pthread_mutex.c revision 1.70 1 1.70 kamil /* $NetBSD: pthread_mutex.c,v 1.70 2020/01/29 21:11:24 kamil Exp $ */
2 1.2 thorpej
3 1.2 thorpej /*-
4 1.44 ad * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 thorpej * All rights reserved.
6 1.2 thorpej *
7 1.2 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.27 ad * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 1.2 thorpej *
10 1.2 thorpej * Redistribution and use in source and binary forms, with or without
11 1.2 thorpej * modification, are permitted provided that the following conditions
12 1.2 thorpej * are met:
13 1.2 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.2 thorpej * notice, this list of conditions and the following disclaimer.
15 1.2 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.2 thorpej * documentation and/or other materials provided with the distribution.
18 1.2 thorpej *
19 1.2 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.2 thorpej */
31 1.2 thorpej
32 1.49 ad /*
33 1.49 ad * To track threads waiting for mutexes to be released, we use lockless
34 1.49 ad * lists built on atomic operations and memory barriers.
35 1.49 ad *
36 1.49 ad * A simple spinlock would be faster and make the code easier to
37 1.49 ad * follow, but spinlocks are problematic in userspace. If a thread is
38 1.49 ad * preempted by the kernel while holding a spinlock, any other thread
39 1.49 ad * attempting to acquire that spinlock will needlessly busy wait.
40 1.49 ad *
41 1.49 ad * There is no good way to know that the holding thread is no longer
42 1.49 ad * running, nor to request a wake-up once it has begun running again.
43 1.49 ad * Of more concern, threads in the SCHED_FIFO class do not have a
44 1.49 ad * limited time quantum and so could spin forever, preventing the
45 1.49 ad * thread holding the spinlock from getting CPU time: it would never
46 1.49 ad * be released.
47 1.49 ad */
48 1.49 ad
49 1.2 thorpej #include <sys/cdefs.h>
50 1.70 kamil __RCSID("$NetBSD: pthread_mutex.c,v 1.70 2020/01/29 21:11:24 kamil Exp $");
51 1.40 ad
52 1.40 ad #include <sys/types.h>
53 1.44 ad #include <sys/lwpctl.h>
54 1.60 christos #include <sys/sched.h>
55 1.51 matt #include <sys/lock.h>
56 1.10 lukem
57 1.2 thorpej #include <errno.h>
58 1.2 thorpej #include <limits.h>
59 1.2 thorpej #include <stdlib.h>
60 1.56 christos #include <time.h>
61 1.6 scw #include <string.h>
62 1.44 ad #include <stdio.h>
63 1.2 thorpej
64 1.2 thorpej #include "pthread.h"
65 1.2 thorpej #include "pthread_int.h"
66 1.56 christos #include "reentrant.h"
67 1.2 thorpej
68 1.44 ad #define MUTEX_WAITERS_BIT ((uintptr_t)0x01)
69 1.44 ad #define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02)
70 1.44 ad #define MUTEX_DEFERRED_BIT ((uintptr_t)0x04)
71 1.60 christos #define MUTEX_PROTECT_BIT ((uintptr_t)0x08)
72 1.60 christos #define MUTEX_THREAD ((uintptr_t)~0x0f)
73 1.44 ad
74 1.44 ad #define MUTEX_HAS_WAITERS(x) ((uintptr_t)(x) & MUTEX_WAITERS_BIT)
75 1.44 ad #define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
76 1.60 christos #define MUTEX_PROTECT(x) ((uintptr_t)(x) & MUTEX_PROTECT_BIT)
77 1.44 ad #define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD)
78 1.44 ad
79 1.60 christos #define MUTEX_GET_TYPE(x) \
80 1.60 christos ((int)(((uintptr_t)(x) & 0x000000ff) >> 0))
81 1.60 christos #define MUTEX_SET_TYPE(x, t) \
82 1.60 christos (x) = (void *)(((uintptr_t)(x) & ~0x000000ff) | ((t) << 0))
83 1.60 christos #define MUTEX_GET_PROTOCOL(x) \
84 1.60 christos ((int)(((uintptr_t)(x) & 0x0000ff00) >> 8))
85 1.60 christos #define MUTEX_SET_PROTOCOL(x, p) \
86 1.60 christos (x) = (void *)(((uintptr_t)(x) & ~0x0000ff00) | ((p) << 8))
87 1.60 christos #define MUTEX_GET_CEILING(x) \
88 1.60 christos ((int)(((uintptr_t)(x) & 0x00ff0000) >> 16))
89 1.60 christos #define MUTEX_SET_CEILING(x, c) \
