pthread_mutex.c revision 1.76 1 1.75 kamil /* $NetBSD: pthread_mutex.c,v 1.76 2020/02/16 17:45:11 kamil Exp $ */
2 1.2 thorpej
3 1.2 thorpej /*-
4 1.44 ad * Copyright (c) 2001, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 thorpej * All rights reserved.
6 1.2 thorpej *
7 1.2 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.27 ad * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 1.2 thorpej *
10 1.2 thorpej * Redistribution and use in source and binary forms, with or without
11 1.2 thorpej * modification, are permitted provided that the following conditions
12 1.2 thorpej * are met:
13 1.2 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.2 thorpej * notice, this list of conditions and the following disclaimer.
15 1.2 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.2 thorpej * documentation and/or other materials provided with the distribution.
18 1.2 thorpej *
19 1.2 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.2 thorpej */
31 1.2 thorpej
32 1.49 ad /*
33 1.49 ad * To track threads waiting for mutexes to be released, we use lockless
34 1.49 ad * lists built on atomic operations and memory barriers.
35 1.49 ad *
36 1.49 ad * A simple spinlock would be faster and make the code easier to
37 1.49 ad * follow, but spinlocks are problematic in userspace. If a thread is
38 1.49 ad * preempted by the kernel while holding a spinlock, any other thread
39 1.49 ad * attempting to acquire that spinlock will needlessly busy wait.
40 1.49 ad *
41 1.49 ad * There is no good way to know that the holding thread is no longer
42 1.49 ad * running, nor to request a wake-up once it has begun running again.
43 1.49 ad * Of more concern, threads in the SCHED_FIFO class do not have a
44 1.49 ad * limited time quantum and so could spin forever, preventing the
45 1.49 ad * thread holding the spinlock from getting CPU time: it would never
46 1.49 ad * be released.
47 1.49 ad */
48 1.49 ad
49 1.2 thorpej #include <sys/cdefs.h>
50 1.75 kamil __RCSID("$NetBSD: pthread_mutex.c,v 1.76 2020/02/16 17:45:11 kamil Exp $");
51 1.40 ad
52 1.40 ad #include <sys/types.h>
53 1.44 ad #include <sys/lwpctl.h>
54 1.60 christos #include <sys/sched.h>
55 1.51 matt #include <sys/lock.h>
56 1.10 lukem
57 1.2 thorpej #include <errno.h>
58 1.2 thorpej #include <limits.h>
59 1.2 thorpej #include <stdlib.h>
60 1.56 christos #include <time.h>
61 1.6 scw #include <string.h>
62 1.44 ad #include <stdio.h>
63 1.2 thorpej
64 1.2 thorpej #include "pthread.h"
65 1.2 thorpej #include "pthread_int.h"
66 1.56 christos #include "reentrant.h"
67 1.2 thorpej
68 1.44 ad #define MUTEX_WAITERS_BIT ((uintptr_t)0x01)
69 1.44 ad #define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02)
70 1.44 ad #define MUTEX_DEFERRED_BIT ((uintptr_t)0x04)
71 1.60 christos #define MUTEX_PROTECT_BIT ((uintptr_t)0x08)
72 1.60 christos #define MUTEX_THREAD ((uintptr_t)~0x0f)
73 1.44 ad
74 1.44 ad #define MUTEX_HAS_WAITERS(x) ((uintptr_t)(x) & MUTEX_WAITERS_BIT)
75 1.44 ad #define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
76 1.60 christos #define MUTEX_PROTECT(x) ((uintptr_t)(x) & MUTEX_PROTECT_BIT)
77 1.44 ad #define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD)
78 1.44 ad
79 1.60 christos #define MUTEX_GET_TYPE(x) \
80 1.60 christos ((int)(((uintptr_t)(x) & 0x000000ff) >> 0))
81 1.60 christos #define MUTEX_SET_TYPE(x, t) \
82 1.60 christos (x) = (void *)(((uintptr_t)(x) & ~0x000000ff) | ((t) << 0))
83 1.60 christos #define MUTEX_GET_PROTOCOL(x) \
84 1.60 christos ((int)(((uintptr_t)(x) & 0x0000ff00) >> 8))
85 1.60 christos #define MUTEX_SET_PROTOCOL(x, p) \
86 1.60 christos (x) = (void *)(((uintptr_t)(x) & ~0x0000ff00) | ((p) << 8))
87 1.60 christos #define MUTEX_GET_CEILING(x) \
88 1.60 christos ((int)(((uintptr_t)(x) & 0x00ff0000) >> 16))
89 1.60 christos #define MUTEX_SET_CEILING(x, c) \
