Home | History | Annotate | Line # | Download | only in libpthread
pthread_mutex.c revision 1.11
      1 /*	$NetBSD: pthread_mutex.c,v 1.11 2003/04/16 18:30:43 nathanw Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __RCSID("$NetBSD: pthread_mutex.c,v 1.11 2003/04/16 18:30:43 nathanw Exp $");
     41 
     42 #include <errno.h>
     43 #include <limits.h>
     44 #include <stdlib.h>
     45 #include <string.h>
     46 
     47 #include "pthread.h"
     48 #include "pthread_int.h"
     49 
     50 static int pthread_mutex_lock_slow(pthread_mutex_t *);
     51 
     52 __strong_alias(__libc_mutex_init,pthread_mutex_init)
     53 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
     54 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
     55 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
     56 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
     57 
     58 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
     59 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
     60 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
     61 
     62 __strong_alias(__libc_thr_once,pthread_once)
     63 
     64 struct mutex_private {
     65 	int	type;
     66 	int	recursecount;
     67 };
     68 
     69 static const struct mutex_private mutex_private_default = {
     70 	PTHREAD_MUTEX_DEFAULT,
     71 	0,
     72 };
     73 
     74 struct mutexattr_private {
     75 	int	type;
     76 };
     77 
     78 static const struct mutexattr_private mutexattr_private_default = {
     79 	PTHREAD_MUTEX_DEFAULT,
     80 };
     81 
     82 /*
     83  * If the mutex does not already have private data (i.e. was statically
     84  * initialized), then give it the default.
     85  */
     86 #define	GET_MUTEX_PRIVATE(mutex, mp)					\
     87 do {									\
     88 	if (__predict_false((mp = (mutex)->ptm_private) == NULL)) {	\
     89 		/* LINTED cast away const */				\
     90 		mp = ((mutex)->ptm_private =				\
     91 		    (void *)&mutex_private_default);			\
     92 	}								\
     93 } while (/*CONSTCOND*/0)
     94 
     95 int
     96 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
     97 {
     98 	struct mutexattr_private *map;
     99 	struct mutex_private *mp;
    100 
    101 #ifdef ERRORCHECK
    102 	if ((mutex == NULL) ||
    103 	    (attr && (attr->ptma_magic != _PT_MUTEXATTR_MAGIC)))
    104 		return EINVAL;
    105 #endif
    106 
    107 	if (attr != NULL && (map = attr->ptma_private) != NULL &&
    108 	    memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
    109 		mp = malloc(sizeof(*mp));
    110 		if (mp == NULL)
    111 			return ENOMEM;
    112 
    113 		mp->type = map->type;
    114 		mp->recursecount = 0;
    115 	} else {
    116 		/* LINTED cast away const */
    117 		mp = (struct mutex_private *) &mutex_private_default;
    118 	}
    119 
    120 	mutex->ptm_magic = _PT_MUTEX_MAGIC;
    121 	mutex->ptm_owner = NULL;
    122 	pthread_lockinit(&mutex->ptm_lock);
    123 	pthread_lockinit(&mutex->ptm_interlock);
    124 	PTQ_INIT(&mutex->ptm_blocked);
    125 	mutex->ptm_private = mp;
    126 
    127 	return 0;
    128 }
    129 
    130 
    131 int
    132 pthread_mutex_destroy(pthread_mutex_t *mutex)
    133 {
    134 
    135 #ifdef ERRORCHECK
    136 	if ((mutex == NULL) ||
    137 	    (mutex->ptm_magic != _PT_MUTEX_MAGIC) ||
    138 	    (mutex->ptm_lock != __SIMPLELOCK_UNLOCKED))
    139 		return EINVAL;
    140 #endif
    141 
    142 	mutex->ptm_magic = _PT_MUTEX_DEAD;
    143 	if (mutex->ptm_private != NULL &&
    144 	    mutex->ptm_private != (const void *)&mutex_private_default)
    145 		free(mutex->ptm_private);
    146 
    147 	return 0;
    148 }
    149 
    150 
    151 /*
    152  * Note regarding memory visibility: Pthreads has rules about memory
    153  * visibility and mutexes. Very roughly: Memory a thread can see when
    154  * it unlocks a mutex can be seen by another thread that locks the
    155  * same mutex.
