pthread_mutex.c revision 1.39 1 /* $NetBSD: pthread_mutex.c,v 1.39 2007/12/24 14:46:29 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2003, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __RCSID("$NetBSD: pthread_mutex.c,v 1.39 2007/12/24 14:46:29 ad Exp $");
41
42 #include <errno.h>
43 #include <limits.h>
44 #include <stdlib.h>
45 #include <string.h>
46
47 #include <sys/types.h>
48 #include <sys/lock.h>
49
50 #include "pthread.h"
51 #include "pthread_int.h"
52
53 #ifndef PTHREAD__HAVE_ATOMIC
54
55 static int pthread_mutex_lock_slow(pthread_t, pthread_mutex_t *);
56
57 int _pthread_mutex_held_np(pthread_mutex_t *);
58 pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
59
60 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
61 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
62
63 __strong_alias(__libc_mutex_init,pthread_mutex_init)
64 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
65 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
66 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
67 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
68
69 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
70 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
71 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
72
73 __strong_alias(__libc_thr_once,pthread_once)
74
75 struct mutex_private {
76 int type;
77 int recursecount;
78 };
79
80 static const struct mutex_private mutex_private_default = {
81 PTHREAD_MUTEX_DEFAULT,
82 0,
83 };
84
85 struct mutexattr_private {
86 int type;
87 };
88
89 static const struct mutexattr_private mutexattr_private_default = {
90 PTHREAD_MUTEX_DEFAULT,
91 };
92
93 int
94 pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
95 {
96 struct mutexattr_private *map;
97 struct mutex_private *mp;
98
99 pthread__error(EINVAL, "Invalid mutex attribute",
100 (attr == NULL) || (attr->ptma_magic == _PT_MUTEXATTR_MAGIC));
101
102 if (attr != NULL && (map = attr->ptma_private) != NULL &&
103 memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
104 mp = malloc(sizeof(*mp));
105 if (mp == NULL)
106 return ENOMEM;
107
108 mp->type = map->type;
109 mp->recursecount = 0;
110 } else {
111 /* LINTED cast away const */
112 mp = (struct mutex_private *) &mutex_private_default;
113 }
114
115 mutex->ptm_magic = _PT_MUTEX_MAGIC;
116 mutex->ptm_owner = NULL;
117 pthread_lockinit(&mutex->ptm_lock);
118 pthread_lockinit(&mutex->ptm_interlock);
119 PTQ_INIT(&mutex->ptm_blocked);
120 mutex->ptm_private = mp;
121
122 return 0;
123 }
124
125
126 int
127 pthread_mutex_destroy(pthread_mutex_t *mutex)
128 {
129
130 pthread__error(EINVAL, "Invalid mutex",
131 mutex->ptm_magic == _PT_MUTEX_MAGIC);
132 pthread__error(EBUSY, "Destroying locked mutex",
133 __SIMPLELOCK_UNLOCKED_P(&mutex->ptm_lock));
134
135 mutex->ptm_magic = _PT_MUTEX_DEAD;
136 if (mutex->ptm_private != NULL &&
137 mutex->ptm_private != (const void *)&mutex_private_default)
138 free(mutex->ptm_private);
139
140 return 0;
141 }
142
143
144 /*
145 * Note regarding memory visibility: Pthreads has rules about memory
146 * visibility and mutexes. Very roughly: Memory a thread can see when
147 * it unlocks a mutex can be seen by another thread that locks the
148 * same mutex.
149 *
150 * A memory barrier after a lock and before an unlock will provide
151 * this behavior. This code relies on pthread__spintrylock() to issue
152 * a barrier after obtaining a lock, and on pthread__spinunlock() to
153 * issue a barrier before releasing a lock.
154 */
155
156 int
157 pthread_mutex_lock(pthread_mutex_t *mutex)
158 {
159 pthread_t self;
160 int error;
161
162 self = pthread__self();
163
164 /*
165 * Note that if we get the lock, we don't have to deal with any
166 * non-default lock type handling.
167 */
168 if (__predict_false(pthread__spintrylock(self, &mutex->ptm_lock) == 0)) {
169 error = pthread_mutex_lock_slow(self, mutex);
170 if (error)
171 return error;
172 }
173
174 /*
175 * We have the lock!