90 1.60 christos (x) = (void *)(((uintptr_t)(x) & ~0x00ff0000) | ((c) << 16))
91 1.60 christos
92 1.44 ad #if __GNUC_PREREQ__(3, 0)
93 1.44 ad #define NOINLINE __attribute ((noinline))
94 1.44 ad #else
95 1.44 ad #define NOINLINE /* nothing */
96 1.44 ad #endif
97 1.44 ad
98 1.44 ad static void pthread__mutex_wakeup(pthread_t, pthread_mutex_t *);
99 1.60 christos static int pthread__mutex_lock_slow(pthread_mutex_t *,
100 1.60 christos const struct timespec *);
101 1.44 ad static int pthread__mutex_unlock_slow(pthread_mutex_t *);
102 1.44 ad static void pthread__mutex_pause(void);
103 1.2 thorpej
104 1.39 ad int _pthread_mutex_held_np(pthread_mutex_t *);
105 1.39 ad pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
106 1.39 ad
107 1.39 ad __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
108 1.39 ad __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
109 1.39 ad
110 1.2 thorpej __strong_alias(__libc_mutex_init,pthread_mutex_init)
111 1.2 thorpej __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
112 1.2 thorpej __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
113 1.2 thorpej __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
114 1.2 thorpej __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
115 1.4 thorpej
116 1.4 thorpej __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
117 1.4 thorpej __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
118 1.5 thorpej __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
119 1.2 thorpej
120 1.2 thorpej int
121 1.44 ad pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
122 1.2 thorpej {
123 1.60 christos uintptr_t type, proto, val, ceil;
124 1.2 thorpej
125 1.76 kamil #if 0
126 1.65 christos /*
127 1.65 christos * Always initialize the mutex structure, maybe be used later
128 1.65 christos * and the cost should be minimal.
129 1.65 christos */
130 1.56 christos if (__predict_false(__uselibcstub))
131 1.56 christos return __libc_mutex_init_stub(ptm, attr);
132 1.76 kamil #endif
133 1.56 christos
134 1.72 kamil pthread__error(EINVAL, "Invalid mutes attribute",
135 1.72 kamil attr == NULL || attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
136 1.72 kamil
137 1.60 christos if (attr == NULL) {
138 1.44 ad type = PTHREAD_MUTEX_NORMAL;
139 1.60 christos proto = PTHREAD_PRIO_NONE;
140 1.60 christos ceil = 0;
141 1.60 christos } else {
142 1.60 christos val = (uintptr_t)attr->ptma_private;
143 1.2 thorpej
144 1.60 christos type = MUTEX_GET_TYPE(val);
145 1.60 christos proto = MUTEX_GET_PROTOCOL(val);
146 1.60 christos ceil = MUTEX_GET_CEILING(val);
147 1.60 christos }
148 1.44 ad switch (type) {
149 1.44 ad case PTHREAD_MUTEX_ERRORCHECK:
150 1.51 matt __cpu_simple_lock_set(&ptm->ptm_errorcheck);
151 1.44 ad ptm->ptm_owner = NULL;
152 1.44 ad break;
153 1.44 ad case PTHREAD_MUTEX_RECURSIVE:
154 1.51 matt __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
155 1.44 ad ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
156 1.44 ad break;
157 1.44 ad default:
158 1.51 matt __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
159 1.44 ad ptm->ptm_owner = NULL;
160 1.44 ad break;
161 1.2 thorpej }
162 1.60 christos switch (proto) {
163 1.60 christos case PTHREAD_PRIO_PROTECT:
164 1.60 christos val = (uintptr_t)ptm->ptm_owner;
165 1.60 christos val |= MUTEX_PROTECT_BIT;
166 1.60 christos ptm->ptm_owner = (void *)val;
167 1.60 christos break;
168 1.2 thorpej
169 1.60 christos }
170 1.44 ad ptm->ptm_magic = _PT_MUTEX_MAGIC;
171 1.44 ad ptm->ptm_waiters = NULL;
172 1.45 ad ptm->ptm_recursed = 0;
173 1.60 christos ptm->ptm_ceiling = (unsigned char)ceil;
174 1.2 thorpej
175 1.2 thorpej return 0;
176 1.2 thorpej }
177 1.2 thorpej
178 1.2 thorpej int
179 1.44 ad pthread_mutex_destroy(pthread_mutex_t *ptm)
180 1.2 thorpej {
181 1.2 thorpej
182 1.56 christos if (__predict_false(__uselibcstub))
183 1.56 christos return __libc_mutex_destroy_stub(ptm);
