pthread_mutex.c revision 1.30 1 /* $NetBSD: pthread_mutex.c,v 1.30 2007/08/16 13:54:17 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2003, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __RCSID("$NetBSD: pthread_mutex.c,v 1.30 2007/08/16 13:54:17 ad Exp $");
41
42 #include <errno.h>
43 #include <limits.h>
44 #include <stdlib.h>
45 #include <string.h>
46
47 #include "pthread.h"
48 #include "pthread_int.h"
49
50 static int pthread_mutex_lock_slow(pthread_t, pthread_mutex_t *);
51
52 __strong_alias(__libc_mutex_init,pthread_mutex_init)
53 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
54 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
55 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
56 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
57
58 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
59 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
60 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
61
62 __strong_alias(__libc_thr_once,pthread_once)
63
64 struct mutex_private {
65 int type;
66 int recursecount;
67 };
68
69 static const struct mutex_private mutex_private_default = {
70 PTHREAD_MUTEX_DEFAULT,
71 0,
72 };
73
74 struct mutexattr_private {
75 int type;
76 };
77
78 static const struct mutexattr_private mutexattr_private_default = {
79 PTHREAD_MUTEX_DEFAULT,
80 };
81
82 /*
83 * If the mutex does not already have private data (i.e. was statically
84 * initialized), then give it the default.
85 */
86 #define GET_MUTEX_PRIVATE(mutex, mp) \
87 do { \
88 if (__predict_false((mp = (mutex)->ptm_private) == NULL)) { \
89 /* LINTED cast away const */ \
90 mp = ((mutex)->ptm_private = \
91 (void *)&mutex_private_default); \
92 } \
93 } while (/*CONSTCOND*/0)
94
95 int
96 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
97 {
98 struct mutexattr_private *map;
99 struct mutex_private *mp;
100
101 pthread__error(EINVAL, "Invalid mutex attribute",
102 (attr == NULL) || (attr->ptma_magic == _PT_MUTEXATTR_MAGIC));
103
104 if (attr != NULL && (map = attr->ptma_private) != NULL &&
105 memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
106 mp = malloc(sizeof(*mp));
107 if (mp == NULL)
108 return ENOMEM;
109
110 mp->type = map->type;
111 mp->recursecount = 0;
112 } else {
113 /* LINTED cast away const */
114 mp = (struct mutex_private *) &mutex_private_default;
115 }
116
117 mutex->ptm_magic = _PT_MUTEX_MAGIC;
118 mutex->ptm_owner = NULL;
119 pthread_lockinit(&mutex->ptm_lock);
120 pthread_lockinit(&mutex->ptm_interlock);
121 PTQ_INIT(&mutex->ptm_blocked);
122 mutex->ptm_private = mp;
123
124 return 0;
125 }
126
127
128 int
129 pthread_mutex_destroy(pthread_mutex_t *mutex)
130 {
131
132 pthread__error(EINVAL, "Invalid mutex",
133 mutex->ptm_magic == _PT_MUTEX_MAGIC);
134 pthread__error(EBUSY, "Destroying locked mutex",
135 mutex->ptm_lock == __SIMPLELOCK_UNLOCKED);
136
137 mutex->ptm_magic = _PT_MUTEX_DEAD;
138 if (mutex->ptm_private != NULL &&
139 mutex->ptm_private != (const void *)&mutex_private_default)
140 free(mutex->ptm_private);
141
142 return 0;
143 }
144
145
146 /*
147 * Note regarding memory visibility: Pthreads has rules about memory
148 * visibility and mutexes. Very roughly: Memory a thread can see when
149 * it unlocks a mutex can be seen by another thread that locks the
150 * same mutex.
151 *
152 * A memory barrier after a lock and before an unlock will provide
153 * this behavior. This code relies on pthread__simple_lock_try() to issue
154 * a barrier after obtaining a lock, and on pthread__simple_unlock() to
155 * issue a barrier before releasing a lock.
156 */
157
158 int
159 pthread_mutex_lock(pthread_mutex_t *mutex)
160 {
161 pthread_t self;
162 int error;
163
164 self = pthread__self();
165
166 PTHREADD_ADD(PTHREADD_MUTEX_LOCK);
167
168 /*
169 * Note that if we get the lock, we don't have to deal with any
170 * non-default lock type handling.
171 */
172 if (__predict_false(pthread__simple_lock_try(&mutex->ptm_lock) == 0)) {
173 error = pthread_mutex_lock_slow(self, mutex);
174 if (error)
175 return error;
176 }
177
178 /*
179 * We have the lock!
