pthread_mutex.c revision 1.22.4.2 1 /* $NetBSD: pthread_mutex.c,v 1.22.4.2 2007/11/04 04:26:58 wrstuden Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __RCSID("$NetBSD: pthread_mutex.c,v 1.22.4.2 2007/11/04 04:26:58 wrstuden Exp $");
41
42 #include <errno.h>
43 #include <limits.h>
44 #include <stdlib.h>
45 #include <string.h>
46
47 #include "pthread.h"
48 #include "pthread_int.h"
49
50 static int pthread_mutex_lock_slow(pthread_mutex_t *);
51
52 __strong_alias(__libc_mutex_init,pthread_mutex_init)
53 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
54 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
55 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
56 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
57
58 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
59 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
60 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
61
62 __strong_alias(__libc_thr_once,pthread_once)
63
64 struct mutex_private {
65 int type;
66 int recursecount;
67 };
68
69 static const struct mutex_private mutex_private_default = {
70 PTHREAD_MUTEX_DEFAULT,
71 0,
72 };
73
74 struct mutexattr_private {
75 int type;
76 };
77
78 static const struct mutexattr_private mutexattr_private_default = {
79 PTHREAD_MUTEX_DEFAULT,
80 };
81
82 /*
83 * If the mutex does not already have private data (i.e. was statically
84 * initialized), then give it the default.
85 */
86 #define GET_MUTEX_PRIVATE(mutex, mp) \
87 do { \
88 if (__predict_false((mp = (mutex)->ptm_private) == NULL)) { \
89 /* LINTED cast away const */ \
90 mp = ((mutex)->ptm_private = \
91 (void *)&mutex_private_default); \
92 } \
93 } while (/*CONSTCOND*/0)
94
95 int
96 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
97 {
98 struct mutexattr_private *map;
99 struct mutex_private *mp;
100
101 pthread__error(EINVAL, "Invalid mutex attribute",
102 (attr == NULL) || (attr->ptma_magic == _PT_MUTEXATTR_MAGIC));
103
104 if (attr != NULL && (map = attr->ptma_private) != NULL &&
105 memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
106 mp = malloc(sizeof(*mp));
107 if (mp == NULL)
108 return ENOMEM;
109
110 mp->type = map->type;
111 mp->recursecount = 0;
112 } else {
113 /* LINTED cast away const */
114 mp = (struct mutex_private *) &mutex_private_default;
115 }
116
117 mutex->ptm_magic = _PT_MUTEX_MAGIC;
118 mutex->ptm_owner = NULL;
119 pthread_lockinit(&mutex->ptm_lock);
120 pthread_lockinit(&mutex->ptm_interlock);
121 PTQ_INIT(&mutex->ptm_blocked);
122 mutex->ptm_private = mp;
123
124 return 0;
125 }
126
127
128 int
129 pthread_mutex_destroy(pthread_mutex_t *mutex)
130 {
131
132 pthread__error(EINVAL, "Invalid mutex",
133 mutex->ptm_magic == _PT_MUTEX_MAGIC);
134 pthread__error(EBUSY, "Destroying locked mutex",
135 mutex->ptm_lock == __SIMPLELOCK_UNLOCKED);
136
137 mutex->ptm_magic = _PT_MUTEX_DEAD;
138 if (mutex->ptm_private != NULL &&
139 mutex->ptm_private != (const void *)&mutex_private_default)
140 free(mutex->ptm_private);
141
142 return 0;
143 }
144
145
146 /*
147 * Note regarding memory visibility: Pthreads has rules about memory
148 * visibility and mutexes. Very roughly: Memory a thread can see when
149 * it unlocks a mutex can be seen by another thread that locks the
150 * same mutex.
151 *
152 * A memory barrier after a lock and before an unlock will provide
153 * this behavior. This code relies on pthread__simple_lock_try() to issue
154 * a barrier after obtaining a lock, and on pthread__simple_unlock() to
155 * issue a barrier before releasing a lock.
156 */
157
158 int
159 pthread_mutex_lock(pthread_mutex_t *mutex)
160 {
161 int error;
162
163 PTHREADD_ADD(PTHREADD_MUTEX_LOCK);
164 /*
165 * Note that if we get the lock, we don't have to deal with any
166 * non-default lock type handling.
167 */
168 if (__predict_false(pthread__simple_lock_try(&mutex->ptm_lock) == 0)) {
169 error = pthread_mutex_lock_slow(mutex);
170 if (error)
171 return error;
172 }
173
174 /* We have the lock! */
175 /*
176 * Identifying ourselves may be slow, and this assignment is
177 * only needed for (a) debugging identity of the owning thread
178 * and (b) handling errorcheck and recursive mutexes. It's
179 * better to just stash our stack pointer here and let those
180 * slow exception cases compute the stack->thread mapping.