90 1.60 christos (x) = (void *)(((uintptr_t)(x) & ~0x00ff0000) | ((c) << 16))
91 1.60 christos
92 1.44 ad #if __GNUC_PREREQ__(3, 0)
93 1.44 ad #define NOINLINE __attribute ((noinline))
94 1.44 ad #else
95 1.44 ad #define NOINLINE /* nothing */
96 1.44 ad #endif
97 1.44 ad
98 1.44 ad static void pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
99 1.60 christos static int pthread__mutex_lock_slow(pthread_mutex_t *,
100 1.60 christos const struct timespec *);
101 1.44 ad static int pthread__mutex_unlock_slow(pthread_mutex_t *);
102 1.44 ad static void pthread__mutex_pause(void);
103 1.2 thorpej
104 1.39 ad int _pthread_mutex_held_np(pthread_mutex_t *);
105 1.39 ad pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
106 1.39 ad
107 1.39 ad __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
108 1.39 ad __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
109 1.39 ad
110 1.2 thorpej __strong_alias(__libc_mutex_init,pthread_mutex_init)
111 1.2 thorpej __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
112 1.2 thorpej __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
113 1.2 thorpej __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
114 1.2 thorpej __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
115 1.4 thorpej
116 1.4 thorpej __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
117 1.4 thorpej __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
118 1.5 thorpej __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
119 1.2 thorpej
120 1.2 thorpej int
121 1.44 ad pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
122 1.2 thorpej {
123 1.60 christos uintptr_t type, proto, val, ceil;
124 1.2 thorpej
125 1.65 christos #if 0
126 1.65 christos /*
127 1.65 christos * Always initialize the mutex structure, maybe be used later
128 1.65 christos * and the cost should be minimal.
129 1.65 christos */
130 1.56 christos if (__predict_false(__uselibcstub))
131 1.56 christos return __libc_mutex_init_stub(ptm, attr);
132 1.65 christos #endif
133 1.56 christos
134 1.60 christos if (attr == NULL) {
135 1.44 ad type = PTHREAD_MUTEX_NORMAL;
136 1.60 christos proto = PTHREAD_PRIO_NONE;
137 1.60 christos ceil = 0;
138 1.60 christos } else {
139 1.60 christos val = (uintptr_t)attr->ptma_private;
140 1.2 thorpej
141 1.60 christos type = MUTEX_GET_TYPE(val);
142 1.60 christos proto = MUTEX_GET_PROTOCOL(val);
143 1.60 christos ceil = MUTEX_GET_CEILING(val);
144 1.60 christos }
145 1.44 ad switch (type) {
146 1.44 ad case PTHREAD_MUTEX_ERRORCHECK:
147 1.51 matt __cpu_simple_lock_set(&ptm->ptm_errorcheck);
148 1.44 ad ptm->ptm_owner = NULL;
149 1.44 ad break;
150 1.44 ad case PTHREAD_MUTEX_RECURSIVE:
151 1.51 matt __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
152 1.44 ad ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
153 1.44 ad break;
154 1.44 ad default:
155 1.51 matt __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
156 1.44 ad ptm->ptm_owner = NULL;
157 1.44 ad break;
158 1.2 thorpej }
159 1.60 christos switch (proto) {
160 1.60 christos case PTHREAD_PRIO_PROTECT:
161 1.60 christos val = (uintptr_t)ptm->ptm_owner;
162 1.60 christos val |= MUTEX_PROTECT_BIT;
163 1.60 christos ptm->ptm_owner = (void *)val;
164 1.60 christos break;
165 1.2 thorpej
166 1.60 christos }
167 1.44 ad ptm->ptm_magic = _PT_MUTEX_MAGIC;
168 1.44 ad ptm->ptm_waiters = NULL;
169 1.45 ad ptm->ptm_recursed = 0;
170 1.60 christos ptm->ptm_ceiling = (unsigned char)ceil;
171 1.2 thorpej
172 1.2 thorpej return 0;
173 1.2 thorpej }
174 1.2 thorpej
175 1.2 thorpej int
176 1.44 ad pthread_mutex_destroy(pthread_mutex_t *ptm)
177 1.2 thorpej {
178 1.2 thorpej
179 1.56 christos if (__predict_false(__uselibcstub))
180 1.56 christos return __libc_mutex_destroy_stub(ptm);
181 1.56 christos
182 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
