pthread_mutex.c revision 1.26 1 /* $NetBSD: pthread_mutex.c,v 1.26 2007/03/05 23:56:18 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2003, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __RCSID("$NetBSD: pthread_mutex.c,v 1.26 2007/03/05 23:56:18 ad Exp $");
41
42 #include <errno.h>
43 #include <limits.h>
44 #include <stdlib.h>
45 #include <string.h>
46
47 #include "pthread.h"
48 #include "pthread_int.h"
49
50 static int pthread_mutex_lock_slow(pthread_mutex_t *);
51
52 __strong_alias(__libc_mutex_init,pthread_mutex_init)
53 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
54 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
55 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
56 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
57
58 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
59 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
60 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
61
62 __strong_alias(__libc_thr_once,pthread_once)
63
64 struct mutex_private {
65 int type;
66 int recursecount;
67 };
68
69 static const struct mutex_private mutex_private_default = {
70 PTHREAD_MUTEX_DEFAULT,
71 0,
72 };
73
74 struct mutexattr_private {
75 int type;
76 };
77
78 static const struct mutexattr_private mutexattr_private_default = {
79 PTHREAD_MUTEX_DEFAULT,
80 };
81
82 /*
83 * If the mutex does not already have private data (i.e. was statically
84 * initialized), then give it the default.
85 */
86 #define GET_MUTEX_PRIVATE(mutex, mp) \
87 do { \
88 if (__predict_false((mp = (mutex)->ptm_private) == NULL)) { \
89 /* LINTED cast away const */ \
90 mp = ((mutex)->ptm_private = \
91 (void *)&mutex_private_default); \
92 } \
93 } while (/*CONSTCOND*/0)
94
95 int
96 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
97 {
98 struct mutexattr_private *map;
99 struct mutex_private *mp;
100
101 pthread__error(EINVAL, "Invalid mutex attribute",
102 (attr == NULL) || (attr->ptma_magic == _PT_MUTEXATTR_MAGIC));
103
104 if (attr != NULL && (map = attr->ptma_private) != NULL &&
105 memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
106 mp = malloc(sizeof(*mp));
107 if (mp == NULL)
108 return ENOMEM;
109
110 mp->type = map->type;
111 mp->recursecount = 0;
112 } else {
113 /* LINTED cast away const */
114 mp = (struct mutex_private *) &mutex_private_default;
115 }
116
117 mutex->ptm_magic = _PT_MUTEX_MAGIC;
118 mutex->ptm_owner = NULL;
119 pthread_lockinit(&mutex->ptm_lock);
120 pthread_lockinit(&mutex->ptm_interlock);
121 PTQ_INIT(&mutex->ptm_blocked);
122 mutex->ptm_private = mp;
123
124 return 0;
125 }
126
127
128 int
129 pthread_mutex_destroy(pthread_mutex_t *mutex)
130 {
131
132 pthread__error(EINVAL, "Invalid mutex",
133 mutex->ptm_magic == _PT_MUTEX_MAGIC);
134 pthread__error(EBUSY, "Destroying locked mutex",
135 mutex->ptm_lock == __SIMPLELOCK_UNLOCKED);
136
137 mutex->ptm_magic = _PT_MUTEX_DEAD;
138 if (mutex->ptm_private != NULL &&
139 mutex->ptm_private != (const void *)&mutex_private_default)
140 free(mutex->ptm_private);
141
142 return 0;
143 }
144
145
146 /*
147 * Note regarding memory visibility: Pthreads has rules about memory
148 * visibility and mutexes. Very roughly: Memory a thread can see when
149 * it unlocks a mutex can be seen by another thread that locks the
150 * same mutex.
151 *
152 * A memory barrier after a lock and before an unlock will provide
153 * this behavior. This code relies on pthread__simple_lock_try() to issue
154 * a barrier after obtaining a lock, and on pthread__simple_unlock() to
155 * issue a barrier before releasing a lock.
156 */
157
158 int
159 pthread_mutex_lock(pthread_mutex_t *mutex)
160 {
161 int error;
162
163 PTHREADD_ADD(PTHREADD_MUTEX_LOCK);
164 /*
165 * Note that if we get the lock, we don't have to deal with any
166 * non-default lock type handling.
167 */
168 if (__predict_false(pthread__simple_lock_try(&mutex->ptm_lock) == 0)) {
169 error = pthread_mutex_lock_slow(mutex);
170 if (error)
171 return error;
172 }
173
174 /* We have the lock! */
175 /*
176 * Identifying ourselves may be slow, and this assignment is
177 * only needed for (a) debugging identity of the owning thread
178 * and (b) handling errorcheck and recursive mutexes. It's
179 * better to just stash our stack pointer here and let those
180 * slow exception cases compute the stack->thread mapping.
