pthread_mutex.c revision 1.13 1 /* $NetBSD: pthread_mutex.c,v 1.13 2003/04/18 21:36:38 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __RCSID("$NetBSD: pthread_mutex.c,v 1.13 2003/04/18 21:36:38 nathanw Exp $");
41
42 #include <errno.h>
43 #include <limits.h>
44 #include <stdlib.h>
45 #include <string.h>
46
47 #include "pthread.h"
48 #include "pthread_int.h"
49
50 static int pthread_mutex_lock_slow(pthread_mutex_t *);
51
52 __strong_alias(__libc_mutex_init,pthread_mutex_init)
53 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
54 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
55 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
56 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
57
58 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
59 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
60 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
61
62 __strong_alias(__libc_thr_once,pthread_once)
63
64 struct mutex_private {
65 int type;
66 int recursecount;
67 };
68
69 static const struct mutex_private mutex_private_default = {
70 PTHREAD_MUTEX_DEFAULT,
71 0,
72 };
73
74 struct mutexattr_private {
75 int type;
76 };
77
78 static const struct mutexattr_private mutexattr_private_default = {
79 PTHREAD_MUTEX_DEFAULT,
80 };
81
82 /*
83 * If the mutex does not already have private data (i.e. was statically
84 * initialized), then give it the default.
85 */
86 #define GET_MUTEX_PRIVATE(mutex, mp) \
87 do { \
88 if (__predict_false((mp = (mutex)->ptm_private) == NULL)) { \
89 /* LINTED cast away const */ \
90 mp = ((mutex)->ptm_private = \
91 (void *)&mutex_private_default); \
92 } \
93 } while (/*CONSTCOND*/0)
94
95 int
96 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
97 {
98 struct mutexattr_private *map;
99 struct mutex_private *mp;
100
101 pthread__assert((attr == NULL) ||
102 (attr->ptma_magic == _PT_MUTEXATTR_MAGIC));
103
104 if (attr != NULL && (map = attr->ptma_private) != NULL &&
105 memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
106 mp = malloc(sizeof(*mp));
107 if (mp == NULL)
108 return ENOMEM;
109
110 mp->type = map->type;
111 mp->recursecount = 0;
112 } else {
113 /* LINTED cast away const */
114 mp = (struct mutex_private *) &mutex_private_default;
115 }
116
117 mutex->ptm_magic = _PT_MUTEX_MAGIC;
118 mutex->ptm_owner = NULL;
119 pthread_lockinit(&mutex->ptm_lock);
120 pthread_lockinit(&mutex->ptm_interlock);
121 PTQ_INIT(&mutex->ptm_blocked);
122 mutex->ptm_private = mp;
123
124 return 0;
125 }
126
127
128 int
129 pthread_mutex_destroy(pthread_mutex_t *mutex)
130 {
131
132 pthread__assert(mutex->ptm_magic == _PT_MUTEX_MAGIC);
133 pthread__assert(mutex->ptm_lock == __SIMPLELOCK_UNLOCKED);
134
135 mutex->ptm_magic = _PT_MUTEX_DEAD;
136 if (mutex->ptm_private != NULL &&
137 mutex->ptm_private != (const void *)&mutex_private_default)
138 free(mutex->ptm_private);
139
140 return 0;
141 }
142
143
144 /*
145 * Note regarding memory visibility: Pthreads has rules about memory
146 * visibility and mutexes. Very roughly: Memory a thread can see when
147 * it unlocks a mutex can be seen by another thread that locks the
148 * same mutex.
149 *
150 * A memory barrier after a lock and before an unlock will provide
151 * this behavior. This code relies on pthread__simple_lock_try() to issue
152 * a barrier after obtaining a lock, and on pthread__simple_unlock() to
153 * issue a barrier before releasing a lock.
154 */
155
156 int
157 pthread_mutex_lock(pthread_mutex_t *mutex)
158 {
159 int error;
160
161 PTHREADD_ADD(PTHREADD_MUTEX_LOCK);
162 /*
163 * Note that if we get the lock, we don't have to deal with any
164 * non-default lock type handling.
