pthread_mutex.c revision 1.18 1 /* $NetBSD: pthread_mutex.c,v 1.18 2004/03/14 01:19:42 cl Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __RCSID("$NetBSD: pthread_mutex.c,v 1.18 2004/03/14 01:19:42 cl Exp $");
41
42 #include <errno.h>
43 #include <limits.h>
44 #include <stdlib.h>
45 #include <string.h>
46
47 #include "pthread.h"
48 #include "pthread_int.h"
49
50 static int pthread_mutex_lock_slow(pthread_mutex_t *);
51
52 __strong_alias(__libc_mutex_init,pthread_mutex_init)
53 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
54 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
55 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
56 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
57
58 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
59 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
60 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
61
62 __strong_alias(__libc_thr_once,pthread_once)
63
64 struct mutex_private {
65 int type;
66 int recursecount;
67 };
68
69 static const struct mutex_private mutex_private_default = {
70 PTHREAD_MUTEX_DEFAULT,
71 0,
72 };
73
74 struct mutexattr_private {
75 int type;
76 };
77
78 static const struct mutexattr_private mutexattr_private_default = {
79 PTHREAD_MUTEX_DEFAULT,
80 };
81
82 /*
83 * If the mutex does not already have private data (i.e. was statically
84 * initialized), then give it the default.
85 */
86 #define GET_MUTEX_PRIVATE(mutex, mp) \
87 do { \
88 if (__predict_false((mp = (mutex)->ptm_private) == NULL)) { \
89 /* LINTED cast away const */ \
90 mp = ((mutex)->ptm_private = \
91 (void *)&mutex_private_default); \
92 } \
93 } while (/*CONSTCOND*/0)
94
95 int
96 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
97 {
98 struct mutexattr_private *map;
99 struct mutex_private *mp;
100
101 pthread__error(EINVAL, "Invalid mutex attribute",
102 (attr == NULL) || (attr->ptma_magic == _PT_MUTEXATTR_MAGIC));
103
104 if (attr != NULL && (map = attr->ptma_private) != NULL &&
105 memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
106 mp = malloc(sizeof(*mp));
107 if (mp == NULL)
108 return ENOMEM;
109
110 mp->type = map->type;
111 mp->recursecount = 0;
112 } else {
113 /* LINTED cast away const */
114 mp = (struct mutex_private *) &mutex_private_default;
115 }
116
117 mutex->ptm_magic = _PT_MUTEX_MAGIC;
118 mutex->ptm_owner = NULL;
119 pthread_lockinit(&mutex->ptm_lock);
120 pthread_lockinit(&mutex->ptm_interlock);
121 PTQ_INIT(&mutex->ptm_blocked);
122 mutex->ptm_private = mp;
123
124 return 0;
125 }
126
127
128 int
129 pthread_mutex_destroy(pthread_mutex_t *mutex)
130 {
131
132 pthread__error(EINVAL, "Invalid mutex",
133 mutex->ptm_magic == _PT_MUTEX_MAGIC);
134 pthread__error(EBUSY, "Destroying locked mutex",
135 mutex->ptm_lock == __SIMPLELOCK_UNLOCKED);
136
137 mutex->ptm_magic = _PT_MUTEX_DEAD;
138 if (mutex->ptm_private != NULL &&
139 mutex->ptm_private != (const void *)&mutex_private_default)
140 free(mutex->ptm_private);
141
142 return 0;
143 }
144
145
146 /*
147 * Note regarding memory visibility: Pthreads has rules about memory
148 * visibility and mutexes. Very roughly: Memory a thread can see when
149 * it unlocks a mutex can be seen by another thread that locks the
150 * same mutex.
151 *
152 * A memory barrier after a lock and before an unlock will provide
153 * this behavior. This code relies on pthread__simple_lock_try() to issue
154 * a barrier after obtaining a lock, and on pthread__simple_unlock() to
155 * issue a barrier before releasing a lock.
156 */
157
158 int
159 pthread_mutex_lock(pthread_mutex_t *mutex)
160 {
161 int error;
162
163 PTHREADD_ADD(PTHREADD_MUTEX_LOCK);
164 /*
165 * Note that if we get the lock, we don't have to deal with any
166 * non-default lock type handling.
