Home | History | Annotate | Line # | Download | only in libpthread
pthread_mutex.c revision 1.17
      1 /*	$NetBSD: pthread_mutex.c,v 1.17 2003/11/24 23:54:13 cl Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __RCSID("$NetBSD: pthread_mutex.c,v 1.17 2003/11/24 23:54:13 cl Exp $");
     41 
     42 #include <errno.h>
     43 #include <limits.h>
     44 #include <stdlib.h>
     45 #include <string.h>
     46 
     47 #include "pthread.h"
     48 #include "pthread_int.h"
     49 
     50 static int pthread_mutex_lock_slow(pthread_mutex_t *);
     51 
     52 __strong_alias(__libc_mutex_init,pthread_mutex_init)
     53 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
     54 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
     55 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
     56 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
     57 
     58 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
     59 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
     60 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
     61 
     62 __strong_alias(__libc_thr_once,pthread_once)
     63 
     64 struct mutex_private {
     65 	int	type;
     66 	int	recursecount;
     67 };
     68 
     69 static const struct mutex_private mutex_private_default = {
     70 	PTHREAD_MUTEX_DEFAULT,
     71 	0,
     72 };
     73 
     74 struct mutexattr_private {
     75 	int	type;
     76 };
     77 
     78 static const struct mutexattr_private mutexattr_private_default = {
     79 	PTHREAD_MUTEX_DEFAULT,
     80 };
     81 
     82 /*
     83  * If the mutex does not already have private data (i.e. was statically
     84  * initialized), then give it the default.
     85  */
     86 #define	GET_MUTEX_PRIVATE(mutex, mp)					\
     87 do {									\
     88 	if (__predict_false((mp = (mutex)->ptm_private) == NULL)) {	\
     89 		/* LINTED cast away const */				\
     90 		mp = ((mutex)->ptm_private =				\
     91 		    (void *)&mutex_private_default);			\
     92 	}								\
     93 } while (/*CONSTCOND*/0)
     94 
     95 int
     96 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
     97 {
     98 	struct mutexattr_private *map;
     99 	struct mutex_private *mp;
    100 
    101 	pthread__error(EINVAL, "Invalid mutex attribute",
    102 	    (attr == NULL) || (attr->ptma_magic == _PT_MUTEXATTR_MAGIC));
    103 
    104 	if (attr != NULL && (map = attr->ptma_private) != NULL &&
    105 	    memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
    106 		mp = malloc(sizeof(*mp));
    107 		if (mp == NULL)
    108 			return ENOMEM;
    109 
    110 		mp->type = map->type;
    111 		mp->recursecount = 0;
    112 	} else {
    113 		/* LINTED cast away const */
    114 		mp = (struct mutex_private *) &mutex_private_default;
    115 	}
    116 
    117 	mutex->ptm_magic = _PT_MUTEX_MAGIC;
    118 	mutex->ptm_owner = NULL;
    119 	pthread_lockinit(&mutex->ptm_lock);
    120 	pthread_lockinit(&mutex->ptm_interlock);
    121 	PTQ_INIT(&mutex->ptm_blocked);
    122 	mutex->ptm_private = mp;
    123 
    124 	return 0;
    125 }
    126 
    127 
    128 int
    129 pthread_mutex_destroy(pthread_mutex_t *mutex)
    130 {
    131 
    132 	pthread__error(EINVAL, "Invalid mutex",
    133 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
    134 	pthread__error(EBUSY, "Destroying locked mutex",
    135 	    mutex->ptm_lock == __SIMPLELOCK_UNLOCKED);
    136 
    137 	mutex->ptm_magic = _PT_MUTEX_DEAD;
    138 	if (mutex->ptm_private != NULL &&
    139 	    mutex->ptm_private != (const void *)&mutex_private_default)
    140 		free(mutex->ptm_private);
    141 
    142 	return 0;
    143 }
    144 
    145 
    146 /*
    147  * Note regarding memory visibility: Pthreads has rules about memory
    148  * visibility and mutexes. Very roughly: Memory a thread can see when
    149  * it unlocks a mutex can be seen by another thread that locks the
    150  * same mutex.
    151  *
    152  * A memory barrier after a lock and before an unlock will provide
    153  * this behavior. This code relies on pthread__simple_lock_try() to issue
    154  * a barrier after obtaining a lock, and on pthread__simple_unlock() to
    155  * issue a barrier before releasing a lock.
    156  */
    157 
    158 int
    159 pthread_mutex_lock(pthread_mutex_t *mutex)
    160 {
    161 	int error;
    162 
    163 	PTHREADD_ADD(PTHREADD_MUTEX_LOCK);
    164 	/*
    165 	 * Note that if we get the lock, we don't have to deal with any
    166 	 * non-default lock type handling.
