pthread_mutex.c revision 1.28.2.4 1 /* $NetBSD: pthread_mutex.c,v 1.28.2.4 2007/09/10 10:54:06 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2003, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __RCSID("$NetBSD: pthread_mutex.c,v 1.28.2.4 2007/09/10 10:54:06 skrll Exp $");
41
42 #include <errno.h>
43 #include <limits.h>
44 #include <stdlib.h>
45 #include <string.h>
46
47 #include <sys/types.h>
48 #include <sys/lock.h>
49
50 #include "pthread.h"
51 #include "pthread_int.h"
52
53 #ifndef PTHREAD__HAVE_ATOMIC
54
55 static int pthread_mutex_lock_slow(pthread_t, pthread_mutex_t *);
56
57 __strong_alias(__libc_mutex_init,pthread_mutex_init)
58 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
59 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
60 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
61 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
62
63 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
64 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
65 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
66
67 __strong_alias(__libc_thr_once,pthread_once)
68
69 struct mutex_private {
70 int type;
71 int recursecount;
72 };
73
74 static const struct mutex_private mutex_private_default = {
75 PTHREAD_MUTEX_DEFAULT,
76 0,
77 };
78
79 struct mutexattr_private {
80 int type;
81 };
82
83 static const struct mutexattr_private mutexattr_private_default = {
84 PTHREAD_MUTEX_DEFAULT,
85 };
86
87 int
88 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
89 {
90 struct mutexattr_private *map;
91 struct mutex_private *mp;
92
93 pthread__error(EINVAL, "Invalid mutex attribute",
94 (attr == NULL) || (attr->ptma_magic == _PT_MUTEXATTR_MAGIC));
95
96 if (attr != NULL && (map = attr->ptma_private) != NULL &&
97 memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
98 mp = malloc(sizeof(*mp));
99 if (mp == NULL)
100 return ENOMEM;
101
102 mp->type = map->type;
103 mp->recursecount = 0;
104 } else {
105 /* LINTED cast away const */
106 mp = (struct mutex_private *) &mutex_private_default;
107 }
108
109 mutex->ptm_magic = _PT_MUTEX_MAGIC;
110 mutex->ptm_owner = NULL;
111 pthread_lockinit(&mutex->ptm_lock);
112 pthread_lockinit(&mutex->ptm_interlock);
113 PTQ_INIT(&mutex->ptm_blocked);
114 mutex->ptm_private = mp;
115
116 return 0;
117 }
118
119
120 int
121 pthread_mutex_destroy(pthread_mutex_t *mutex)
122 {
123
124 pthread__error(EINVAL, "Invalid mutex",
125 mutex->ptm_magic == _PT_MUTEX_MAGIC);
126 pthread__error(EBUSY, "Destroying locked mutex",
127 __SIMPLELOCK_UNLOCKED_P(&mutex->ptm_lock));
128
129 mutex->ptm_magic = _PT_MUTEX_DEAD;
130 if (mutex->ptm_private != NULL &&
131 mutex->ptm_private != (const void *)&mutex_private_default)
132 free(mutex->ptm_private);
133
134 return 0;
135 }
136
137
138 /*
139 * Note regarding memory visibility: Pthreads has rules about memory
140 * visibility and mutexes. Very roughly: Memory a thread can see when
141 * it unlocks a mutex can be seen by another thread that locks the
142 * same mutex.
143 *
144 * A memory barrier after a lock and before an unlock will provide
145 * this behavior. This code relies on pthread__simple_lock_try() to issue
146 * a barrier after obtaining a lock, and on pthread__simple_unlock() to
147 * issue a barrier before releasing a lock.
148 */
149
150 int
151 pthread_mutex_lock(pthread_mutex_t *mutex)
152 {
153 pthread_t self;
154 int error;
155
156 self = pthread__self();
157
158 PTHREADD_ADD(PTHREADD_MUTEX_LOCK);
159
160 /*
161 * Note that if we get the lock, we don't have to deal with any
162 * non-default lock type handling.
163 */
164 if (__predict_false(pthread__simple_lock_try(&mutex->ptm_lock) == 0)) {
165 error = pthread_mutex_lock_slow(self, mutex);
166 if (error)
167 return error;
168 }
169
170 /*
171 * We have the lock!
