Home | History | Annotate | Line # | Download | only in libpthread
pthread_mutex.c revision 1.20
      1 /*	$NetBSD: pthread_mutex.c,v 1.20 2005/10/16 00:07:24 chs Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __RCSID("$NetBSD: pthread_mutex.c,v 1.20 2005/10/16 00:07:24 chs Exp $");
     41 
     42 #include <errno.h>
     43 #include <limits.h>
     44 #include <stdlib.h>
     45 #include <string.h>
     46 
     47 #include "pthread.h"
     48 #include "pthread_int.h"
     49 
     50 static int pthread_mutex_lock_slow(pthread_mutex_t *);
     51 
     52 __strong_alias(__libc_mutex_init,pthread_mutex_init)
     53 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
     54 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
     55 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
     56 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
     57 
     58 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
     59 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
     60 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
     61 
     62 __strong_alias(__libc_thr_once,pthread_once)
     63 
     64 struct mutex_private {
     65 	int	type;
     66 	int	recursecount;
     67 };
     68 
     69 static const struct mutex_private mutex_private_default = {
     70 	PTHREAD_MUTEX_DEFAULT,
     71 	0,
     72 };
     73 
     74 struct mutexattr_private {
     75 	int	type;
     76 };
     77 
     78 static const struct mutexattr_private mutexattr_private_default = {
     79 	PTHREAD_MUTEX_DEFAULT,
     80 };
     81 
     82 /*
     83  * If the mutex does not already have private data (i.e. was statically
     84  * initialized), then give it the default.
     85  */
     86 #define	GET_MUTEX_PRIVATE(mutex, mp)					\
     87 do {									\
     88 	if (__predict_false((mp = (mutex)->ptm_private) == NULL)) {	\
     89 		/* LINTED cast away const */				\
     90 		mp = ((mutex)->ptm_private =				\
     91 		    (void *)&mutex_private_default);			\
     92 	}								\
     93 } while (/*CONSTCOND*/0)
     94 
     95 int
     96 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
     97 {
     98 	struct mutexattr_private *map;
     99 	struct mutex_private *mp;
    100 
    101 	pthread__error(EINVAL, "Invalid mutex attribute",
    102 	    (attr == NULL) || (attr->ptma_magic == _PT_MUTEXATTR_MAGIC));
    103 
    104 	if (attr != NULL && (map = attr->ptma_private) != NULL &&
    105 	    memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
    106 		mp = malloc(sizeof(*mp));
    107 		if (mp == NULL)
    108 			return ENOMEM;
    109 
    110 		mp->type = map->type;
    111 		mp->recursecount = 0;
    112 	} else {
    113 		/* LINTED cast away const */
    114 		mp = (struct mutex_private *) &mutex_private_default;
    115 	}
    116 
    117 	mutex->ptm_magic = _PT_MUTEX_MAGIC;
    118 	mutex->ptm_owner = NULL;
    119 	pthread_lockinit(&mutex->ptm_lock);
    120 	pthread_lockinit(&mutex->ptm_interlock);
    121 	PTQ_INIT(&mutex->ptm_blocked);
    122 	mutex->ptm_private = mp;
    123 
    124 	return 0;
    125 }
    126 
    127 
    128 int
    129 pthread_mutex_destroy(pthread_mutex_t *mutex)
    130 {
    131 
    132 	pthread__error(EINVAL, "Invalid mutex",
    133 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
    134 	pthread__error(EBUSY, "Destroying locked mutex",
    135 	    mutex->ptm_lock == __SIMPLELOCK_UNLOCKED);
    136 
    137 	mutex->ptm_magic = _PT_MUTEX_DEAD;
    138 	if (mutex->ptm_private != NULL &&
    139 	    mutex->ptm_private != (const void *)&mutex_private_default)
    140 		free(mutex->ptm_private);
    141 
    142 	return 0;
    143 }
    144 
    145 
    146 /*
    147  * Note regarding memory visibility: Pthreads has rules about memory
    148  * visibility and mutexes. Very roughly: Memory a thread can see when
    149  * it unlocks a mutex can be seen by another thread that locks the
    150  * same mutex.
