pthread_mutex.c revision 1.28.2.3 1 /* $NetBSD: pthread_mutex.c,v 1.28.2.3 2007/09/03 10:14:15 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2003, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __RCSID("$NetBSD: pthread_mutex.c,v 1.28.2.3 2007/09/03 10:14:15 skrll Exp $");
41
42 #include <errno.h>
43 #include <limits.h>
44 #include <stdlib.h>
45 #include <string.h>
46
47 #include <sys/types.h>
48 #include <sys/lock.h>
49
50 #include "pthread.h"
51 #include "pthread_int.h"
52
53 static int pthread_mutex_lock_slow(pthread_t, pthread_mutex_t *);
54
55 __strong_alias(__libc_mutex_init,pthread_mutex_init)
56 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
57 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
58 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
59 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
60
61 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
62 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
63 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
64
65 __strong_alias(__libc_thr_once,pthread_once)
66
67 struct mutex_private {
68 int type;
69 int recursecount;
70 };
71
72 static const struct mutex_private mutex_private_default = {
73 PTHREAD_MUTEX_DEFAULT,
74 0,
75 };
76
77 struct mutexattr_private {
78 int type;
79 };
80
81 static const struct mutexattr_private mutexattr_private_default = {
82 PTHREAD_MUTEX_DEFAULT,
83 };
84
85 int
86 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
87 {
88 struct mutexattr_private *map;
89 struct mutex_private *mp;
90
91 pthread__error(EINVAL, "Invalid mutex attribute",
92 (attr == NULL) || (attr->ptma_magic == _PT_MUTEXATTR_MAGIC));
93
94 if (attr != NULL && (map = attr->ptma_private) != NULL &&
95 memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
96 mp = malloc(sizeof(*mp));
97 if (mp == NULL)
98 return ENOMEM;
99
100 mp->type = map->type;
101 mp->recursecount = 0;
102 } else {
103 /* LINTED cast away const */
104 mp = (struct mutex_private *) &mutex_private_default;
105 }
106
107 mutex->ptm_magic = _PT_MUTEX_MAGIC;
108 mutex->ptm_owner = NULL;
109 pthread_lockinit(&mutex->ptm_lock);
110 pthread_lockinit(&mutex->ptm_interlock);
111 PTQ_INIT(&mutex->ptm_blocked);
112 mutex->ptm_private = mp;
113
114 return 0;
115 }
116
117
118 int
119 pthread_mutex_destroy(pthread_mutex_t *mutex)
120 {
121
122 pthread__error(EINVAL, "Invalid mutex",
123 mutex->ptm_magic == _PT_MUTEX_MAGIC);
124 pthread__error(EBUSY, "Destroying locked mutex",
125 __SIMPLELOCK_UNLOCKED_P(&mutex->ptm_lock));
126
127 mutex->ptm_magic = _PT_MUTEX_DEAD;
128 if (mutex->ptm_private != NULL &&
129 mutex->ptm_private != (const void *)&mutex_private_default)
130 free(mutex->ptm_private);
131
132 return 0;
133 }
134
135
136 /*
137 * Note regarding memory visibility: Pthreads has rules about memory
138 * visibility and mutexes. Very roughly: Memory a thread can see when
139 * it unlocks a mutex can be seen by another thread that locks the
140 * same mutex.
141 *
142 * A memory barrier after a lock and before an unlock will provide
143 * this behavior. This code relies on pthread__simple_lock_try() to issue
144 * a barrier after obtaining a lock, and on pthread__simple_unlock() to
145 * issue a barrier before releasing a lock.
146 */
147
148 int
149 pthread_mutex_lock(pthread_mutex_t *mutex)
150 {
151 pthread_t self;
152 int error;
153
154 self = pthread__self();
155
156 PTHREADD_ADD(PTHREADD_MUTEX_LOCK);
157
158 /*
159 * Note that if we get the lock, we don't have to deal with any
160 * non-default lock type handling.
161 */
162 if (__predict_false(pthread__simple_lock_try(&mutex->ptm_lock) == 0)) {
163 error = pthread_mutex_lock_slow(self, mutex);
164 if (error)
165 return error;
166 }
167
168 /*
169 * We have the lock!
