pthread_mutex.c revision 1.38 1 /* $NetBSD: pthread_mutex.c,v 1.38 2007/11/19 15:14:13 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2003, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __RCSID("$NetBSD: pthread_mutex.c,v 1.38 2007/11/19 15:14:13 ad Exp $");
41
42 #include <errno.h>
43 #include <limits.h>
44 #include <stdlib.h>
45 #include <string.h>
46
47 #include <sys/types.h>
48 #include <sys/lock.h>
49
50 #include "pthread.h"
51 #include "pthread_int.h"
52
53 #ifndef PTHREAD__HAVE_ATOMIC
54
55 static int pthread_mutex_lock_slow(pthread_t, pthread_mutex_t *);
56
57 __strong_alias(__libc_mutex_init,pthread_mutex_init)
58 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
59 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
60 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
61 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
62
63 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
64 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
65 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
66
67 __strong_alias(__libc_thr_once,pthread_once)
68
69 struct mutex_private {
70 int type;
71 int recursecount;
72 };
73
74 static const struct mutex_private mutex_private_default = {
75 PTHREAD_MUTEX_DEFAULT,
76 0,
77 };
78
79 struct mutexattr_private {
80 int type;
81 };
82
83 static const struct mutexattr_private mutexattr_private_default = {
84 PTHREAD_MUTEX_DEFAULT,
85 };
86
87 int
88 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
89 {
90 struct mutexattr_private *map;
91 struct mutex_private *mp;
92
93 pthread__error(EINVAL, "Invalid mutex attribute",
94 (attr == NULL) || (attr->ptma_magic == _PT_MUTEXATTR_MAGIC));
95
96 if (attr != NULL && (map = attr->ptma_private) != NULL &&
97 memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
98 mp = malloc(sizeof(*mp));
99 if (mp == NULL)
100 return ENOMEM;
101
102 mp->type = map->type;
103 mp->recursecount = 0;
104 } else {
105 /* LINTED cast away const */
106 mp = (struct mutex_private *) &mutex_private_default;
107 }
108
109 mutex->ptm_magic = _PT_MUTEX_MAGIC;
110 mutex->ptm_owner = NULL;
111 pthread_lockinit(&mutex->ptm_lock);
112 pthread_lockinit(&mutex->ptm_interlock);
113 PTQ_INIT(&mutex->ptm_blocked);
114 mutex->ptm_private = mp;
115
116 return 0;
117 }
118
119
120 int
121 pthread_mutex_destroy(pthread_mutex_t *mutex)
122 {
123
124 pthread__error(EINVAL, "Invalid mutex",
125 mutex->ptm_magic == _PT_MUTEX_MAGIC);
126 pthread__error(EBUSY, "Destroying locked mutex",
127 __SIMPLELOCK_UNLOCKED_P(&mutex->ptm_lock));
128
129 mutex->ptm_magic = _PT_MUTEX_DEAD;
130 if (mutex->ptm_private != NULL &&
131 mutex->ptm_private != (const void *)&mutex_private_default)
132 free(mutex->ptm_private);
133
134 return 0;
135 }
136
137
138 /*
139 * Note regarding memory visibility: Pthreads has rules about memory
140 * visibility and mutexes. Very roughly: Memory a thread can see when
141 * it unlocks a mutex can be seen by another thread that locks the
142 * same mutex.
143 *
144 * A memory barrier after a lock and before an unlock will provide
145 * this behavior. This code relies on pthread__spintrylock() to issue
146 * a barrier after obtaining a lock, and on pthread__spinunlock() to
147 * issue a barrier before releasing a lock.
148 */
149
150 int
151 pthread_mutex_lock(pthread_mutex_t *mutex)
152 {
153 pthread_t self;
154 int error;
155
156 self = pthread__self();
157
158 /*
159 * Note that if we get the lock, we don't have to deal with any
160 * non-default lock type handling.
161 */
162 if (__predict_false(pthread__spintrylock(self, &mutex->ptm_lock) == 0)) {
163 error = pthread_mutex_lock_slow(self, mutex);
164 if (error)
165 return error;
166 }
167
168 /*
169 * We have the lock!