181 */
182 mutex->ptm_owner = (pthread_t)pthread__sp();
183
184 return 0;
185 }
186
187
188 static int
189 pthread_mutex_lock_slow(pthread_mutex_t *mutex)
190 {
191 pthread_t self;
192 extern int pthread__started;
193
194 pthread__error(EINVAL, "Invalid mutex",
195 mutex->ptm_magic == _PT_MUTEX_MAGIC);
196
197 self = pthread__self();
198
199 PTHREADD_ADD(PTHREADD_MUTEX_LOCK_SLOW);
200 while (/*CONSTCOND*/1) {
201 if (pthread__simple_lock_try(&mutex->ptm_lock))
202 break; /* got it! */
203
204 /* Okay, didn't look free. Get the interlock... */
205 pthread_spinlock(self, &mutex->ptm_interlock);
206
207 /*
208 * The mutex_unlock routine will get the interlock
209 * before looking at the list of sleepers, so if the
210 * lock is held we can safely put ourselves on the
211 * sleep queue. If it's not held, we can try taking it
212 * again.
213 */
214 PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep);
215 if (mutex->ptm_lock == __SIMPLELOCK_LOCKED) {
216 struct mutex_private *mp;
217
218 GET_MUTEX_PRIVATE(mutex, mp);
219
220 if (pthread__id(mutex->ptm_owner) == self) {
221 switch (mp->type) {
222 case PTHREAD_MUTEX_ERRORCHECK:
223 PTQ_REMOVE(&mutex->ptm_blocked, self,
224 pt_sleep);
225 pthread_spinunlock(self,
226 &mutex->ptm_interlock);
227 return EDEADLK;
228
229 case PTHREAD_MUTEX_RECURSIVE:
230 /*
231 * It's safe to do this without
232 * holding the interlock, because
233 * we only modify it if we know we
234 * own the mutex.
235 */
236 PTQ_REMOVE(&mutex->ptm_blocked, self,
237 pt_sleep);
238 pthread_spinunlock(self,
239 &mutex->ptm_interlock);
240 if (mp->recursecount == INT_MAX)
241 return EAGAIN;
242 mp->recursecount++;
243 return 0;
244 }
245 }
246
247 if (pthread__started == 0) {
248 sigset_t ss;
249
250 /*
251 * The spec says we must deadlock, so...
252 */
253 pthread__assert(mp->type ==
254 PTHREAD_MUTEX_NORMAL);
255 (void) sigprocmask(SIG_SETMASK, NULL, &ss);
256 for (;;) {
257 sigsuspend(&ss);
258 }
259 /*NOTREACHED*/
260 }
261
262 /*
263 * Locking a mutex is not a cancellation
264 * point, so we don't need to do the
265 * test-cancellation dance. We may get woken
266 * up spuriously by pthread_cancel or signals,
267 * but it's okay since we're just going to
268 * retry.
269 */
270 pthread_spinlock(self, &self->pt_statelock);
271 if (pthread_check_defsig(self)) {
272 pthread_spinunlock(self, &self->pt_statelock);
273 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
274 pthread_spinunlock(self, &mutex->ptm_interlock);
275 pthread__signal_deferred(self, self);
276 continue;
277 }
278 self->pt_state = PT_STATE_BLOCKED_QUEUE;
279 self->pt_sleepobj = mutex;
280 self->pt_sleepq = &mutex->ptm_blocked;
281 self->pt_sleeplock = &mutex->ptm_interlock;
282 pthread_spinunlock(self, &self->pt_statelock);
283
284 pthread__block(self, &mutex->ptm_interlock);
285 /* interlock is not held when we return */
286 } else {
287 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
288 pthread_spinunlock(self, &mutex->ptm_interlock);
289 }
290 /* Go around for another try. */
291 }
292
293 return 0;
294 }
295
296
297 int
298 pthread_mutex_trylock(pthread_mutex_t *mutex)
299 {
300
301 pthread__error(EINVAL, "Invalid mutex",
302 mutex->ptm_magic == _PT_MUTEX_MAGIC);
303
304 PTHREADD_ADD(PTHREADD_MUTEX_TRYLOCK);
305 if (pthread__simple_lock_try(&mutex->ptm_lock) == 0) {
306 struct mutex_private *mp;
307
308 GET_MUTEX_PRIVATE(mutex, mp);
309
310 /*
311 * These tests can be performed without holding the
312 * interlock because these fields are only modified
313 * if we know we own the mutex.
