pthread_mutex.c revision 1.17 1 /* $NetBSD: pthread_mutex.c,v 1.17 2003/11/24 23:54:13 cl Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __RCSID("$NetBSD: pthread_mutex.c,v 1.17 2003/11/24 23:54:13 cl Exp $");
41
42 #include <errno.h>
43 #include <limits.h>
44 #include <stdlib.h>
45 #include <string.h>
46
47 #include "pthread.h"
48 #include "pthread_int.h"
49
50 static int pthread_mutex_lock_slow(pthread_mutex_t *);
51
52 __strong_alias(__libc_mutex_init,pthread_mutex_init)
53 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
54 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
55 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
56 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
57
58 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
59 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
60 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
61
62 __strong_alias(__libc_thr_once,pthread_once)
63
64 struct mutex_private {
65 int type;
66 int recursecount;
67 };
68
69 static const struct mutex_private mutex_private_default = {
70 PTHREAD_MUTEX_DEFAULT,
71 0,
72 };
73
74 struct mutexattr_private {
75 int type;
76 };
77
78 static const struct mutexattr_private mutexattr_private_default = {
79 PTHREAD_MUTEX_DEFAULT,
80 };
81
82 /*
83 * If the mutex does not already have private data (i.e. was statically
84 * initialized), then give it the default.
85 */
86 #define GET_MUTEX_PRIVATE(mutex, mp) \
87 do { \
88 if (__predict_false((mp = (mutex)->ptm_private) == NULL)) { \
89 /* LINTED cast away const */ \
90 mp = ((mutex)->ptm_private = \
91 (void *)&mutex_private_default); \
92 } \
93 } while (/*CONSTCOND*/0)
94
95 int
96 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
97 {
98 struct mutexattr_private *map;
99 struct mutex_private *mp;
100
101 pthread__error(EINVAL, "Invalid mutex attribute",
102 (attr == NULL) || (attr->ptma_magic == _PT_MUTEXATTR_MAGIC));
103
104 if (attr != NULL && (map = attr->ptma_private) != NULL &&
105 memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
106 mp = malloc(sizeof(*mp));
107 if (mp == NULL)
108 return ENOMEM;
109
110 mp->type = map->type;
111 mp->recursecount = 0;
112 } else {
113 /* LINTED cast away const */
114 mp = (struct mutex_private *) &mutex_private_default;
115 }
116
117 mutex->ptm_magic = _PT_MUTEX_MAGIC;
118 mutex->ptm_owner = NULL;
119 pthread_lockinit(&mutex->ptm_lock);
120 pthread_lockinit(&mutex->ptm_interlock);
121 PTQ_INIT(&mutex->ptm_blocked);
122 mutex->ptm_private = mp;
123
124 return 0;
125 }
126
127
128 int
129 pthread_mutex_destroy(pthread_mutex_t *mutex)
130 {
131
132 pthread__error(EINVAL, "Invalid mutex",
133 mutex->ptm_magic == _PT_MUTEX_MAGIC);
134 pthread__error(EBUSY, "Destroying locked mutex",
135 mutex->ptm_lock == __SIMPLELOCK_UNLOCKED);
136
137 mutex->ptm_magic = _PT_MUTEX_DEAD;
138 if (mutex->ptm_private != NULL &&
139 mutex->ptm_private != (const void *)&mutex_private_default)
140 free(mutex->ptm_private);
141
142 return 0;
143 }
144
145
146 /*
147 * Note regarding memory visibility: Pthreads has rules about memory
148 * visibility and mutexes. Very roughly: Memory a thread can see when
149 * it unlocks a mutex can be seen by another thread that locks the
150 * same mutex.
151 *
152 * A memory barrier after a lock and before an unlock will provide
153 * this behavior. This code relies on pthread__simple_lock_try() to issue
154 * a barrier after obtaining a lock, and on pthread__simple_unlock() to
155 * issue a barrier before releasing a lock.
156 */
157
158 int
159 pthread_mutex_lock(pthread_mutex_t *mutex)
160 {
161 int error;
162
163 PTHREADD_ADD(PTHREADD_MUTEX_LOCK);
164 /*
165 * Note that if we get the lock, we don't have to deal with any
166 * non-default lock type handling.