172 */
173 mutex->ptm_owner = self;
174
175 return 0;
176 }
177
178
179 static int
180 pthread_mutex_lock_slow(pthread_t self, pthread_mutex_t *mutex)
181 {
182 extern int pthread__started;
183 struct mutex_private *mp;
184 sigset_t ss;
185 int count;
186
187 pthread__error(EINVAL, "Invalid mutex",
188 mutex->ptm_magic == _PT_MUTEX_MAGIC);
189
190 PTHREADD_ADD(PTHREADD_MUTEX_LOCK_SLOW);
191
192 for (;;) {
193 /* Spin for a while. */
194 count = pthread__nspins;
195 while (__SIMPLELOCK_LOCKED_P(&mutex->ptm_lock) && --count > 0)
196 pthread__smt_pause();
197 if (count > 0) {
198 if (pthread__simple_lock_try(&mutex->ptm_lock) != 0)
199 break;
200 continue;
201 }
202
203 /* Okay, didn't look free. Get the interlock... */
204 pthread_spinlock(&mutex->ptm_interlock);
205
206 /*
207 * The mutex_unlock routine will get the interlock
208 * before looking at the list of sleepers, so if the
209 * lock is held we can safely put ourselves on the
210 * sleep queue. If it's not held, we can try taking it
211 * again.
212 */
213 PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep);
214 if (__SIMPLELOCK_LOCKED_P(&mutex->ptm_lock)) {
215 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
216 pthread_spinunlock(&mutex->ptm_interlock);
217 continue;
218 }
219
220 mp = mutex->ptm_private;
221 if (mutex->ptm_owner == self && mp != NULL) {
222 switch (mp->type) {
223 case PTHREAD_MUTEX_ERRORCHECK:
224 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
225 pthread_spinunlock(&mutex->ptm_interlock);
226 return EDEADLK;
227
228 case PTHREAD_MUTEX_RECURSIVE:
229 /*
230 * It's safe to do this without
231 * holding the interlock, because
232 * we only modify it if we know we
233 * own the mutex.
234 */
235 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
236 pthread_spinunlock(&mutex->ptm_interlock);
237 if (mp->recursecount == INT_MAX)
238 return EAGAIN;
239 mp->recursecount++;
240 return 0;
241 }
242 }
243
244 if (pthread__started == 0) {
245 /* The spec says we must deadlock, so... */
246 pthread__assert(mp->type == PTHREAD_MUTEX_NORMAL);
247 (void) sigprocmask(SIG_SETMASK, NULL, &ss);
248 for (;;) {
249 sigsuspend(&ss);
250 }
251 /*NOTREACHED*/
252 }
253
254 /*
255 * Locking a mutex is not a cancellation
256 * point, so we don't need to do the
257 * test-cancellation dance. We may get woken
258 * up spuriously by pthread_cancel or signals,
259 * but it's okay since we're just going to
260 * retry.
261 */
262 self->pt_sleeponq = 1;
263 self->pt_sleepobj = &mutex->ptm_blocked;
264 pthread_spinunlock(&mutex->ptm_interlock);
265 (void)pthread__park(self, &mutex->ptm_interlock,
266 &mutex->ptm_blocked, NULL, 0, &mutex->ptm_blocked);
267 }
268
269 return 0;
270 }
271
272
273 int
274 pthread_mutex_trylock(pthread_mutex_t *mutex)
275 {
276 struct mutex_private *mp;
277 pthread_t self;
278
279 pthread__error(EINVAL, "Invalid mutex",
280 mutex->ptm_magic == _PT_MUTEX_MAGIC);
281
282 self = pthread__self();
283
284 PTHREADD_ADD(PTHREADD_MUTEX_TRYLOCK);
285 if (pthread__simple_lock_try(&mutex->ptm_lock) == 0) {
286 /*
287 * These tests can be performed without holding the
288 * interlock because these fields are only modified
289 * if we know we own the mutex.
290 */
291 mp = mutex->ptm_private;
292 if (mp != NULL && mp->type == PTHREAD_MUTEX_RECURSIVE &&
293 mutex->ptm_owner == self) {
294 if (mp->recursecount == INT_MAX)
295 return EAGAIN;
296 mp->recursecount++;
297 return 0;
298 }
299
300 return EBUSY;
301 }
302
303 mutex->ptm_owner = self;
304
305 return 0;
306 }
307
308
309 int
310 pthread_mutex_unlock(pthread_mutex_t *mutex)
311 {
312 struct mutex_private *mp;
313 pthread_t self;
314 int weown;
315
316 pthread__error(EINVAL, "Invalid mutex",
317 mutex->ptm_magic == _PT_MUTEX_MAGIC);
318
319 PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK);
320
321 /*
322 * These tests can be performed without holding the
323 * interlock because these fields are only modified
324 * if we know we own the mutex.