181 */
182 mutex->ptm_owner = (pthread_t)pthread__sp();
183
184 return 0;
185 }
186
187
188 static int
189 pthread_mutex_lock_slow(pthread_mutex_t *mutex)
190 {
191 pthread_t self;
192 extern int pthread__started;
193
194 pthread__error(EINVAL, "Invalid mutex",
195 mutex->ptm_magic == _PT_MUTEX_MAGIC);
196
197 self = pthread__self();
198
199 PTHREADD_ADD(PTHREADD_MUTEX_LOCK_SLOW);
200 while (/*CONSTCOND*/1) {
201 if (pthread__simple_lock_try(&mutex->ptm_lock))
202 break; /* got it! */
203
204 /* Okay, didn't look free. Get the interlock... */
205 pthread_spinlock(self, &mutex->ptm_interlock);
206
207 /*
208 * The mutex_unlock routine will get the interlock
209 * before looking at the list of sleepers, so if the
210 * lock is held we can safely put ourselves on the
211 * sleep queue. If it's not held, we can try taking it
212 * again.
213 */
214 PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep);
215 if (mutex->ptm_lock == __SIMPLELOCK_LOCKED) {
216 struct mutex_private *mp;
217
218 GET_MUTEX_PRIVATE(mutex, mp);
219
220 if (pthread__id(mutex->ptm_owner) == self) {
221 switch (mp->type) {
222 case PTHREAD_MUTEX_ERRORCHECK:
223 PTQ_REMOVE(&mutex->ptm_blocked, self,
224 pt_sleep);
225 pthread_spinunlock(self,
226 &mutex->ptm_interlock);
227 return EDEADLK;
228
229 case PTHREAD_MUTEX_RECURSIVE:
230 /*
231 * It's safe to do this without
232 * holding the interlock, because
233 * we only modify it if we know we
234 * own the mutex.
235 */
236 PTQ_REMOVE(&mutex->ptm_blocked, self,
237 pt_sleep);
238 pthread_spinunlock(self,
239 &mutex->ptm_interlock);
240 if (mp->recursecount == INT_MAX)
241 return EAGAIN;
242 mp->recursecount++;
243 return 0;
244 }
245 }
246
247 if (pthread__started == 0) {
248 sigset_t ss;
249
250 /*
251 * The spec says we must deadlock, so...
252 */
253 pthread__assert(mp->type ==
254 PTHREAD_MUTEX_NORMAL);
255 (void) sigprocmask(SIG_SETMASK, NULL, &ss);
256 for (;;) {
257 sigsuspend(&ss);
258 }
259 /*NOTREACHED*/
260 }
261
262 /*
263 * Locking a mutex is not a cancellation
264 * point, so we don't need to do the
265 * test-cancellation dance. We may get woken
266 * up spuriously by pthread_cancel or signals,
267 * but it's okay since we're just going to
268 * retry.
269 */
270 self->pt_sleeponq = 1;
271 self->pt_sleepobj = &mutex->ptm_blocked;
272 (void)pthread__park(self, &mutex->ptm_interlock,
273 &mutex->ptm_blocked, NULL, 0);
274 pthread_spinunlock(self, &mutex->ptm_interlock);
275 } else {
276 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
277 pthread_spinunlock(self, &mutex->ptm_interlock);
278 }
279 /* Go around for another try. */
280 }
281
282 return 0;
283 }
284
285
286 int
287 pthread_mutex_trylock(pthread_mutex_t *mutex)
288 {
289
290 pthread__error(EINVAL, "Invalid mutex",
291 mutex->ptm_magic == _PT_MUTEX_MAGIC);
292
293 PTHREADD_ADD(PTHREADD_MUTEX_TRYLOCK);
294 if (pthread__simple_lock_try(&mutex->ptm_lock) == 0) {
295 struct mutex_private *mp;
296
297 GET_MUTEX_PRIVATE(mutex, mp);
298
299 /*
300 * These tests can be performed without holding the
301 * interlock because these fields are only modified
302 * if we know we own the mutex.