167 */
168 if (__predict_false(pthread__simple_lock_try(&mutex->ptm_lock) == 0)) {
169 error = pthread_mutex_lock_slow(mutex);
170 if (error)
171 return error;
172 }
173
174 /* We have the lock! */
175 /*
176 * Identifying ourselves may be slow, and this assignment is
177 * only needed for (a) debugging identity of the owning thread
178 * and (b) handling errorcheck and recursive mutexes. It's
179 * better to just stash our stack pointer here and let those
180 * slow exception cases compute the stack->thread mapping.
181 */
182 mutex->ptm_owner = (pthread_t)pthread__sp();
183
184 return 0;
185 }
186
187
188 static int
189 pthread_mutex_lock_slow(pthread_mutex_t *mutex)
190 {
191 pthread_t self;
192
193 pthread__error(EINVAL, "Invalid mutex",
194 mutex->ptm_magic == _PT_MUTEX_MAGIC);
195
196 self = pthread__self();
197
198 PTHREADD_ADD(PTHREADD_MUTEX_LOCK_SLOW);
199 while (/*CONSTCOND*/1) {
200 if (pthread__simple_lock_try(&mutex->ptm_lock))
201 break; /* got it! */
202
203 /* Okay, didn't look free. Get the interlock... */
204 pthread_spinlock(self, &mutex->ptm_interlock);
205 /*
206 * The mutex_unlock routine will get the interlock
207 * before looking at the list of sleepers, so if the
208 * lock is held we can safely put ourselves on the
209 * sleep queue. If it's not held, we can try taking it
210 * again.
211 */
212 if (mutex->ptm_lock == __SIMPLELOCK_LOCKED) {
213 struct mutex_private *mp;
214
215 GET_MUTEX_PRIVATE(mutex, mp);
216
217 if (pthread__id(mutex->ptm_owner) == self) {
218 switch (mp->type) {
219 case PTHREAD_MUTEX_ERRORCHECK:
220 pthread_spinunlock(self,
221 &mutex->ptm_interlock);
222 return EDEADLK;
223
224 case PTHREAD_MUTEX_RECURSIVE:
225 /*
226 * It's safe to do this without
227 * holding the interlock, because
228 * we only modify it if we know we
229 * own the mutex.
230 */
231 pthread_spinunlock(self,
232 &mutex->ptm_interlock);
233 if (mp->recursecount == INT_MAX)
234 return EAGAIN;
235 mp->recursecount++;
236 return 0;
237 }
238 }
239
240 PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep);
241 /*
242 * Locking a mutex is not a cancellation
243 * point, so we don't need to do the
244 * test-cancellation dance. We may get woken
245 * up spuriously by pthread_cancel or signals,
246 * but it's okay since we're just going to
247 * retry.
248 */
249 pthread_spinlock(self, &self->pt_statelock);
250 self->pt_state = PT_STATE_BLOCKED_QUEUE;
251 self->pt_sleepobj = mutex;
252 self->pt_sleepq = &mutex->ptm_blocked;
253 self->pt_sleeplock = &mutex->ptm_interlock;
254 pthread_spinunlock(self, &self->pt_statelock);
255
256 pthread__block(self, &mutex->ptm_interlock);
257 /* interlock is not held when we return */
258 } else {
259 pthread_spinunlock(self, &mutex->ptm_interlock);
260 }
261 /* Go around for another try. */
262 }
263
264 return 0;
265 }
266
267
268 int
269 pthread_mutex_trylock(pthread_mutex_t *mutex)
270 {
271
272 pthread__error(EINVAL, "Invalid mutex",
273 mutex->ptm_magic == _PT_MUTEX_MAGIC);
274
275 PTHREADD_ADD(PTHREADD_MUTEX_TRYLOCK);
276 if (pthread__simple_lock_try(&mutex->ptm_lock) == 0) {
277 struct mutex_private *mp;
278
279 GET_MUTEX_PRIVATE(mutex, mp);
280
281 /*
282 * These tests can be performed without holding the
283 * interlock because these fields are only modified
284 * if we know we own the mutex.
285 */
286 if ((mp->type == PTHREAD_MUTEX_RECURSIVE) &&
287 (pthread__id(mutex->ptm_owner) == pthread__self())) {
288 if (mp->recursecount == INT_MAX)
289 return EAGAIN;
290 mp->recursecount++;
291 return 0;
292 }
293
294 return EBUSY;
295 }
296
297 /* see comment at the end of pthread_mutex_lock() */
298 mutex->ptm_owner = (pthread_t)pthread__sp();
299
300 return 0;
301 }
302
303
304 int
305 pthread_mutex_unlock(pthread_mutex_t *mutex)
306 {
307 struct mutex_private *mp;
308 pthread_t self, blocked;
309 int weown;
310
311 pthread__error(EINVAL, "Invalid mutex",
312 mutex->ptm_magic == _PT_MUTEX_MAGIC);
313
314 PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK);
315
316 GET_MUTEX_PRIVATE(mutex, mp);
317
318 /*
319 * These tests can be performed without holding the
320 * interlock because these fields are only modified
321 * if we know we own the mutex.