183 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
184 1.14 nathanw pthread__error(EBUSY, "Destroying locked mutex",
185 1.44 ad MUTEX_OWNER(ptm->ptm_owner) == 0);
186 1.2 thorpej
187 1.44 ad ptm->ptm_magic = _PT_MUTEX_DEAD;
188 1.2 thorpej return 0;
189 1.2 thorpej }
190 1.2 thorpej
191 1.2 thorpej int
192 1.44 ad pthread_mutex_lock(pthread_mutex_t *ptm)
193 1.2 thorpej {
194 1.27 ad pthread_t self;
195 1.44 ad void *val;
196 1.2 thorpej
197 1.56 christos if (__predict_false(__uselibcstub))
198 1.56 christos return __libc_mutex_lock_stub(ptm);
199 1.56 christos
200 1.70 kamil pthread__error(EINVAL, "Invalid mutex",
201 1.70 kamil ptm->ptm_magic == _PT_MUTEX_MAGIC);
202 1.70 kamil
203 1.27 ad self = pthread__self();
204 1.44 ad val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
205 1.44 ad if (__predict_true(val == NULL)) {
206 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
207 1.44 ad membar_enter();
208 1.44 ad #endif
209 1.44 ad return 0;
210 1.2 thorpej }
211 1.60 christos return pthread__mutex_lock_slow(ptm, NULL);
212 1.60 christos }
213 1.60 christos
214 1.60 christos int
215 1.60 christos pthread_mutex_timedlock(pthread_mutex_t* ptm, const struct timespec *ts)
216 1.60 christos {
217 1.60 christos pthread_t self;
218 1.60 christos void *val;
219 1.60 christos
220 1.70 kamil pthread__error(EINVAL, "Invalid mutex",
221 1.70 kamil ptm->ptm_magic == _PT_MUTEX_MAGIC);
222 1.70 kamil
223 1.60 christos self = pthread__self();
224 1.60 christos val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
225 1.60 christos if (__predict_true(val == NULL)) {
226 1.60 christos #ifndef PTHREAD__ATOMIC_IS_MEMBAR
227 1.60 christos membar_enter();
228 1.60 christos #endif
229 1.60 christos return 0;
230 1.60 christos }
231 1.60 christos return pthread__mutex_lock_slow(ptm, ts);
232 1.44 ad }
233 1.2 thorpej
234 1.44 ad /* We want function call overhead. */
235 1.44 ad NOINLINE static void
236 1.44 ad pthread__mutex_pause(void)
237 1.44 ad {
238 1.2 thorpej
239 1.44 ad pthread__smt_pause();
240 1.2 thorpej }
241 1.2 thorpej
242 1.44 ad /*
243 1.44 ad * Spin while the holder is running. 'lwpctl' gives us the true
244 1.66 ad * status of the thread.
245 1.44 ad */
246 1.44 ad NOINLINE static void *
247 1.44 ad pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
248 1.44 ad {
249 1.44 ad pthread_t thread;
250 1.44 ad unsigned int count, i;
251 1.44 ad
252 1.44 ad for (count = 2;; owner = ptm->ptm_owner) {
253 1.44 ad thread = (pthread_t)MUTEX_OWNER(owner);
254 1.44 ad if (thread == NULL)
255 1.44 ad break;
256 1.66 ad if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE)
257 1.44 ad break;
258 1.44 ad if (count < 128)
259 1.44 ad count += count;
260 1.44 ad for (i = count; i != 0; i--)
261 1.44 ad pthread__mutex_pause();
262 1.44 ad }
263 1.2 thorpej
264 1.44 ad return owner;
265 1.44 ad }
266 1.44 ad
267 1.66 ad NOINLINE static bool
268 1.59 rmind pthread__mutex_setwaiters(pthread_t self, pthread_mutex_t *ptm)
269 1.59 rmind {
270 1.66 ad void *owner, *next;
271 1.59 rmind
272 1.59 rmind /*
273 1.59 rmind * Note that the mutex can become unlocked before we set
274 1.59 rmind * the waiters bit. If that happens it's not safe to sleep
275 1.59 rmind * as we may never be awoken: we must remove the current
276 1.59 rmind * thread from the waiters list and try again.
277 1.59 rmind *
278 1.59 rmind * Because we are doing this atomically, we can't remove
279 1.59 rmind * one waiter: we must remove all waiters and awken them,
280 1.59 rmind * then sleep in _lwp_park() until we have been awoken.
281 1.59 rmind *
282 1.59 rmind * Issue a memory barrier to ensure that we are reading
283 1.59 rmind * the value of ptm_owner/pt_mutexwait after we have entered
284 1.59 rmind * the waiters list (the CAS itself must be atomic).