    151  *
    152  * A memory barrier after a lock and before an unlock will provide
    153  * this behavior. This code relies on pthread__simple_lock_try() to issue
    154  * a barrier after obtaining a lock, and on pthread__simple_unlock() to
    155  * issue a barrier before releasing a lock.
    156  */
    157 
    158 int
    159 pthread_mutex_lock(pthread_mutex_t *mutex)
    160 {
    161 	int error;
    162 
    163 	PTHREADD_ADD(PTHREADD_MUTEX_LOCK);
    164 	/*
    165 	 * Note that if we get the lock, we don't have to deal with any
    166 	 * non-default lock type handling.
    167 	 */
    168 	if (__predict_false(pthread__simple_lock_try(&mutex->ptm_lock) == 0)) {
    169 		error = pthread_mutex_lock_slow(mutex);
    170 		if (error)
    171 			return error;
    172 	}
    173 
    174 	/* We have the lock! */
    175 	/*
    176 	 * Identifying ourselves may be slow, and this assignment is
    177 	 * only needed for (a) debugging identity of the owning thread
    178 	 * and (b) handling errorcheck and recursive mutexes. It's
    179 	 * better to just stash our stack pointer here and let those
    180 	 * slow exception cases compute the stack->thread mapping.
    181 	 */
    182 	mutex->ptm_owner = (pthread_t)pthread__sp();
    183 
    184 	return 0;
    185 }
    186 
    187 
    188 static int
    189 pthread_mutex_lock_slow(pthread_mutex_t *mutex)
    190 {
    191 	pthread_t self;
    192 	extern int pthread__started;
    193 
    194 	pthread__error(EINVAL, "Invalid mutex",
    195 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
    196 
    197 	if (pthread__started == 0) {
    198 		pthread__start();
    199 		pthread__started = 1;
    200 	}
    201 
    202 	self = pthread__self();
    203 
    204 	PTHREADD_ADD(PTHREADD_MUTEX_LOCK_SLOW);
    205 	while (/*CONSTCOND*/1) {
    206 		if (pthread__simple_lock_try(&mutex->ptm_lock))
    207 			break; /* got it! */
    208 
    209 		/* Okay, didn't look free. Get the interlock... */
    210 		pthread_spinlock(self, &mutex->ptm_interlock);
    211 		/*
    212 		 * The mutex_unlock routine will get the interlock
    213 		 * before looking at the list of sleepers, so if the
    214 		 * lock is held we can safely put ourselves on the
    215 		 * sleep queue. If it's not held, we can try taking it
    216 		 * again.
    217 		 */
    218 		PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep);
    219 		if (mutex->ptm_lock == __SIMPLELOCK_LOCKED) {
    220 			struct mutex_private *mp;
    221 
    222 			GET_MUTEX_PRIVATE(mutex, mp);
    223 
    224 			if (pthread__id(mutex->ptm_owner) == self) {
    225 				switch (mp->type) {
    226 				case PTHREAD_MUTEX_ERRORCHECK:
    227 					PTQ_REMOVE(&mutex->ptm_blocked, self,
    228 					    pt_sleep);
    229 					pthread_spinunlock(self,
    230 					    &mutex->ptm_interlock);
    231 					return EDEADLK;
    232 
    233 				case PTHREAD_MUTEX_RECURSIVE:
    234 					/*
    235 					 * It's safe to do this without
    236 					 * holding the interlock, because
    237 					 * we only modify it if we know we
    238 					 * own the mutex.
