 ad if (!weown) {
507 1.44 ad error = EPERM;
508 1.44 ad new = owner;
509 1.44 ad } else {
510 1.44 ad new = NULL;
511 1.44 ad }
512 1.44 ad } else if (MUTEX_RECURSIVE(owner)) {
513 1.44 ad if (!weown) {
514 1.44 ad error = EPERM;
515 1.44 ad new = owner;
516 1.45 ad } else if (ptm->ptm_recursed) {
517 1.45 ad ptm->ptm_recursed--;
518 1.44 ad new = owner;
519 1.44 ad } else {
520 1.44 ad new = (pthread_t)MUTEX_RECURSIVE_BIT;
521 1.44 ad }
522 1.44 ad } else {
523 1.44 ad pthread__error(EPERM,
524 1.44 ad "Unlocking unlocked mutex", (owner != NULL));
525 1.44 ad pthread__error(EPERM,
526 1.44 ad "Unlocking mutex owned by another thread", weown);
527 1.44 ad new = NULL;
528 1.44 ad }
529 1.2 thorpej
530 1.2 thorpej /*
531 1.44 ad * Release the mutex. If there appear to be waiters, then
532 1.44 ad * wake them up.
533 1.2 thorpej */
534 1.44 ad if (new != owner) {
535 1.44 ad owner = atomic_swap_ptr(&ptm->ptm_owner, new);
536 1.60 christos if (__predict_false(MUTEX_PROTECT(owner))) {
537 1.60 christos /* restore elevated priority */
538 1.60 christos (void)_sched_protect(-1);
539 1.60 christos }
540 1.44 ad if (MUTEX_HAS_WAITERS(owner) != 0) {
541 1.44 ad pthread__mutex_wakeup(self, ptm);
542 1.2 thorpej return 0;
543 1.2 thorpej }
544 1.44 ad }
545 1.44 ad
546 1.44 ad /*
547 1.44 ad * There were no waiters, but we may have deferred waking
548 1.44 ad * other threads until mutex unlock - we must wake them now.
549 1.44 ad */
550 1.44 ad if (!deferred)
551 1.44 ad return error;
552 1.44 ad
553 1.44 ad if (self->pt_nwaiters == 1) {
554 1.44 ad /*
555 1.44 ad * If the calling thread is about to block, defer
556 1.44 ad * unparking the target until _lwp_park() is called.
557 1.44 ad */
558 1.44 ad if (self->pt_willpark && self->pt_unpark == 0) {
559 1.44 ad self->pt_unpark = self->pt_waiters[0];
560 1.44 ad } else {
561 1.44 ad (void)_lwp_unpark(self->pt_waiters[0],
562 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
563 1.15 nathanw }
564 1.44 ad } else {
565 1.44 ad (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
566 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
567 1.2 thorpej }
568 1.44 ad self->pt_nwaiters = 0;
569 1.2 thorpej
570 1.44 ad return error;
571 1.44 ad }
572 1.44 ad
573 1.55 yamt /*
574 1.55 yamt * pthread__mutex_wakeup: unpark threads waiting for us
575 1.55 yamt *
576 1.55 yamt * unpark threads on the ptm->ptm_waiters list and self->pt_waiters.
577 1.55 yamt */
578 1.55 yamt
579 1.44 ad static void
580 1.44 ad pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
581 1.44 ad {
582 1.44 ad pthread_t thread, next;
583 1.44 ad ssize_t n, rv;
584 1.27 ad
585 1.8 nathanw /*
586 1.44 ad * Take ownership of the current set of waiters. No
587 1.44 ad * need for a memory barrier following this, all loads
588 1.44 ad * are dependent upon 'thread'.
589 1.8 nathanw */
590 1.44 ad thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
591 1.54 matt pthread__smt_wake();
592 1.44 ad
593 1.44 ad for (;;) {
594 1.44 ad /*
595 1.44 ad * Pull waiters from the queue and add to our list.
596 1.44 ad * Use a memory barrier to ensure that we safely
597 1.50 ad * read the value of pt_mutexnext before 'thread'
598 1.50 ad * sees pt_mutexwait being cleared.
599 1.44 ad */
600 1.44 ad for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
601 1.44 ad n < pthread__unpark_max && thread != NULL;
602 1.44 ad thread = next) {
603 1.50 ad next = thread->pt_mutexnext;
604 1.44 ad if (thread != self) {
605 1.44 ad self->pt_waiters[n++] = thread->pt_lid;
606 1.44 ad membar_sync();
607 1.44 ad }
608 1.50 ad thread->pt_mutexwait = 0;
609 1.44 ad /* No longer safe to touch 'thread' */
610 1.44 ad }
611 1.44 ad
612 1.44 ad switch (n) {
613 1.44 ad case 0:
614 1.44 ad return;
615 1.44 ad case 1:
616 1.44 ad /*
617 1.44 ad * If the calling thread is about to block,
618 1.44 ad * defer unparking the target until _lwp_park()
619 1.44 ad * is called.