165 */
166 if (__predict_false(pthread__simple_lock_try(&mutex->ptm_lock) == 0)) {
167 error = pthread_mutex_lock_slow(mutex);
168 if (error)
169 return error;
170 }
171
172 /* We have the lock! */
173 /*
174 * Identifying ourselves may be slow, and this assignment is
175 * only needed for (a) debugging identity of the owning thread
176 * and (b) handling errorcheck and recursive mutexes. It's
177 * better to just stash our stack pointer here and let those
178 * slow exception cases compute the stack->thread mapping.
179 */
180 mutex->ptm_owner = (pthread_t)pthread__sp();
181
182 return 0;
183 }
184
185
186 static int
187 pthread_mutex_lock_slow(pthread_mutex_t *mutex)
188 {
189 pthread_t self;
190
191 pthread__assert(mutex->ptm_magic == _PT_MUTEX_MAGIC);
192
193 self = pthread__self();
194
195 PTHREADD_ADD(PTHREADD_MUTEX_LOCK_SLOW);
196 while (/*CONSTCOND*/1) {
197 if (pthread__simple_lock_try(&mutex->ptm_lock))
198 break; /* got it! */
199
200 /* Okay, didn't look free. Get the interlock... */
201 pthread_spinlock(self, &mutex->ptm_interlock);
202 /*
203 * The mutex_unlock routine will get the interlock
204 * before looking at the list of sleepers, so if the
205 * lock is held we can safely put ourselves on the
206 * sleep queue. If it's not held, we can try taking it
207 * again.
208 */
209 if (mutex->ptm_lock == __SIMPLELOCK_LOCKED) {
210 struct mutex_private *mp;
211
212 GET_MUTEX_PRIVATE(mutex, mp);
213
214 if (pthread__id(mutex->ptm_owner) == self) {
215 switch (mp->type) {
216 case PTHREAD_MUTEX_ERRORCHECK:
217 pthread_spinunlock(self,
218 &mutex->ptm_interlock);
219 return EDEADLK;
220
221 case PTHREAD_MUTEX_RECURSIVE:
222 /*
223 * It's safe to do this without
224 * holding the interlock, because
225 * we only modify it if we know we
226 * own the mutex.
227 */
228 pthread_spinunlock(self,
229 &mutex->ptm_interlock);
230 if (mp->recursecount == INT_MAX)
231 return EAGAIN;
232 mp->recursecount++;
233 return 0;
234 }
235 }
236
237 PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep);
238 /*
239 * Locking a mutex is not a cancellation
240 * point, so we don't need to do the
241 * test-cancellation dance. We may get woken
242 * up spuriously by pthread_cancel or signals,
243 * but it's okay since we're just going to
244 * retry.
245 */
246 pthread_spinlock(self, &self->pt_statelock);
247 self->pt_state = PT_STATE_BLOCKED_QUEUE;
248 self->pt_sleepobj = mutex;
249 self->pt_sleepq = &mutex->ptm_blocked;
250 self->pt_sleeplock = &mutex->ptm_interlock;
251 pthread_spinunlock(self, &self->pt_statelock);
252
253 pthread__block(self, &mutex->ptm_interlock);
254 /* interlock is not held when we return */
255 } else {
256 pthread_spinunlock(self, &mutex->ptm_interlock);
257 }
258 /* Go around for another try. */
259 }
260
261 return 0;
262 }
263
264
265 int
266 pthread_mutex_trylock(pthread_mutex_t *mutex)
267 {
268
269 pthread__assert(mutex->ptm_magic == _PT_MUTEX_MAGIC);
270
271 PTHREADD_ADD(PTHREADD_MUTEX_TRYLOCK);
272 if (pthread__simple_lock_try(&mutex->ptm_lock) == 0) {
273 struct mutex_private *mp;
274
275 GET_MUTEX_PRIVATE(mutex, mp);
276
277 /*
278 * These tests can be performed without holding the
279 * interlock because these fields are only modified
280 * if we know we own the mutex.
