pthread_mutex.c revision 1.3 1 /* $NetBSD: pthread_mutex.c,v 1.3 2003/01/18 18:45:55 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 #include <assert.h>
41 #include <errno.h>
42 #include <limits.h>
43 #include <stdlib.h>
44
45 #include "pthread.h"
46 #include "pthread_int.h"
47
48 static int pthread_mutex_lock_slow(pthread_mutex_t *);
49
50 __strong_alias(__libc_mutex_init,pthread_mutex_init)
51 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
52 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
53 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
54 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
55
56 __strong_alias(__libc_thr_once,pthread_once)
57
58 struct mutex_private {
59 int type;
60 int recursecount;
61 };
62
63 static const struct mutex_private mutex_private_default = {
64 PTHREAD_MUTEX_DEFAULT,
65 0,
66 };
67
68 struct mutexattr_private {
69 int type;
70 };
71
72 static const struct mutexattr_private mutexattr_private_default = {
73 PTHREAD_MUTEX_DEFAULT,
74 };
75
76 /*
77 * If the mutex does not already have private data (i.e. was statically
78 * initialized), then give it the default.
79 */
80 #define GET_MUTEX_PRIVATE(mutex, mp) \
81 do { \
82 if (__predict_false((mp = (mutex)->ptm_private) == NULL)) { \
83 /* LINTED cast away const */ \
84 mp = ((mutex)->ptm_private = \
85 (void *)&mutex_private_default); \
86 } \
87 } while (/*CONSTCOND*/0)
88
89 int
90 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
91 {
92 struct mutexattr_private *map;
93 struct mutex_private *mp;
94
95 #ifdef ERRORCHECK
96 if ((mutex == NULL) ||
97 (attr && (attr->ptma_magic != _PT_MUTEXATTR_MAGIC)))
98 return EINVAL;
99 #endif
100
101 if (attr != NULL && (map = attr->ptma_private) != NULL &&
102 memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
103 mp = malloc(sizeof(*mp));
104 if (mp == NULL)
105 return ENOMEM;
106
107 mp->type = map->type;
108 mp->recursecount = 0;
109 } else {
110 /* LINTED cast away const */
111 mp = (struct mutex_private *) &mutex_private_default;
112 }
113
114 mutex->ptm_magic = _PT_MUTEX_MAGIC;
115 mutex->ptm_owner = NULL;
116 pthread_lockinit(&mutex->ptm_lock);
117 pthread_lockinit(&mutex->ptm_interlock);
118 PTQ_INIT(&mutex->ptm_blocked);
119 mutex->ptm_private = mp;
120
121 return 0;
122 }
123
124
125 int
126 pthread_mutex_destroy(pthread_mutex_t *mutex)
127 {
128
129 #ifdef ERRORCHECK
130 if ((mutex == NULL) ||
131 (mutex->ptm_magic != _PT_MUTEX_MAGIC) ||
132 (mutex->ptm_lock != __SIMPLELOCK_UNLOCKED))
133 return EINVAL;
134 #endif
135
136 mutex->ptm_magic = _PT_MUTEX_DEAD;
137 if (mutex->ptm_private != NULL &&
138 mutex->ptm_private != (const void *)&mutex_private_default)
139 free(mutex->ptm_private);
140
141 return 0;
142 }
143
144
145 /*
146 * Note regarding memory visibility: Pthreads has rules about memory
147 * visibility and mutexes. Very roughly: Memory a thread can see when
148 * it unlocks a mutex can be seen by another thread that locks the
149 * same mutex.
150 *
151 * A memory barrier after a lock and before an unlock will provide
152 * this behavior. This code relies on pthread__simple_lock_try() to issue
153 * a barrier after obtaining a lock, and on pthread__simple_unlock() to
154 * issue a barrier before releasing a lock.
155 */
156
157 int
158 pthread_mutex_lock(pthread_mutex_t *mutex)
159 {
160 int error;
161
162 #ifdef ERRORCHECK
163 if ((mutex == NULL) || (mutex->ptm_magic != _PT_MUTEX_MAGIC))
164 return EINVAL;
165 #endif
166
167 /*
168 * Note that if we get the lock, we don't have to deal with any
169 * non-default lock type handling.
