pthread_mutex.c revision 1.37 1 /* $NetBSD: pthread_mutex.c,v 1.37 2007/11/13 15:57:11 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2003, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __RCSID("$NetBSD: pthread_mutex.c,v 1.37 2007/11/13 15:57:11 ad Exp $");
41
42 #include <errno.h>
43 #include <limits.h>
44 #include <stdlib.h>
45 #include <string.h>
46
47 #include <sys/types.h>
48 #include <sys/lock.h>
49
50 #include "pthread.h"
51 #include "pthread_int.h"
52
53 #ifndef PTHREAD__HAVE_ATOMIC
54
55 static int pthread_mutex_lock_slow(pthread_t, pthread_mutex_t *);
56
57 __strong_alias(__libc_mutex_init,pthread_mutex_init)
58 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
59 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
60 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
61 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
62
63 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
64 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
65 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
66
67 __strong_alias(__libc_thr_once,pthread_once)
68
69 struct mutex_private {
70 int type;
71 int recursecount;
72 };
73
74 static const struct mutex_private mutex_private_default = {
75 PTHREAD_MUTEX_DEFAULT,
76 0,
77 };
78
79 struct mutexattr_private {
80 int type;
81 };
82
83 static const struct mutexattr_private mutexattr_private_default = {
84 PTHREAD_MUTEX_DEFAULT,
85 };
86
87 int
88 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
89 {
90 struct mutexattr_private *map;
91 struct mutex_private *mp;
92
93 pthread__error(EINVAL, "Invalid mutex attribute",
94 (attr == NULL) || (attr->ptma_magic == _PT_MUTEXATTR_MAGIC));
95
96 if (attr != NULL && (map = attr->ptma_private) != NULL &&
97 memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
98 mp = malloc(sizeof(*mp));
99 if (mp == NULL)
100 return ENOMEM;
101
102 mp->type = map->type;
103 mp->recursecount = 0;
104 } else {
105 /* LINTED cast away const */
106 mp = (struct mutex_private *) &mutex_private_default;
107 }
108
109 mutex->ptm_magic = _PT_MUTEX_MAGIC;
110 mutex->ptm_owner = NULL;
111 pthread_lockinit(&mutex->ptm_lock);
112 pthread_lockinit(&mutex->ptm_interlock);
113 PTQ_INIT(&mutex->ptm_blocked);
114 mutex->ptm_private = mp;
115
116 return 0;
117 }
118
119
120 int
121 pthread_mutex_destroy(pthread_mutex_t *mutex)
122 {
123
124 pthread__error(EINVAL, "Invalid mutex",
125 mutex->ptm_magic == _PT_MUTEX_MAGIC);
126 pthread__error(EBUSY, "Destroying locked mutex",
127 __SIMPLELOCK_UNLOCKED_P(&mutex->ptm_lock));
128
129 mutex->ptm_magic = _PT_MUTEX_DEAD;
130 if (mutex->ptm_private != NULL &&
131 mutex->ptm_private != (const void *)&mutex_private_default)
132 free(mutex->ptm_private);
133
134 return 0;
135 }
136
137
138 /*
139 * Note regarding memory visibility: Pthreads has rules about memory
140 * visibility and mutexes. Very roughly: Memory a thread can see when
141 * it unlocks a mutex can be seen by another thread that locks the
142 * same mutex.
143 *
144 * A memory barrier after a lock and before an unlock will provide
145 * this behavior. This code relies on pthread__spintrylock() to issue
146 * a barrier after obtaining a lock, and on pthread__spinunlock() to
147 * issue a barrier before releasing a lock.
148 */
149
150 int
151 pthread_mutex_lock(pthread_mutex_t *mutex)
152 {
153 pthread_t self;
154 int error;
155
156 self = pthread__self();
157
158 PTHREADD_ADD(PTHREADD_MUTEX_LOCK);
159
160 /*
161 * Note that if we get the lock, we don't have to deal with any
162 * non-default lock type handling.
163 */
164 if (__predict_false(pthread__spintrylock(self, &mutex->ptm_lock) == 0)) {
165 error = pthread_mutex_lock_slow(self, mutex);
166 if (error)
167 return error;
168 }
169
170 /*
171 * We have the lock!