303 */
304 if ((mp->type == PTHREAD_MUTEX_RECURSIVE) &&
305 (pthread__id(mutex->ptm_owner) == pthread__self())) {
306 if (mp->recursecount == INT_MAX)
307 return EAGAIN;
308 mp->recursecount++;
309 return 0;
310 }
311
312 return EBUSY;
313 }
314
315 /* see comment at the end of pthread_mutex_lock() */
316 mutex->ptm_owner = (pthread_t)pthread__sp();
317
318 return 0;
319 }
320
321
322 int
323 pthread_mutex_unlock(pthread_mutex_t *mutex)
324 {
325 struct mutex_private *mp;
326 pthread_t self, blocked;
327 int weown;
328
329 pthread__error(EINVAL, "Invalid mutex",
330 mutex->ptm_magic == _PT_MUTEX_MAGIC);
331
332 PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK);
333
334 GET_MUTEX_PRIVATE(mutex, mp);
335
336 self = pthread_self();
337 /*
338 * These tests can be performed without holding the
339 * interlock because these fields are only modified
340 * if we know we own the mutex.
341 */
342 weown = (pthread__id(mutex->ptm_owner) == self);
343 switch (mp->type) {
344 case PTHREAD_MUTEX_RECURSIVE:
345 if (!weown)
346 return EPERM;
347 if (mp->recursecount != 0) {
348 mp->recursecount--;
349 return 0;
350 }
351 break;
352 case PTHREAD_MUTEX_ERRORCHECK:
353 if (!weown)
354 return EPERM;
355 /*FALLTHROUGH*/
356 default:
357 if (__predict_false(!weown)) {
358 pthread__error(EPERM, "Unlocking unlocked mutex",
359 (mutex->ptm_owner != 0));
360 pthread__error(EPERM,
361 "Unlocking mutex owned by another thread", weown);
362 }
363 break;
364 }
365
366 mutex->ptm_owner = NULL;
367 pthread__simple_unlock(&mutex->ptm_lock);
368 /*
369 * Do a double-checked locking dance to see if there are any
370 * waiters. If we don't see any waiters, we can exit, because
371 * we've already released the lock. If we do see waiters, they
372 * were probably waiting on us... there's a slight chance that
373 * they are waiting on a different thread's ownership of the
374 * lock that happened between the unlock above and this
375 * examination of the queue; if so, no harm is done, as the
376 * waiter will loop and see that the mutex is still locked.
377 */
378 pthread_spinlock(self, &mutex->ptm_interlock);
379 if ((blocked = PTQ_FIRST(&mutex->ptm_blocked)) != NULL) {
380 PTQ_REMOVE(&mutex->ptm_blocked, blocked, pt_sleep);
381 PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK_UNBLOCK);
382 pthread__unpark(self, &mutex->ptm_interlock,
383 &mutex->ptm_blocked, blocked);
384 } else
385 pthread_spinunlock(self, &mutex->ptm_interlock);
386
387 return 0;
388 }
389
390 int
391 pthread_mutexattr_init(pthread_mutexattr_t *attr)
392 {
393 struct mutexattr_private *map;
394
395 map = malloc(sizeof(*map));
396 if (map == NULL)
397 return ENOMEM;
398
399 *map = mutexattr_private_default;
400
401 attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
402 attr->ptma_private = map;
403
404 return 0;
405 }
406
407
408 int
409 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
410 {
411
412 pthread__error(EINVAL, "Invalid mutex attribute",
413 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
414
415 attr->ptma_magic = _PT_MUTEXATTR_DEAD;
416 if (attr->ptma_private != NULL)
417 free(attr->ptma_private);
418
419 return 0;
420 }
421
422
423 int
424 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
425 {
426 struct mutexattr_private *map;
427
428 pthread__error(EINVAL, "Invalid mutex attribute",
429 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
430
431 map = attr->ptma_private;
432
433 *typep = map->type;
434
435 return 0;
436 }
437
438
439 int
440 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
441 {
442 struct mutexattr_private *map;
443
444 pthread__error(EINVAL, "Invalid mutex attribute",
445 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
446
447 map = attr->ptma_private;
448
449 switch (type) {
450 case PTHREAD_MUTEX_NORMAL:
451 case PTHREAD_MUTEX_ERRORCHECK:
452 case PTHREAD_MUTEX_RECURSIVE:
453 map->type = type;
454 break;
455
456 default:
457 return EINVAL;
458 }
459
460 return 0;
461 }
462
463
464 static void
465 once_cleanup(void *closure)
466 {
467
468 pthread_mutex_unlock((pthread_mutex_t *)closure);
469 }
470
471
472 int
473 pthread_once(pthread_once_t *once_control, void (*routine)(void))
474 {
475
476 if (once_control->pto_done == 0) {
477 pthread_mutex_lock(&once_control->pto_mutex);
478 pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
479 if (once_control->pto_done == 0) {
480 routine();
481 once_control->pto_done = 1;
482 }
483 pthread_cleanup_pop(1);
484 }
485
486 return 0;
487 }
488