285 1.59 rmind */
286 1.66 ad for (owner = ptm->ptm_owner;; owner = next) {
287 1.66 ad if (MUTEX_OWNER(owner) == 0) {
288 1.66 ad pthread__mutex_wakeup(self, ptm);
289 1.66 ad return true;
290 1.66 ad }
291 1.66 ad if (MUTEX_HAS_WAITERS(owner)) {
292 1.66 ad return false;
293 1.59 rmind }
294 1.66 ad next = atomic_cas_ptr(&ptm->ptm_owner, owner,
295 1.66 ad (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT));
296 1.59 rmind }
297 1.59 rmind }
298 1.59 rmind
299 1.44 ad NOINLINE static int
300 1.60 christos pthread__mutex_lock_slow(pthread_mutex_t *ptm, const struct timespec *ts)
301 1.2 thorpej {
302 1.44 ad void *waiters, *new, *owner, *next;
303 1.44 ad pthread_t self;
304 1.57 christos int serrno;
305 1.60 christos int error;
306 1.2 thorpej
307 1.44 ad owner = ptm->ptm_owner;
308 1.44 ad self = pthread__self();
309 1.13 nathanw
310 1.44 ad /* Recursive or errorcheck? */
311 1.44 ad if (MUTEX_OWNER(owner) == (uintptr_t)self) {
312 1.44 ad if (MUTEX_RECURSIVE(owner)) {
313 1.45 ad if (ptm->ptm_recursed == INT_MAX)
314 1.44 ad return EAGAIN;
315 1.45 ad ptm->ptm_recursed++;
316 1.44 ad return 0;
317 1.29 ad }
318 1.51 matt if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
319 1.44 ad return EDEADLK;
320 1.44 ad }
321 1.29 ad
322 1.60 christos /* priority protect */
323 1.60 christos if (MUTEX_PROTECT(owner) && _sched_protect(ptm->ptm_ceiling) == -1) {
324 1.60 christos return errno;
325 1.60 christos }
326 1.57 christos serrno = errno;
327 1.44 ad for (;; owner = ptm->ptm_owner) {
328 1.44 ad /* Spin while the owner is running. */
329 1.63 christos if (MUTEX_OWNER(owner) != (uintptr_t)self)
330 1.63 christos owner = pthread__mutex_spin(ptm, owner);
331 1.44 ad
332 1.44 ad /* If it has become free, try to acquire it again. */
333 1.44 ad if (MUTEX_OWNER(owner) == 0) {
334 1.47 ad do {
335 1.44 ad new = (void *)
336 1.44 ad ((uintptr_t)self | (uintptr_t)owner);
337 1.44 ad next = atomic_cas_ptr(&ptm->ptm_owner, owner,
338 1.44 ad new);
339 1.44 ad if (next == owner) {
340 1.57 christos errno = serrno;
341 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
342 1.44 ad membar_enter();
343 1.44 ad #endif
344 1.44 ad return 0;
345 1.44 ad }
346 1.47 ad owner = next;
347 1.47 ad } while (MUTEX_OWNER(owner) == 0);
348 1.44 ad /*
349 1.44 ad * We have lost the race to acquire the mutex.
350 1.44 ad * The new owner could be running on another
351 1.44 ad * CPU, in which case we should spin and avoid
352 1.44 ad * the overhead of blocking.
353 1.44 ad */
354 1.47 ad continue;
355 1.44 ad }
356 1.21 chs
357 1.2 thorpej /*
358 1.44 ad * Nope, still held. Add thread to the list of waiters.
359 1.50 ad * Issue a memory barrier to ensure mutexwait/mutexnext
360 1.44 ad * are visible before we enter the waiters list.
361 1.2 thorpej */
362 1.50 ad self->pt_mutexwait = 1;
363 1.44 ad for (waiters = ptm->ptm_waiters;; waiters = next) {
364 1.50 ad self->pt_mutexnext = waiters;
365 1.44 ad membar_producer();
366 1.44 ad next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
367 1.44 ad if (next == waiters)
368 1.44 ad break;
369 1.44 ad }
370 1.66 ad
371 1.59 rmind /* Set the waiters bit and block. */
372 1.66 ad membar_sync();
373 1.66 ad if (pthread__mutex_setwaiters(self, ptm)) {
374 1.66 ad continue;
375 1.66 ad }
376 1.21 chs
377 1.29 ad /*
378 1.44 ad * We may have been awoken by the current thread above,
379 1.44 ad * or will be awoken by the current holder of the mutex.
380 1.44 ad * The key requirement is that we must not proceed until
381 1.50 ad * told that we are no longer waiting (via pt_mutexwait
382 1.44 ad * being set to zero). Otherwise it is unsafe to re-enter
383 1.44 ad * the thread onto the waiters list.
