Home | History | Annotate | Line # | Download | only in libpthread
pthread_mutex.c revision 1.38
      1 /*	$NetBSD: pthread_mutex.c,v 1.38 2007/11/19 15:14:13 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2003, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __RCSID("$NetBSD: pthread_mutex.c,v 1.38 2007/11/19 15:14:13 ad Exp $");
     41 
     42 #include <errno.h>
     43 #include <limits.h>
     44 #include <stdlib.h>
     45 #include <string.h>
     46 
     47 #include <sys/types.h>
     48 #include <sys/lock.h>
     49 
     50 #include "pthread.h"
     51 #include "pthread_int.h"
     52 
     53 #ifndef	PTHREAD__HAVE_ATOMIC
     54 
     55 static int pthread_mutex_lock_slow(pthread_t, pthread_mutex_t *);
     56 
     57 __strong_alias(__libc_mutex_init,pthread_mutex_init)
     58 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
     59 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
     60 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
     61 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
     62 
     63 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
     64 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
     65 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
     66 
     67 __strong_alias(__libc_thr_once,pthread_once)
     68 
     69 struct mutex_private {
     70 	int	type;
     71 	int	recursecount;
     72 };
     73 
     74 static const struct mutex_private mutex_private_default = {
     75 	PTHREAD_MUTEX_DEFAULT,
     76 	0,
     77 };
     78 
     79 struct mutexattr_private {
     80 	int	type;
     81 };
     82 
     83 static const struct mutexattr_private mutexattr_private_default = {
     84 	PTHREAD_MUTEX_DEFAULT,
     85 };
     86 
     87 int
     88 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
     89 {
     90 	struct mutexattr_private *map;
     91 	struct mutex_private *mp;
     92 
     93 	pthread__error(EINVAL, "Invalid mutex attribute",
     94 	    (attr == NULL) || (attr->ptma_magic == _PT_MUTEXATTR_MAGIC));
     95 
     96 	if (attr != NULL && (map = attr->ptma_private) != NULL &&
     97 	    memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
     98 		mp = malloc(sizeof(*mp));
     99 		if (mp == NULL)
    100 			return ENOMEM;
    101 
    102 		mp->type = map->type;
    103 		mp->recursecount = 0;
    104 	} else {
    105 		/* LINTED cast away const */
    106 		mp = (struct mutex_private *) &mutex_private_default;
    107 	}
    108 
    109 	mutex->ptm_magic = _PT_MUTEX_MAGIC;
    110 	mutex->ptm_owner = NULL;
    111 	pthread_lockinit(&mutex->ptm_lock);
    112 	pthread_lockinit(&mutex->ptm_interlock);
    113 	PTQ_INIT(&mutex->ptm_blocked);
    114 	mutex->ptm_private = mp;
    115 
    116 	return 0;
    117 }
    118 
    119 
    120 int
    121 pthread_mutex_destroy(pthread_mutex_t *mutex)
    122 {
    123 
    124 	pthread__error(EINVAL, "Invalid mutex",
    125 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
    126 	pthread__error(EBUSY, "Destroying locked mutex",
    127 	    __SIMPLELOCK_UNLOCKED_P(&mutex->ptm_lock));
    128 
    129 	mutex->ptm_magic = _PT_MUTEX_DEAD;
    130 	if (mutex->ptm_private != NULL &&
    131 	    mutex->ptm_private != (const void *)&mutex_private_default)
    132 		free(mutex->ptm_private);
    133 
    134 	return 0;
    135 }
    136 
    137 
    138 /*
    139  * Note regarding memory visibility: Pthreads has rules about memory
    140  * visibility and mutexes. Very roughly: Memory a thread can see when
    141  * it unlocks a mutex can be seen by another thread that locks the
    142  * same mutex.
    143  *
    144  * A memory barrier after a lock and before an unlock will provide
    145  * this behavior. This code relies on pthread__spintrylock() to issue
    146  * a barrier after obtaining a lock, and on pthread__spinunlock() to
    147  * issue a barrier before releasing a lock.
    148  */
    149 
    150 int
    151 pthread_mutex_lock(pthread_mutex_t *mutex)
    152 {
    153 	pthread_t self;
    154 	int error;
    155 
    156 	self = pthread__self();
    157 
    158 	/*
    159 	 * Note that if we get the lock, we don't have to deal with any
    160 	 * non-default lock type handling.
    161 	 */
    162 	if (__predict_false(pthread__spintrylock(self, &mutex->ptm_lock) == 0)) {
    163 		error = pthread_mutex_lock_slow(self, mutex);
    164 		if (error)
    165 			return error;
    166 	}
    167 
    168 	/*
    169 	 * We have the lock!
