pthread_mutex.c revision 1.1.2.13 1 /* $NetBSD: pthread_mutex.c,v 1.1.2.13 2002/10/22 21:56:00 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <assert.h>
40 #include <errno.h>
41 #include <sys/cdefs.h>
42
43 #include "pthread.h"
44 #include "pthread_int.h"
45
46 static void pthread_mutex_lock_slow(pthread_mutex_t *);
47 static void pthread_mutex_unlock_slow(pthread_mutex_t *);
48
49 int
50 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
51 {
52
53 #ifdef ERRORCHECK
54 if ((mutex == NULL) ||
55 (attr && (attr->ptma_magic != _PT_MUTEXATTR_MAGIC)))
56 return EINVAL;
57 #endif
58
59 mutex->ptm_magic = _PT_MUTEX_MAGIC;
60 mutex->ptm_owner = NULL;
61 pthread_lockinit(&mutex->ptm_lock);
62 pthread_lockinit(&mutex->ptm_interlock);
63 PTQ_INIT(&mutex->ptm_blocked);
64
65 return 0;
66 }
67
68
69 int
70 pthread_mutex_destroy(pthread_mutex_t *mutex)
71 {
72
73 #ifdef ERRORCHECK
74 if ((mutex == NULL) ||
75 (mutex->ptm_magic != _PT_MUTEX_MAGIC) ||
76 (mutex->ptm_lock != __SIMPLELOCK_UNLOCKED))
77 return EINVAL;
78 #endif
79
80 mutex->ptm_magic = _PT_MUTEX_DEAD;
81
82 return 0;
83 }
84
85
86 /*
87 * Note regarding memory visibility: Pthreads has rules about memory
88 * visibility and mutexes. Very roughly: Memory a thread can see when
89 * it unlocks a mutex can be seen by another thread that locks the
90 * same mutex.
91 *
92 * A memory barrier after a lock and before an unlock will provide
93 * this behavior. This code relies on __cpu_simple_lock_try() to issue
94 * a barrier after obtaining a lock, and on __cpu_simple_unlock() to
95 * issue a barrier before releasing a lock.
96 */
97
98 int
99 pthread_mutex_lock(pthread_mutex_t *mutex)
100 {
101
102 #ifdef ERRORCHECK
103 if ((mutex == NULL) || (mutex->ptm_magic != _PT_MUTEX_MAGIC))
104 return EINVAL;
105 #endif
106
107 if (__predict_false(__cpu_simple_lock_try(&mutex->ptm_lock) == 0))
108 pthread_mutex_lock_slow(mutex);
109
110 /* We have the lock! */
111 #ifdef ERRORCHECK
112 mutex->ptm_owner = (pthread_t)pthread__sp();
113 #endif
114 return 0;
115 }
116
117 static void
118 pthread_mutex_lock_slow(pthread_mutex_t *mutex)
119 {
120 pthread_t self;
121
122 self = pthread__self();
123
124 while (/*CONSTCOND*/1) {
125 if (__cpu_simple_lock_try(&mutex->ptm_lock))
126 break; /* got it! */
127
128 /* Okay, didn't look free. Get the interlock... */
129 pthread_spinlock(self, &mutex->ptm_interlock);
130 /* The mutex_unlock routine will get the interlock
131 * before looking at the list of sleepers, so if the
132 * lock is held we can safely put ourselves on the
133 * sleep queue. If it's not held, we can try taking it
134 * again.
135 */
136 if (mutex->ptm_lock == __SIMPLELOCK_LOCKED) {
137 PTQ_INSERT_TAIL(&mutex->ptm_blocked, self, pt_sleep);
138 /* Locking a mutex is not a cancellation
139 * point, so we don't need to do the
140 * test-cancellation dance. We may get woken
141 * up spuriously by pthread_cancel, though,
142 * but it's okay since we're just going to
143 * retry.
144 */
145 pthread_spinlock(self, &self->pt_statelock);
146 self->pt_state = PT_STATE_BLOCKED_QUEUE;
147 self->pt_sleepobj = mutex;
148 self->pt_sleepq = &mutex->ptm_blocked;
149 self->pt_sleeplock = &mutex->ptm_interlock;
150 pthread_spinunlock(self, &self->pt_statelock);
151
152 pthread__block(self, &mutex->ptm_interlock);
153 /* interlock is not held when we return */
154 } else {
155 pthread_spinunlock(self, &mutex->ptm_interlock);
156 }
157 /* Go around for another try. */
158 }
159 }
160
161
162 int
163 pthread_mutex_trylock(pthread_mutex_t *mutex)
164 {
165
166 #ifdef ERRORCHECK
167 if ((mutex == NULL) || (mutex->ptm_magic != _PT_MUTEX_MAGIC))
168 return EINVAL;
169 #endif
170
171 if (__cpu_simple_lock_try(&mutex->ptm_lock) == 0)
172 return EBUSY;
173
174 #ifdef ERRORCHECK
175 mutex->ptm_owner = (pthread_t)pthread__sp();
176 #endif
177 return 0;
178 }
179
180
181 int
182 pthread_mutex_unlock(pthread_mutex_t *mutex)
183 {
184
185 #ifdef ERRORCHECK
186 if ((mutex == NULL) || (mutex->ptm_magic != _PT_MUTEX_MAGIC))
187 return EINVAL;
188
189 if (mutex->ptm_lock != __SIMPLELOCK_LOCKED)
190 return EPERM; /* Not exactly the right error. */
191 #endif
192
193 __cpu_simple_unlock(&mutex->ptm_lock);
194 #ifdef ERRORCHECK
195 mutex->ptm_owner = NULL;
196 #endif
197 if (__predict_false(!PTQ_EMPTY(&mutex->ptm_blocked)))
198 pthread_mutex_unlock_slow(mutex);
199
200 return 0;
201 }
202
203 static void
204 pthread_mutex_unlock_slow(pthread_mutex_t *mutex)
205 {
206 pthread_t self, blocked;
207
208 self = pthread__self();
209
210 pthread_spinlock(self, &mutex->ptm_interlock);
211 blocked = PTQ_FIRST(&mutex->ptm_blocked);
212 if (blocked)
213 PTQ_REMOVE(&mutex->ptm_blocked, blocked, pt_sleep);
214 pthread_spinunlock(self, &mutex->ptm_interlock);
215
216 /* Give the head of the blocked queue another try. */
217 if (blocked)
218 pthread__sched(self, blocked);
219 }
220
221 int
222 pthread_mutexattr_init(pthread_mutexattr_t *attr)
223 {
224
225 #ifdef ERRORCHECK
226 if (attr == NULL)
227 return EINVAL;
228 #endif
229
230 attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
231
232 return 0;
233 }
234
235
236 int
237 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
238 {
239
240 #ifdef ERRORCHECK
241 if ((attr == NULL) ||
242 (attr->ptma_magic != _PT_MUTEXATTR_MAGIC))
243 return EINVAL;
244 #endif
245
246 attr->ptma_magic = _PT_MUTEXATTR_DEAD;
247
248 return 0;
249 }
250
251
252 int
253 pthread_once(pthread_once_t *once_control, void (*routine)(void))
254 {
255
256 if (once_control->pto_done == 0) {
257 pthread_mutex_lock(&once_control->pto_mutex);
258 if (once_control->pto_done == 0) {
259 routine();
260 once_control->pto_done = 1;
261 }
262 pthread_mutex_unlock(&once_control->pto_mutex);
263 }
264
265 return 0;
266 }
267