384 1.29 ad */
385 1.66 ad membar_sync();
386 1.50 ad while (self->pt_mutexwait) {
387 1.64 kre error = _lwp_park(CLOCK_REALTIME, TIMER_ABSTIME,
388 1.64 kre __UNCONST(ts), self->pt_unpark,
389 1.64 kre __UNVOLATILE(&ptm->ptm_waiters),
390 1.50 ad __UNVOLATILE(&ptm->ptm_waiters));
391 1.50 ad self->pt_unpark = 0;
392 1.60 christos if (__predict_true(error != -1)) {
393 1.60 christos continue;
394 1.60 christos }
395 1.60 christos if (errno == ETIMEDOUT && self->pt_mutexwait) {
396 1.60 christos /*Remove self from waiters list*/
397 1.60 christos pthread__mutex_wakeup(self, ptm);
398 1.60 christos /*priority protect*/
399 1.60 christos if (MUTEX_PROTECT(owner))
400 1.60 christos (void)_sched_protect(-1);
401 1.60 christos return ETIMEDOUT;
402 1.60 christos }
403 1.44 ad }
404 1.2 thorpej }
405 1.2 thorpej }
406 1.2 thorpej
407 1.2 thorpej int
408 1.44 ad pthread_mutex_trylock(pthread_mutex_t *ptm)
409 1.2 thorpej {
410 1.27 ad pthread_t self;
411 1.46 ad void *val, *new, *next;
412 1.2 thorpej
413 1.56 christos if (__predict_false(__uselibcstub))
414 1.56 christos return __libc_mutex_trylock_stub(ptm);
415 1.56 christos
416 1.70 kamil pthread__error(EINVAL, "Invalid mutex",
417 1.70 kamil ptm->ptm_magic == _PT_MUTEX_MAGIC);
418 1.70 kamil
419 1.27 ad self = pthread__self();
420 1.44 ad val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
421 1.44 ad if (__predict_true(val == NULL)) {
422 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
423 1.44 ad membar_enter();
424 1.44 ad #endif
425 1.44 ad return 0;
426 1.44 ad }
427 1.27 ad
428 1.46 ad if (MUTEX_RECURSIVE(val)) {
429 1.46 ad if (MUTEX_OWNER(val) == 0) {
430 1.46 ad new = (void *)((uintptr_t)self | (uintptr_t)val);
431 1.46 ad next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
432 1.46 ad if (__predict_true(next == val)) {
433 1.46 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
434 1.46 ad membar_enter();
435 1.46 ad #endif
436 1.46 ad return 0;
437 1.46 ad }
438 1.46 ad }
439 1.46 ad if (MUTEX_OWNER(val) == (uintptr_t)self) {
440 1.46 ad if (ptm->ptm_recursed == INT_MAX)
441 1.46 ad return EAGAIN;
442 1.46 ad ptm->ptm_recursed++;
443 1.46 ad return 0;
444 1.46 ad }
445 1.2 thorpej }
446 1.2 thorpej
447 1.44 ad return EBUSY;
448 1.2 thorpej }
449 1.2 thorpej
450 1.2 thorpej int
451 1.44 ad pthread_mutex_unlock(pthread_mutex_t *ptm)
452 1.2 thorpej {
453 1.27 ad pthread_t self;
454 1.44 ad void *value;
455 1.44 ad
456 1.56 christos if (__predict_false(__uselibcstub))
457 1.56 christos return __libc_mutex_unlock_stub(ptm);
458 1.56 christos
459 1.70 kamil pthread__error(EINVAL, "Invalid mutex",
460 1.70 kamil ptm->ptm_magic == _PT_MUTEX_MAGIC);
461 1.70 kamil
462 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
463 1.44 ad membar_exit();
464 1.44 ad #endif
465 1.44 ad self = pthread__self();
466 1.66 ad value = atomic_cas_ptr(&ptm->ptm_owner, self, NULL);
467 1.54 matt if (__predict_true(value == self)) {
468 1.54 matt pthread__smt_wake();
469 1.44 ad return 0;
470 1.54 matt }
471 1.44 ad return pthread__mutex_unlock_slow(ptm);
472 1.44 ad }
473 1.44 ad
474 1.44 ad NOINLINE static int
475 1.44 ad pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
476 1.44 ad {
477 1.44 ad pthread_t self, owner, new;
478 1.67 ad int weown, error;
479 1.13 nathanw
480 1.44 ad self = pthread__self();
481 1.44 ad owner = ptm->ptm_owner;
482 1.44 ad weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
483 1.44 ad error = 0;
484 1.44 ad
485 1.51 matt if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
486 1.44 ad if (!weown) {
487 1.44 ad error = EPERM;
488 1.44 ad new = owner;
489 1.44 ad } else {
490 1.44 ad new = NULL;
491 1.44 ad }
492 1.44 ad } else if (MUTEX_RECURSIVE(owner)) {
493 1.44 ad if (!weown) {
494 1.44 ad error = EPERM;
495 1.44 ad new = owner;
496 1.45 ad } else if (ptm->ptm_recursed) {
497 1.45 ad ptm->ptm_recursed--;
498 1.44 ad new = owner;
499 1.44 ad } else {
500 1.44 ad new = (pthread_t)MUTEX_RECURSIVE_BIT;
501 1.44 ad }
502 1.44 ad } else {
503 1.44 ad pthread__error(EPERM,
504 1.44 ad "Unlocking unlocked mutex", (owner != NULL));
505 1.44 ad pthread__error(EPERM,
506 1.44 ad "Unlocking mutex owned by another thread", weown);
507 1.44 ad new = NULL;
508 1.44 ad }
509 1.2 thorpej
510 1.2 thorpej /*
511 1.44 ad * Release the mutex. If there appear to be waiters, then
512 1.44 ad * wake them up.