    167 	 */
    168 	if (__predict_false(pthread__simple_lock_try(&mutex->ptm_lock) == 0)) {
    169 		error = pthread_mutex_lock_slow(mutex);
    170 		if (error)
    171 			return error;
    172 	}
    173 
    174 	/* We have the lock! */
    175 	/*
    176 	 * Identifying ourselves may be slow, and this assignment is
    177 	 * only needed for (a) debugging identity of the owning thread
    178 	 * and (b) handling errorcheck and recursive mutexes. It's
    179 	 * better to just stash our stack pointer here and let those
    180 	 * slow exception cases compute the stack->thread mapping.
    181 	 */
    182 	mutex->ptm_owner = (pthread_t)pthread__sp();
    183 
    184 	return 0;
    185 }
    186 
    187 
    188 static int
    189 pthread_mutex_lock_slow(pthread_mutex_t *mutex)
    190 {
    191 	pthread_t self;
    192 
    193 	pthread__error(EINVAL, "Invalid mutex",
    194 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
    195 
    196 	self = pthread__self();
    197 
    198 	PTHREADD_ADD(PTHREADD_MUTEX_LOCK_SLOW);
    199 	while (/*CONSTCOND*/1) {
    200 		if (pthread__simple_lock_try(&mutex->ptm_lock))
    201 			break; /* got it! */
    202 
    203 		/* Okay, didn't look free. Get the interlock... */
    204 		pthread_spinlock(self, &mutex->ptm_interlock);
    205 		/*
    206 		 * The mutex_unlock routine will get the interlock
    207 		 * before looking at the list of sleepers, so if the
    208 		 * lock is held we can safely put ourselves on the
    209 		 * sleep queue. If it's not held, we can try taking it
    210 		 * again.
    211 		 */
    212 		if (mutex->ptm_lock == __SIMPLELOCK_LOCKED) {
    213 			struct mutex_private *mp;
    214 
    215 			GET_MUTEX_PRIVATE(mutex, mp);
    216 
    217 			if (pthread__id(mutex->ptm_owner) == self) {
    218 				switch (mp->type) {
    219 				case PTHREAD_MUTEX_ERRORCHECK:
    220 					pthread_spinunlock(self,
    221 					    &mutex->ptm_interlock);
    222 					return EDEADLK;
    223 
    224 				case PTHREAD_MUTEX_RECURSIVE:
    225 					/*
    226 					 * It's safe to do this without
    227 					 * holding the interlock, because
    228 					 * we only modify it if we know we
    229 					 * own the mutex.
    230 					 */
    231 					pthread_spinunlock(self,
    232 					    &mutex->ptm_interlock);
    233 					if (mp->recursecount == INT_MAX)
    234 						return EAGAIN;
    235 					mp->recursecount++;
    236 					return 0;
    237 				}
    238 			}
    239 
    240 			PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep);
    241 			/*
    242 			 * Locking a mutex is not a cancellation
    243 			 * point, so we don't need to do the
    244 			 * test-cancellation dance. We may get woken
    245 			 * up spuriously by pthread_cancel or signals,
    246 			 * but it's okay since we're just going to
    247 			 * retry.
    248 			 */
    249 			pthread_spinlock(self, &self->pt_statelock);
    250 			self->pt_state = PT_STATE_BLOCKED_QUEUE;
    251 			self->pt_sleepobj = mutex;
    252 			self->pt_sleepq = &mutex->ptm_blocked;
    253 			self->pt_sleeplock = &mutex->ptm_interlock;
    254 			pthread_spinunlock(self, &self->pt_statelock);
    255 
    256 			pthread__block(self, &mutex->ptm_interlock);
    257 			/* interlock is not held when we return */
    258 		} else {
    259 			pthread_spinunlock(self, &mutex->ptm_interlock);
    260 		}
    261 		/* Go around for another try. */
    262 	}
    263 
    264 	return 0;
    265 }
    266 
    267 
    268 int
    269 pthread_mutex_trylock(pthread_mutex_t *mutex)
    270 {
    271 
    272 	pthread__error(EINVAL, "Invalid mutex",
    273 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
    274 
    275 	PTHREADD_ADD(PTHREADD_MUTEX_TRYLOCK);
    276 	if (pthread__simple_lock_try(&mutex->ptm_lock) == 0) {
    277 		struct mutex_private *mp;
    278 
    279 		GET_MUTEX_PRIVATE(mutex, mp);
    280 
    281 		/*
    282 		 * These tests can be performed without holding the
    283 		 * interlock because these fields are only modified
    284 		 * if we know we own the mutex.
    285 		 */
    286 		if ((mp->type == PTHREAD_MUTEX_RECURSIVE) &&
    287 		    (pthread__id(mutex->ptm_owner) == pthread__self())) {
    288 			if (mp->recursecount == INT_MAX)
    289 				return EAGAIN;
    290 			mp->recursecount++;
    291 			return 0;
    292 		}
    293 
    294 		return EBUSY;
    295 	}
    296 
    297 	/* see comment at the end of pthread_mutex_lock() */
    298 	mutex->ptm_owner = (pthread_t)pthread__sp();
    299 
    300 	return 0;
    301 }
    302 
    303 
    304 int
    305 pthread_mutex_unlock(pthread_mutex_t *mutex)
    306 {
    307 	struct mutex_private *mp;
    308 	pthread_t self, blocked;
    309 	int weown;
    310 
    311 	pthread__error(EINVAL, "Invalid mutex",
    312 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
    313 
    314 	PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK);
    315 
    316 	GET_MUTEX_PRIVATE(mutex, mp);
    317 
    318 	/*
    319 	 * These tests can be performed without holding the
    320 	 * interlock because these fields are only modified
    321 	 * if we know we own the mutex.