    156  *
    157  * A memory barrier after a lock and before an unlock will provide
    158  * this behavior. This code relies on pthread__simple_lock_try() to issue
    159  * a barrier after obtaining a lock, and on pthread__simple_unlock() to
    160  * issue a barrier before releasing a lock.
    161  */
    162 
    163 int
    164 pthread_mutex_lock(pthread_mutex_t *mutex)
    165 {
    166 	int error;
    167 
    168 #ifdef ERRORCHECK
    169 	if ((mutex == NULL) || (mutex->ptm_magic != _PT_MUTEX_MAGIC))
    170 		return EINVAL;
    171 #endif
    172 
    173 	PTHREADD_ADD(PTHREADD_MUTEX_LOCK);
    174 	/*
    175 	 * Note that if we get the lock, we don't have to deal with any
    176 	 * non-default lock type handling.
    177 	 */
    178 	if (__predict_false(pthread__simple_lock_try(&mutex->ptm_lock) == 0)) {
    179 		error = pthread_mutex_lock_slow(mutex);
    180 		if (error)
    181 			return error;
    182 	}
    183 
    184 	/* We have the lock! */
    185 	/*
    186 	 * Identifying ourselves may be slow, and this assignment is
    187 	 * only needed for (a) debugging identity of the owning thread
    188 	 * and (b) handling errorcheck and recursive mutexes. It's
    189 	 * better to just stash our stack pointer here and let those
    190 	 * slow exception cases compute the stack->thread mapping.
    191 	 */
    192 	mutex->ptm_owner = (pthread_t)pthread__sp();
    193 
    194 	return 0;
    195 }
    196 
    197 
    198 static int
    199 pthread_mutex_lock_slow(pthread_mutex_t *mutex)
    200 {
    201 	pthread_t self;
    202 
    203 	self = pthread__self();
    204 
    205 	PTHREADD_ADD(PTHREADD_MUTEX_LOCK_SLOW);
    206 	while (/*CONSTCOND*/1) {
    207 		if (pthread__simple_lock_try(&mutex->ptm_lock))
    208 			break; /* got it! */
    209 
    210 		/* Okay, didn't look free. Get the interlock... */
    211 		pthread_spinlock(self, &mutex->ptm_interlock);
    212 		/*
    213 		 * The mutex_unlock routine will get the interlock
    214 		 * before looking at the list of sleepers, so if the
    215 		 * lock is held we can safely put ourselves on the
    216 		 * sleep queue. If it's not held, we can try taking it
    217 		 * again.
    218 		 */
    219 		if (mutex->ptm_lock == __SIMPLELOCK_LOCKED) {
    220 			struct mutex_private *mp;
    221 
    222 			GET_MUTEX_PRIVATE(mutex, mp);
    223 
    224 			if (pthread__id(mutex->ptm_owner) == self) {
    225 				switch (mp->type) {
    226 				case PTHREAD_MUTEX_ERRORCHECK:
    227 					pthread_spinunlock(self,
    228 					    &mutex->ptm_interlock);
    229 					return EDEADLK;
    230 
    231 				case PTHREAD_MUTEX_RECURSIVE:
    232 					/*
    233 					 * It's safe to do this without
    234 					 * holding the interlock, because
    235 					 * we only modify it if we know we
    236 					 * own the mutex.
    237 					 */
    238 					pthread_spinunlock(self,
    239 					    &mutex->ptm_interlock);
    240 					if (mp->recursecount == INT_MAX)
    241 						return EAGAIN;
    242 					mp->recursecount++;
    243 					return 0;
    244 				}
    245 			}
    246 
    247 			PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep);
    248 			/*
    249 			 * Locking a mutex is not a cancellation
    250 			 * point, so we don't need to do the
    251 			 * test-cancellation dance. We may get woken
    252 			 * up spuriously by pthread_cancel or signals,
    253 			 * but it's okay since we're just going to
    254 			 * retry.