513 1.2 thorpej */
514 1.44 ad if (new != owner) {
515 1.44 ad owner = atomic_swap_ptr(&ptm->ptm_owner, new);
516 1.60 christos if (__predict_false(MUTEX_PROTECT(owner))) {
517 1.60 christos /* restore elevated priority */
518 1.60 christos (void)_sched_protect(-1);
519 1.60 christos }
520 1.44 ad if (MUTEX_HAS_WAITERS(owner) != 0) {
521 1.44 ad pthread__mutex_wakeup(self, ptm);
522 1.2 thorpej return 0;
523 1.2 thorpej }
524 1.67 ad error = 0;
525 1.44 ad }
526 1.44 ad
527 1.44 ad if (self->pt_nwaiters == 1) {
528 1.44 ad /*
529 1.44 ad * If the calling thread is about to block, defer
530 1.44 ad * unparking the target until _lwp_park() is called.
531 1.44 ad */
532 1.44 ad if (self->pt_willpark && self->pt_unpark == 0) {
533 1.44 ad self->pt_unpark = self->pt_waiters[0];
534 1.44 ad } else {
535 1.44 ad (void)_lwp_unpark(self->pt_waiters[0],
536 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
537 1.15 nathanw }
538 1.68 ad } else if (self->pt_nwaiters > 0) {
539 1.44 ad (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
540 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
541 1.2 thorpej }
542 1.44 ad self->pt_nwaiters = 0;
543 1.2 thorpej
544 1.44 ad return error;
545 1.44 ad }
546 1.44 ad
547 1.55 yamt /*
548 1.55 yamt * pthread__mutex_wakeup: unpark threads waiting for us
549 1.55 yamt *
550 1.55 yamt * unpark threads on the ptm->ptm_waiters list and self->pt_waiters.
551 1.55 yamt */
552 1.55 yamt
553 1.44 ad static void
554 1.44 ad pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
555 1.44 ad {
556 1.44 ad pthread_t thread, next;
557 1.44 ad ssize_t n, rv;
558 1.27 ad
559 1.66 ad /* Take ownership of the current set of waiters. */
560 1.44 ad thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
561 1.66 ad membar_datadep_consumer(); /* for alpha */
562 1.54 matt pthread__smt_wake();
563 1.44 ad
564 1.44 ad for (;;) {
565 1.44 ad /*
566 1.44 ad * Pull waiters from the queue and add to our list.
567 1.44 ad * Use a memory barrier to ensure that we safely
568 1.50 ad * read the value of pt_mutexnext before 'thread'
569 1.50 ad * sees pt_mutexwait being cleared.
570 1.44 ad */
571 1.44 ad for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
572 1.44 ad n < pthread__unpark_max && thread != NULL;
573 1.44 ad thread = next) {
574 1.50 ad next = thread->pt_mutexnext;
575 1.44 ad if (thread != self) {
576 1.44 ad self->pt_waiters[n++] = thread->pt_lid;
577 1.44 ad membar_sync();
578 1.44 ad }
579 1.50 ad thread->pt_mutexwait = 0;
580 1.44 ad /* No longer safe to touch 'thread' */
581 1.44 ad }
582 1.44 ad
583 1.44 ad switch (n) {
584 1.44 ad case 0:
585 1.44 ad return;
586 1.44 ad case 1:
587 1.44 ad /*
588 1.44 ad * If the calling thread is about to block,
589 1.44 ad * defer unparking the target until _lwp_park()
590 1.44 ad * is called.