620 1.44 ad */
621 1.44 ad if (self->pt_willpark && self->pt_unpark == 0) {
622 1.44 ad self->pt_unpark = self->pt_waiters[0];
623 1.44 ad return;
624 1.44 ad }
625 1.44 ad rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
626 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
627 1.44 ad if (rv != 0 && errno != EALREADY && errno != EINTR &&
628 1.44 ad errno != ESRCH) {
629 1.44 ad pthread__errorfunc(__FILE__, __LINE__,
630 1.44 ad __func__, "_lwp_unpark failed");
631 1.44 ad }
632 1.44 ad return;
633 1.44 ad default:
634 1.44 ad rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
635 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
636 1.44 ad if (rv != 0 && errno != EINTR) {
637 1.44 ad pthread__errorfunc(__FILE__, __LINE__,
638 1.44 ad __func__, "_lwp_unpark_all failed");
639 1.44 ad }
640 1.44 ad break;
641 1.44 ad }
642 1.44 ad }
643 1.2 thorpej }
644 1.55 yamt
645 1.2 thorpej int
646 1.2 thorpej pthread_mutexattr_init(pthread_mutexattr_t *attr)
647 1.2 thorpej {
648 1.56 christos if (__predict_false(__uselibcstub))
649 1.56 christos return __libc_mutexattr_init_stub(attr);
650 1.2 thorpej
651 1.2 thorpej attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
652 1.44 ad attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
653 1.2 thorpej return 0;
654 1.2 thorpej }
655 1.2 thorpej
656 1.2 thorpej int
657 1.2 thorpej pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
658 1.2 thorpej {
659 1.56 christos if (__predict_false(__uselibcstub))
660 1.56 christos return __libc_mutexattr_destroy_stub(attr);
661 1.2 thorpej
662 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
663 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
664 1.2 thorpej
665 1.2 thorpej return 0;
666 1.2 thorpej }
667 1.2 thorpej
668 1.2 thorpej int
669 1.2 thorpej pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
670 1.2 thorpej {
671 1.60 christos
672 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
673 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
674 1.2 thorpej
675 1.60 christos *typep = MUTEX_GET_TYPE(attr->ptma_private);
676 1.2 thorpej return 0;
677 1.2 thorpej }
678 1.2 thorpej
679 1.2 thorpej int
680 1.2 thorpej pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
681 1.2 thorpej {
682 1.60 christos
683 1.56 christos if (__predict_false(__uselibcstub))
684 1.56 christos return __libc_mutexattr_settype_stub(attr, type);
685 1.2 thorpej
686 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
687 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
688 1.13 nathanw
689 1.2 thorpej switch (type) {
690 1.2 thorpej case PTHREAD_MUTEX_NORMAL:
691 1.2 thorpej case PTHREAD_MUTEX_ERRORCHECK:
692 1.2 thorpej case PTHREAD_MUTEX_RECURSIVE:
693 1.60 christos MUTEX_SET_TYPE(attr->ptma_private, type);
694 1.60 christos return 0;
695 1.60 christos default:
696 1.60 christos return EINVAL;
697 1.60 christos }
698 1.60 christos }
699 1.60 christos
700 1.60 christos int
701 1.60 christos pthread_mutexattr_getprotocol(const pthread_mutexattr_t *attr, int*proto)
702 1.60 christos {
703 1.60 christos
704 1.60 christos pthread__error(EINVAL, "Invalid mutex attribute",
705 1.60 christos attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
706 1.60 christos
707 1.60 christos *proto = MUTEX_GET_PROTOCOL(attr->ptma_private);
708 1.60 christos return 0;
709 1.60 christos }
710 1.60 christos
711 1.60 christos int
712 1.60 christos pthread_mutexattr_setprotocol(pthread_mutexattr_t* attr, int proto)
713 1.60 christos {
714 1.60 christos
715 1.60 christos pthread__error(EINVAL, "Invalid mutex attribute",
716 1.60 christos attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
717 1.60 christos
718 1.60 christos switch (proto) {
719 1.60 christos case PTHREAD_PRIO_NONE:
720 1.60 christos case PTHREAD_PRIO_PROTECT:
721 1.60 christos MUTEX_SET_PROTOCOL(attr->ptma_private, proto);
722 1.44 ad return 0;
723 1.60 christos case PTHREAD_PRIO_INHERIT:
724 1.60 christos return ENOTSUP;
725 1.2 thorpej default:
726 1.2 thorpej return EINVAL;
727 1.2 thorpej }
728 1.2 thorpej }