281 */
282 if ((mp->type == PTHREAD_MUTEX_RECURSIVE) &&
283 (pthread__id(mutex->ptm_owner) == pthread__self())) {
284 if (mp->recursecount == INT_MAX)
285 return EAGAIN;
286 mp->recursecount++;
287 return 0;
288 }
289
290 return EBUSY;
291 }
292
293 /* see comment at the end of pthread_mutex_lock() */
294 mutex->ptm_owner = (pthread_t)pthread__sp();
295
296 return 0;
297 }
298
299
300 int
301 pthread_mutex_unlock(pthread_mutex_t *mutex)
302 {
303 struct mutex_private *mp;
304 pthread_t self, blocked;
305 int weown;
306
307 pthread__assert(mutex->ptm_magic == _PT_MUTEX_MAGIC);
308
309 PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK);
310
311 GET_MUTEX_PRIVATE(mutex, mp);
312
313 /*
314 * These tests can be performed without holding the
315 * interlock because these fields are only modified
316 * if we know we own the mutex.
317 */
318 weown = (pthread__id(mutex->ptm_owner) == pthread__self());
319 switch (mp->type) {
320 case PTHREAD_MUTEX_RECURSIVE:
321 if (!weown)
322 return EPERM;
323 if (mp->recursecount != 0) {
324 mp->recursecount--;
325 return 0;
326 }
327 break;
328 case PTHREAD_MUTEX_ERRORCHECK:
329 if (!weown)
330 return EPERM;
331 default:
332 pthread__assert(weown);
333 break;
334 }
335
336 mutex->ptm_owner = NULL;
337 pthread__simple_unlock(&mutex->ptm_lock);
338 /*
339 * Do a double-checked locking dance to see if there are any
340 * waiters. If we don't see any waiters, we can exit, because
341 * we've already released the lock. If we do see waiters, they
342 * were probably waiting on us... there's a slight chance that
343 * they are waiting on a different thread's ownership of the
344 * lock that happened between the unlock above and this
345 * examination of the queue; if so, no harm is done, as the
346 * waiter will loop and see that the mutex is still locked.
347 */
348 if (!PTQ_EMPTY(&mutex->ptm_blocked)) {
349 self = pthread__self();
350 pthread_spinlock(self, &mutex->ptm_interlock);
351 blocked = PTQ_FIRST(&mutex->ptm_blocked);
352 if (blocked)
353 PTQ_REMOVE(&mutex->ptm_blocked, blocked, pt_sleep);
354 pthread_spinunlock(self, &mutex->ptm_interlock);
355
356 /* Give the head of the blocked queue another try. */
357 if (blocked) {
358 PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK_UNBLOCK);
359 pthread__sched(self, blocked);
360 }
361 }
362 return 0;
363 }
364
365 int
366 pthread_mutexattr_init(pthread_mutexattr_t *attr)
367 {
368 struct mutexattr_private *map;
369
370 map = malloc(sizeof(*map));
371 if (map == NULL)
372 return ENOMEM;
373
374 *map = mutexattr_private_default;
375
376 attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
377 attr->ptma_private = map;
378
379 return 0;
380 }
381
382
383 int
384 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
385 {
386
387 pthread__assert(attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
388
389 attr->ptma_magic = _PT_MUTEXATTR_DEAD;
390 if (attr->ptma_private != NULL)
391 free(attr->ptma_private);
392
393 return 0;
394 }
395
396
397 int
398 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
399 {
400 struct mutexattr_private *map;
401
402 pthread__assert(attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
403
404 map = attr->ptma_private;
405
406 *typep = map->type;
407
408 return 0;
409 }
410
411
412 int
413 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
414 {
415 struct mutexattr_private *map;
416
417 pthread__assert(attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
418
419 map = attr->ptma_private;
420
421 switch (type) {
422 case PTHREAD_MUTEX_NORMAL:
423 case PTHREAD_MUTEX_ERRORCHECK:
424 case PTHREAD_MUTEX_RECURSIVE:
425 map->type = type;
426 break;
427
428 default:
429 return EINVAL;
430 }
431
432 return 0;
433 }
434
435
436 int
437 pthread_once(pthread_once_t *once_control, void (*routine)(void))
438 {
439
440 if (once_control->pto_done == 0) {
441 pthread_mutex_lock(&once_control->pto_mutex);
442 if (once_control->pto_done == 0) {
443 routine();
444 once_control->pto_done = 1;
445 }
446 pthread_mutex_unlock(&once_control->pto_mutex);
447 }
448
449 return 0;
450 }
451