pthread_mutex.c revision 1.31 1 /* $NetBSD: pthread_mutex.c,v 1.31 2007/08/16 14:53:45 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2003, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __RCSID("$NetBSD: pthread_mutex.c,v 1.31 2007/08/16 14:53:45 ad Exp $");
41
42 #include <errno.h>
43 #include <limits.h>
44 #include <stdlib.h>
45 #include <string.h>
46
47 #include "pthread.h"
48 #include "pthread_int.h"
49
50 static int pthread_mutex_lock_slow(pthread_t, pthread_mutex_t *);
51
52 __strong_alias(__libc_mutex_init,pthread_mutex_init)
53 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
54 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
55 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
56 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
57
58 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
59 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
60 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
61
62 __strong_alias(__libc_thr_once,pthread_once)
63
64 struct mutex_private {
65 int type;
66 int recursecount;
67 };
68
69 static const struct mutex_private mutex_private_default = {
70 PTHREAD_MUTEX_DEFAULT,
71 0,
72 };
73
74 struct mutexattr_private {
75 int type;
76 };
77
78 static const struct mutexattr_private mutexattr_private_default = {
79 PTHREAD_MUTEX_DEFAULT,
80 };
81
82 int
83 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
84 {
85 struct mutexattr_private *map;
86 struct mutex_private *mp;
87
88 pthread__error(EINVAL, "Invalid mutex attribute",
89 (attr == NULL) || (attr->ptma_magic == _PT_MUTEXATTR_MAGIC));
90
91 if (attr != NULL && (map = attr->ptma_private) != NULL &&
92 memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
93 mp = malloc(sizeof(*mp));
94 if (mp == NULL)
95 return ENOMEM;
96
97 mp->type = map->type;
98 mp->recursecount = 0;
99 } else {
100 /* LINTED cast away const */
101 mp = (struct mutex_private *) &mutex_private_default;
102 }
103
104 mutex->ptm_magic = _PT_MUTEX_MAGIC;
105 mutex->ptm_owner = NULL;
106 pthread_lockinit(&mutex->ptm_lock);
107 pthread_lockinit(&mutex->ptm_interlock);
108 PTQ_INIT(&mutex->ptm_blocked);
109 mutex->ptm_private = mp;
110
111 return 0;
112 }
113
114
115 int
116 pthread_mutex_destroy(pthread_mutex_t *mutex)
117 {
118
119 pthread__error(EINVAL, "Invalid mutex",
120 mutex->ptm_magic == _PT_MUTEX_MAGIC);
121 pthread__error(EBUSY, "Destroying locked mutex",
122 mutex->ptm_lock == __SIMPLELOCK_UNLOCKED);
123
124 mutex->ptm_magic = _PT_MUTEX_DEAD;
125 if (mutex->ptm_private != NULL &&
126 mutex->ptm_private != (const void *)&mutex_private_default)
127 free(mutex->ptm_private);
128
129 return 0;
130 }
131
132
133 /*
134 * Note regarding memory visibility: Pthreads has rules about memory
135 * visibility and mutexes. Very roughly: Memory a thread can see when
136 * it unlocks a mutex can be seen by another thread that locks the
137 * same mutex.
138 *
139 * A memory barrier after a lock and before an unlock will provide
140 * this behavior. This code relies on pthread__simple_lock_try() to issue
141 * a barrier after obtaining a lock, and on pthread__simple_unlock() to
142 * issue a barrier before releasing a lock.
143 */
144
145 int
146 pthread_mutex_lock(pthread_mutex_t *mutex)
147 {
148 pthread_t self;
149 int error;
150
151 self = pthread__self();
152
153 PTHREADD_ADD(PTHREADD_MUTEX_LOCK);
154
155 /*
156 * Note that if we get the lock, we don't have to deal with any
157 * non-default lock type handling.
158 */
159 if (__predict_false(pthread__simple_lock_try(&mutex->ptm_lock) == 0)) {
160 error = pthread_mutex_lock_slow(self, mutex);
161 if (error)
162 return error;
163 }
164
165 /*
166 * We have the lock!