    239 					 */
    240 					PTQ_REMOVE(&mutex->ptm_blocked, self,
    241 					    pt_sleep);
    242 					pthread_spinunlock(self,
    243 					    &mutex->ptm_interlock);
    244 					if (mp->recursecount == INT_MAX)
    245 						return EAGAIN;
    246 					mp->recursecount++;
    247 					return 0;
    248 				}
    249 			}
    250 
    251 			/*
    252 			 * Locking a mutex is not a cancellation
    253 			 * point, so we don't need to do the
    254 			 * test-cancellation dance. We may get woken
    255 			 * up spuriously by pthread_cancel or signals,
    256 			 * but it's okay since we're just going to
    257 			 * retry.
    258 			 */
    259 			pthread_spinlock(self, &self->pt_statelock);
    260 			self->pt_state = PT_STATE_BLOCKED_QUEUE;
    261 			self->pt_sleepobj = mutex;
    262 			self->pt_sleepq = &mutex->ptm_blocked;
    263 			self->pt_sleeplock = &mutex->ptm_interlock;
    264 			pthread_spinunlock(self, &self->pt_statelock);
    265 
    266 			pthread__block(self, &mutex->ptm_interlock);
    267 			/* interlock is not held when we return */
    268 		} else {
    269 			PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
    270 			pthread_spinunlock(self, &mutex->ptm_interlock);
    271 		}
    272 		/* Go around for another try. */
    273 	}
    274 
    275 	return 0;
    276 }
    277 
    278 
    279 int
    280 pthread_mutex_trylock(pthread_mutex_t *mutex)
    281 {
    282 
    283 	pthread__error(EINVAL, "Invalid mutex",
    284 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
    285 
    286 	PTHREADD_ADD(PTHREADD_MUTEX_TRYLOCK);
    287 	if (pthread__simple_lock_try(&mutex->ptm_lock) == 0) {
    288 		struct mutex_private *mp;
    289 
    290 		GET_MUTEX_PRIVATE(mutex, mp);
    291 
    292 		/*
    293 		 * These tests can be performed without holding the
    294 		 * interlock because these fields are only modified
    295 		 * if we know we own the mutex.
    296 		 */
    297 		if ((mp->type == PTHREAD_MUTEX_RECURSIVE) &&
    298 		    (pthread__id(mutex->ptm_owner) == pthread__self())) {
    299 			if (mp->recursecount == INT_MAX)
    300 				return EAGAIN;
    301 			mp->recursecount++;
    302 			return 0;
    303 		}
    304 
    305 		return EBUSY;
    306 	}
    307 
    308 	/* see comment at the end of pthread_mutex_lock() */
    309 	mutex->ptm_owner = (pthread_t)pthread__sp();
    310 
    311 	return 0;
    312 }
    313 
    314 
    315 int
    316 pthread_mutex_unlock(pthread_mutex_t *mutex)
    317 {
    318 	struct mutex_private *mp;
    319 	pthread_t self, blocked;
    320 	int weown;
    321 
    322 	pthread__error(EINVAL, "Invalid mutex",
    323 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
    324 
    325 	PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK);
    326 
    327 	GET_MUTEX_PRIVATE(mutex, mp);
    328 
    329 	/*
    330 	 * These tests can be performed without holding the
    331 	 * interlock because these fields are only modified
    332 	 * if we know we own the mutex.
    333 	 */
    334 	weown = (pthread__id(mutex->ptm_owner) == pthread__self());
    335 	switch (mp->type) {
    336 	case PTHREAD_MUTEX_RECURSIVE:
    337 		if (!weown)
    338 			return EPERM;
    339 		if (mp->recursecount != 0) {
    340 			mp->recursecount--;
    341 			return 0;
    342 		}
    343 		break;
    344 	case PTHREAD_MUTEX_ERRORCHECK:
    345 		if (!weown)
    346 			return EPERM;
    347 		/*FALLTHROUGH*/
    348 	default:
    349 		if (__predict_false(!weown)) {
    350 			pthread__error(EPERM, "Unlocking unlocked mutex",
    351 			    (mutex->ptm_owner != 0));
    352 			pthread__error(EPERM,
    353 			    "Unlocking mutex owned by another thread", weown);
    354 		}
    355 		break;
    356 	}
    357 
    358 	mutex->ptm_owner = NULL;
    359 	pthread__simple_unlock(&mutex->ptm_lock);
    360 	/*
    361 	 * Do a double-checked locking dance to see if there are any
    362 	 * waiters.  If we don't see any waiters, we can exit, because
    363 	 * we've already released the lock. If we do see waiters, they
    364 	 * were probably waiting on us... there's a slight chance that
    365 	 * they are waiting on a different thread's ownership of the
    366 	 * lock that happened between the unlock above and this
    367 	 * examination of the queue; if so, no harm is done, as the
    368 	 * waiter will loop and see that the mutex is still locked.