170 */
171 self->pt_mutexhint = mutex;
172 mutex->ptm_owner = self;
173
174 return 0;
175 }
176
177
178 static int
179 pthread_mutex_lock_slow(pthread_t self, pthread_mutex_t *mutex)
180 {
181 extern int pthread__started;
182 struct mutex_private *mp;
183 sigset_t ss;
184 int count;
185
186 pthread__error(EINVAL, "Invalid mutex",
187 mutex->ptm_magic == _PT_MUTEX_MAGIC);
188
189 PTHREADD_ADD(PTHREADD_MUTEX_LOCK_SLOW);
190
191 for (;;) {
192 /* Spin for a while. */
193 count = pthread__nspins;
194 while (__SIMPLELOCK_LOCKED_P(&mutex->ptm_lock) && --count > 0)
195 pthread__smt_pause();
196 if (count > 0) {
197 if (pthread__simple_lock_try(&mutex->ptm_lock) != 0)
198 break;
199 continue;
200 }
201
202 /* Okay, didn't look free. Get the interlock... */
203 pthread_spinlock(&mutex->ptm_interlock);
204
205 /*
206 * The mutex_unlock routine will get the interlock
207 * before looking at the list of sleepers, so if the
208 * lock is held we can safely put ourselves on the
209 * sleep queue. If it's not held, we can try taking it
210 * again.
211 */
212 PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep);
213 if (__SIMPLELOCK_LOCKED_P(&mutex->ptm_lock)) {
214 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
215 pthread_spinunlock(&mutex->ptm_interlock);
216 continue;
217 }
218
219 mp = mutex->ptm_private;
220 if (mutex->ptm_owner == self && mp != NULL) {
221 switch (mp->type) {
222 case PTHREAD_MUTEX_ERRORCHECK:
223 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
224 pthread_spinunlock(&mutex->ptm_interlock);
225 return EDEADLK;
226
227 case PTHREAD_MUTEX_RECURSIVE:
228 /*
229 * It's safe to do this without
230 * holding the interlock, because
231 * we only modify it if we know we
232 * own the mutex.
233 */
234 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
235 pthread_spinunlock(&mutex->ptm_interlock);
236 if (mp->recursecount == INT_MAX)
237 return EAGAIN;
238 mp->recursecount++;
239 return 0;
240 }
241 }
242
243 if (pthread__started == 0) {
244 /* The spec says we must deadlock, so... */
245 pthread__assert(mp->type == PTHREAD_MUTEX_NORMAL);
246 (void) sigprocmask(SIG_SETMASK, NULL, &ss);
247 for (;;) {
248 sigsuspend(&ss);
249 }
250 /*NOTREACHED*/
251 }
252
253 /*
254 * Locking a mutex is not a cancellation
255 * point, so we don't need to do the
256 * test-cancellation dance. We may get woken
257 * up spuriously by pthread_cancel or signals,
258 * but it's okay since we're just going to
259 * retry.
260 */
261 self->pt_sleeponq = 1;
262 self->pt_sleepobj = &mutex->ptm_blocked;
263 pthread_spinunlock(&mutex->ptm_interlock);
264 (void)pthread__park(self, &mutex->ptm_interlock,
265 &mutex->ptm_blocked, NULL, 0, &mutex->ptm_blocked);
266 }
267
268 return 0;
269 }
270
271
272 int
273 pthread_mutex_trylock(pthread_mutex_t *mutex)
274 {
275 struct mutex_private *mp;
276 pthread_t self;
277
278 pthread__error(EINVAL, "Invalid mutex",
279 mutex->ptm_magic == _PT_MUTEX_MAGIC);
280
281 self = pthread__self();
282
283 PTHREADD_ADD(PTHREADD_MUTEX_TRYLOCK);
284 if (pthread__simple_lock_try(&mutex->ptm_lock) == 0) {
285 /*
286 * These tests can be performed without holding the
287 * interlock because these fields are only modified
288 * if we know we own the mutex.
289 */
290 mp = mutex->ptm_private;
291 if (mp != NULL && mp->type == PTHREAD_MUTEX_RECURSIVE &&
292 mutex->ptm_owner == self) {
293 if (mp->recursecount == INT_MAX)
294 return EAGAIN;
295 mp->recursecount++;
296 return 0;
297 }
298
299 return EBUSY;
300 }
301
302 mutex->ptm_owner = self;
303 self->pt_mutexhint = mutex;
304
305 return 0;
306 }
307
308
309 int
310 pthread_mutex_unlock(pthread_mutex_t *mutex)
311 {
312 struct mutex_private *mp;
313 pthread_t self;
314 int weown;
315
316 pthread__error(EINVAL, "Invalid mutex",
317 mutex->ptm_magic == _PT_MUTEX_MAGIC);
318
319 PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK);
320
321 /*
322 * These tests can be performed without holding the
323 * interlock because these fields are only modified
324 * if we know we own the mutex.