    170 	 */
    171 	mutex->ptm_owner = self;
    172 
    173 	return 0;
    174 }
    175 
    176 
    177 static int
    178 pthread_mutex_lock_slow(pthread_t self, pthread_mutex_t *mutex)
    179 {
    180 	extern int pthread__started;
    181 	struct mutex_private *mp;
    182 	sigset_t ss;
    183 	int count;
    184 
    185 	pthread__error(EINVAL, "Invalid mutex",
    186 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
    187 
    188 	for (;;) {
    189 		/* Spin for a while. */
    190 		count = pthread__nspins;
    191 		while (__SIMPLELOCK_LOCKED_P(&mutex->ptm_lock)  && --count > 0)
    192 			pthread__smt_pause();
    193 		if (count > 0) {
    194 			if (pthread__spintrylock(self, &mutex->ptm_lock) != 0)
    195 				break;
    196 			continue;
    197 		}
    198 
    199 		/* Okay, didn't look free. Get the interlock... */
    200 		pthread__spinlock(self, &mutex->ptm_interlock);
    201 
    202 		/*
    203 		 * The mutex_unlock routine will get the interlock
    204 		 * before looking at the list of sleepers, so if the
    205 		 * lock is held we can safely put ourselves on the
    206 		 * sleep queue. If it's not held, we can try taking it
    207 		 * again.
    208 		 */
    209 		PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep);
    210 		if (__SIMPLELOCK_UNLOCKED_P(&mutex->ptm_lock)) {
    211 			PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
    212 			pthread__spinunlock(self, &mutex->ptm_interlock);
    213 			continue;
    214 		}
    215 
    216 		mp = mutex->ptm_private;
    217 		if (mutex->ptm_owner == self && mp != NULL) {
    218 			switch (mp->type) {
    219 			case PTHREAD_MUTEX_ERRORCHECK:
    220 				PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
    221 				pthread__spinunlock(self, &mutex->ptm_interlock);
    222 				return EDEADLK;
    223 
    224 			case PTHREAD_MUTEX_RECURSIVE:
    225 				/*
    226 				 * It's safe to do this without
    227 				 * holding the interlock, because
    228 				 * we only modify it if we know we
    229 				 * own the mutex.
    230 				 */
    231 				PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
    232 				pthread__spinunlock(self, &mutex->ptm_interlock);
    233 				if (mp->recursecount == INT_MAX)
    234 					return EAGAIN;
    235 				mp->recursecount++;
    236 				return 0;
    237 			}
    238 		}
    239 
    240 		if (pthread__started == 0) {
    241 			/* The spec says we must deadlock, so... */
    242 			pthread__assert(mp->type == PTHREAD_MUTEX_NORMAL);
    243 			(void) sigprocmask(SIG_SETMASK, NULL, &ss);
    244 			for (;;) {
    245 				sigsuspend(&ss);
    246 			}
    247 			/*NOTREACHED*/
    248 		}
    249 
    250 		/*
    251 		 * Locking a mutex is not a cancellation
    252 		 * point, so we don't need to do the
    253 		 * test-cancellation dance. We may get woken
    254 		 * up spuriously by pthread_cancel or signals,
    255 		 * but it's okay since we're just going to
    256 		 * retry.
    257 		 */
    258 		self->pt_sleeponq = 1;
    259 		self->pt_sleepobj = &mutex->ptm_blocked;
    260 		pthread__spinunlock(self, &mutex->ptm_interlock);
    261 		(void)pthread__park(self, &mutex->ptm_interlock,
    262 		    &mutex->ptm_blocked, NULL, 0, &mutex->ptm_blocked);
    263 	}
    264 
    265 	return 0;
    266 }
    267 
    268 
    269 int
    270 pthread_mutex_trylock(pthread_mutex_t *mutex)
    271 {
    272 	struct mutex_private *mp;
    273 	pthread_t self;
    274 
    275 	pthread__error(EINVAL, "Invalid mutex",
    276 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
    277 
    278 	self = pthread__self();
    279 
    280 	if (pthread__spintrylock(self, &mutex->ptm_lock) == 0) {
    281 		/*
    282 		 * These tests can be performed without holding the
    283 		 * interlock because these fields are only modified
    284 		 * if we know we own the mutex.
    285 		 */
    286 		mp = mutex->ptm_private;
    287 		if (mp != NULL && mp->type == PTHREAD_MUTEX_RECURSIVE &&
    288 		    mutex->ptm_owner == self) {
    289 			if (mp->recursecount == INT_MAX)
    290 				return EAGAIN;
    291 			mp->recursecount++;
    292 			return 0;
    293 		}
    294 
    295 		return EBUSY;
    296 	}
    297 
    298 	mutex->ptm_owner = self;
    299 
    300 	return 0;
    301 }
    302 
    303 
    304 int
    305 pthread_mutex_unlock(pthread_mutex_t *mutex)
    306 {
    307 	struct mutex_private *mp;
    308 	pthread_t self;
    309 	int weown;
    310 
    311 	pthread__error(EINVAL, "Invalid mutex",
    312 	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
    313 
    314 	/*
    315 	 * These tests can be performed without holding the
    316 	 * interlock because these fields are only modified
    317 	 * if we know we own the mutex.