170 */
171 if (__predict_false(pthread__simple_lock_try(&mutex->ptm_lock) == 0)) {
172 error = pthread_mutex_lock_slow(mutex);
173 if (error)
174 return error;
175 }
176
177 /* We have the lock! */
178 mutex->ptm_owner = pthread__self();
179
180 return 0;
181 }
182
183
184 static int
185 pthread_mutex_lock_slow(pthread_mutex_t *mutex)
186 {
187 pthread_t self;
188
189 self = pthread__self();
190
191 while (/*CONSTCOND*/1) {
192 if (pthread__simple_lock_try(&mutex->ptm_lock))
193 break; /* got it! */
194
195 /* Okay, didn't look free. Get the interlock... */
196 pthread_spinlock(self, &mutex->ptm_interlock);
197 /*
198 * The mutex_unlock routine will get the interlock
199 * before looking at the list of sleepers, so if the
200 * lock is held we can safely put ourselves on the
201 * sleep queue. If it's not held, we can try taking it
202 * again.
203 */
204 if (mutex->ptm_lock == __SIMPLELOCK_LOCKED) {
205 struct mutex_private *mp;
206
207 GET_MUTEX_PRIVATE(mutex, mp);
208
209 if (mutex->ptm_owner == self) {
210 switch (mp->type) {
211 case PTHREAD_MUTEX_ERRORCHECK:
212 pthread_spinunlock(self,
213 &mutex->ptm_interlock);
214 return EDEADLK;
215
216 case PTHREAD_MUTEX_RECURSIVE:
217 /*
218 * It's safe to do this without
219 * holding the interlock, because
220 * we only modify it if we know we
221 * own the mutex.
222 */
223 pthread_spinunlock(self,
224 &mutex->ptm_interlock);
225 if (mp->recursecount == INT_MAX)
226 return EAGAIN;
227 mp->recursecount++;
228 return 0;
229 }
230 }
231
232 PTQ_INSERT_TAIL(&mutex->ptm_blocked, self, pt_sleep);
233 /*
234 * Locking a mutex is not a cancellation
235 * point, so we don't need to do the
236 * test-cancellation dance. We may get woken
237 * up spuriously by pthread_cancel, though,
238 * but it's okay since we're just going to
239 * retry.
240 */
241 pthread_spinlock(self, &self->pt_statelock);
242 self->pt_state = PT_STATE_BLOCKED_QUEUE;
243 self->pt_sleepobj = mutex;
244 self->pt_sleepq = &mutex->ptm_blocked;
245 self->pt_sleeplock = &mutex->ptm_interlock;
246 pthread_spinunlock(self, &self->pt_statelock);
247
248 pthread__block(self, &mutex->ptm_interlock);
249 /* interlock is not held when we return */
250 } else {
251 pthread_spinunlock(self, &mutex->ptm_interlock);
252 }
253 /* Go around for another try. */
254 }
255
256 return 0;
257 }
258
259
260 int
261 pthread_mutex_trylock(pthread_mutex_t *mutex)
262 {
263 pthread_t self = pthread__self();
264
265 #ifdef ERRORCHECK
266 if ((mutex == NULL) || (mutex->ptm_magic != _PT_MUTEX_MAGIC))
267 return EINVAL;
268 #endif
269
270 if (pthread__simple_lock_try(&mutex->ptm_lock) == 0) {
271 struct mutex_private *mp;
272
273 GET_MUTEX_PRIVATE(mutex, mp);
274
275 /*
276 * These tests can be performed without holding the
277 * interlock because these fields are only modified
278 * if we know we own the mutex.