184 1.56 christos
185 1.14 nathanw pthread__error(EINVAL, "Invalid mutex",
186 1.44 ad ptm->ptm_magic == _PT_MUTEX_MAGIC);
187 1.14 nathanw pthread__error(EBUSY, "Destroying locked mutex",
188 1.44 ad MUTEX_OWNER(ptm->ptm_owner) == 0);
189 1.2 thorpej
190 1.44 ad ptm->ptm_magic = _PT_MUTEX_DEAD;
191 1.2 thorpej return 0;
192 1.2 thorpej }
193 1.2 thorpej
194 1.2 thorpej int
195 1.44 ad pthread_mutex_lock(pthread_mutex_t *ptm)
196 1.2 thorpej {
197 1.27 ad pthread_t self;
198 1.44 ad void *val;
199 1.2 thorpej
200 1.56 christos if (__predict_false(__uselibcstub))
201 1.56 christos return __libc_mutex_lock_stub(ptm);
202 1.56 christos
203 1.70 kamil pthread__error(EINVAL, "Invalid mutex",
204 1.70 kamil ptm->ptm_magic == _PT_MUTEX_MAGIC);
205 1.70 kamil
206 1.27 ad self = pthread__self();
207 1.44 ad val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
208 1.44 ad if (__predict_true(val == NULL)) {
209 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
210 1.44 ad membar_enter();
211 1.44 ad #endif
212 1.44 ad return 0;
213 1.2 thorpej }
214 1.60 christos return pthread__mutex_lock_slow(ptm, NULL);
215 1.60 christos }
216 1.60 christos
217 1.60 christos int
218 1.60 christos pthread_mutex_timedlock(pthread_mutex_t* ptm, const struct timespec *ts)
219 1.60 christos {
220 1.60 christos pthread_t self;
221 1.60 christos void *val;
222 1.60 christos
223 1.70 kamil pthread__error(EINVAL, "Invalid mutex",
224 1.70 kamil ptm->ptm_magic == _PT_MUTEX_MAGIC);
225 1.70 kamil
226 1.60 christos self = pthread__self();
227 1.60 christos val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
228 1.60 christos if (__predict_true(val == NULL)) {
229 1.60 christos #ifndef PTHREAD__ATOMIC_IS_MEMBAR
230 1.60 christos membar_enter();
231 1.60 christos #endif
232 1.60 christos return 0;
233 1.60 christos }
234 1.60 christos return pthread__mutex_lock_slow(ptm, ts);
235 1.44 ad }
236 1.2 thorpej
237 1.44 ad /* We want function call overhead. */
238 1.44 ad NOINLINE static void
239 1.44 ad pthread__mutex_pause(void)
240 1.44 ad {
241 1.2 thorpej
242 1.44 ad pthread__smt_pause();
243 1.2 thorpej }
244 1.2 thorpej
245 1.44 ad /*
246 1.44 ad * Spin while the holder is running. 'lwpctl' gives us the true
247 1.66 ad * status of the thread.
248 1.44 ad */
249 1.44 ad NOINLINE static void *
250 1.44 ad pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
251 1.44 ad {
252 1.44 ad pthread_t thread;
253 1.44 ad unsigned int count, i;
254 1.44 ad
255 1.44 ad for (count = 2;; owner = ptm->ptm_owner) {
256 1.44 ad thread = (pthread_t)MUTEX_OWNER(owner);
257 1.44 ad if (thread == NULL)
258 1.44 ad break;
259 1.66 ad if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE)
260 1.44 ad break;
261 1.44 ad if (count < 128)
262 1.44 ad count += count;
263 1.44 ad for (i = count; i != 0; i--)
264 1.44 ad pthread__mutex_pause();
265 1.44 ad }
266 1.2 thorpej
267 1.44 ad return owner;
268 1.44 ad }
269 1.44 ad
270 1.66 ad NOINLINE static bool
271 1.59 rmind pthread__mutex_setwaiters(pthread_t self, pthread_mutex_t *ptm)
272 1.59 rmind {
273 1.66 ad void *owner, *next;
274 1.59 rmind
275 1.59 rmind /*
276 1.59 rmind * Note that the mutex can become unlocked before we set
277 1.59 rmind * the waiters bit. If that happens it's not safe to sleep
278 1.59 rmind * as we may never be awoken: we must remove the current
279 1.59 rmind * thread from the waiters list and try again.
280 1.59 rmind *
281 1.59 rmind * Because we are doing this atomically, we can't remove
282 1.59 rmind * one waiter: we must remove all waiters and awken them,
283 1.59 rmind * then sleep in _lwp_park() until we have been awoken.
284 1.59 rmind *
285 1.59 rmind * Issue a memory barrier to ensure that we are reading
286 1.59 rmind * the value of ptm_owner/pt_mutexwait after we have entered
287 1.59 rmind * the waiters list (the CAS itself must be atomic).