167 */
168 if (__predict_false(pthread__simple_lock_try(&mutex->ptm_lock) == 0)) {
169 error = pthread_mutex_lock_slow(mutex);
170 if (error)
171 return error;
172 }
173
174 /* We have the lock! */
175 /*
176 * Identifying ourselves may be slow, and this assignment is
177 * only needed for (a) debugging identity of the owning thread
178 * and (b) handling errorcheck and recursive mutexes. It's
179 * better to just stash our stack pointer here and let those
180 * slow exception cases compute the stack->thread mapping.
181 */
182 mutex->ptm_owner = (pthread_t)pthread__sp();
183
184 return 0;
185 }
186
187
188 static int
189 pthread_mutex_lock_slow(pthread_mutex_t *mutex)
190 {
191 pthread_t self;
192
193 pthread__error(EINVAL, "Invalid mutex",
194 mutex->ptm_magic == _PT_MUTEX_MAGIC);
195
196 self = pthread__self();
197
198 PTHREADD_ADD(PTHREADD_MUTEX_LOCK_SLOW);
199 while (/*CONSTCOND*/1) {
200 if (pthread__simple_lock_try(&mutex->ptm_lock))
201 break; /* got it! */
202
203 /* Okay, didn't look free. Get the interlock... */
204 pthread_spinlock(self, &mutex->ptm_interlock);
205 /*
206 * The mutex_unlock routine will get the interlock
207 * before looking at the list of sleepers, so if the
208 * lock is held we can safely put ourselves on the
209 * sleep queue. If it's not held, we can try taking it
210 * again.
211 */
212 PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep);
213 if (mutex->ptm_lock == __SIMPLELOCK_LOCKED) {
214 struct mutex_private *mp;
215
216 GET_MUTEX_PRIVATE(mutex, mp);
217
218 if (pthread__id(mutex->ptm_owner) == self) {
219 switch (mp->type) {
220 case PTHREAD_MUTEX_ERRORCHECK:
221 PTQ_REMOVE(&mutex->ptm_blocked, self,
222 pt_sleep);
223 pthread_spinunlock(self,
224 &mutex->ptm_interlock);
225 return EDEADLK;
226
227 case PTHREAD_MUTEX_RECURSIVE:
228 /*
229 * It's safe to do this without
230 * holding the interlock, because
231 * we only modify it if we know we
232 * own the mutex.
233 */
234 PTQ_REMOVE(&mutex->ptm_blocked, self,
235 pt_sleep);
236 pthread_spinunlock(self,
237 &mutex->ptm_interlock);
238 if (mp->recursecount == INT_MAX)
239 return EAGAIN;
240 mp->recursecount++;
241 return 0;
242 }
243 }
244
245 /*
246 * Locking a mutex is not a cancellation
247 * point, so we don't need to do the
248 * test-cancellation dance. We may get woken
249 * up spuriously by pthread_cancel or signals,
250 * but it's okay since we're just going to
251 * retry.
252 */
253 pthread_spinlock(self, &self->pt_statelock);
254 self->pt_state = PT_STATE_BLOCKED_QUEUE;
255 self->pt_sleepobj = mutex;
256 self->pt_sleepq = &mutex->ptm_blocked;
257 self->pt_sleeplock = &mutex->ptm_interlock;
258 pthread_spinunlock(self, &self->pt_statelock);
259
260 pthread__block(self, &mutex->ptm_interlock);
261 /* interlock is not held when we return */
262 } else {
263 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
264 pthread_spinunlock(self, &mutex->ptm_interlock);
265 }
266 /* Go around for another try. */
267 }
268
269 return 0;
270 }
271
272
273 int
274 pthread_mutex_trylock(pthread_mutex_t *mutex)
275 {
276
277 pthread__error(EINVAL, "Invalid mutex",
278 mutex->ptm_magic == _PT_MUTEX_MAGIC);
279
280 PTHREADD_ADD(PTHREADD_MUTEX_TRYLOCK);
281 if (pthread__simple_lock_try(&mutex->ptm_lock) == 0) {
282 struct mutex_private *mp;
283
284 GET_MUTEX_PRIVATE(mutex, mp);
285
286 /*
287 * These tests can be performed without holding the
288 * interlock because these fields are only modified
289 * if we know we own the mutex.