170 */
171 mutex->ptm_owner = self;
172
173 return 0;
174 }
175
176
177 static int
178 pthread_mutex_lock_slow(pthread_t self, pthread_mutex_t *mutex)
179 {
180 extern int pthread__started;
181 struct mutex_private *mp;
182 sigset_t ss;
183 int count;
184
185 pthread__error(EINVAL, "Invalid mutex",
186 mutex->ptm_magic == _PT_MUTEX_MAGIC);
187
188 for (;;) {
189 /* Spin for a while. */
190 count = pthread__nspins;
191 while (__SIMPLELOCK_LOCKED_P(&mutex->ptm_lock) && --count > 0)
192 pthread__smt_pause();
193 if (count > 0) {
194 if (pthread__spintrylock(self, &mutex->ptm_lock) != 0)
195 break;
196 continue;
197 }
198
199 /* Okay, didn't look free. Get the interlock... */
200 pthread__spinlock(self, &mutex->ptm_interlock);
201
202 /*
203 * The mutex_unlock routine will get the interlock
204 * before looking at the list of sleepers, so if the
205 * lock is held we can safely put ourselves on the
206 * sleep queue. If it's not held, we can try taking it
207 * again.
208 */
209 PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep);
210 if (__SIMPLELOCK_UNLOCKED_P(&mutex->ptm_lock)) {
211 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
212 pthread__spinunlock(self, &mutex->ptm_interlock);
213 continue;
214 }
215
216 mp = mutex->ptm_private;
217 if (mutex->ptm_owner == self && mp != NULL) {
218 switch (mp->type) {
219 case PTHREAD_MUTEX_ERRORCHECK:
220 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
221 pthread__spinunlock(self, &mutex->ptm_interlock);
222 return EDEADLK;
223
224 case PTHREAD_MUTEX_RECURSIVE:
225 /*
226 * It's safe to do this without
227 * holding the interlock, because
228 * we only modify it if we know we
229 * own the mutex.
230 */
231 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
232 pthread__spinunlock(self, &mutex->ptm_interlock);
233 if (mp->recursecount == INT_MAX)
234 return EAGAIN;
235 mp->recursecount++;
236 return 0;
237 }
238 }
239
240 if (pthread__started == 0) {
241 /* The spec says we must deadlock, so... */
242 pthread__assert(mp->type == PTHREAD_MUTEX_NORMAL);
243 (void) sigprocmask(SIG_SETMASK, NULL, &ss);
244 for (;;) {
245 sigsuspend(&ss);
246 }
247 /*NOTREACHED*/
248 }
249
250 /*
251 * Locking a mutex is not a cancellation
252 * point, so we don't need to do the
253 * test-cancellation dance. We may get woken
254 * up spuriously by pthread_cancel or signals,
255 * but it's okay since we're just going to
256 * retry.
257 */
258 self->pt_sleeponq = 1;
259 self->pt_sleepobj = &mutex->ptm_blocked;
260 pthread__spinunlock(self, &mutex->ptm_interlock);
261 (void)pthread__park(self, &mutex->ptm_interlock,
262 &mutex->ptm_blocked, NULL, 0, &mutex->ptm_blocked);
263 }
264
265 return 0;
266 }
267
268
269 int
270 pthread_mutex_trylock(pthread_mutex_t *mutex)
271 {
272 struct mutex_private *mp;
273 pthread_t self;
274
275 pthread__error(EINVAL, "Invalid mutex",
276 mutex->ptm_magic == _PT_MUTEX_MAGIC);
277
278 self = pthread__self();
279
280 if (pthread__spintrylock(self, &mutex->ptm_lock) == 0) {
281 /*
282 * These tests can be performed without holding the
283 * interlock because these fields are only modified
284 * if we know we own the mutex.
285 */
286 mp = mutex->ptm_private;
287 if (mp != NULL && mp->type == PTHREAD_MUTEX_RECURSIVE &&
288 mutex->ptm_owner == self) {
289 if (mp->recursecount == INT_MAX)
290 return EAGAIN;
291 mp->recursecount++;
292 return 0;
293 }
294
295 return EBUSY;
296 }
297
298 mutex->ptm_owner = self;
299
300 return 0;
301 }
302
303
304 int
305 pthread_mutex_unlock(pthread_mutex_t *mutex)
306 {
307 struct mutex_private *mp;
308 pthread_t self;
309 int weown;
310
311 pthread__error(EINVAL, "Invalid mutex",
312 mutex->ptm_magic == _PT_MUTEX_MAGIC);
313
314 /*
315 * These tests can be performed without holding the
316 * interlock because these fields are only modified
317 * if we know we own the mutex.