325 */
326 self = pthread_self();
327 weown = (mutex->ptm_owner == self);
328 mp = mutex->ptm_private;
329
330 if (mp == NULL) {
331 if (__predict_false(!weown)) {
332 pthread__error(EPERM, "Unlocking unlocked mutex",
333 (mutex->ptm_owner != 0));
334 pthread__error(EPERM,
335 "Unlocking mutex owned by another thread", weown);
336 }
337 } else if (mp->type == PTHREAD_MUTEX_RECURSIVE) {
338 if (!weown)
339 return EPERM;
340 if (mp->recursecount != 0) {
341 mp->recursecount--;
342 return 0;
343 }
344 } else if (mp->type == PTHREAD_MUTEX_ERRORCHECK) {
345 if (!weown)
346 return EPERM;
347 if (__predict_false(!weown)) {
348 pthread__error(EPERM, "Unlocking unlocked mutex",
349 (mutex->ptm_owner != 0));
350 pthread__error(EPERM,
351 "Unlocking mutex owned by another thread", weown);
352 }
353 }
354
355 mutex->ptm_owner = NULL;
356 pthread__simple_unlock(&mutex->ptm_lock);
357
358 /*
359 * Do a double-checked locking dance to see if there are any
360 * waiters. If we don't see any waiters, we can exit, because
361 * we've already released the lock. If we do see waiters, they
362 * were probably waiting on us... there's a slight chance that
363 * they are waiting on a different thread's ownership of the
364 * lock that happened between the unlock above and this
365 * examination of the queue; if so, no harm is done, as the
366 * waiter will loop and see that the mutex is still locked.
367 */
368 pthread_spinlock(&mutex->ptm_interlock);
369 pthread__unpark_all(self, &mutex->ptm_interlock, &mutex->ptm_blocked);
370 return 0;
371 }
372
373 int
374 pthread_mutexattr_init(pthread_mutexattr_t *attr)
375 {
376 struct mutexattr_private *map;
377
378 map = malloc(sizeof(*map));
379 if (map == NULL)
380 return ENOMEM;
381
382 *map = mutexattr_private_default;
383
384 attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
385 attr->ptma_private = map;
386
387 return 0;
388 }
389
390
391 int
392 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
393 {
394
395 pthread__error(EINVAL, "Invalid mutex attribute",
396 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
397
398 attr->ptma_magic = _PT_MUTEXATTR_DEAD;
399 if (attr->ptma_private != NULL)
400 free(attr->ptma_private);
401
402 return 0;
403 }
404
405
406 int
407 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
408 {
409 struct mutexattr_private *map;
410
411 pthread__error(EINVAL, "Invalid mutex attribute",
412 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
413
414 map = attr->ptma_private;
415
416 *typep = map->type;
417
418 return 0;
419 }
420
421
422 int
423 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
424 {
425 struct mutexattr_private *map;
426
427 pthread__error(EINVAL, "Invalid mutex attribute",
428 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
429
430 map = attr->ptma_private;
431
432 switch (type) {
433 case PTHREAD_MUTEX_NORMAL:
434 case PTHREAD_MUTEX_ERRORCHECK:
435 case PTHREAD_MUTEX_RECURSIVE:
436 map->type = type;
437 break;
438
439 default:
440 return EINVAL;
441 }
442
443 return 0;
444 }
445
446
447 static void
448 once_cleanup(void *closure)
449 {
450
451 pthread_mutex_unlock((pthread_mutex_t *)closure);
452 }
453
454
455 int
456 pthread_once(pthread_once_t *once_control, void (*routine)(void))
457 {
458
459 if (once_control->pto_done == 0) {
460 pthread_mutex_lock(&once_control->pto_mutex);
461 pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
462 if (once_control->pto_done == 0) {
463 routine();
464 once_control->pto_done = 1;
465 }
466 pthread_cleanup_pop(1);
467 }
468
469 return 0;
470 }
471
472 int
473 pthread__mutex_owned(pthread_t thread, pthread_mutex_t *mutex)
474 {
475
476 return mutex->ptm_owner == thread;
477 }
478
479 #endif /* !PTHREAD__HAVE_ATOMIC */
480