290 */
291 if ((mp->type == PTHREAD_MUTEX_RECURSIVE) &&
292 (pthread__id(mutex->ptm_owner) == pthread__self())) {
293 if (mp->recursecount == INT_MAX)
294 return EAGAIN;
295 mp->recursecount++;
296 return 0;
297 }
298
299 return EBUSY;
300 }
301
302 /* see comment at the end of pthread_mutex_lock() */
303 mutex->ptm_owner = (pthread_t)pthread__sp();
304
305 return 0;
306 }
307
308
309 int
310 pthread_mutex_unlock(pthread_mutex_t *mutex)
311 {
312 struct mutex_private *mp;
313 pthread_t self, blocked;
314 int weown;
315
316 pthread__error(EINVAL, "Invalid mutex",
317 mutex->ptm_magic == _PT_MUTEX_MAGIC);
318
319 PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK);
320
321 GET_MUTEX_PRIVATE(mutex, mp);
322
323 /*
324 * These tests can be performed without holding the
325 * interlock because these fields are only modified
326 * if we know we own the mutex.
327 */
328 weown = (pthread__id(mutex->ptm_owner) == pthread__self());
329 switch (mp->type) {
330 case PTHREAD_MUTEX_RECURSIVE:
331 if (!weown)
332 return EPERM;
333 if (mp->recursecount != 0) {
334 mp->recursecount--;
335 return 0;
336 }
337 break;
338 case PTHREAD_MUTEX_ERRORCHECK:
339 if (!weown)
340 return EPERM;
341 /*FALLTHROUGH*/
342 default:
343 if (__predict_false(!weown)) {
344 pthread__error(EPERM, "Unlocking unlocked mutex",
345 (mutex->ptm_owner != 0));
346 pthread__error(EPERM,
347 "Unlocking mutex owned by another thread", weown);
348 }
349 break;
350 }
351
352 mutex->ptm_owner = NULL;
353 pthread__simple_unlock(&mutex->ptm_lock);
354 /*
355 * Do a double-checked locking dance to see if there are any
356 * waiters. If we don't see any waiters, we can exit, because
357 * we've already released the lock. If we do see waiters, they
358 * were probably waiting on us... there's a slight chance that
359 * they are waiting on a different thread's ownership of the
360 * lock that happened between the unlock above and this
361 * examination of the queue; if so, no harm is done, as the
362 * waiter will loop and see that the mutex is still locked.
363 */
364 if (!PTQ_EMPTY(&mutex->ptm_blocked)) {
365 self = pthread__self();
366 pthread_spinlock(self, &mutex->ptm_interlock);
367 blocked = PTQ_FIRST(&mutex->ptm_blocked);
368 if (blocked) {
369 PTQ_REMOVE(&mutex->ptm_blocked, blocked, pt_sleep);
370 PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK_UNBLOCK);
371 /* Give the head of the blocked queue another try. */
372 pthread__sched(self, blocked);
373 }
374 pthread_spinunlock(self, &mutex->ptm_interlock);
375 }
376 return 0;
377 }
378
379 int
380 pthread_mutexattr_init(pthread_mutexattr_t *attr)
381 {
382 struct mutexattr_private *map;
383
384 map = malloc(sizeof(*map));
385 if (map == NULL)
386 return ENOMEM;
387
388 *map = mutexattr_private_default;
389
390 attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
391 attr->ptma_private = map;
392
393 return 0;
394 }
395
396
397 int
398 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
399 {
400
401 pthread__error(EINVAL, "Invalid mutex attribute",
402 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
403
404 attr->ptma_magic = _PT_MUTEXATTR_DEAD;
405 if (attr->ptma_private != NULL)
406 free(attr->ptma_private);
407
408 return 0;
409 }
410
411
412 int
413 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
414 {
415 struct mutexattr_private *map;
416
417 pthread__error(EINVAL, "Invalid mutex attribute",
418 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
419
420 map = attr->ptma_private;
421
422 *typep = map->type;
423
424 return 0;
425 }
426
427
428 int
429 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
430 {
431 struct mutexattr_private *map;
432
433 pthread__error(EINVAL, "Invalid mutex attribute",
434 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
435
436 map = attr->ptma_private;
437
438 switch (type) {
439 case PTHREAD_MUTEX_NORMAL:
440 case PTHREAD_MUTEX_ERRORCHECK:
441 case PTHREAD_MUTEX_RECURSIVE:
442 map->type = type;
443 break;
444
445 default:
446 return EINVAL;
447 }
448
449 return 0;
450 }
451
452
453 int
454 pthread_once(pthread_once_t *once_control, void (*routine)(void))
455 {
456
457 if (once_control->pto_done == 0) {
458 pthread_mutex_lock(&once_control->pto_mutex);
459 if (once_control->pto_done == 0) {
460 routine();
461 once_control->pto_done = 1;
462 }
463 pthread_mutex_unlock(&once_control->pto_mutex);
464 }
465
466 return 0;
467 }
468