729 1.2 thorpej
730 1.60 christos int
731 1.60 christos pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *attr, int *ceil)
732 1.60 christos {
733 1.60 christos
734 1.60 christos pthread__error(EINVAL, "Invalid mutex attribute",
735 1.60 christos attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
736 1.60 christos
737 1.60 christos *ceil = MUTEX_GET_CEILING(attr->ptma_private);
738 1.60 christos return 0;
739 1.60 christos }
740 1.60 christos
741 1.60 christos int
742 1.60 christos pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr, int ceil)
743 1.60 christos {
744 1.60 christos
745 1.60 christos pthread__error(EINVAL, "Invalid mutex attribute",
746 1.60 christos attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
747 1.60 christos
748 1.60 christos if (ceil & ~0xff)
749 1.60 christos return EINVAL;
750 1.60 christos
751 1.60 christos MUTEX_SET_CEILING(attr->ptma_private, ceil);
752 1.60 christos return 0;
753 1.60 christos }
754 1.60 christos
755 1.60 christos #ifdef _PTHREAD_PSHARED
756 1.60 christos int
757 1.60 christos pthread_mutexattr_getpshared(const pthread_mutexattr_t * __restrict attr,
758 1.60 christos int * __restrict pshared)
759 1.60 christos {
760 1.60 christos
761 1.60 christos *pshared = PTHREAD_PROCESS_PRIVATE;
762 1.60 christos return 0;
763 1.60 christos }
764 1.60 christos
765 1.60 christos int
766 1.60 christos pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
767 1.60 christos {
768 1.60 christos
769 1.60 christos switch(pshared) {
770 1.60 christos case PTHREAD_PROCESS_PRIVATE:
771 1.60 christos return 0;
772 1.60 christos case PTHREAD_PROCESS_SHARED:
773 1.60 christos return ENOSYS;
774 1.60 christos }
775 1.60 christos return EINVAL;
776 1.60 christos }
777 1.60 christos #endif
778 1.60 christos
779 1.55 yamt /*
780 1.55 yamt * pthread__mutex_deferwake: try to defer unparking threads in self->pt_waiters
781 1.55 yamt *
782 1.55 yamt * In order to avoid unnecessary contention on the interlocking mutex,
783 1.55 yamt * we defer waking up threads until we unlock the mutex. The threads will
784 1.55 yamt * be woken up when the calling thread (self) releases the first mutex with
785 1.55 yamt * MUTEX_DEFERRED_BIT set. It likely be the mutex 'ptm', but no problem
786 1.55 yamt * even if it isn't.
787 1.55 yamt */
788 1.55 yamt
789 1.50 ad void
790 1.50 ad pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
791 1.33 ad {
792 1.33 ad
793 1.50 ad if (__predict_false(ptm == NULL ||
794 1.50 ad MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
795 1.50 ad (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
796 1.50 ad __UNVOLATILE(&ptm->ptm_waiters));
797 1.50 ad self->pt_nwaiters = 0;
798 1.50 ad } else {
799 1.50 ad atomic_or_ulong((volatile unsigned long *)
800 1.50 ad (uintptr_t)&ptm->ptm_owner,
801 1.50 ad (unsigned long)MUTEX_DEFERRED_BIT);
802 1.50 ad }
803 1.33 ad }
804 1.33 ad
805 1.39 ad int
806 1.61 skrll pthread_mutex_getprioceiling(const pthread_mutex_t *ptm, int *ceil)
807 1.60 christos {
808 1.62 skrll *ceil = ptm->ptm_ceiling;
809 1.60 christos return 0;
810 1.60 christos }
811 1.60 christos
812 1.60 christos int
813 1.60 christos pthread_mutex_setprioceiling(pthread_mutex_t *ptm, int ceil, int *old_ceil)
814 1.60 christos {
815 1.60 christos int error;
816 1.60 christos
817 1.60 christos error = pthread_mutex_lock(ptm);
818 1.60 christos if (error == 0) {
819 1.62 skrll *old_ceil = ptm->ptm_ceiling;
820 1.60 christos /*check range*/
821 1.62 skrll ptm->ptm_ceiling = ceil;
822 1.60 christos pthread_mutex_unlock(ptm);
823 1.60 christos }
824 1.60 christos return error;
825 1.60 christos }
826 1.60 christos
827 1.60 christos int
828 1.44 ad _pthread_mutex_held_np(pthread_mutex_t *ptm)
829 1.39 ad {
830 1.39 ad
831 1.44 ad return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
832 1.39 ad }
833 1.39 ad
834 1.39 ad pthread_t
835 1.44 ad _pthread_mutex_owner_np(pthread_mutex_t *ptm)
836 1.39 ad {
837 1.39 ad
838 1.44 ad return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
839 1.39 ad }
840