288 1.59 rmind */
289 1.66 ad for (owner = ptm->ptm_owner;; owner = next) {
290 1.66 ad if (MUTEX_OWNER(owner) == 0) {
291 1.66 ad pthread__mutex_wakeup(self, ptm);
292 1.66 ad return true;
293 1.66 ad }
294 1.66 ad if (MUTEX_HAS_WAITERS(owner)) {
295 1.66 ad return false;
296 1.59 rmind }
297 1.66 ad next = atomic_cas_ptr(&ptm->ptm_owner, owner,
298 1.66 ad (void *)((uintptr_t)owner | MUTEX_WAITERS_BIT));
299 1.59 rmind }
300 1.59 rmind }
301 1.59 rmind
302 1.44 ad NOINLINE static int
303 1.60 christos pthread__mutex_lock_slow(pthread_mutex_t *ptm, const struct timespec *ts)
304 1.2 thorpej {
305 1.44 ad void *waiters, *new, *owner, *next;
306 1.44 ad pthread_t self;
307 1.57 christos int serrno;
308 1.60 christos int error;
309 1.2 thorpej
310 1.44 ad owner = ptm->ptm_owner;
311 1.44 ad self = pthread__self();
312 1.13 nathanw
313 1.44 ad /* Recursive or errorcheck? */
314 1.44 ad if (MUTEX_OWNER(owner) == (uintptr_t)self) {
315 1.44 ad if (MUTEX_RECURSIVE(owner)) {
316 1.45 ad if (ptm->ptm_recursed == INT_MAX)
317 1.44 ad return EAGAIN;
318 1.45 ad ptm->ptm_recursed++;
319 1.44 ad return 0;
320 1.29 ad }
321 1.51 matt if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
322 1.44 ad return EDEADLK;
323 1.44 ad }
324 1.29 ad
325 1.60 christos /* priority protect */
326 1.60 christos if (MUTEX_PROTECT(owner) && _sched_protect(ptm->ptm_ceiling) == -1) {
327 1.60 christos return errno;
328 1.60 christos }
329 1.57 christos serrno = errno;
330 1.44 ad for (;; owner = ptm->ptm_owner) {
331 1.44 ad /* Spin while the owner is running. */
332 1.63 christos if (MUTEX_OWNER(owner) != (uintptr_t)self)
333 1.63 christos owner = pthread__mutex_spin(ptm, owner);
334 1.44 ad
335 1.44 ad /* If it has become free, try to acquire it again. */
336 1.44 ad if (MUTEX_OWNER(owner) == 0) {
337 1.47 ad do {
338 1.44 ad new = (void *)
339 1.44 ad ((uintptr_t)self | (uintptr_t)owner);
340 1.44 ad next = atomic_cas_ptr(&ptm->ptm_owner, owner,
341 1.44 ad new);
342 1.44 ad if (next == owner) {
343 1.57 christos errno = serrno;
344 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
345 1.44 ad membar_enter();
346 1.44 ad #endif
347 1.44 ad return 0;
348 1.44 ad }
349 1.47 ad owner = next;
350 1.47 ad } while (MUTEX_OWNER(owner) == 0);
351 1.44 ad /*
352 1.44 ad * We have lost the race to acquire the mutex.
353 1.44 ad * The new owner could be running on another
354 1.44 ad * CPU, in which case we should spin and avoid
355 1.44 ad * the overhead of blocking.
356 1.44 ad */
357 1.47 ad continue;
358 1.44 ad }
359 1.21 chs
360 1.2 thorpej /*
361 1.44 ad * Nope, still held. Add thread to the list of waiters.
362 1.50 ad * Issue a memory barrier to ensure mutexwait/mutexnext
363 1.44 ad * are visible before we enter the waiters list.
364 1.2 thorpej */
365 1.50 ad self->pt_mutexwait = 1;
366 1.44 ad for (waiters = ptm->ptm_waiters;; waiters = next) {
367 1.50 ad self->pt_mutexnext = waiters;
368 1.44 ad membar_producer();
369 1.44 ad next = atomic_cas_ptr(&ptm->ptm_waiters, waiters, self);
370 1.44 ad if (next == waiters)
371 1.44 ad break;
372 1.44 ad }
373 1.66 ad
374 1.59 rmind /* Set the waiters bit and block. */
375 1.66 ad membar_sync();
376 1.66 ad if (pthread__mutex_setwaiters(self, ptm)) {
377 1.66 ad continue;
378 1.66 ad }
379 1.21 chs
380 1.29 ad /*
381 1.44 ad * We may have been awoken by the current thread above,
382 1.44 ad * or will be awoken by the current holder of the mutex.
383 1.44 ad * The key requirement is that we must not proceed until
384 1.50 ad * told that we are no longer waiting (via pt_mutexwait
385 1.44 ad * being set to zero). Otherwise it is unsafe to re-enter
386 1.44 ad * the thread onto the waiters list.