318 */
319 self = pthread__self();
320 weown = (mutex->ptm_owner == self);
321 mp = mutex->ptm_private;
322
323 if (mp == NULL) {
324 if (__predict_false(!weown)) {
325 pthread__error(EPERM, "Unlocking unlocked mutex",
326 (mutex->ptm_owner != 0));
327 pthread__error(EPERM,
328 "Unlocking mutex owned by another thread", weown);
329 }
330 } else if (mp->type == PTHREAD_MUTEX_RECURSIVE) {
331 if (!weown)
332 return EPERM;
333 if (mp->recursecount != 0) {
334 mp->recursecount--;
335 return 0;
336 }
337 } else if (mp->type == PTHREAD_MUTEX_ERRORCHECK) {
338 if (!weown)
339 return EPERM;
340 if (__predict_false(!weown)) {
341 pthread__error(EPERM, "Unlocking unlocked mutex",
342 (mutex->ptm_owner != 0));
343 pthread__error(EPERM,
344 "Unlocking mutex owned by another thread", weown);
345 }
346 }
347
348 mutex->ptm_owner = NULL;
349 pthread__spinunlock(self, &mutex->ptm_lock);
350
351 /*
352 * Do a double-checked locking dance to see if there are any
353 * waiters. If we don't see any waiters, we can exit, because
354 * we've already released the lock. If we do see waiters, they
355 * were probably waiting on us... there's a slight chance that
356 * they are waiting on a different thread's ownership of the
357 * lock that happened between the unlock above and this
358 * examination of the queue; if so, no harm is done, as the
359 * waiter will loop and see that the mutex is still locked.
360 */
361 pthread__spinlock(self, &mutex->ptm_interlock);
362 pthread__unpark_all(self, &mutex->ptm_interlock, &mutex->ptm_blocked);
363 return 0;
364 }
365
366 int
367 pthread_mutexattr_init(pthread_mutexattr_t *attr)
368 {
369 struct mutexattr_private *map;
370
371 map = malloc(sizeof(*map));
372 if (map == NULL)
373 return ENOMEM;
374
375 *map = mutexattr_private_default;
376
377 attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
378 attr->ptma_private = map;
379
380 return 0;
381 }
382
383
384 int
385 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
386 {
387
388 pthread__error(EINVAL, "Invalid mutex attribute",
389 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
390
391 attr->ptma_magic = _PT_MUTEXATTR_DEAD;
392 if (attr->ptma_private != NULL)
393 free(attr->ptma_private);
394
395 return 0;
396 }
397
398
399 int
400 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
401 {
402 struct mutexattr_private *map;
403
404 pthread__error(EINVAL, "Invalid mutex attribute",
405 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
406
407 map = attr->ptma_private;
408
409 *typep = map->type;
410
411 return 0;
412 }
413
414
415 int
416 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
417 {
418 struct mutexattr_private *map;
419
420 pthread__error(EINVAL, "Invalid mutex attribute",
421 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
422
423 map = attr->ptma_private;
424
425 switch (type) {
426 case PTHREAD_MUTEX_NORMAL:
427 case PTHREAD_MUTEX_ERRORCHECK:
428 case PTHREAD_MUTEX_RECURSIVE:
429 map->type = type;
430 break;
431
432 default:
433 return EINVAL;
434 }
435
436 return 0;
437 }
438
439
440 static void
441 once_cleanup(void *closure)
442 {
443
444 pthread_mutex_unlock((pthread_mutex_t *)closure);
445 }
446
447
448 int
449 pthread_once(pthread_once_t *once_control, void (*routine)(void))
450 {
451
452 if (once_control->pto_done == 0) {
453 pthread_mutex_lock(&once_control->pto_mutex);
454 pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
455 if (once_control->pto_done == 0) {
456 routine();
457 once_control->pto_done = 1;
458 }
459 pthread_cleanup_pop(1);
460 }
461
462 return 0;
463 }
464
465 int
466 pthread__mutex_deferwake(pthread_t thread, pthread_mutex_t *mutex)
467 {
468
469 return mutex->ptm_owner == thread;
470 }
471
472 #endif /* !PTHREAD__HAVE_ATOMIC */
473