167 */
168 self->pt_mutexhint = mutex;
169 mutex->ptm_owner = self;
170
171 return 0;
172 }
173
174
175 static int
176 pthread_mutex_lock_slow(pthread_t self, pthread_mutex_t *mutex)
177 {
178 extern int pthread__started;
179 struct mutex_private *mp;
180 sigset_t ss;
181 int count;
182
183 pthread__error(EINVAL, "Invalid mutex",
184 mutex->ptm_magic == _PT_MUTEX_MAGIC);
185
186 PTHREADD_ADD(PTHREADD_MUTEX_LOCK_SLOW);
187
188 for (;;) {
189 /* Spin for a while. */
190 count = pthread__nspins;
191 while (mutex->ptm_lock == __SIMPLELOCK_LOCKED && --count > 0)
192 pthread__smt_pause();
193 if (count > 0) {
194 if (pthread__simple_lock_try(&mutex->ptm_lock) != 0)
195 break;
196 continue;
197 }
198
199 /* Okay, didn't look free. Get the interlock... */
200 pthread_spinlock(&mutex->ptm_interlock);
201
202 /*
203 * The mutex_unlock routine will get the interlock
204 * before looking at the list of sleepers, so if the
205 * lock is held we can safely put ourselves on the
206 * sleep queue. If it's not held, we can try taking it
207 * again.
208 */
209 PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep);
210 if (mutex->ptm_lock != __SIMPLELOCK_LOCKED) {
211 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
212 pthread_spinunlock(&mutex->ptm_interlock);
213 continue;
214 }
215
216 mp = mutex->ptm_private;
217 if (mutex->ptm_owner == self && mp != NULL) {
218 switch (mp->type) {
219 case PTHREAD_MUTEX_ERRORCHECK:
220 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
221 pthread_spinunlock(&mutex->ptm_interlock);
222 return EDEADLK;
223
224 case PTHREAD_MUTEX_RECURSIVE:
225 /*
226 * It's safe to do this without
227 * holding the interlock, because
228 * we only modify it if we know we
229 * own the mutex.
230 */
231 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
232 pthread_spinunlock(&mutex->ptm_interlock);
233 if (mp->recursecount == INT_MAX)
234 return EAGAIN;
235 mp->recursecount++;
236 return 0;
237 }
238 }
239
240 if (pthread__started == 0) {
241 /* The spec says we must deadlock, so... */
242 pthread__assert(mp->type == PTHREAD_MUTEX_NORMAL);
243 (void) sigprocmask(SIG_SETMASK, NULL, &ss);
244 for (;;) {
245 sigsuspend(&ss);
246 }
247 /*NOTREACHED*/
248 }
249
250 /*
251 * Locking a mutex is not a cancellation
252 * point, so we don't need to do the
253 * test-cancellation dance. We may get woken
254 * up spuriously by pthread_cancel or signals,
255 * but it's okay since we're just going to
256 * retry.
257 */
258 self->pt_sleeponq = 1;
259 self->pt_sleepobj = &mutex->ptm_blocked;
260 pthread_spinunlock(&mutex->ptm_interlock);
261 (void)pthread__park(self, &mutex->ptm_interlock,
262 &mutex->ptm_blocked, NULL, 0, &mutex->ptm_blocked);
263 }
264
265 return 0;
266 }
267
268
269 int
270 pthread_mutex_trylock(pthread_mutex_t *mutex)
271 {
272 struct mutex_private *mp;
273 pthread_t self;
274
275 pthread__error(EINVAL, "Invalid mutex",
276 mutex->ptm_magic == _PT_MUTEX_MAGIC);
277
278 self = pthread__self();
279
280 PTHREADD_ADD(PTHREADD_MUTEX_TRYLOCK);
281 if (pthread__simple_lock_try(&mutex->ptm_lock) == 0) {
282 /*
283 * These tests can be performed without holding the
284 * interlock because these fields are only modified
285 * if we know we own the mutex.
286 */
287 mp = mutex->ptm_private;
288 if (mp != NULL && mp->type == PTHREAD_MUTEX_RECURSIVE &&
289 mutex->ptm_owner == self) {
290 if (mp->recursecount == INT_MAX)
291 return EAGAIN;
292 mp->recursecount++;
293 return 0;
294 }
295
296 return EBUSY;
297 }
298
299 mutex->ptm_owner = self;
300 self->pt_mutexhint = mutex;
301
302 return 0;
303 }
304
305
306 int
307 pthread_mutex_unlock(pthread_mutex_t *mutex)
308 {
309 struct mutex_private *mp;
310 pthread_t self;
311 int weown;
312
313 pthread__error(EINVAL, "Invalid mutex",
314 mutex->ptm_magic == _PT_MUTEX_MAGIC);
315
316 PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK);
317
318 /*
319 * These tests can be performed without holding the
320 * interlock because these fields are only modified
321 * if we know we own the mutex.