387 1.29 ad */
388 1.66 ad membar_sync();
389 1.50 ad while (self->pt_mutexwait) {
390 1.64 kre error = _lwp_park(CLOCK_REALTIME, TIMER_ABSTIME,
391 1.64 kre __UNCONST(ts), self->pt_unpark,
392 1.64 kre __UNVOLATILE(&ptm->ptm_waiters),
393 1.50 ad __UNVOLATILE(&ptm->ptm_waiters));
394 1.50 ad self->pt_unpark = 0;
395 1.60 christos if (__predict_true(error != -1)) {
396 1.60 christos continue;
397 1.60 christos }
398 1.60 christos if (errno == ETIMEDOUT && self->pt_mutexwait) {
399 1.60 christos /*Remove self from waiters list*/
400 1.60 christos pthread__mutex_wakeup(self, ptm);
401 1.60 christos /*priority protect*/
402 1.60 christos if (MUTEX_PROTECT(owner))
403 1.60 christos (void)_sched_protect(-1);
404 1.60 christos return ETIMEDOUT;
405 1.60 christos }
406 1.44 ad }
407 1.2 thorpej }
408 1.2 thorpej }
409 1.2 thorpej
410 1.2 thorpej int
411 1.44 ad pthread_mutex_trylock(pthread_mutex_t *ptm)
412 1.2 thorpej {
413 1.27 ad pthread_t self;
414 1.46 ad void *val, *new, *next;
415 1.2 thorpej
416 1.56 christos if (__predict_false(__uselibcstub))
417 1.56 christos return __libc_mutex_trylock_stub(ptm);
418 1.56 christos
419 1.70 kamil pthread__error(EINVAL, "Invalid mutex",
420 1.70 kamil ptm->ptm_magic == _PT_MUTEX_MAGIC);
421 1.70 kamil
422 1.27 ad self = pthread__self();
423 1.44 ad val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
424 1.44 ad if (__predict_true(val == NULL)) {
425 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
426 1.44 ad membar_enter();
427 1.44 ad #endif
428 1.44 ad return 0;
429 1.44 ad }
430 1.27 ad
431 1.46 ad if (MUTEX_RECURSIVE(val)) {
432 1.46 ad if (MUTEX_OWNER(val) == 0) {
433 1.46 ad new = (void *)((uintptr_t)self | (uintptr_t)val);
434 1.46 ad next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
435 1.46 ad if (__predict_true(next == val)) {
436 1.46 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
437 1.46 ad membar_enter();
438 1.46 ad #endif
439 1.46 ad return 0;
440 1.46 ad }
441 1.46 ad }
442 1.46 ad if (MUTEX_OWNER(val) == (uintptr_t)self) {
443 1.46 ad if (ptm->ptm_recursed == INT_MAX)
444 1.46 ad return EAGAIN;
445 1.46 ad ptm->ptm_recursed++;
446 1.46 ad return 0;
447 1.46 ad }
448 1.2 thorpej }
449 1.2 thorpej
450 1.44 ad return EBUSY;
451 1.2 thorpej }
452 1.2 thorpej
453 1.2 thorpej int
454 1.44 ad pthread_mutex_unlock(pthread_mutex_t *ptm)
455 1.2 thorpej {
456 1.27 ad pthread_t self;
457 1.44 ad void *value;
458 1.44 ad
459 1.56 christos if (__predict_false(__uselibcstub))
460 1.56 christos return __libc_mutex_unlock_stub(ptm);
461 1.56 christos
462 1.70 kamil pthread__error(EINVAL, "Invalid mutex",
463 1.70 kamil ptm->ptm_magic == _PT_MUTEX_MAGIC);
464 1.70 kamil
465 1.44 ad #ifndef PTHREAD__ATOMIC_IS_MEMBAR
466 1.44 ad membar_exit();
467 1.44 ad #endif
468 1.44 ad self = pthread__self();
469 1.66 ad value = atomic_cas_ptr(&ptm->ptm_owner, self, NULL);
470 1.54 matt if (__predict_true(value == self)) {
471 1.54 matt pthread__smt_wake();
472 1.44 ad return 0;
473 1.54 matt }
474 1.44 ad return pthread__mutex_unlock_slow(ptm);
475 1.44 ad }
476 1.44 ad
477 1.44 ad NOINLINE static int
478 1.44 ad pthread__mutex_unlock_slow(pthread_mutex_t *ptm)
479 1.44 ad {
480 1.44 ad pthread_t self, owner, new;
481 1.67 ad int weown, error;
482 1.13 nathanw
483 1.44 ad self = pthread__self();
484 1.44 ad owner = ptm->ptm_owner;
485 1.44 ad weown = (MUTEX_OWNER(owner) == (uintptr_t)self);
486 1.44 ad error = 0;
487 1.44 ad
488 1.51 matt if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
489 1.44 ad if (!weown) {
490 1.44 ad error = EPERM;
491 1.44 ad new = owner;
492 1.44 ad } else {
493 1.44 ad new = NULL;
494 1.44 ad }
495 1.44 ad } else if (MUTEX_RECURSIVE(owner)) {
496 1.44 ad if (!weown) {
497 1.44 ad error = EPERM;
498 1.44 ad new = owner;
499 1.45 ad } else if (ptm->ptm_recursed) {
500 1.45 ad ptm->ptm_recursed--;
501 1.44 ad new = owner;
502 1.44 ad } else {
503 1.44 ad new = (pthread_t)MUTEX_RECURSIVE_BIT;
504 1.44 ad }
505 1.44 ad } else {
506 1.44 ad pthread__error(EPERM,
507 1.44 ad "Unlocking unlocked mutex", (owner != NULL));
508 1.44 ad pthread__error(EPERM,
509 1.44 ad "Unlocking mutex owned by another thread", weown);
510 1.44 ad new = NULL;
511 1.44 ad }
512 1.2 thorpej
513 1.2 thorpej /*
514 1.44 ad * Release the mutex. If there appear to be waiters, then
515 1.44 ad * wake them up.