279 */
280 if (mutex->ptm_owner == self) {
281 switch (mp->type) {
282 case PTHREAD_MUTEX_ERRORCHECK:
283 return EDEADLK;
284
285 case PTHREAD_MUTEX_RECURSIVE:
286 if (mp->recursecount == INT_MAX)
287 return EAGAIN;
288 mp->recursecount++;
289 return 0;
290 }
291 }
292
293 return EBUSY;
294 }
295
296 mutex->ptm_owner = self;
297
298 return 0;
299 }
300
301
302 int
303 pthread_mutex_unlock(pthread_mutex_t *mutex)
304 {
305 struct mutex_private *mp;
306 pthread_t self, blocked;
307
308 self = pthread__self();
309
310 #ifdef ERRORCHECK
311 if ((mutex == NULL) || (mutex->ptm_magic != _PT_MUTEX_MAGIC))
312 return EINVAL;
313
314 if (mutex->ptm_lock != __SIMPLELOCK_LOCKED)
315 return EPERM; /* Not exactly the right error. */
316 #endif
317
318 GET_MUTEX_PRIVATE(mutex, mp);
319
320 /*
321 * These tests can be performed without holding the
322 * interlock because these fields are only modified
323 * if we know we own the mutex.
324 */
325 switch (mp->type) {
326 case PTHREAD_MUTEX_ERRORCHECK:
327 if (mutex->ptm_owner != self)
328 return EPERM;
329 break;
330
331 case PTHREAD_MUTEX_RECURSIVE:
332 if (mutex->ptm_owner != self)
333 return EPERM;
334 if (mp->recursecount != 0) {
335 mp->recursecount--;
336 return 0;
337 }
338 break;
339 }
340
341 pthread_spinlock(self, &mutex->ptm_interlock);
342 blocked = PTQ_FIRST(&mutex->ptm_blocked);
343 if (blocked)
344 PTQ_REMOVE(&mutex->ptm_blocked, blocked, pt_sleep);
345 mutex->ptm_owner = NULL;
346 pthread__simple_unlock(&mutex->ptm_lock);
347 pthread_spinunlock(self, &mutex->ptm_interlock);
348
349 /* Give the head of the blocked queue another try. */
350 if (blocked)
351 pthread__sched(self, blocked);
352
353 return 0;
354 }
355
356 int
357 pthread_mutexattr_init(pthread_mutexattr_t *attr)
358 {
359 struct mutexattr_private *map;
360
361 #ifdef ERRORCHECK
362 if (attr == NULL)
363 return EINVAL;
364 #endif
365
366 map = malloc(sizeof(*map));
367 if (map == NULL)
368 return ENOMEM;
369
370 *map = mutexattr_private_default;
371
372 attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
373 attr->ptma_private = map;
374
375 return 0;
376 }
377
378
379 int
380 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
381 {
382
383 #ifdef ERRORCHECK
384 if ((attr == NULL) ||
385 (attr->ptma_magic != _PT_MUTEXATTR_MAGIC))
386 return EINVAL;
387 #endif
388
389 attr->ptma_magic = _PT_MUTEXATTR_DEAD;
390 if (attr->ptma_private != NULL)
391 free(attr->ptma_private);
392
393 return 0;
394 }
395
396
397 int
398 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
399 {
400 struct mutexattr_private *map;
401
402 #ifdef ERRORCHECK
403 if ((attr == NULL) ||
404 (attr->ptma_magic != _PT_MUTEXATTR_MAGIC) ||
405 (typep == NULL))
406 return EINVAL;
407 #endif
408
409 map = attr->ptma_private;
410
411 *typep = map->type;
412
413 return 0;
414 }
415
416
417 int
418 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
419 {
420 struct mutexattr_private *map;
421
422 #ifdef ERRORCHECK
423 if ((attr == NULL) ||
424 (attr->ptma_magic != _PT_MUTEXATTR_MAGIC))
425 return EINVAL;
426 #endif
427 map = attr->ptma_private;
428
429 switch (type) {
430 case PTHREAD_MUTEX_NORMAL:
431 case PTHREAD_MUTEX_ERRORCHECK:
432 case PTHREAD_MUTEX_RECURSIVE:
433 map->type = type;
434 break;
435
436 default:
437 return EINVAL;
438 }
439
440 return 0;
441 }
442
443
444 int
445 pthread_once(pthread_once_t *once_control, void (*routine)(void))
446 {
447
448 if (once_control->pto_done == 0) {
449 pthread_mutex_lock(&once_control->pto_mutex);
450 if (once_control->pto_done == 0) {
451 routine();
452 once_control->pto_done = 1;
453 }
454 pthread_mutex_unlock(&once_control->pto_mutex);
455 }
456
457 return 0;
458 }
459