322 */
323 self = pthread_self();
324 weown = (mutex->ptm_owner == self);
325 mp = mutex->ptm_private;
326
327 if (mp == NULL) {
328 if (__predict_false(!weown)) {
329 pthread__error(EPERM, "Unlocking unlocked mutex",
330 (mutex->ptm_owner != 0));
331 pthread__error(EPERM,
332 "Unlocking mutex owned by another thread", weown);
333 }
334 } else if (mp->type == PTHREAD_MUTEX_RECURSIVE) {
335 if (!weown)
336 return EPERM;
337 if (mp->recursecount != 0) {
338 mp->recursecount--;
339 return 0;
340 }
341 } else if (mp->type == PTHREAD_MUTEX_ERRORCHECK) {
342 if (!weown)
343 return EPERM;
344 if (__predict_false(!weown)) {
345 pthread__error(EPERM, "Unlocking unlocked mutex",
346 (mutex->ptm_owner != 0));
347 pthread__error(EPERM,
348 "Unlocking mutex owned by another thread", weown);
349 }
350 }
351
352 mutex->ptm_owner = NULL;
353 pthread__simple_unlock(&mutex->ptm_lock);
354
355 /*
356 * Do a double-checked locking dance to see if there are any
357 * waiters. If we don't see any waiters, we can exit, because
358 * we've already released the lock. If we do see waiters, they
359 * were probably waiting on us... there's a slight chance that
360 * they are waiting on a different thread's ownership of the
361 * lock that happened between the unlock above and this
362 * examination of the queue; if so, no harm is done, as the
363 * waiter will loop and see that the mutex is still locked.
364 *
365 * Note that waiters may have been transferred here from a
366 * condition variable.
367 */
368 if (self->pt_mutexhint == mutex)
369 self->pt_mutexhint = NULL;
370
371 pthread_spinlock(&mutex->ptm_interlock);
372 if (PTQ_EMPTY(&mutex->ptm_blocked)) {
373 pthread_spinunlock(&mutex->ptm_interlock);
374 return 0;
375 }
376 pthread__unpark_all(self, &mutex->ptm_interlock, &mutex->ptm_blocked);
377 return 0;
378 }
379
380 int
381 pthread_mutexattr_init(pthread_mutexattr_t *attr)
382 {
383 struct mutexattr_private *map;
384
385 map = malloc(sizeof(*map));
386 if (map == NULL)
387 return ENOMEM;
388
389 *map = mutexattr_private_default;
390
391 attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
392 attr->ptma_private = map;
393
394 return 0;
395 }
396
397
398 int
399 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
400 {
401
402 pthread__error(EINVAL, "Invalid mutex attribute",
403 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
404
405 attr->ptma_magic = _PT_MUTEXATTR_DEAD;
406 if (attr->ptma_private != NULL)
407 free(attr->ptma_private);
408
409 return 0;
410 }
411
412
413 int
414 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
415 {
416 struct mutexattr_private *map;
417
418 pthread__error(EINVAL, "Invalid mutex attribute",
419 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
420
421 map = attr->ptma_private;
422
423 *typep = map->type;
424
425 return 0;
426 }
427
428
429 int
430 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
431 {
432 struct mutexattr_private *map;
433
434 pthread__error(EINVAL, "Invalid mutex attribute",
435 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
436
437 map = attr->ptma_private;
438
439 switch (type) {
440 case PTHREAD_MUTEX_NORMAL:
441 case PTHREAD_MUTEX_ERRORCHECK:
442 case PTHREAD_MUTEX_RECURSIVE:
443 map->type = type;
444 break;
445
446 default:
447 return EINVAL;
448 }
449
450 return 0;
451 }
452
453
454 static void
455 once_cleanup(void *closure)
456 {
457
458 pthread_mutex_unlock((pthread_mutex_t *)closure);
459 }
460
461
462 int
463 pthread_once(pthread_once_t *once_control, void (*routine)(void))
464 {
465
466 if (once_control->pto_done == 0) {
467 pthread_mutex_lock(&once_control->pto_mutex);
468 pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
469 if (once_control->pto_done == 0) {
470 routine();
471 once_control->pto_done = 1;
472 }
473 pthread_cleanup_pop(1);
474 }
475
476 return 0;
477 }
478