591 1.44 ad */
592 1.44 ad if (self->pt_willpark && self->pt_unpark == 0) {
593 1.44 ad self->pt_unpark = self->pt_waiters[0];
594 1.44 ad return;
595 1.44 ad }
596 1.44 ad rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
597 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
598 1.44 ad if (rv != 0 && errno != EALREADY && errno != EINTR &&
599 1.44 ad errno != ESRCH) {
600 1.44 ad pthread__errorfunc(__FILE__, __LINE__,
601 1.44 ad __func__, "_lwp_unpark failed");
602 1.44 ad }
603 1.44 ad return;
604 1.44 ad default:
605 1.44 ad rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
606 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
607 1.44 ad if (rv != 0 && errno != EINTR) {
608 1.44 ad pthread__errorfunc(__FILE__, __LINE__,
609 1.44 ad __func__, "_lwp_unpark_all failed");
610 1.44 ad }
611 1.44 ad break;
612 1.44 ad }
613 1.44 ad }
614 1.2 thorpej }
615 1.55 yamt
616 1.2 thorpej int
617 1.2 thorpej pthread_mutexattr_init(pthread_mutexattr_t *attr)
618 1.2 thorpej {
619 1.56 christos if (__predict_false(__uselibcstub))
620 1.56 christos return __libc_mutexattr_init_stub(attr);
621 1.2 thorpej
622 1.2 thorpej attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
623 1.44 ad attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
624 1.2 thorpej return 0;
625 1.2 thorpej }
626 1.2 thorpej
627 1.2 thorpej int
628 1.2 thorpej pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
629 1.2 thorpej {
630 1.56 christos if (__predict_false(__uselibcstub))
631 1.56 christos return __libc_mutexattr_destroy_stub(attr);
632 1.2 thorpej
633 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
634 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
635 1.2 thorpej
636 1.69 kamil attr->ptma_magic = _PT_MUTEXATTR_DEAD;
637 1.69 kamil
638 1.2 thorpej return 0;
639 1.2 thorpej }
640 1.2 thorpej
641 1.2 thorpej int
642 1.2 thorpej pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
643 1.2 thorpej {
644 1.60 christos
645 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
646 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
647 1.2 thorpej
648 1.60 christos *typep = MUTEX_GET_TYPE(attr->ptma_private);
649 1.2 thorpej return 0;
650 1.2 thorpej }
651 1.2 thorpej
652 1.2 thorpej int
653 1.2 thorpej pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
654 1.2 thorpej {
655 1.60 christos
656 1.56 christos if (__predict_false(__uselibcstub))
657 1.56 christos return __libc_mutexattr_settype_stub(attr, type);
658 1.2 thorpej
659 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
660 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
661 1.13 nathanw
662 1.2 thorpej switch (type) {
663 1.2 thorpej case PTHREAD_MUTEX_NORMAL:
664 1.2 thorpej case PTHREAD_MUTEX_ERRORCHECK:
665 1.2 thorpej case PTHREAD_MUTEX_RECURSIVE:
666 1.60 christos MUTEX_SET_TYPE(attr->ptma_private, type);
667 1.60 christos return 0;
668 1.60 christos default:
669 1.60 christos return EINVAL;
670 1.60 christos }
671 1.60 christos }
672 1.60 christos
673 1.60 christos int
674 1.60 christos pthread_mutexattr_getprotocol(const pthread_mutexattr_t *attr, int*proto)
675 1.60 christos {
676 1.60 christos
677 1.60 christos pthread__error(EINVAL, "Invalid mutex attribute",
678 1.60 christos attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
679 1.60 christos
680 1.60 christos *proto = MUTEX_GET_PROTOCOL(attr->ptma_private);
681 1.60 christos return 0;
682 1.60 christos }
683 1.60 christos
684 1.60 christos int
685 1.60 christos pthread_mutexattr_setprotocol(pthread_mutexattr_t* attr, int proto)
686 1.60 christos {
687 1.60 christos
688 1.60 christos pthread__error(EINVAL, "Invalid mutex attribute",
689 1.60 christos attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
690 1.60 christos
691 1.60 christos switch (proto) {
692 1.60 christos case PTHREAD_PRIO_NONE:
693 1.60 christos case PTHREAD_PRIO_PROTECT:
694 1.60 christos MUTEX_SET_PROTOCOL(attr->ptma_private, proto);
695 1.44 ad return 0;
696 1.60 christos case PTHREAD_PRIO_INHERIT:
697 1.60 christos return ENOTSUP;
698 1.2 thorpej default:
699 1.2 thorpej return EINVAL;
700 1.2 thorpej }
701 1.2 thorpej }
702 1.2 thorpej
703 1.60 christos int
704 1.60 christos pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *attr, int *ceil)
705 1.60 christos {
706 1.60 christos
707 1.60 christos pthread__error(EINVAL, "Invalid mutex attribute",