516 1.2 thorpej */
517 1.44 ad if (new != owner) {
518 1.44 ad owner = atomic_swap_ptr(&ptm->ptm_owner, new);
519 1.60 christos if (__predict_false(MUTEX_PROTECT(owner))) {
520 1.60 christos /* restore elevated priority */
521 1.60 christos (void)_sched_protect(-1);
522 1.60 christos }
523 1.44 ad if (MUTEX_HAS_WAITERS(owner) != 0) {
524 1.44 ad pthread__mutex_wakeup(self, ptm);
525 1.2 thorpej return 0;
526 1.2 thorpej }
527 1.67 ad error = 0;
528 1.44 ad }
529 1.44 ad
530 1.44 ad if (self->pt_nwaiters == 1) {
531 1.44 ad /*
532 1.44 ad * If the calling thread is about to block, defer
533 1.44 ad * unparking the target until _lwp_park() is called.
534 1.44 ad */
535 1.44 ad if (self->pt_willpark && self->pt_unpark == 0) {
536 1.44 ad self->pt_unpark = self->pt_waiters[0];
537 1.44 ad } else {
538 1.44 ad (void)_lwp_unpark(self->pt_waiters[0],
539 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
540 1.15 nathanw }
541 1.68 ad } else if (self->pt_nwaiters > 0) {
542 1.44 ad (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
543 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
544 1.2 thorpej }
545 1.44 ad self->pt_nwaiters = 0;
546 1.2 thorpej
547 1.44 ad return error;
548 1.44 ad }
549 1.44 ad
550 1.55 yamt /*
551 1.55 yamt * pthread__mutex_wakeup: unpark threads waiting for us
552 1.55 yamt *
553 1.55 yamt * unpark threads on the ptm->ptm_waiters list and self->pt_waiters.
554 1.55 yamt */
555 1.55 yamt
556 1.44 ad static void
557 1.44 ad pthread__mutex_wakeup(pthread_t self, pthread_mutex_t *ptm)
558 1.44 ad {
559 1.44 ad pthread_t thread, next;
560 1.44 ad ssize_t n, rv;
561 1.27 ad
562 1.66 ad /* Take ownership of the current set of waiters. */
563 1.44 ad thread = atomic_swap_ptr(&ptm->ptm_waiters, NULL);
564 1.66 ad membar_datadep_consumer(); /* for alpha */
565 1.54 matt pthread__smt_wake();
566 1.44 ad
567 1.44 ad for (;;) {
568 1.44 ad /*
569 1.44 ad * Pull waiters from the queue and add to our list.
570 1.44 ad * Use a memory barrier to ensure that we safely
571 1.50 ad * read the value of pt_mutexnext before 'thread'
572 1.50 ad * sees pt_mutexwait being cleared.
573 1.44 ad */
574 1.44 ad for (n = self->pt_nwaiters, self->pt_nwaiters = 0;
575 1.44 ad n < pthread__unpark_max && thread != NULL;
576 1.44 ad thread = next) {
577 1.50 ad next = thread->pt_mutexnext;
578 1.44 ad if (thread != self) {
579 1.44 ad self->pt_waiters[n++] = thread->pt_lid;
580 1.44 ad membar_sync();
581 1.44 ad }
582 1.50 ad thread->pt_mutexwait = 0;
583 1.44 ad /* No longer safe to touch 'thread' */
584 1.44 ad }
585 1.44 ad
586 1.44 ad switch (n) {
587 1.44 ad case 0:
588 1.44 ad return;
589 1.44 ad case 1:
590 1.44 ad /*
591 1.44 ad * If the calling thread is about to block,
592 1.44 ad * defer unparking the target until _lwp_park()
593 1.44 ad * is called.