325 */
326 self = pthread_self();
327 weown = (mutex->ptm_owner == self);
328 mp = mutex->ptm_private;
329
330 if (mp == NULL) {
331 if (__predict_false(!weown)) {
332 pthread__error(EPERM, "Unlocking unlocked mutex",
333 (mutex->ptm_owner != 0));
334 pthread__error(EPERM,
335 "Unlocking mutex owned by another thread", weown);
336 }
337 } else if (mp->type == PTHREAD_MUTEX_RECURSIVE) {
338 if (!weown)
339 return EPERM;
340 if (mp->recursecount != 0) {
341 mp->recursecount--;
342 return 0;
343 }
344 } else if (mp->type == PTHREAD_MUTEX_ERRORCHECK) {
345 if (!weown)
346 return EPERM;
347 if (__predict_false(!weown)) {
348 pthread__error(EPERM, "Unlocking unlocked mutex",
349 (mutex->ptm_owner != 0));
350 pthread__error(EPERM,
351 "Unlocking mutex owned by another thread", weown);
352 }
353 }
354
355 mutex->ptm_owner = NULL;
356 pthread__simple_unlock(&mutex->ptm_lock);
357
358 /*
359 * Do a double-checked locking dance to see if there are any
360 * waiters. If we don't see any waiters, we can exit, because
361 * we've already released the lock. If we do see waiters, they
362 * were probably waiting on us... there's a slight chance that
363 * they are waiting on a different thread's ownership of the
364 * lock that happened between the unlock above and this
365 * examination of the queue; if so, no harm is done, as the
366 * waiter will loop and see that the mutex is still locked.
367 *
368 * Note that waiters may have been transferred here from a
369 * condition variable.
370 */
371 if (self->pt_mutexhint == mutex)
372 self->pt_mutexhint = NULL;
373
374 pthread_spinlock(&mutex->ptm_interlock);
375 if (PTQ_EMPTY(&mutex->ptm_blocked)) {
376 pthread_spinunlock(&mutex->ptm_interlock);
377 return 0;
378 }
379 pthread__unpark_all(self, &mutex->ptm_interlock, &mutex->ptm_blocked);
380 return 0;
381 }
382
383 int
384 pthread_mutexattr_init(pthread_mutexattr_t *attr)
385 {
386 struct mutexattr_private *map;
387
388 map = malloc(sizeof(*map));
389 if (map == NULL)
390 return ENOMEM;
391
392 *map = mutexattr_private_default;
393
394 attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
395 attr->ptma_private = map;
396
397 return 0;
398 }
399
400
401 int
402 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
403 {
404
405 pthread__error(EINVAL, "Invalid mutex attribute",
406 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
407
408 attr->ptma_magic = _PT_MUTEXATTR_DEAD;
409 if (attr->ptma_private != NULL)
410 free(attr->ptma_private);
411
412 return 0;
413 }
414
415
416 int
417 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
418 {
419 struct mutexattr_private *map;
420
421 pthread__error(EINVAL, "Invalid mutex attribute",
422 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
423
424 map = attr->ptma_private;
425
426 *typep = map->type;
427
428 return 0;
429 }
430
431
432 int
433 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
434 {
435 struct mutexattr_private *map;
436
437 pthread__error(EINVAL, "Invalid mutex attribute",
438 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
439
440 map = attr->ptma_private;
441
442 switch (type) {
443 case PTHREAD_MUTEX_NORMAL:
444 case PTHREAD_MUTEX_ERRORCHECK:
445 case PTHREAD_MUTEX_RECURSIVE:
446 map->type = type;
447 break;
448
449 default:
450 return EINVAL;
451 }
452
453 return 0;
454 }
455
456
457 static void
458 once_cleanup(void *closure)
459 {
460
461 pthread_mutex_unlock((pthread_mutex_t *)closure);
462 }
463
464
465 int
466 pthread_once(pthread_once_t *once_control, void (*routine)(void))
467 {
468
469 if (once_control->pto_done == 0) {
470 pthread_mutex_lock(&once_control->pto_mutex);
471 pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
472 if (once_control->pto_done == 0) {
473 routine();
474 once_control->pto_done = 1;
475 }
476 pthread_cleanup_pop(1);
477 }
478
479 return 0;
480 }
481