708 1.60 christos attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
709 1.60 christos
710 1.60 christos *ceil = MUTEX_GET_CEILING(attr->ptma_private);
711 1.60 christos return 0;
712 1.60 christos }
713 1.60 christos
714 1.60 christos int
715 1.60 christos pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr, int ceil)
716 1.60 christos {
717 1.60 christos
718 1.60 christos pthread__error(EINVAL, "Invalid mutex attribute",
719 1.60 christos attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
720 1.60 christos
721 1.60 christos if (ceil & ~0xff)
722 1.60 christos return EINVAL;
723 1.60 christos
724 1.60 christos MUTEX_SET_CEILING(attr->ptma_private, ceil);
725 1.60 christos return 0;
726 1.60 christos }
727 1.60 christos
728 1.60 christos #ifdef _PTHREAD_PSHARED
729 1.60 christos int
730 1.60 christos pthread_mutexattr_getpshared(const pthread_mutexattr_t * __restrict attr,
731 1.60 christos int * __restrict pshared)
732 1.60 christos {
733 1.60 christos
734 1.70 kamil pthread__error(EINVAL, "Invalid mutex attribute",
735 1.70 kamil attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
736 1.70 kamil
737 1.60 christos *pshared = PTHREAD_PROCESS_PRIVATE;
738 1.60 christos return 0;
739 1.60 christos }
740 1.60 christos
741 1.60 christos int
742 1.60 christos pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
743 1.60 christos {
744 1.60 christos
745 1.70 kamil pthread__error(EINVAL, "Invalid mutex attribute",
746 1.70 kamil attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
747 1.70 kamil
748 1.60 christos switch(pshared) {
749 1.60 christos case PTHREAD_PROCESS_PRIVATE:
750 1.60 christos return 0;
751 1.60 christos case PTHREAD_PROCESS_SHARED:
752 1.60 christos return ENOSYS;
753 1.60 christos }
754 1.60 christos return EINVAL;
755 1.60 christos }
756 1.60 christos #endif
757 1.60 christos
758 1.55 yamt /*
759 1.55 yamt * pthread__mutex_deferwake: try to defer unparking threads in self->pt_waiters
760 1.55 yamt *
761 1.55 yamt * In order to avoid unnecessary contention on the interlocking mutex,
762 1.55 yamt * we defer waking up threads until we unlock the mutex. The threads will
763 1.55 yamt * be woken up when the calling thread (self) releases the first mutex with
764 1.55 yamt * MUTEX_DEFERRED_BIT set. It likely be the mutex 'ptm', but no problem
765 1.55 yamt * even if it isn't.
766 1.55 yamt */
767 1.55 yamt
768 1.50 ad void
769 1.50 ad pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
770 1.33 ad {
771 1.33 ad
772 1.50 ad if (__predict_false(ptm == NULL ||
773 1.50 ad MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
774 1.50 ad (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
775 1.50 ad __UNVOLATILE(&ptm->ptm_waiters));
776 1.50 ad self->pt_nwaiters = 0;
777 1.50 ad } else {
778 1.50 ad atomic_or_ulong((volatile unsigned long *)
779 1.50 ad (uintptr_t)&ptm->ptm_owner,
780 1.50 ad (unsigned long)MUTEX_DEFERRED_BIT);
781 1.50 ad }
782 1.33 ad }
783 1.33 ad
784 1.39 ad int
785 1.61 skrll pthread_mutex_getprioceiling(const pthread_mutex_t *ptm, int *ceil)
786 1.60 christos {
787 1.70 kamil
788 1.70 kamil pthread__error(EINVAL, "Invalid mutex",
789 1.70 kamil ptm->ptm_magic == _PT_MUTEX_MAGIC);
790 1.70 kamil
791 1.62 skrll *ceil = ptm->ptm_ceiling;
792 1.60 christos return 0;
793 1.60 christos }
794 1.60 christos
795 1.60 christos int
796 1.60 christos pthread_mutex_setprioceiling(pthread_mutex_t *ptm, int ceil, int *old_ceil)
797 1.60 christos {
798 1.60 christos int error;
799 1.60 christos
800 1.70 kamil pthread__error(EINVAL, "Invalid mutex",
801 1.70 kamil ptm->ptm_magic == _PT_MUTEX_MAGIC);
802 1.70 kamil
803 1.60 christos error = pthread_mutex_lock(ptm);
804 1.60 christos if (error == 0) {
805 1.62 skrll *old_ceil = ptm->ptm_ceiling;
806 1.60 christos /*check range*/
807 1.62 skrll ptm->ptm_ceiling = ceil;
808 1.60 christos pthread_mutex_unlock(ptm);
809 1.60 christos }
810 1.60 christos return error;
811 1.60 christos }
812 1.60 christos
813 1.60 christos int
814 1.44 ad _pthread_mutex_held_np(pthread_mutex_t *ptm)
815 1.39 ad {
816 1.39 ad
817 1.44 ad return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
818 1.39 ad }
819 1.39 ad
820 1.39 ad pthread_t
821 1.44 ad _pthread_mutex_owner_np(pthread_mutex_t *ptm)
822 1.39 ad {
823 1.39 ad
824 1.44 ad return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
825 1.39 ad }
826