    318 	 */
    319 	self = pthread__self();
    320 	weown = (mutex->ptm_owner == self);
    321 	mp = mutex->ptm_private;
    322 
    323 	if (mp == NULL) {
    324 		if (__predict_false(!weown)) {
    325 			pthread__error(EPERM, "Unlocking unlocked mutex",
    326 			    (mutex->ptm_owner != 0));
    327 			pthread__error(EPERM,
    328 			    "Unlocking mutex owned by another thread", weown);
    329 		}
    330 	} else if (mp->type == PTHREAD_MUTEX_RECURSIVE) {
    331 		if (!weown)
    332 			return EPERM;
    333 		if (mp->recursecount != 0) {
    334 			mp->recursecount--;
    335 			return 0;
    336 		}
    337 	} else if (mp->type == PTHREAD_MUTEX_ERRORCHECK) {
    338 		if (!weown)
    339 			return EPERM;
    340 		if (__predict_false(!weown)) {
    341 			pthread__error(EPERM, "Unlocking unlocked mutex",
    342 			    (mutex->ptm_owner != 0));
    343 			pthread__error(EPERM,
    344 			    "Unlocking mutex owned by another thread", weown);
    345 		}
    346 	}
    347 
    348 	mutex->ptm_owner = NULL;
    349 	pthread__spinunlock(self, &mutex->ptm_lock);
    350 
    351 	/*
    352 	 * Do a double-checked locking dance to see if there are any
    353 	 * waiters.  If we don't see any waiters, we can exit, because
    354 	 * we've already released the lock. If we do see waiters, they
    355 	 * were probably waiting on us... there's a slight chance that
    356 	 * they are waiting on a different thread's ownership of the
    357 	 * lock that happened between the unlock above and this
    358 	 * examination of the queue; if so, no harm is done, as the
    359 	 * waiter will loop and see that the mutex is still locked.
    360 	 */
    361 	pthread__spinlock(self, &mutex->ptm_interlock);
    362 	pthread__unpark_all(self, &mutex->ptm_interlock, &mutex->ptm_blocked);
    363 	return 0;
    364 }
    365 
    366 int
    367 pthread_mutexattr_init(pthread_mutexattr_t *attr)
    368 {
    369 	struct mutexattr_private *map;
    370 
    371 	map = malloc(sizeof(*map));
    372 	if (map == NULL)
    373 		return ENOMEM;
    374 
    375 	*map = mutexattr_private_default;
    376 
    377 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
    378 	attr->ptma_private = map;
    379 
    380 	return 0;
    381 }
    382 
    383 
    384 int
    385 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
    386 {
    387 
    388 	pthread__error(EINVAL, "Invalid mutex attribute",
    389 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    390 
    391 	attr->ptma_magic = _PT_MUTEXATTR_DEAD;
    392 	if (attr->ptma_private != NULL)
    393 		free(attr->ptma_private);
    394 
    395 	return 0;
    396 }
    397 
    398 
    399 int
    400 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
    401 {
    402 	struct mutexattr_private *map;
    403 
    404 	pthread__error(EINVAL, "Invalid mutex attribute",
    405 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    406 
    407 	map = attr->ptma_private;
    408 
    409 	*typep = map->type;
    410 
    411 	return 0;
    412 }
    413 
    414 
    415 int
    416 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
    417 {
    418 	struct mutexattr_private *map;
    419 
    420 	pthread__error(EINVAL, "Invalid mutex attribute",
    421 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    422 
    423 	map = attr->ptma_private;
    424 
    425 	switch (type) {
    426 	case PTHREAD_MUTEX_NORMAL:
    427 	case PTHREAD_MUTEX_ERRORCHECK:
    428 	case PTHREAD_MUTEX_RECURSIVE:
    429 		map->type = type;
    430 		break;
    431 
    432 	default:
    433 		return EINVAL;
    434 	}
    435 
    436 	return 0;
    437 }
    438 
    439 
    440 static void
    441 once_cleanup(void *closure)
    442 {
    443 
    444        pthread_mutex_unlock((pthread_mutex_t *)closure);
    445 }
    446 
    447 
    448 int
    449 pthread_once(pthread_once_t *once_control, void (*routine)(void))
    450 {
    451 
    452 	if (once_control->pto_done == 0) {
    453 		pthread_mutex_lock(&once_control->pto_mutex);
    454 		pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
    455 		if (once_control->pto_done == 0) {
    456 			routine();
    457 			once_control->pto_done = 1;
    458 		}
    459 		pthread_cleanup_pop(1);
    460 	}
    461 
    462 	return 0;
    463 }
    464 
    465 int
    466 pthread__mutex_deferwake(pthread_t thread, pthread_mutex_t *mutex)
    467 {
    468 
    469 	return mutex->ptm_owner == thread;
    470 }
    471 
    472 #endif	/* !PTHREAD__HAVE_ATOMIC */
    473