594 1.44 ad */
595 1.44 ad if (self->pt_willpark && self->pt_unpark == 0) {
596 1.44 ad self->pt_unpark = self->pt_waiters[0];
597 1.44 ad return;
598 1.44 ad }
599 1.44 ad rv = (ssize_t)_lwp_unpark(self->pt_waiters[0],
600 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
601 1.44 ad if (rv != 0 && errno != EALREADY && errno != EINTR &&
602 1.44 ad errno != ESRCH) {
603 1.44 ad pthread__errorfunc(__FILE__, __LINE__,
604 1.44 ad __func__, "_lwp_unpark failed");
605 1.44 ad }
606 1.44 ad return;
607 1.44 ad default:
608 1.44 ad rv = _lwp_unpark_all(self->pt_waiters, (size_t)n,
609 1.45 ad __UNVOLATILE(&ptm->ptm_waiters));
610 1.44 ad if (rv != 0 && errno != EINTR) {
611 1.44 ad pthread__errorfunc(__FILE__, __LINE__,
612 1.44 ad __func__, "_lwp_unpark_all failed");
613 1.44 ad }
614 1.44 ad break;
615 1.44 ad }
616 1.44 ad }
617 1.2 thorpej }
618 1.55 yamt
619 1.2 thorpej int
620 1.2 thorpej pthread_mutexattr_init(pthread_mutexattr_t *attr)
621 1.2 thorpej {
622 1.76 kamil #if 0
623 1.56 christos if (__predict_false(__uselibcstub))
624 1.56 christos return __libc_mutexattr_init_stub(attr);
625 1.76 kamil #endif
626 1.2 thorpej
627 1.2 thorpej attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
628 1.44 ad attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
629 1.2 thorpej return 0;
630 1.2 thorpej }
631 1.2 thorpej
632 1.2 thorpej int
633 1.2 thorpej pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
634 1.2 thorpej {
635 1.56 christos if (__predict_false(__uselibcstub))
636 1.56 christos return __libc_mutexattr_destroy_stub(attr);
637 1.2 thorpej
638 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
639 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
640 1.2 thorpej
641 1.69 kamil attr->ptma_magic = _PT_MUTEXATTR_DEAD;
642 1.69 kamil
643 1.2 thorpej return 0;
644 1.2 thorpej }
645 1.2 thorpej
646 1.2 thorpej int
647 1.2 thorpej pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
648 1.2 thorpej {
649 1.60 christos
650 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
651 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
652 1.2 thorpej
653 1.60 christos *typep = MUTEX_GET_TYPE(attr->ptma_private);
654 1.2 thorpej return 0;
655 1.2 thorpej }
656 1.2 thorpej
657 1.2 thorpej int
658 1.2 thorpej pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
659 1.2 thorpej {
660 1.60 christos
661 1.56 christos if (__predict_false(__uselibcstub))
662 1.56 christos return __libc_mutexattr_settype_stub(attr, type);
663 1.2 thorpej
664 1.14 nathanw pthread__error(EINVAL, "Invalid mutex attribute",
665 1.14 nathanw attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
666 1.13 nathanw
667 1.2 thorpej switch (type) {
668 1.2 thorpej case PTHREAD_MUTEX_NORMAL:
669 1.2 thorpej case PTHREAD_MUTEX_ERRORCHECK:
670 1.2 thorpej case PTHREAD_MUTEX_RECURSIVE:
671 1.60 christos MUTEX_SET_TYPE(attr->ptma_private, type);
672 1.60 christos return 0;
673 1.60 christos default:
674 1.60 christos return EINVAL;
675 1.60 christos }
676 1.60 christos }
677 1.60 christos
678 1.60 christos int
679 1.60 christos pthread_mutexattr_getprotocol(const pthread_mutexattr_t *attr, int*proto)
680 1.60 christos {
681 1.60 christos
682 1.60 christos pthread__error(EINVAL, "Invalid mutex attribute",
683 1.60 christos attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
684 1.60 christos
685 1.60 christos *proto = MUTEX_GET_PROTOCOL(attr->ptma_private);
686 1.60 christos return 0;
687 1.60 christos }
688 1.60 christos
689 1.60 christos int
690 1.60 christos pthread_mutexattr_setprotocol(pthread_mutexattr_t* attr, int proto)
691 1.60 christos {
692 1.60 christos
693 1.60 christos pthread__error(EINVAL, "Invalid mutex attribute",
694 1.60 christos attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
695 1.60 christos
696 1.60 christos switch (proto) {
697 1.60 christos case PTHREAD_PRIO_NONE:
698 1.60 christos case PTHREAD_PRIO_PROTECT:
699 1.60 christos MUTEX_SET_PROTOCOL(attr->ptma_private, proto);
700 1.44 ad return 0;
701 1.60 christos case PTHREAD_PRIO_INHERIT:
702 1.60 christos return ENOTSUP;
703 1.2 thorpej default:
704 1.2 thorpej return EINVAL;
705 1.2 thorpej }
706 1.2 thorpej }
707 1.2 thorpej
708 1.60 christos int
709 1.60 christos pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *attr, int *ceil)
710 1.60 christos {
711 1.60 christos
712 1.60 christos pthread__error(EINVAL, "Invalid mutex attribute",