    369 	 */
    370 	if (!PTQ_EMPTY(&mutex->ptm_blocked)) {
    371 		self = pthread__self();
    372 		pthread_spinlock(self, &mutex->ptm_interlock);
    373 		blocked = PTQ_FIRST(&mutex->ptm_blocked);
    374 		if (blocked) {
    375 			PTQ_REMOVE(&mutex->ptm_blocked, blocked, pt_sleep);
    376 			PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK_UNBLOCK);
    377 			/* Give the head of the blocked queue another try. */
    378 			pthread__sched(self, blocked);
    379 		}
    380 		pthread_spinunlock(self, &mutex->ptm_interlock);
    381 	}
    382 	return 0;
    383 }
    384 
    385 int
    386 pthread_mutexattr_init(pthread_mutexattr_t *attr)
    387 {
    388 	struct mutexattr_private *map;
    389 
    390 	map = malloc(sizeof(*map));
    391 	if (map == NULL)
    392 		return ENOMEM;
    393 
    394 	*map = mutexattr_private_default;
    395 
    396 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
    397 	attr->ptma_private = map;
    398 
    399 	return 0;
    400 }
    401 
    402 
    403 int
    404 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
    405 {
    406 
    407 	pthread__error(EINVAL, "Invalid mutex attribute",
    408 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    409 
    410 	attr->ptma_magic = _PT_MUTEXATTR_DEAD;
    411 	if (attr->ptma_private != NULL)
    412 		free(attr->ptma_private);
    413 
    414 	return 0;
    415 }
    416 
    417 
    418 int
    419 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
    420 {
    421 	struct mutexattr_private *map;
    422 
    423 	pthread__error(EINVAL, "Invalid mutex attribute",
    424 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    425 
    426 	map = attr->ptma_private;
    427 
    428 	*typep = map->type;
    429 
    430 	return 0;
    431 }
    432 
    433 
    434 int
    435 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
    436 {
    437 	struct mutexattr_private *map;
    438 
    439 	pthread__error(EINVAL, "Invalid mutex attribute",
    440 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    441 
    442 	map = attr->ptma_private;
    443 
    444 	switch (type) {
    445 	case PTHREAD_MUTEX_NORMAL:
    446 	case PTHREAD_MUTEX_ERRORCHECK:
    447 	case PTHREAD_MUTEX_RECURSIVE:
    448 		map->type = type;
    449 		break;
    450 
    451 	default:
    452 		return EINVAL;
    453 	}
    454 
    455 	return 0;
    456 }
    457 
    458 
    459 static void
    460 once_cleanup(void *closure)
    461 {
    462 
    463        pthread_mutex_unlock((pthread_mutex_t *)closure);
    464 }
    465 
    466 
    467 int
    468 pthread_once(pthread_once_t *once_control, void (*routine)(void))
    469 {
    470 
    471 	if (once_control->pto_done == 0) {
    472 		pthread_mutex_lock(&once_control->pto_mutex);
    473 		pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
    474 		if (once_control->pto_done == 0) {
    475 			routine();
    476 			once_control->pto_done = 1;
    477 		}
    478 		pthread_cleanup_pop(1);
    479 	}
    480 
    481 	return 0;
    482 }
    483