    255 			 */
    256 			pthread_spinlock(self, &self->pt_statelock);
    257 			self->pt_state = PT_STATE_BLOCKED_QUEUE;
    258 			self->pt_sleepobj = mutex;
    259 			self->pt_sleepq = &mutex->ptm_blocked;
    260 			self->pt_sleeplock = &mutex->ptm_interlock;
    261 			pthread_spinunlock(self, &self->pt_statelock);
    262 
    263 			pthread__block(self, &mutex->ptm_interlock);
    264 			/* interlock is not held when we return */
    265 		} else {
    266 			pthread_spinunlock(self, &mutex->ptm_interlock);
    267 		}
    268 		/* Go around for another try. */
    269 	}
    270 
    271 	return 0;
    272 }
    273 
    274 
    275 int
    276 pthread_mutex_trylock(pthread_mutex_t *mutex)
    277 {
    278 
    279 #ifdef ERRORCHECK
    280 	if ((mutex == NULL) || (mutex->ptm_magic != _PT_MUTEX_MAGIC))
    281 		return EINVAL;
    282 #endif
    283 
    284 	PTHREADD_ADD(PTHREADD_MUTEX_TRYLOCK);
    285 	if (pthread__simple_lock_try(&mutex->ptm_lock) == 0) {
    286 		pthread_t self;
    287 		struct mutex_private *mp;
    288 
    289 		GET_MUTEX_PRIVATE(mutex, mp);
    290 
    291 		/*
    292 		 * These tests can be performed without holding the
    293 		 * interlock because these fields are only modified
    294 		 * if we know we own the mutex.
    295 		 */
    296 		self = pthread__self();
    297 		if (pthread__id(mutex->ptm_owner) == self) {
    298 			switch (mp->type) {
    299 			case PTHREAD_MUTEX_ERRORCHECK:
    300 				return EDEADLK;
    301 
    302 			case PTHREAD_MUTEX_RECURSIVE:
    303 				if (mp->recursecount == INT_MAX)
    304 					return EAGAIN;
    305 				mp->recursecount++;
    306 				return 0;
    307 			}
    308 		}
    309 
    310 		return EBUSY;
    311 	}
    312 
    313 	/* see comment at the end of pthread_mutex_lock() */
    314 	mutex->ptm_owner = (pthread_t)pthread__sp();
    315 
    316 	return 0;
    317 }
    318 
    319 
    320 int
    321 pthread_mutex_unlock(pthread_mutex_t *mutex)
    322 {
    323 	struct mutex_private *mp;
    324 	pthread_t self, blocked;
    325 
    326 #ifdef ERRORCHECK
    327 	if ((mutex == NULL) || (mutex->ptm_magic != _PT_MUTEX_MAGIC))
    328 		return EINVAL;
    329 
    330 	if (mutex->ptm_lock != __SIMPLELOCK_LOCKED)
    331 		return EPERM; /* Not exactly the right error. */
    332 #endif
    333 	PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK);
    334 
    335 	GET_MUTEX_PRIVATE(mutex, mp);
    336 
    337 	/*
    338 	 * These tests can be performed without holding the
    339 	 * interlock because these fields are only modified
    340 	 * if we know we own the mutex.
    341 	 */
    342 	switch (mp->type) {
    343 	case PTHREAD_MUTEX_ERRORCHECK:
    344 		if (pthread__id(mutex->ptm_owner) != pthread__self())
    345 			return EPERM;
    346 		break;
    347 
    348 	case PTHREAD_MUTEX_RECURSIVE:
    349 		if (pthread__id(mutex->ptm_owner) != pthread__self())
    350 			return EPERM;
    351 		if (mp->recursecount != 0) {
    352 			mp->recursecount--;
    353 			return 0;
    354 		}
    355 		break;
    356 	}
    357 
    358 	mutex->ptm_owner = NULL;
    359 	pthread__simple_unlock(&mutex->ptm_lock);
    360 	/*
    361 	 * Do a double-checked locking dance to see if there are any
    362 	 * waiters.  If we don't see any waiters, we can exit, because
    363 	 * we've already released the lock. If we do see waiters, they
    364 	 * were probably waiting on us... there's a slight chance that
    365 	 * they are waiting on a different thread's ownership of the
    366 	 * lock that happened between the unlock above and this
    367 	 * examination of the queue; if so, no harm is done, as the
    368 	 * waiter will loop and see that the mutex is still locked.