180 */
181 self->pt_mutexhint = mutex;
182 mutex->ptm_owner = self;
183
184 return 0;
185 }
186
187
188 static int
189 pthread_mutex_lock_slow(pthread_t self, pthread_mutex_t *mutex)
190 {
191 extern int pthread__started;
192 struct mutex_private *mp;
193 sigset_t ss;
194 int count;
195
196 pthread__error(EINVAL, "Invalid mutex",
197 mutex->ptm_magic == _PT_MUTEX_MAGIC);
198
199 PTHREADD_ADD(PTHREADD_MUTEX_LOCK_SLOW);
200
201 for (;;) {
202 /* Spin for a while. */
203 count = pthread__nspins;
204 while (mutex->ptm_lock == __SIMPLELOCK_LOCKED && --count > 0)
205 pthread__smt_pause();
206 if (count > 0) {
207 if (pthread__simple_lock_try(&mutex->ptm_lock) != 0)
208 break;
209 continue;
210 }
211
212 /* Okay, didn't look free. Get the interlock... */
213 pthread_spinlock(&mutex->ptm_interlock);
214
215 /*
216 * The mutex_unlock routine will get the interlock
217 * before looking at the list of sleepers, so if the
218 * lock is held we can safely put ourselves on the
219 * sleep queue. If it's not held, we can try taking it
220 * again.
221 */
222 PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep);
223 if (mutex->ptm_lock != __SIMPLELOCK_LOCKED) {
224 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
225 pthread_spinunlock(&mutex->ptm_interlock);
226 continue;
227 }
228
229 GET_MUTEX_PRIVATE(mutex, mp);
230
231 if (mutex->ptm_owner == self) {
232 switch (mp->type) {
233 case PTHREAD_MUTEX_ERRORCHECK:
234 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
235 pthread_spinunlock(&mutex->ptm_interlock);
236 return EDEADLK;
237
238 case PTHREAD_MUTEX_RECURSIVE:
239 /*
240 * It's safe to do this without
241 * holding the interlock, because
242 * we only modify it if we know we
243 * own the mutex.
244 */
245 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
246 pthread_spinunlock(&mutex->ptm_interlock);
247 if (mp->recursecount == INT_MAX)
248 return EAGAIN;
249 mp->recursecount++;
250 return 0;
251 }
252 }
253
254 if (pthread__started == 0) {
255 /* The spec says we must deadlock, so... */
256 pthread__assert(mp->type == PTHREAD_MUTEX_NORMAL);
257 (void) sigprocmask(SIG_SETMASK, NULL, &ss);
258 for (;;) {
259 sigsuspend(&ss);
260 }
261 /*NOTREACHED*/
262 }
263
264 /*
265 * Locking a mutex is not a cancellation
266 * point, so we don't need to do the
267 * test-cancellation dance. We may get woken
268 * up spuriously by pthread_cancel or signals,
269 * but it's okay since we're just going to
270 * retry.
271 */
272 self->pt_sleeponq = 1;
273 self->pt_sleepobj = &mutex->ptm_blocked;
274 pthread_spinunlock(&mutex->ptm_interlock);
275 (void)pthread__park(self, &mutex->ptm_interlock,
276 &mutex->ptm_blocked, NULL, 0, &mutex->ptm_blocked);
277 }
278
279 return 0;
280 }
281
282
283 int
284 pthread_mutex_trylock(pthread_mutex_t *mutex)
285 {
286 struct mutex_private *mp;
287 pthread_t self;
288
289 pthread__error(EINVAL, "Invalid mutex",
290 mutex->ptm_magic == _PT_MUTEX_MAGIC);
291
292 self = pthread__self();
293
294 PTHREADD_ADD(PTHREADD_MUTEX_TRYLOCK);
295 if (pthread__simple_lock_try(&mutex->ptm_lock) == 0) {
296 /*
297 * These tests can be performed without holding the
298 * interlock because these fields are only modified
299 * if we know we own the mutex.