176 */
177 mutex->ptm_owner = self;
178
179 return 0;
180 }
181
182
183 static int
184 pthread_mutex_lock_slow(pthread_t self, pthread_mutex_t *mutex)
185 {
186 extern int pthread__started;
187 struct mutex_private *mp;
188 sigset_t ss;
189 int count;
190
191 pthread__error(EINVAL, "Invalid mutex",
192 mutex->ptm_magic == _PT_MUTEX_MAGIC);
193
194 for (;;) {
195 /* Spin for a while. */
196 count = pthread__nspins;
197 while (__SIMPLELOCK_LOCKED_P(&mutex->ptm_lock) && --count > 0)
198 pthread__smt_pause();
199 if (count > 0) {
200 if (pthread__spintrylock(self, &mutex->ptm_lock) != 0)
201 break;
202 continue;
203 }
204
205 /* Okay, didn't look free. Get the interlock... */
206 pthread__spinlock(self, &mutex->ptm_interlock);
207
208 /*
209 * The mutex_unlock routine will get the interlock
210 * before looking at the list of sleepers, so if the
211 * lock is held we can safely put ourselves on the
212 * sleep queue. If it's not held, we can try taking it
213 * again.
214 */
215 PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep);
216 if (__SIMPLELOCK_UNLOCKED_P(&mutex->ptm_lock)) {
217 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
218 pthread__spinunlock(self, &mutex->ptm_interlock);
219 continue;
220 }
221
222 mp = mutex->ptm_private;
223 if (mutex->ptm_owner == self && mp != NULL) {
224 switch (mp->type) {
225 case PTHREAD_MUTEX_ERRORCHECK:
226 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
227 pthread__spinunlock(self, &mutex->ptm_interlock);
228 return EDEADLK;
229
230 case PTHREAD_MUTEX_RECURSIVE:
231 /*
232 * It's safe to do this without
233 * holding the interlock, because
234 * we only modify it if we know we
235 * own the mutex.
236 */
237 PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
238 pthread__spinunlock(self, &mutex->ptm_interlock);
239 if (mp->recursecount == INT_MAX)
240 return EAGAIN;
241 mp->recursecount++;
242 return 0;
243 }
244 }
245
246 if (pthread__started == 0) {
247 /* The spec says we must deadlock, so... */
248 pthread__assert(mp->type == PTHREAD_MUTEX_NORMAL);
249 (void) sigprocmask(SIG_SETMASK, NULL, &ss);
250 for (;;) {
251 sigsuspend(&ss);
252 }
253 /*NOTREACHED*/
254 }
255
256 /*
257 * Locking a mutex is not a cancellation
258 * point, so we don't need to do the
259 * test-cancellation dance. We may get woken
260 * up spuriously by pthread_cancel or signals,
261 * but it's okay since we're just going to
262 * retry.
263 */
264 self->pt_sleeponq = 1;
265 self->pt_sleepobj = &mutex->ptm_blocked;
266 pthread__spinunlock(self, &mutex->ptm_interlock);
267 (void)pthread__park(self, &mutex->ptm_interlock,
268 &mutex->ptm_blocked, NULL, 0, &mutex->ptm_blocked);
269 }
270
271 return 0;
272 }
273
274
275 int
276 pthread_mutex_trylock(pthread_mutex_t *mutex)
277 {
278 struct mutex_private *mp;
279 pthread_t self;
280
281 pthread__error(EINVAL, "Invalid mutex",
282 mutex->ptm_magic == _PT_MUTEX_MAGIC);
283
284 self = pthread__self();
285
286 if (pthread__spintrylock(self, &mutex->ptm_lock) == 0) {
287 /*
288 * These tests can be performed without holding the
289 * interlock because these fields are only modified
290 * if we know we own the mutex.
291 */
292 mp = mutex->ptm_private;
293 if (mp != NULL && mp->type == PTHREAD_MUTEX_RECURSIVE &&
294 mutex->ptm_owner == self) {
295 if (mp->recursecount == INT_MAX)
296 return EAGAIN;
297 mp->recursecount++;
298 return 0;
299 }
300
301 return EBUSY;
302 }
303
304 mutex->ptm_owner = self;
305
306 return 0;
307 }
308
309
310 int
311 pthread_mutex_unlock(pthread_mutex_t *mutex)
312 {
313 struct mutex_private *mp;
314 pthread_t self;
315 int weown;
316
317 pthread__error(EINVAL, "Invalid mutex",
318 mutex->ptm_magic == _PT_MUTEX_MAGIC);
319
320 /*
321 * These tests can be performed without holding the
322 * interlock because these fields are only modified
323 * if we know we own the mutex.