314 */
315 if ((mp->type == PTHREAD_MUTEX_RECURSIVE) &&
316 (pthread__id(mutex->ptm_owner) == pthread__self())) {
317 if (mp->recursecount == INT_MAX)
318 return EAGAIN;
319 mp->recursecount++;
320 return 0;
321 }
322
323 return EBUSY;
324 }
325
326 /* see comment at the end of pthread_mutex_lock() */
327 mutex->ptm_owner = (pthread_t)pthread__sp();
328
329 return 0;
330 }
331
332
333 int
334 pthread_mutex_unlock(pthread_mutex_t *mutex)
335 {
336 struct mutex_private *mp;
337 pthread_t self, blocked;
338 int weown;
339
340 pthread__error(EINVAL, "Invalid mutex",
341 mutex->ptm_magic == _PT_MUTEX_MAGIC);
342
343 PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK);
344
345 GET_MUTEX_PRIVATE(mutex, mp);
346
347 self = pthread_self();
348 /*
349 * These tests can be performed without holding the
350 * interlock because these fields are only modified
351 * if we know we own the mutex.
352 */
353 weown = (pthread__id(mutex->ptm_owner) == self);
354 switch (mp->type) {
355 case PTHREAD_MUTEX_RECURSIVE:
356 if (!weown)
357 return EPERM;
358 if (mp->recursecount != 0) {
359 mp->recursecount--;
360 return 0;
361 }
362 break;
363 case PTHREAD_MUTEX_ERRORCHECK:
364 if (!weown)
365 return EPERM;
366 /*FALLTHROUGH*/
367 default:
368 if (__predict_false(!weown)) {
369 pthread__error(EPERM, "Unlocking unlocked mutex",
370 (mutex->ptm_owner != 0));
371 pthread__error(EPERM,
372 "Unlocking mutex owned by another thread", weown);
373 }
374 break;
375 }
376
377 mutex->ptm_owner = NULL;
378 pthread__simple_unlock(&mutex->ptm_lock);
379 /*
380 * Do a double-checked locking dance to see if there are any
381 * waiters. If we don't see any waiters, we can exit, because
382 * we've already released the lock. If we do see waiters, they
383 * were probably waiting on us... there's a slight chance that
384 * they are waiting on a different thread's ownership of the
385 * lock that happened between the unlock above and this
386 * examination of the queue; if so, no harm is done, as the
387 * waiter will loop and see that the mutex is still locked.
388 */
389 pthread_spinlock(self, &mutex->ptm_interlock);
390 if (!PTQ_EMPTY(&mutex->ptm_blocked)) {
391 blocked = PTQ_FIRST(&mutex->ptm_blocked);
392 if (blocked) {
393 PTQ_REMOVE(&mutex->ptm_blocked, blocked, pt_sleep);
394 PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK_UNBLOCK);
395 /* Give the head of the blocked queue another try. */
396 pthread__sched(self, blocked, 0);
397 }
398 }
399 pthread_spinunlock(self, &mutex->ptm_interlock);
400 return 0;
401 }
402
403 int
404 pthread_mutexattr_init(pthread_mutexattr_t *attr)
405 {
406 struct mutexattr_private *map;
407
408 map = malloc(sizeof(*map));
409 if (map == NULL)
410 return ENOMEM;
411
412 *map = mutexattr_private_default;
413
414 attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
415 attr->ptma_private = map;
416
417 return 0;
418 }
419
420
421 int
422 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
423 {
424
425 pthread__error(EINVAL, "Invalid mutex attribute",
426 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
427
428 attr->ptma_magic = _PT_MUTEXATTR_DEAD;
429 if (attr->ptma_private != NULL)
430 free(attr->ptma_private);
431
432 return 0;
433 }
434
435
436 int
437 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
438 {
439 struct mutexattr_private *map;
440
441 pthread__error(EINVAL, "Invalid mutex attribute",
442 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
443
444 map = attr->ptma_private;
445
446 *typep = map->type;
447
448 return 0;
449 }
450
451
452 int
453 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
454 {
455 struct mutexattr_private *map;
456
457 pthread__error(EINVAL, "Invalid mutex attribute",
458 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
459
460 map = attr->ptma_private;
461
462 switch (type) {
463 case PTHREAD_MUTEX_NORMAL:
464 case PTHREAD_MUTEX_ERRORCHECK:
465 case PTHREAD_MUTEX_RECURSIVE:
466 map->type = type;
467 break;
468
469 default:
470 return EINVAL;
471 }
472
473 return 0;
474 }
475
476
477 static void
478 once_cleanup(void *closure)
479 {
480
481 pthread_mutex_unlock((pthread_mutex_t *)closure);
482 }
483
484
485 int
486 pthread_once(pthread_once_t *once_control, void (*routine)(void))
487 {
488
489 if (once_control->pto_done == 0) {
490 pthread_mutex_lock(&once_control->pto_mutex);
491 pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
492 if (once_control->pto_done == 0) {
493 routine();
494 once_control->pto_done = 1;
495 }
496 pthread_cleanup_pop(1);
497 }
498
499 return 0;
500 }
501