172 */
173 mutex->ptm_owner = self;
174
175 return 0;
176 }
177
178
179 static int
180 pthread_mutex_lock_slow(pthread_t self, pthread_mutex_t *mutex)
181 {
182 extern int pthread__started;
183 struct mutex_private *mp;
184 sigset_t ss;
185 int count;
186
187 pthread__error(EINVAL, "Invalid mutex",
188 mutex->ptm_magic == _PT_MUTEX_MAGIC);
189
190 PTHREADD_ADD(PTHREADD_MUTEX_LOCK_SLOW);
191 for (;;) {
192 /* Spin for a while. */
193 count = pthread__nspins;
194 while (__SIMPLELOCK_LOCKED_P(&mutex->ptm_lock) && --count > 0)
195 pthread__smt_pause();
196 if (count > 0) {
197 if (pthread__spintrylock(self, &mutex->ptm_lock) != 0)
198 break;
199 continue;
200 }
201
202 /* Okay, didn't look free. Get the interlock... */
203 pthread__spinlock(self, &mutex->ptm_interlock);
204
205 /*
206 * The mutex_unlock routine will get the interlock
207 * before looking at the list of sleepers, so if the
208 * lock is held we can safely put ourselves on the
209 * sleep queue. If it's not held, we can try taking it
210 * again.
211 */
212 PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep);
213 if (__SIMPLELOCK_UNLOCKED_P(&mutex->ptm_lock)) {
214 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
215 pthread__spinunlock(self, &mutex->ptm_interlock);
216 continue;
217 }
218
219 mp = mutex->ptm_private;
220 if (mutex->ptm_owner == self && mp != NULL) {
221 switch (mp->type) {
222 case PTHREAD_MUTEX_ERRORCHECK:
223 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
224 pthread__spinunlock(self, &mutex->ptm_interlock);
225 return EDEADLK;
226
227 case PTHREAD_MUTEX_RECURSIVE:
228 /*
229 * It's safe to do this without
230 * holding the interlock, because
231 * we only modify it if we know we
232 * own the mutex.
233 */
234 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
235 pthread__spinunlock(self, &mutex->ptm_interlock);
236 if (mp->recursecount == INT_MAX)
237 return EAGAIN;
238 mp->recursecount++;
239 return 0;
240 }
241 }
242
243 if (pthread__started == 0) {
244 /* The spec says we must deadlock, so... */
245 pthread__assert(mp->type == PTHREAD_MUTEX_NORMAL);
246 (void) sigprocmask(SIG_SETMASK, NULL, &ss);
247 for (;;) {
248 sigsuspend(&ss);
249 }
250 /*NOTREACHED*/
251 }
252
253 /*
254 * Locking a mutex is not a cancellation
255 * point, so we don't need to do the
256 * test-cancellation dance. We may get woken
257 * up spuriously by pthread_cancel or signals,
258 * but it's okay since we're just going to
259 * retry.
260 */
261 self->pt_sleeponq = 1;
262 self->pt_sleepobj = &mutex->ptm_blocked;
263 pthread__spinunlock(self, &mutex->ptm_interlock);
264 (void)pthread__park(self, &mutex->ptm_interlock,
265 &mutex->ptm_blocked, NULL, 0, &mutex->ptm_blocked);
266 }
267
268 return 0;
269 }
270
271
272 int
273 pthread_mutex_trylock(pthread_mutex_t *mutex)
274 {
275 struct mutex_private *mp;
276 pthread_t self;
277
278 pthread__error(EINVAL, "Invalid mutex",
279 mutex->ptm_magic == _PT_MUTEX_MAGIC);
280
281 self = pthread__self();
282
283 PTHREADD_ADD(PTHREADD_MUTEX_TRYLOCK);
284 if (pthread__spintrylock(self, &mutex->ptm_lock) == 0) {
285 /*
286 * These tests can be performed without holding the
287 * interlock because these fields are only modified
288 * if we know we own the mutex.
289 */
290 mp = mutex->ptm_private;
291 if (mp != NULL && mp->type == PTHREAD_MUTEX_RECURSIVE &&
292 mutex->ptm_owner == self) {
293 if (mp->recursecount == INT_MAX)
294 return EAGAIN;
295 mp->recursecount++;
296 return 0;
297 }
298
299 return EBUSY;
300 }
301
302 mutex->ptm_owner = self;
303
304 return 0;
305 }
306
307
308 int
309 pthread_mutex_unlock(pthread_mutex_t *mutex)
310 {
311 struct mutex_private *mp;
312 pthread_t self;
313 int weown;
314
315 pthread__error(EINVAL, "Invalid mutex",
316 mutex->ptm_magic == _PT_MUTEX_MAGIC);
317
318 PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK);
319
320 /*
321 * These tests can be performed without holding the
322 * interlock because these fields are only modified
323 * if we know we own the mutex.