    322 	 */
    323 	weown = (pthread__id(mutex->ptm_owner) == pthread__self());
    324 	switch (mp->type) {
    325 	case PTHREAD_MUTEX_RECURSIVE:
    326 		if (!weown)
    327 			return EPERM;
    328 		if (mp->recursecount != 0) {
    329 			mp->recursecount--;
    330 			return 0;
    331 		}
    332 		break;
    333 	case PTHREAD_MUTEX_ERRORCHECK:
    334 		if (!weown)
    335 			return EPERM;
    336 		/*FALLTHROUGH*/
    337 	default:
    338 		if (__predict_false(!weown)) {
    339 			pthread__error(EPERM, "Unlocking unlocked mutex",
    340 			    (mutex->ptm_owner != 0));
    341 			pthread__error(EPERM,
    342 			    "Unlocking mutex owned by another thread", weown);
    343 		}
    344 		break;
    345 	}
    346 
    347 	mutex->ptm_owner = NULL;
    348 	pthread__simple_unlock(&mutex->ptm_lock);
    349 	/*
    350 	 * Do a double-checked locking dance to see if there are any
    351 	 * waiters.  If we don't see any waiters, we can exit, because
    352 	 * we've already released the lock. If we do see waiters, they
    353 	 * were probably waiting on us... there's a slight chance that
    354 	 * they are waiting on a different thread's ownership of the
    355 	 * lock that happened between the unlock above and this
    356 	 * examination of the queue; if so, no harm is done, as the
    357 	 * waiter will loop and see that the mutex is still locked.
    358 	 */
    359 	if (!PTQ_EMPTY(&mutex->ptm_blocked)) {
    360 		self = pthread__self();
    361 		pthread_spinlock(self, &mutex->ptm_interlock);
    362 		blocked = PTQ_FIRST(&mutex->ptm_blocked);
    363 		if (blocked) {
    364 			PTQ_REMOVE(&mutex->ptm_blocked, blocked, pt_sleep);
    365 			PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK_UNBLOCK);
    366 			/* Give the head of the blocked queue another try. */
    367 			pthread__sched(self, blocked);
    368 		}
    369 		pthread_spinunlock(self, &mutex->ptm_interlock);
    370 	}
    371 	return 0;
    372 }
    373 
    374 int
    375 pthread_mutexattr_init(pthread_mutexattr_t *attr)
    376 {
    377 	struct mutexattr_private *map;
    378 
    379 	map = malloc(sizeof(*map));
    380 	if (map == NULL)
    381 		return ENOMEM;
    382 
    383 	*map = mutexattr_private_default;
    384 
    385 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
    386 	attr->ptma_private = map;
    387 
    388 	return 0;
    389 }
    390 
    391 
    392 int
    393 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
    394 {
    395 
    396 	pthread__error(EINVAL, "Invalid mutex attribute",
    397 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    398 
    399 	attr->ptma_magic = _PT_MUTEXATTR_DEAD;
    400 	if (attr->ptma_private != NULL)
    401 		free(attr->ptma_private);
    402 
    403 	return 0;
    404 }
    405 
    406 
    407 int
    408 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
    409 {
    410 	struct mutexattr_private *map;
    411 
    412 	pthread__error(EINVAL, "Invalid mutex attribute",
    413 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    414 
    415 	map = attr->ptma_private;
    416 
    417 	*typep = map->type;
    418 
    419 	return 0;
    420 }
    421 
    422 
    423 int
    424 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
    425 {
    426 	struct mutexattr_private *map;
    427 
    428 	pthread__error(EINVAL, "Invalid mutex attribute",
    429 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    430 
    431 	map = attr->ptma_private;
    432 
    433 	switch (type) {
    434 	case PTHREAD_MUTEX_NORMAL:
    435 	case PTHREAD_MUTEX_ERRORCHECK:
    436 	case PTHREAD_MUTEX_RECURSIVE:
    437 		map->type = type;
    438 		break;
    439 
    440 	default:
    441 		return EINVAL;
    442 	}
    443 
    444 	return 0;
    445 }
    446 
    447 
    448 int
    449 pthread_once(pthread_once_t *once_control, void (*routine)(void))
    450 {
    451 
    452 	if (once_control->pto_done == 0) {
    453 		pthread_mutex_lock(&once_control->pto_mutex);
    454 		if (once_control->pto_done == 0) {
    455 			routine();
    456 			once_control->pto_done = 1;
    457 		}
    458 		pthread_mutex_unlock(&once_control->pto_mutex);
    459 	}
    460 
    461 	return 0;
    462 }
    463