713 1.60 christos attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
714 1.60 christos
715 1.60 christos *ceil = MUTEX_GET_CEILING(attr->ptma_private);
716 1.60 christos return 0;
717 1.60 christos }
718 1.60 christos
719 1.60 christos int
720 1.60 christos pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr, int ceil)
721 1.60 christos {
722 1.60 christos
723 1.60 christos pthread__error(EINVAL, "Invalid mutex attribute",
724 1.60 christos attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
725 1.60 christos
726 1.60 christos if (ceil & ~0xff)
727 1.60 christos return EINVAL;
728 1.60 christos
729 1.60 christos MUTEX_SET_CEILING(attr->ptma_private, ceil);
730 1.60 christos return 0;
731 1.60 christos }
732 1.60 christos
733 1.60 christos #ifdef _PTHREAD_PSHARED
734 1.60 christos int
735 1.60 christos pthread_mutexattr_getpshared(const pthread_mutexattr_t * __restrict attr,
736 1.60 christos int * __restrict pshared)
737 1.60 christos {
738 1.60 christos
739 1.70 kamil pthread__error(EINVAL, "Invalid mutex attribute",
740 1.70 kamil attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
741 1.70 kamil
742 1.60 christos *pshared = PTHREAD_PROCESS_PRIVATE;
743 1.60 christos return 0;
744 1.60 christos }
745 1.60 christos
746 1.60 christos int
747 1.60 christos pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
748 1.60 christos {
749 1.60 christos
750 1.70 kamil pthread__error(EINVAL, "Invalid mutex attribute",
751 1.70 kamil attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
752 1.70 kamil
753 1.60 christos switch(pshared) {
754 1.60 christos case PTHREAD_PROCESS_PRIVATE:
755 1.60 christos return 0;
756 1.60 christos case PTHREAD_PROCESS_SHARED:
757 1.60 christos return ENOSYS;
758 1.60 christos }
759 1.60 christos return EINVAL;
760 1.60 christos }
761 1.60 christos #endif
762 1.60 christos
763 1.55 yamt /*
764 1.55 yamt * pthread__mutex_deferwake: try to defer unparking threads in self->pt_waiters
765 1.55 yamt *
766 1.55 yamt * In order to avoid unnecessary contention on the interlocking mutex,
767 1.55 yamt * we defer waking up threads until we unlock the mutex. The threads will
768 1.55 yamt * be woken up when the calling thread (self) releases the first mutex with
769 1.55 yamt * MUTEX_DEFERRED_BIT set. It likely be the mutex 'ptm', but no problem
770 1.55 yamt * even if it isn't.
771 1.55 yamt */
772 1.55 yamt
773 1.50 ad void
774 1.50 ad pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm)
775 1.33 ad {
776 1.33 ad
777 1.50 ad if (__predict_false(ptm == NULL ||
778 1.50 ad MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
779 1.50 ad (void)_lwp_unpark_all(self->pt_waiters, self->pt_nwaiters,
780 1.50 ad __UNVOLATILE(&ptm->ptm_waiters));
781 1.50 ad self->pt_nwaiters = 0;
782 1.50 ad } else {
783 1.50 ad atomic_or_ulong((volatile unsigned long *)
784 1.50 ad (uintptr_t)&ptm->ptm_owner,
785 1.50 ad (unsigned long)MUTEX_DEFERRED_BIT);
786 1.50 ad }
787 1.33 ad }
788 1.33 ad
789 1.39 ad int
790 1.61 skrll pthread_mutex_getprioceiling(const pthread_mutex_t *ptm, int *ceil)
791 1.60 christos {
792 1.70 kamil
793 1.70 kamil pthread__error(EINVAL, "Invalid mutex",
794 1.70 kamil ptm->ptm_magic == _PT_MUTEX_MAGIC);
795 1.70 kamil
796 1.62 skrll *ceil = ptm->ptm_ceiling;
797 1.60 christos return 0;
798 1.60 christos }
799 1.60 christos
800 1.60 christos int
801 1.60 christos pthread_mutex_setprioceiling(pthread_mutex_t *ptm, int ceil, int *old_ceil)
802 1.60 christos {
803 1.60 christos int error;
804 1.60 christos
805 1.70 kamil pthread__error(EINVAL, "Invalid mutex",
806 1.70 kamil ptm->ptm_magic == _PT_MUTEX_MAGIC);
807 1.70 kamil
808 1.60 christos error = pthread_mutex_lock(ptm);
809 1.60 christos if (error == 0) {
810 1.62 skrll *old_ceil = ptm->ptm_ceiling;
811 1.60 christos /*check range*/
812 1.62 skrll ptm->ptm_ceiling = ceil;
813 1.60 christos pthread_mutex_unlock(ptm);
814 1.60 christos }
815 1.60 christos return error;
816 1.60 christos }
817 1.60 christos
818 1.60 christos int
819 1.44 ad _pthread_mutex_held_np(pthread_mutex_t *ptm)
820 1.39 ad {
821 1.39 ad
822 1.44 ad return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
823 1.39 ad }
824 1.39 ad
825 1.39 ad pthread_t
826 1.44 ad _pthread_mutex_owner_np(pthread_mutex_t *ptm)
827 1.39 ad {
828 1.39 ad
829 1.44 ad return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
830 1.39 ad }
831