300 */
301 GET_MUTEX_PRIVATE(mutex, mp);
302 if (mp->type == PTHREAD_MUTEX_RECURSIVE &&
303 mutex->ptm_owner == self) {
304 if (mp->recursecount == INT_MAX)
305 return EAGAIN;
306 mp->recursecount++;
307 return 0;
308 }
309
310 return EBUSY;
311 }
312
313 mutex->ptm_owner = self;
314 self->pt_mutexhint = mutex;
315
316 return 0;
317 }
318
319
320 int
321 pthread_mutex_unlock(pthread_mutex_t *mutex)
322 {
323 struct mutex_private *mp;
324 pthread_t self;
325 int weown;
326
327 pthread__error(EINVAL, "Invalid mutex",
328 mutex->ptm_magic == _PT_MUTEX_MAGIC);
329
330 PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK);
331
332 GET_MUTEX_PRIVATE(mutex, mp);
333
334 self = pthread_self();
335 /*
336 * These tests can be performed without holding the
337 * interlock because these fields are only modified
338 * if we know we own the mutex.
339 */
340 weown = (mutex->ptm_owner == self);
341 switch (mp->type) {
342 case PTHREAD_MUTEX_RECURSIVE:
343 if (!weown)
344 return EPERM;
345 if (mp->recursecount != 0) {
346 mp->recursecount--;
347 return 0;
348 }
349 break;
350 case PTHREAD_MUTEX_ERRORCHECK:
351 if (!weown)
352 return EPERM;
353 /*FALLTHROUGH*/
354 default:
355 if (__predict_false(!weown)) {
356 pthread__error(EPERM, "Unlocking unlocked mutex",
357 (mutex->ptm_owner != 0));
358 pthread__error(EPERM,
359 "Unlocking mutex owned by another thread", weown);
360 }
361 break;
362 }
363
364 mutex->ptm_owner = NULL;
365 pthread__simple_unlock(&mutex->ptm_lock);
366
367 /*
368 * Do a double-checked locking dance to see if there are any
369 * waiters. If we don't see any waiters, we can exit, because
370 * we've already released the lock. If we do see waiters, they
371 * were probably waiting on us... there's a slight chance that
372 * they are waiting on a different thread's ownership of the
373 * lock that happened between the unlock above and this
374 * examination of the queue; if so, no harm is done, as the
375 * waiter will loop and see that the mutex is still locked.
376 *
377 * Note that waiters may have been transferred here from a
378 * condition variable.
379 */
380 if (self->pt_mutexhint == mutex)
381 self->pt_mutexhint = NULL;
382
383 pthread_spinlock(&mutex->ptm_interlock);
384 pthread__unpark_all(self, &mutex->ptm_interlock, &mutex->ptm_blocked);
385
386 return 0;
387 }
388
389 int
390 pthread_mutexattr_init(pthread_mutexattr_t *attr)
391 {
392 struct mutexattr_private *map;
393
394 map = malloc(sizeof(*map));
395 if (map == NULL)
396 return ENOMEM;
397
398 *map = mutexattr_private_default;
399
400 attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
401 attr->ptma_private = map;
402
403 return 0;
404 }
405
406
407 int
408 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
409 {
410
411 pthread__error(EINVAL, "Invalid mutex attribute",
412 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
413
414 attr->ptma_magic = _PT_MUTEXATTR_DEAD;
415 if (attr->ptma_private != NULL)
416 free(attr->ptma_private);
417
418 return 0;
419 }
420
421
422 int
423 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
424 {
425 struct mutexattr_private *map;
426
427 pthread__error(EINVAL, "Invalid mutex attribute",
428 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
429
430 map = attr->ptma_private;
431
432 *typep = map->type;
433
434 return 0;
435 }
436
437
438 int
439 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
440 {
441 struct mutexattr_private *map;
442
443 pthread__error(EINVAL, "Invalid mutex attribute",
444 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
445
446 map = attr->ptma_private;
447
448 switch (type) {
449 case PTHREAD_MUTEX_NORMAL:
450 case PTHREAD_MUTEX_ERRORCHECK:
451 case PTHREAD_MUTEX_RECURSIVE:
452 map->type = type;
453 break;
454
455 default:
456 return EINVAL;
457 }
458
459 return 0;
460 }
461
462
463 static void
464 once_cleanup(void *closure)
465 {
466
467 pthread_mutex_unlock((pthread_mutex_t *)closure);
468 }
469
470
471 int
472 pthread_once(pthread_once_t *once_control, void (*routine)(void))
473 {
474
475 if (once_control->pto_done == 0) {
476 pthread_mutex_lock(&once_control->pto_mutex);
477 pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
478 if (once_control->pto_done == 0) {
479 routine();
480 once_control->pto_done = 1;
481 }
482 pthread_cleanup_pop(1);
483 }
484
485 return 0;
486 }
487