324 */
325 self = pthread__self();
326 weown = (mutex->ptm_owner == self);
327 mp = mutex->ptm_private;
328
329 if (mp == NULL) {
330 if (__predict_false(!weown)) {
331 pthread__error(EPERM, "Unlocking unlocked mutex",
332 (mutex->ptm_owner != 0));
333 pthread__error(EPERM,
334 "Unlocking mutex owned by another thread", weown);
335 }
336 } else if (mp->type == PTHREAD_MUTEX_RECURSIVE) {
337 if (!weown)
338 return EPERM;
339 if (mp->recursecount != 0) {
340 mp->recursecount--;
341 return 0;
342 }
343 } else if (mp->type == PTHREAD_MUTEX_ERRORCHECK) {
344 if (!weown)
345 return EPERM;
346 if (__predict_false(!weown)) {
347 pthread__error(EPERM, "Unlocking unlocked mutex",
348 (mutex->ptm_owner != 0));
349 pthread__error(EPERM,
350 "Unlocking mutex owned by another thread", weown);
351 }
352 }
353
354 mutex->ptm_owner = NULL;
355 pthread__spinunlock(self, &mutex->ptm_lock);
356
357 /*
358 * Do a double-checked locking dance to see if there are any
359 * waiters. If we don't see any waiters, we can exit, because
360 * we've already released the lock. If we do see waiters, they
361 * were probably waiting on us... there's a slight chance that
362 * they are waiting on a different thread's ownership of the
363 * lock that happened between the unlock above and this
364 * examination of the queue; if so, no harm is done, as the
365 * waiter will loop and see that the mutex is still locked.
366 */
367 pthread__spinlock(self, &mutex->ptm_interlock);
368 pthread__unpark_all(self, &mutex->ptm_interlock, &mutex->ptm_blocked);
369 return 0;
370 }
371
372 int
373 pthread_mutexattr_init(pthread_mutexattr_t *attr)
374 {
375 struct mutexattr_private *map;
376
377 map = malloc(sizeof(*map));
378 if (map == NULL)
379 return ENOMEM;
380
381 *map = mutexattr_private_default;
382
383 attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
384 attr->ptma_private = map;
385
386 return 0;
387 }
388
389
390 int
391 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
392 {
393
394 pthread__error(EINVAL, "Invalid mutex attribute",
395 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
396
397 attr->ptma_magic = _PT_MUTEXATTR_DEAD;
398 if (attr->ptma_private != NULL)
399 free(attr->ptma_private);
400
401 return 0;
402 }
403
404
405 int
406 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
407 {
408 struct mutexattr_private *map;
409
410 pthread__error(EINVAL, "Invalid mutex attribute",
411 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
412
413 map = attr->ptma_private;
414
415 *typep = map->type;
416
417 return 0;
418 }
419
420
421 int
422 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
423 {
424 struct mutexattr_private *map;
425
426 pthread__error(EINVAL, "Invalid mutex attribute",
427 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
428
429 map = attr->ptma_private;
430
431 switch (type) {
432 case PTHREAD_MUTEX_NORMAL:
433 case PTHREAD_MUTEX_ERRORCHECK:
434 case PTHREAD_MUTEX_RECURSIVE:
435 map->type = type;
436 break;
437
438 default:
439 return EINVAL;
440 }
441
442 return 0;
443 }
444
445
446 static void
447 once_cleanup(void *closure)
448 {
449
450 pthread_mutex_unlock((pthread_mutex_t *)closure);
451 }
452
453
454 int
455 pthread_once(pthread_once_t *once_control, void (*routine)(void))
456 {
457
458 if (once_control->pto_done == 0) {
459 pthread_mutex_lock(&once_control->pto_mutex);
460 pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
461 if (once_control->pto_done == 0) {
462 routine();
463 once_control->pto_done = 1;
464 }
465 pthread_cleanup_pop(1);
466 }
467
468 return 0;
469 }
470
471 int
472 pthread__mutex_deferwake(pthread_t thread, pthread_mutex_t *mutex)
473 {
474
475 return mutex->ptm_owner == thread;
476 }
477
478 #endif /* !PTHREAD__HAVE_ATOMIC */
479