324 */
325 self = pthread__self();
326 weown = (mutex->ptm_owner == self);
327 mp = mutex->ptm_private;
328
329 if (mp == NULL) {
330 if (__predict_false(!weown)) {
331 pthread__error(EPERM, "Unlocking unlocked mutex",
332 (mutex->ptm_owner != 0));
333 pthread__error(EPERM,
334 "Unlocking mutex owned by another thread", weown);
335 }
336 } else if (mp->type == PTHREAD_MUTEX_RECURSIVE) {
337 if (!weown)
338 return EPERM;
339 if (mp->recursecount != 0) {
340 mp->recursecount--;
341 return 0;
342 }
343 } else if (mp->type == PTHREAD_MUTEX_ERRORCHECK) {
344 if (!weown)
345 return EPERM;
346 if (__predict_false(!weown)) {
347 pthread__error(EPERM, "Unlocking unlocked mutex",
348 (mutex->ptm_owner != 0));
349 pthread__error(EPERM,
350 "Unlocking mutex owned by another thread", weown);
351 }
352 }
353
354 mutex->ptm_owner = NULL;
355 pthread__spinunlock(self, &mutex->ptm_lock);
356
357 /*
358 * Do a double-checked locking dance to see if there are any
359 * waiters. If we don't see any waiters, we can exit, because
360 * we've already released the lock. If we do see waiters, they
361 * were probably waiting on us... there's a slight chance that
362 * they are waiting on a different thread's ownership of the
363 * lock that happened between the unlock above and this
364 * examination of the queue; if so, no harm is done, as the
365 * waiter will loop and see that the mutex is still locked.
366 */
367 pthread__spinlock(self, &mutex->ptm_interlock);
368 pthread__unpark_all(self, &mutex->ptm_interlock, &mutex->ptm_blocked);
369 return 0;
370 }
371
372 int
373 pthread_mutexattr_init(pthread_mutexattr_t *attr)
374 {
375 struct mutexattr_private *map;
376
377 map = malloc(sizeof(*map));
378 if (map == NULL)
379 return ENOMEM;
380
381 *map = mutexattr_private_default;
382
383 attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
384 attr->ptma_private = map;
385
386 return 0;
387 }
388
389
390 int
391 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
392 {
393
394 pthread__error(EINVAL, "Invalid mutex attribute",
395 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
396
397 attr->ptma_magic = _PT_MUTEXATTR_DEAD;
398 if (attr->ptma_private != NULL)
399 free(attr->ptma_private);
400
401 return 0;
402 }
403
404
405 int
406 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
407 {
408 struct mutexattr_private *map;
409
410 pthread__error(EINVAL, "Invalid mutex attribute",
411 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
412
413 map = attr->ptma_private;
414
415 *typep = map->type;
416
417 return 0;
418 }
419
420
421 int
422 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
423 {
424 struct mutexattr_private *map;
425
426 pthread__error(EINVAL, "Invalid mutex attribute",
427 attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
428
429 map = attr->ptma_private;
430
431 switch (type) {
432 case PTHREAD_MUTEX_NORMAL:
433 case PTHREAD_MUTEX_ERRORCHECK:
434 case PTHREAD_MUTEX_RECURSIVE:
435 map->type = type;
436 break;
437
438 default:
439 return EINVAL;
440 }
441
442 return 0;
443 }
444
445
446 static void
447 once_cleanup(void *closure)
448 {
449
450 pthread_mutex_unlock((pthread_mutex_t *)closure);
451 }
452
453
454 int
455 pthread_once(pthread_once_t *once_control, void (*routine)(void))
456 {
457
458 if (once_control->pto_done == 0) {
459 pthread_mutex_lock(&once_control->pto_mutex);
460 pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
461 if (once_control->pto_done == 0) {
462 routine();
463 once_control->pto_done = 1;
464 }
465 pthread_cleanup_pop(1);
466 }
467
468 return 0;
469 }
470
471 int
472 pthread__mutex_deferwake(pthread_t thread, pthread_mutex_t *mutex)
473 {
474
475 return mutex->ptm_owner == thread;
476 }
477
478 int
479 _pthread_mutex_held_np(pthread_mutex_t *mutex)
480 {
481
482 return mutex->ptm_owner == pthread__self();
483 }
484
485 pthread_t
486 _pthread_mutex_owner_np(pthread_mutex_t *mutex)
487 {
488
489 return (pthread_t)mutex->ptm_owner;
490 }
491
492 #endif /* !PTHREAD__HAVE_ATOMIC */
493