322 */
323 weown = (pthread__id(mutex->ptm_owner) == pthread__self());
324 switch (mp->type) {
325 case PTHREAD_MUTEX_RECURSIVE:
326 if (!weown)
327 return EPERM;
328 if (mp->recursecount != 0) {
329 mp->recursecount--;
330 return 0;
331 }
332 break;
333 case PTHREAD_MUTEX_ERRORCHECK:
334 if (!weown)
335 return EPERM;
336 /*FALLTHROUGH*/
337 default:
338 if (__predict_false(!weown)) {
339 pthread__error(EPERM, "Unlocking unlocked mutex",
340 (mutex->ptm_owner != 0));
341 pthread__error(EPERM,
342 "Unlocking mutex owned by another thread", weown);
343 }
344 break;
345 }
346
347 mutex->ptm_owner = NULL;
348 pthread__simple_unlock(&mutex->ptm_lock);
349 /*
350 * Do a double-checked locking dance to see if there are any
351 * waiters. If we don't see any waiters, we can exit, because
352 * we've already released the lock. If we do see waiters, they
353 * were probably waiting on us... there's a slight chance that
354 * they are waiting on a different thread's ownership of the
355 * lock that happened between the unlock above and this
356 * examination of the queue; if so, no harm is done, as the
357 * waiter will loop and see that the mutex is still locked.
358 */
359 if (!PTQ_EMPTY(&mutex->ptm_blocked)) {
360 self = pthread__self();
361 pthread_spinlock(self, &mutex->ptm_interlock);
362 blocked = PTQ_FIRST(&mutex->ptm_blocked);
363 if (blocked) {
364 PTQ_REMOVE(&mutex->ptm_blocked, blocked, pt_sleep);
365 PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK_UNBLOCK);
366 /* Give the head of the blocked queue another try. */
367 pthread__sched(self, blocked);
368 }
369 pthread_spinunlock(self, &mutex->ptm_interlock);
370 }
371 return 0;
372 }
373
374 int
375 pthread_mutexattr_init(pthread_mutexattr_t *attr)
376 {
377 struct mutexattr_private *map;
378
379 map = malloc(sizeof(*map));
380 if (map == NULL)
381 return ENOMEM;
382
383 *map = mutexattr_private_default;
384
385 attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
386 attr->ptma_private = map;
387
388 return 0;
389 }
390
391
392 int
393 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
394 {
395
396 pthread__error(EINVAL, "Invalid mutex attribute",
397 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
398
399 attr->ptma_magic = _PT_MUTEXATTR_DEAD;
400 if (attr->ptma_private != NULL)
401 free(attr->ptma_private);
402
403 return 0;
404 }
405
406
407 int
408 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
409 {
410 struct mutexattr_private *map;
411
412 pthread__error(EINVAL, "Invalid mutex attribute",
413 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
414
415 map = attr->ptma_private;
416
417 *typep = map->type;
418
419 return 0;
420 }
421
422
423 int
424 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
425 {
426 struct mutexattr_private *map;
427
428 pthread__error(EINVAL, "Invalid mutex attribute",
429 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
430
431 map = attr->ptma_private;
432
433 switch (type) {
434 case PTHREAD_MUTEX_NORMAL:
435 case PTHREAD_MUTEX_ERRORCHECK:
436 case PTHREAD_MUTEX_RECURSIVE:
437 map->type = type;
438 break;
439
440 default:
441 return EINVAL;
442 }
443
444 return 0;
445 }
446
447
448 int
449 pthread_once(pthread_once_t *once_control, void (*routine)(void))
450 {
451
452 if (once_control->pto_done == 0) {
453 pthread_mutex_lock(&once_control->pto_mutex);
454 if (once_control->pto_done == 0) {
455 routine();
456 once_control->pto_done = 1;
457 }
458 pthread_mutex_unlock(&once_control->pto_mutex);
459 }
460
461 return 0;
462 }
463