    369 	 */
    370 	if (!PTQ_EMPTY(&mutex->ptm_blocked)) {
    371 		self = pthread__self();
    372 		pthread_spinlock(self, &mutex->ptm_interlock);
    373 		blocked = PTQ_FIRST(&mutex->ptm_blocked);
    374 		if (blocked)
    375 			PTQ_REMOVE(&mutex->ptm_blocked, blocked, pt_sleep);
    376 		pthread_spinunlock(self, &mutex->ptm_interlock);
    377 
    378 		/* Give the head of the blocked queue another try. */
    379 		if (blocked) {
    380 			PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK_UNBLOCK);
    381 			pthread__sched(self, blocked);
    382 		}
    383 	}
    384 	return 0;
    385 }
    386 
    387 int
    388 pthread_mutexattr_init(pthread_mutexattr_t *attr)
    389 {
    390 	struct mutexattr_private *map;
    391 
    392 #ifdef ERRORCHECK
    393 	if (attr == NULL)
    394 		return EINVAL;
    395 #endif
    396 
    397 	map = malloc(sizeof(*map));
    398 	if (map == NULL)
    399 		return ENOMEM;
    400 
    401 	*map = mutexattr_private_default;
    402 
    403 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
    404 	attr->ptma_private = map;
    405 
    406 	return 0;
    407 }
    408 
    409 
    410 int
    411 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
    412 {
    413 
    414 #ifdef ERRORCHECK
    415 	if ((attr == NULL) ||
    416 	    (attr->ptma_magic != _PT_MUTEXATTR_MAGIC))
    417 		return EINVAL;
    418 #endif
    419 
    420 	attr->ptma_magic = _PT_MUTEXATTR_DEAD;
    421 	if (attr->ptma_private != NULL)
    422 		free(attr->ptma_private);
    423 
    424 	return 0;
    425 }
    426 
    427 
    428 int
    429 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
    430 {
    431 	struct mutexattr_private *map;
    432 
    433 #ifdef ERRORCHECK
    434 	if ((attr == NULL) ||
    435 	    (attr->ptma_magic != _PT_MUTEXATTR_MAGIC) ||
    436 	    (typep == NULL))
    437 		return EINVAL;
    438 #endif
    439 
    440 	map = attr->ptma_private;
    441 
    442 	*typep = map->type;
    443 
    444 	return 0;
    445 }
    446 
    447 
    448 int
    449 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
    450 {
    451 	struct mutexattr_private *map;
    452 
    453 #ifdef ERRORCHECK
    454 	if ((attr == NULL) ||
    455 	    (attr->ptma_magic != _PT_MUTEXATTR_MAGIC))
    456 		return EINVAL;
    457 #endif
    458 	map = attr->ptma_private;
    459 
    460 	switch (type) {
    461 	case PTHREAD_MUTEX_NORMAL:
    462 	case PTHREAD_MUTEX_ERRORCHECK:
    463 	case PTHREAD_MUTEX_RECURSIVE:
    464 		map->type = type;
    465 		break;
    466 
    467 	default:
    468 		return EINVAL;
    469 	}
    470 
    471 	return 0;
    472 }
    473 
    474 
    475 int
    476 pthread_once(pthread_once_t *once_control, void (*routine)(void))
    477 {
    478 
    479 	if (once_control->pto_done == 0) {
    480 		pthread_mutex_lock(&once_control->pto_mutex);
    481 		if (once_control->pto_done == 0) {
    482 			routine();
    483 			once_control->pto_done = 1;
    484 		}
    485 		pthread_mutex_unlock(&once_control->pto_mutex);
    486 	}
    487 
    488 	return 0;
    489 }
    490